
Plananarama 2.2
The Planar Graphics Engine for Hollywood

Andreas Falkenhahn

i

Table of Contents

1 General information . 1
1.1 Introduction . 1
1.2 Terms and conditions . 1
1.3 Requirements . 2
1.4 Installation . 3

2 About Plananarama . 5
2.1 Credits . 5
2.2 Frequently asked questions . 5
2.3 Future . 6
2.4 History . 6

3 Usage . 7
3.1 Getting started . 7
3.2 Configuring Plananarama . 8
3.3 Remapping mode . 10
3.4 Palette mode . 10
3.5 Hardware sprites . 11
3.6 RapaGUI and MUI Royale support . 12

4 Function reference . 13
4.1 planar.CreateSprite . 13
4.2 planar.FreeSprite . 14
4.3 planar.GetSpriteType . 14
4.4 planar.HaveAGA . 15
4.5 planar.MapSprite . 16
4.6 planar.MoveSprite . 16
4.7 planar.UnmapSprite . 17
4.8 planar.VWait . 17

Index . 19

1

1 General information

1.1 Introduction

The Plananarama plugin allows Hollywood to run on planar (palette-based) screens. This
finally makes it possible to run Hollywood scripts on plain AGA or ECS systems with
no graphics board installed - for the first time since Hollywood 1.93 (released in March
2005)! Starting with version 2.0, Hollywood required CyberGraphX or Picasso96 to run.
Since then, many people have asked for a revival of Hollywood’s planar engine, so here it
is, a real blast from the past! Thanks to Hollywood 6’s greatly extended plugin API this
feature could be implemented completely in plugin space. Once Plananarama is installed,
all Hollywood scripts will ’automagically’ run on palette screens again! All resolutions are
supported - from 8-bit LowRes to 1-bit productivity SuperHighRes Interlace.

Starting with Plananarama 2.0 it is also possible to get direct access to the screen’s palette
pens when it is running in fullscreen mode. This allows you to draw directly using the
screen’s palette without the need for any color remapping so drawing will become much
faster. Also, it’s possible to create nice palette effects by changing pens, e.g. it’s possible to
fade or cycle colors with almost no CPU load because in palette mode, Plananarama can
directly modify the hardware’s color register instead of having to redraw everything when
colors change (as it needs to be done for real TrueColour graphics).

Also, Plananarama 2.0 introduces support for real hardware sprites. When using hardware
sprites, the Amiga’s custom chip hardware is used to draw the sprites which allows your
script to draw sprites in next to no time with almost no CPU load.

All of this makes Plananarama the ultimate plugin for targetting classic Amiga systems
that don’t have a graphics board installed.

1.2 Terms and conditions

Plananarama is c© Copyright 2014-2023 by Andreas Falkenhahn (in the following referred
to as "the author"). All rights reserved.

The program is provided "as-is" and the author cannot be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

Plananarama may be freely distributed as long as the following three conditions are met:

1. No modifications must be made to the plugin.

2. It is not allowed to sell this plugin.

3. If you want to put this plugin on a coverdisc, you need to ask for permission first.

All trademarks are the property of their respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS

2 Plananarama manual

WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

1.3 Requirements

This plugin requires at least Hollywood 6.0 since it uses the display and bitmap adapter
APIs introduced with Hollywood 6.0. Some features, however, require newer Hollywood
versions. Here’s an overview of the features only available with newer Hollywood versions:

− Unicode support: requires Hollywood 7

− Support for VanillaKey and OnDropFile event handler: requires Hollywood 7

− Support for OnRawKey event handler: requires Hollywood 7.1

− Support for menus: requires Hollywood 9

− Support for Plananarama’s special palette mode: requires Hollywood 9

− Hardware sprite support: requires Hollywood 9

The following optional components might be required as well:

− guigfx.library and render.library: These two libraries are required when the
PaletteMode tag in the @REQUIRE call has been set to False (which is also the
default). In that case, Plananarama will remap all graphics to the current screen’s
palette. This is done using guigfx.library and render.library. If you set PaletteMode
to True, however, Plananarama won’t require guigfx.library and render.library
because graphics won’t be remapped to the screen palette but all graphics will be
drawn using the screen’s pens.

Note that render.library is available in two flavours: There is a v40 and a v30 branch. It
is recommended to use the latest version of the v30 branch because all the v40 versions
are C ports of the v30 branch versions which are all written in 68k assembler. The
assembler version (= v30 branch) of render.library is much faster than the C version
which is why you might want to use the assembler version instead. The latest assembler
version of render.library is v32.0. So if you care about performance you should use this
one. Also, the v40 branch of render.library requires an FPU which is another reason
to use the latest version from the v32 branch instead.

− FBlit: When the PaletteMode tag in the @REQUIRE call has been set to False (which
is also the default), it is highly recommended to use FBlit because otherwise your
chip memory will be gone in no time and Hollywood will run out of memory. So
make sure you install FBlit first and you add Hollywood to its "Include" list in the
"FAllocBitMap" tab. If Hollywood is included in this list, it will be able to place

Chapter 1: General information 3

graphics in fast memory which is absolutely needed since 2 MB of chip memory certainly
won’t be enough for Hollywood. Using FBlit also has the advantage that Hollywood
can use the CPU for blitting which is much faster than the blitter on higher 68k CPUs
or WinUAE anyway. If PaletteMode is set to True, FBlit isn’t necessary because
Hollywood can store its graphics data in fast memory. In that case, however, you
might want to use BlazeWCP (see below).

− BlazeWCP: When the PaletteMode tag in the @REQUIRE call has been set to
True, Hollywood will store all graphics in fast memory and draw them using the
WriteChunkyPixels() command from graphics.library. WriteChunkyPixels(),
however, is very slow on OS3.1-3.9 so you might want to use BlazeWCP from Aminet
to speed up things. Rumour has it that the implementation of WriteChunkyPixels()
in the new classic AmigaOS releases by Hyperion (3.1.4 and up) has seen some
optimizations so BlazeWCP might not be necessary on 3.1.4 and up any longer but I
haven’t done any benchmarks so I can’t tell whether BlazeWCP is still necessary with
the classic AmigaOS releases by Hyperion. It’s definitely recommended with classic
AmigaOS 3.1, 3.5 and 3.9.

1.4 Installation

To install Plananarama, just use the included installer or copy the file plananarama.hwp

to LIBS:Hollywood.

5

2 About Plananarama

2.1 Credits

Plananarama was written by Andreas Falkenhahn. This plugin was first created during the
development of Hollywood 6.0 as a proof-of-concept for the flexibility of Hollywood 6.0’s
powerful display and bitmap adapters. This plugin completely replaces Hollywood’s default
display adapter and installs a custom one that is able to run on planar screens.

If you want to contact me, you can either send an e-mail to andreas@airsoftsoftwair.

de or use the contact form on http://www.hollywood-mal.com.

2.2 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the forum because your problem might have been covered here.

Q: Plananarama says "Cannot open guigfx.library!" but I have guigfx.library installed.

A: guigfx.library requires render.library and will fail to open in case render.library isn’t
present so make sure you have render.library as well. If you do, make sure you have the
right version of render.library. Some require an FPU and will fail to open if no FPU is
present. See Section 1.3 [Requirements], page 2, for details.

Q: My system crashes with a 8000000B software failure.

A: You are using a version of render.library or guigfx.library that needs an FPU on a system
without an FPU. Make sure to use the appropriate version for your system because some
versions of render.library and guigfx.library don’t check if an FPU is present, they will just
crash if there is none. See Section 1.3 [Requirements], page 2, for details.

Q: I’m getting an "Out of memory!" error but I have lots of fast memory.

A: First make sure you have installed FBlit. Then make sure that you’ve configured FBlit
correctly. You have to add Hollywood to FBlit’s "Include" list in the "FAllocBitMap" tab.
If Hollywood is included in this list, it will be able to place graphics in fast memory which
is absolutely needed since 2 MB of chip memory certainly won’t be enough for Hollywood.
So make sure you configure FBlit correctly.

Q: Plananarama is very slow.

A: This can have many reasons. If you’ve set the PaletteMode tag to True in @REQUIRE,
make sure to install the BlazeWCP patch from Aminet to speed up drawing. In palette
mode, you can also speed up drawing significantly if you only use palette graphics, i.e.
don’t use brushes, BGPics, anims etc. that are stored as hi/true colour RGB images but
use palette images only. Ideally, they should use the same palette as the screen you want
to draw them to so that Plananarama doesn’t have to do any remapping but can just draw
them.

Another reason might be that your script is drawing many images with alpha channel
graphics, e.g. anti-aliased text/shapes or images with variable levels of transparency. These

andreas@airsoftsoftwair.de
andreas@airsoftsoftwair.de
http://www.hollywood-mal.com

6 Plananarama manual

things do not make much sense on palette-based screens and they are very, very expensive
on the CPU because Plananarama needs to remap these images from true colour chunky
pixels to planar graphics all the time.

Thus, if you care about performance you should not use any alpha channel images and
transparency should be limited to monochrome transparency (i.e. visible and invisible
pixels). The best idea is to use a fixed set of prerendered graphics. When just drawing
prerendered graphics with no changes concerning the colors, Plananarama should perform
quite well on planar screens and scripts should also be usable on slower systems, though
you still need a fast CPU and some fast memory of course.

Q: Is there a Hollywood forum where I can get in touch with other users?

A: Yes, please check out the "Community" section of the official Hollywood Portal online
at http://www.hollywood-mal.com.

Q: Where can I ask for help?

A: There’s an active forum at http://forums.hollywood-mal.com. You’re welcome to
join it and ask your question there.

Q: I have found a bug.

A: Please post about it in the "Bugs" section of the forum.

2.3 Future

Here are some things that are on my to do list:

− add support for palette mode on public screens like Workbench; this requires a shared
pen management system because Plananarama apps must share their pens with other
apps on the same screen

− add support for hardware scrolling

− add support for hardware doublebuffers

− add support for bobs

Don’t hesitate to contact me if Plananarama lacks a certain feature that is important for
your project.

2.4 History

Please see the file history.txt for a complete change log of Plananarama.

http://www.hollywood-mal.com
http://forums.hollywood-mal.com

7

3 Usage

3.1 Getting started

After you have installed Plananarama, Hollywood will automatically use it if CyberGraphX
or Picasso96 are unavailable because your system doesn’t have a graphics board. Thus, as
soon as Plananarama is installed, all your Hollywood scripts will "automagically" run on
palette screens because Hollywood will route them through Plananarama. If you leave
everything to Hollywood, your scripts will run in remapping mode. This mode guarantees
maximum compatibility but also needs lots of memory and can be slow, depending on what
the script does.

It’s also possible to write scripts that are specifically designed for Plananarama. This
typically allows you to achieve a better performance because you’re working within the
restrictions of palette-based screens. Scripts specifically designed for Plananarama should
request palette mode from Plananarama by setting the PaletteMode tag when @REQUIRE-

ing the plugin, e.g.

@REQUIRE "plananarama", {PaletteMode = True}

The line above will tell Plananarama to run in palette mode. The difference between palette
and remapping mode is that in palette mode your script has direct access to the screen’s
palette pens. For example, when calling Hollywood’s SetPen() function in palette mode,
you can directly change the color of a screen pen and using Hollywood’s SetPalette()

command you can set a whole new palette. This can be used for several effects like color
cycling or fading and since changing screen palette pens is managed by the Amiga’s custom
chip hardware, the result will be visible instantly with almost no delay.

Furthermore, since you have full control over the screen’s palette in palette mode, you can
also store all your graphics in a way so that the palette of your images matches the palette
of the screen. If that is the case, graphics can be drawn really quickly because no color
remapping needs to be done and drawing graphics is just a matter of copying raw pixels.
Thus, to get the best performance with Plananarama you should put the plugin in palette
mode and then design your script in a way that avoids color remapping as much as possible,
e.g. by making all images use the same, global palette. This also means that you shouldn’t
pass RGB colors when drawing primitives like rectangles, lines, circles etc. but that you
should draw using palette pens instead. This is possible by setting the palette mode to
#PALETTE_PEN, like so:

SetPaletteMode(#PALETTEMODE_PEN)

Palette mode will also allow you to use hardware sprites which can speed up things further
because these sprites can be drawn in next to no time since they’re completely handled by
the Amiga’s custom chip hardware. See Section 3.5 [Hardware sprites], page 11, for details.
Another advantage of using palette mode is that your script won’t require guigfx.library
and render.library. To speed up drawing in palette mode, it’s advised to install BlazeWCP
though. See Section 1.3 [Requirements], page 2, for details.

Note that in palette mode, Plananarama will always open its own screen (even if the Hol-
lywood script explicitly requests window mode). The reason for this is that full control
over the screen palette is only possible in case Plananarama runs on its own screen. When
running on Workbench or other screens shared with other applications, palette pens need

8 Plananarama manual

to be shared as well which makes things more complicated. See Section 3.4 [Palette mode],
page 10, for details.

In remapping mode, which is Plananarama’s default mode, Plananarama can run on its own
screen or on other screens like Workbench. In case remapping mode is active, Plananarama
won’t give you access to the screen’s palette pens but it will remap the colors of all graphics
it draws to match the screen’s palette. This is of course much slower than drawing graphics
whose colors match the screen’s palette in palette mode (see above) but it is very flexible
and allows you to make any Hollywood script run on a palette screen as long as you have
enough free memory. See Section 3.3 [Remapping mode], page 10, for details.

Note that palette mode requires Hollywood 9 or better. Remapping mode needs at least
Hollywood 6.

3.2 Configuring Plananarama

When @REQUIRE-ing Plananarama, you can pass the following tags to Hollywood’s
@REQUIRE preprocessor command:

PaletteMode:

This tag can be used to set whether or not Plananarama should run in palette
mode. This defaults to False which means remapping mode (see above for
details). (V2.0)

NoBlackBackground:

If this is set to True, Plananarama won’t set color 0 to black when opening
in fullscreen mode. This is only handled when Plananarama is in remapping
mode. In palette mode, Plananarama will use the display’s palette. Defaults
to False. (V2.0)

SpriteResolution:

This tag can be used to force a specific sprite resolution for the hardware sprites
created by Plananarama. By default, Plananarama will use the system’s sprite
resolution which might not be what you want. E.g. if the system’s sprite
resolution is hires, your sprites will appear in hires as well which might not
be what you want. The system’s sprite resolution is typically identical with
the mouse pointer resolution set in the system’s "Pointer" preferences because
AmigaOS implements the mouse pointer using a hardware sprite. So if the user
has configured a hires pointer here, then all your sprites will use hires by default
as well. If you don’t want that, set this tag to 1 to force lores sprite resolution.
To force hires sprites, set the tag to 2. This tag defaults to 0 which means use
the system’s sprite resolution. Note that this tag is only ever useful on AGA
systems because on ECS systems sprites are always lores. (V2.0)

PlanarOnly:

By default, Plananarama will only start if the screen is a planar one. Thus, if
you @REQUIRE Plananarama on RTG screens (15, 16, 24, and 32 bit), the plugin
won’t start at all because it normally doesn’t make sense to use Plananarama
on RTG systems. There’s one exception, though: If you want to open a custom
planar screen with Plananarama, then you could also do that on RTG systems
but since Plananarama won’t start on RTG systems by default, you have to

Chapter 3: Usage 9

disable that behaviour by setting PlanarOnly to False. In that case, Plana-
narama will always start when it is @REQUIREd - even on RTG systems. Note
that if PaletteMode is set to True, PlanarOnly will automatically be set to
False. Defaults to True. (V2.1)

DitherMode:

When Plananarama is in remapping mode, this can be used to configure the
dithering mode. This can be set to None, FS (the default), Random, or Edd.
Here is a description of the different dither modes:

None No dithering at all.

FS Floyd-Steinberg dithering. This is the default.

Random Random dithering. This mode is significantly slower than Floyd-
Steinberg dithering.

Edd EDD dithering. This mode is faster than Floyd-Steinberg dithering.

This tag is ignored in palette mode.

DitherAmount:

When Plananarama is in remapping mode, this can be used to set the dither
amount. This must be between 0 and 255. Currently this value is of any use
only for the Random dither mode. Defaults to 40. This tag is ignored in palette
mode.

AutoDither:

When Plananarama is in remapping mode, this can be used to enable automatic
dithering. If set to True, dithering is automatically activated for drawing a par-
ticular picture to a particular environment, when the loss of color information
would exceed a certain threshold (see below). Defaults to True. This tag is
ignored in palette mode.

DitherThreshold:

When Plananarama is in remapping mode, this can be used to set the
threshold for automatic dithering. The lower, the earlier automatic dithering
is activated. Useful thresholds range between 10 and 10000. Refer to
render.library/RGBArrayDiversityA() for further details. Better you do not
use this tag unless you have a good reason to. Let the user customize it with
the environment variable AUTODITHERTHRESHOLD. Defaults to 250. This tag is
ignored in palette mode.

Precision:

When Plananarama is in remapping mode, this can be used to set the precision
for pen allocations. This can be Exact, Image (the default), Icon, or GUI. See
graphics.library/ObtainBestPenA() for details. Note that the default precision
suffices for almost every application. Pens are obtained in an extremely effective
way. You get excellent results even with lower precisions. Commodore’s idea
with ObtainBestPenA() was to create a fair and effective pen-sharing mecha-
nism, and Plananarama behaves in perfect accordance to this intention. Never
use insane patches for ObtainBestPenA(). This tag is ignored in palette mode.

10 Plananarama manual

3.3 Remapping mode

By default, Plananarama will run in remapping mode. Remapping mode is the most conve-
nient of Plananarama’s display modes because it allows you to simply make any Hollywood
script run on all kinds of palette screens. You don’t have to adapt your code in any way,
it will just work because all graphics are remapped to match the target screen’s palette.
However, this means lots of work for the CPU so it will be very slow. Also, it means that all
images will be stored as RGB graphics which will consume a lot of memory. For example, a
640x480 image will require 1.2 megabytes of memory when stored as RGB but only 300kb
of memory when stored as a palette image.

To speed things up, you could try using palette mode instead but this will require you to
tailor your script specifically to the constraints of a palette-based display. See Section 3.4
[Palette mode], page 10, for details.

Note that when using Plananarama in remapping mode, it’s advised to install FBlit. See
Section 1.3 [Requirements], page 2, for details.

3.4 Palette mode

When using palette mode with Plananarama, you can achieve a better performance than in
remapping mode but it comes at the cost that you must design your script specifically for
Plananarama’s palette mode. For example, you must make sure that your Hollywood display
is a palette display. Otherwise you obviously won’t gain any performance improvement
because if the Hollywood display doesn’t use a palette but RGB graphics, all graphics still
have to be remapped just like in remapping mode.

Here is some example code that sets up a palette display and puts Plananarama in palette
mode:

@REQUIRE "plananarama", {PaletteMode = True}

@DISPLAY {Palette = #PALETTE_AGA}

SetPaletteMode(#PALETTEMODE_PEN)

SetFillStyle(#FILLCOLOR)

SetDrawPen(2)

Box(#CENTER, #CENTER, 320, 240)

The code does several very important steps that are necessary to take full advantage of
Plananarama’s palette mode: First, it creates a palette display by using the Palette tag to
assign the inbuilt palette #PALETTE_AGA to the display. Alternatively, you could also create
a palette display by simply assigning a palette BGPic to it, e.g. like so:

@REQUIRE "plananarama", {PaletteMode = True}

@BGPIC 1, "background.iff", {LoadPalette = True}

Since we set LoadPalette to True in the code above, your display will automatically become
a palette display because its BGPic is a palette one.

The second very important thing the first code snippet does is calling SetPaletteMode()

with #PALETTEMODE_PEN passed to it. This is very important because if you don’t do that,
Hollywood will still remap all graphics to your display’s palette which is slow. Only by
setting palette mode to #PALETTEMODE_PEN can you tell Hollywood to not do any remapping

Chapter 3: Usage 11

but just copy the raw pixels. Of course, this means that if you draw images their palette
must match the display palette or you’ll get wrong colors.

Finally, the code snippet calls SetDrawPen() to set a drawing pen. This step is very
important if you want to draw graphics primitives like lines, rectangles, circles, and so on.
If the palette mode has been set to #PALETTEMODE_PEN, Hollywood functions like Box(),
Line(), Circle(), etc. will ignore the RGB color that is passed to them. Instead, they
will draw using the pen that has been set using SetDrawPen(). This is why the code above
will draw a white rectangle and not a black one, even though the color argument in the call
to Box() defaults to black because it has been left out.

Since we have full control over the hardware color registers, we could now easily turn the
white rectangle into a red one by just changing the color of palette pen 2. This can be done
like this:

SetPen(2, #RED)

Then we could smoothly fade out the red rectangle to black by doing something like this:

For Local k = 32 To 0 Step -1

SetPen(2, RGB(255 * (k/32), 0, 0))

VWait

Next

Of course you could also cycle the palette colors and apply a completely new palette using
Hollywood’s SetPalette() function. Lots of things are possible in palette mode.

Another advantage of using palette mode is that your script won’t require guigfx.library
and render.library. To speed up drawing in palette mode, it’s advised to install BlazeWCP
though. See Section 1.3 [Requirements], page 2, for details.

3.5 Hardware sprites

Starting with Plananarama 2.0 the plugin also supports Amiga hardware sprites. Since these
are managed by the Amiga’s custom chipset hardware, they can be drawn extremely effi-
ciently without any performance penalties. However, sprites have always been the Amiga’s
Achilles heel since they are quite limited in comparison to other systems (especially in
comparison to gaming consoles).

Specifically, there are the following limitations when it comes to hardware sprites on the
Amiga:

− there are only 8 sprite DMA channels so you can only have a maximum of 8 sprites

− each sprite DMA channel can only handle 4 color graphics

− luckily, two sprite DMA channels can be combined to create a 16 color sprite but this
means that if you use 16 color sprites, you can only have 4 of them because each 16
color sprite will occupy two sprite DMA channels

− on OCS/ECS the maximum sprite width is 16 pixels

− on AGA the maximum sprite width is 64 pixels

− there is no maximum sprite height

− the individual sprite DMA channels are tied to certain color registers and one color is
always reserved for transparency. See Section 4.1 [planar.CreateSprite], page 13, for
details.

12 Plananarama manual

Due to all these limitations you won’t be able to move mountains with Amiga hardware
sprites but if you only need to have a few sprites, they can still be quite useful because they
can be drawn so quickly since they are completely handled on the hardware level.

Note that when using hardware sprites you should use Plananarama in palette mode because
in remapping mode you won’t have control over the screen’s palette pens so there is no way
to set the sprite colors. See Section 3.4 [Palette mode], page 10, for details.

Also note that you might want to set the SpriteResolution tag when using hardware
sprites. Otherwise your sprites will use the system’s sprite resolution which might not be
what you want. E.g. if the system’s sprite resolution is hires, your sprites will appear in
hires as well which might not be what you want. The system’s sprite resolution is typically
identical with the mouse pointer resolution set in the system’s "Pointer" preferences be-
cause AmigaOS implements the mouse pointer using a hardware sprite. So if the user has
configured a hires pointer here, then all your sprites will use hires by default as well. If you
don’t want that, set the SpriteResolution tag to 1 to force lores sprites. See Section 3.2
[Configuring Plananarama], page 8, for details. Note that the SpriteResolution tag is
only really needed on AGA systems because on ECS systems sprites are always lores.

3.6 RapaGUI and MUI Royale support

Plananarama also supports the RapaGUI and MUI Royale plugins. When Plananarama is
installed, both RapaGUI and MUI Royale will automatically run on palette screens as well.
Note, however, that you must not use Plananarama’s palette mode when using RapaGUI
and MUI Royale. With those plugins, Plananarama must always be used in remapping
mode.

13

4 Function reference

4.1 planar.CreateSprite

NAME
planar.CreateSprite – create hardware sprite from brush (V2.0)

SYNOPSIS
[id] = planar.CreateSprite(id, brushid)

FUNCTION
This function converts the brush specified by brushid into a hardware sprite and assigns
the identifier id to it. If you specify Nil in the id argument, planar.CreateSprite()
will automatically choose a vacant identifier for this sprite and return it to you.

Note that the brush you pass to this function must respect the Amiga hardware sprite
limitations. This means that it must adhere to the following rules:

− it must be a palette brush

− on OCS/ECS systems the maximum sprite width is 16 pixels

− on AGA systems the maximum sprite width is 64 pixels

− the palette brush must use either 4 or 16 colors

Also note that the Amiga hardware supports only 8 sprite DMA channels. Each channel
can have a 4 color sprite. The 8 sprite DMA channels are tied to the following color
registers:

− Channels 0 and 1: Color registers 16 to 19 (color 16 is transparent). Note that
channel 0 is reserved for use by Intuition for the mouse pointer.

− Channels 2 and 3: Color registers 20 to 23 (color 20 is transparent).

− Channels 4 and 5: Color registers 24 to 27 (color 24 is transparent).

− Channels 6 and 7: Color registers 28 to 31 (color 28 is transparent).

Two channels can be combined to create a 16 color sprite. This means that if you use
16 color sprites, you can only have 4 instead of 8 because a 16 color sprite will block two
sprite DMA channels. 16 color sprites are tied to the color registers 16 to 31 (color 16 is
transparent).

Note that planar.CreateSprite() won’t map the sprite to a sprite DMA channel im-
mediately. This is the job of planar.MapSprite(). Thus, you can create more hardware
sprites with planar.CreateSprite() than there are sprite DMA channels. This is
useful if you want to animate sprites, for example. In that case, you could first con-
vert all the animation frames to hardware sprites using planar.CreateSprite() and
then map and unmap the single animation frames before/after displaying them with
planar.MoveSprite().

INPUTS

id identifier for the hardware sprite or Nil for auto id selection

brushid identifier of the palette brush to be converted to a hardware sprite

14 Plananarama manual

RESULTS

id optional: identifier of the hardware sprite; will only be returned if you pass
Nil as argument 1 (see above)

EXAMPLE
@REQUIRE "plananarama", {PaletteMode = True}

@DISPLAY {Palette = #PALETTE_AGA}

SetPaletteMode(#PALETTEMODE_PEN)

SetFillStyle(#FILLCOLOR)

CreateBrush(1, 64, 64, {Palette = #PALETTE_GRAY4})

SelectBrush(1)

For Local k = 0 To 2

SetDrawPen(k + 1)

Box(k * 21, 0, 21, 64)

Next

EndSelect

planar.CreateSprite(1, 1)

planar.MapSprite(1)

Repeat

planar.MoveSprite(1, MouseX(), MouseY())

planar.VWait()

Forever

The code above will create a 4 color 64x64 sprite, map it to a sprite DMA channel
and then move it to where the mouse pointer is. Note that it doesn’t matter that we
pass #PALETTE_GRAY4 to CreateBrush() since the hardware sprite will use the screen’s
palette so we just use #PALETTE_GRAY4 as a dummy to tell CreateBrush() to give us a
16 color sprite.

4.2 planar.FreeSprite

NAME
planar.FreeSprite – free hardware sprite (V2.0)

SYNOPSIS
planar.FreeSprite(id)

FUNCTION
This function will free the hardware sprite specified by id. If the sprite is currently
mapped to a sprite DMA channel, it will be unmapped before it is freed.

INPUTS

id identifier of hardware sprite to free

4.3 planar.GetSpriteType

NAME
planar.GetSpriteType – get hardware sprite object type (V2.0)

Chapter 4: Function reference 15

SYNOPSIS
type = planar.GetSpriteType()

FUNCTION
This function returns the hardware sprite object type registered by Plananarama. You
can then pass this object type to Hollywood’s GetAttribute() function to query the
following attributes of hardware sprites:

#ATTRWIDTH:

The hardware sprite width.

#ATTRHEIGHT:

The hardware sprite height.

#ATTRDEPTH:

The hardware sprite depth.

#ATTRXPOS:

The hardware sprite x position.

#ATTRYPOS:

The hardware sprite y position.

#ATTRSTATE:

The sprite DMA channel the hardware sprite has been mapped to. For
unmapped hardware sprites, this will be -1.

INPUTS
none

RESULTS

type hardware sprite object type registered by Plananarama

EXAMPLE
DMASPRITE_TYPE = planar.GetSpriteType()

w = GetAttribute(DMASPRITE_TYPE, 1, #ATTRWIDTH)

h = GetAttribute(DMASPRITE_TYPE, 1, #ATTRHEIGHT)

The code above queries the width and height of hardware sprite 1.

4.4 planar.HaveAGA

NAME
planar.HaveAGA – check if AGA chipset is present (V2.0)

SYNOPSIS
ok = planar.HaveAGA()

FUNCTION
This function returns True if the AGA chipset is present, False otherwise.

INPUTS
none

16 Plananarama manual

RESULTS

ok True or False to indicate if the AGA chipset is present

4.5 planar.MapSprite

NAME
planar.MapSprite – map hardware sprite to DMA channel (V2.0)

SYNOPSIS
planar.MapSprite(id[, t])

FUNCTION
This function maps the hardware sprite specified by id to a free sprite DMA channel.
The hardware sprite specified by id must have been created using planar.CreateSprite()
first.

Further parameters can be specified in the optional table argument. The following tags
are currently recognized:

Channel: By default, planar.MapSprite() will choose a sprite DMA channel auto-
matically. If you want to use a specific sprite DMA channel, you can set
it using this tag. This must be a number between 1 and 7 (channel 0 is
reserved for use by Intuition for the mouse pointer sprite). Note that if the
sprite uses 16 colors you can only use channels 2, 4 or 6 because 16 color
sprites occupy two adjacent sprite DMA channels.

Display: This can be set to the identifier of a Hollywood display the sprite should
appear on. This is normally not necessary and the sprite will just use the
current Hollywood display.

Note that if the sprite DMA channel is automatically chosen by planar.MapSprite(),
you can query the #ATTRSTATE attribute to find out the DMA channel your sprite has
been mapped to after calling planar.MapSprite().

To unmap a hardware sprite from a DMA channel, use planar.UnmapSprite() See
Section 4.7 [planar.UnmapSprite], page 17, for details.

INPUTS

id identifier of hardware sprite to map to DMA channel

t optional: table containing further arguments (see above)

EXAMPLE
See Section 4.1 [planar.CreateSprite], page 13.

4.6 planar.MoveSprite

NAME
planar.MoveSprite – set sprite position (V2.0)

SYNOPSIS
planar.MoveSprite(id, x, y)

Chapter 4: Function reference 17

FUNCTION
This function moves the hardware sprite specified by id to the position specified by x

and y. This is only possible for sprites that have been mapped to a sprite DMA channel
before so you need to call planar.MapSprite() before using this function.

INPUTS

id identifier of hardware sprite to move

x desired new x position

y desired new y position

EXAMPLE
See Section 4.1 [planar.CreateSprite], page 13.

4.7 planar.UnmapSprite

NAME
planar.UnmapSprite – unmap hardware sprite from DMA channel (V2.0)

SYNOPSIS
planar.UnmapSprite(id)

FUNCTION
This function unmaps the hardware sprite specified by id from the sprite DMA channel
it is currently attached to. The sprite must have been mapped to a DMA channel using
planar.MapSprite() before.

INPUTS

id identifier of hardware sprite to unmap from DMA channel

4.8 planar.VWait

NAME
planar.VWait – wait for vertical blank interrupt (V2.0)

SYNOPSIS
planar.VWait()

FUNCTION
This will wait for the vertical blank interrupt. When using Plananarama, it’s better to
use this function instead of Hollywood’s own VWait() function because Plananarama’s
planar.VWait() function operates on a level that is closer to the Amiga’s custom chip
hardware.

INPUTS
none

19

Index

planar.CreateSprite . 13
planar.FreeSprite . 14
planar.GetSpriteType . 14
planar.HaveAGA . 15

planar.MapSprite . 16
planar.MoveSprite . 16
planar.UnmapSprite . 17
planar.VWait . 17

	1 General information
	Introduction
	Terms and conditions
	Requirements
	Installation

	2 About Plananarama
	Credits
	Frequently asked questions
	Future
	History

	3 Usage
	Getting started
	Configuring Plananarama
	Remapping mode
	Palette mode
	Hardware sprites
	RapaGUI and MUI Royale support

	4 Function reference
	planar.CreateSprite
	planar.FreeSprite
	planar.GetSpriteType
	planar.HaveAGA
	planar.MapSprite
	planar.MoveSprite
	planar.UnmapSprite
	planar.VWait

	Index

