
GL Galore 1.1
Super smooth OpenGL R© scripting with Hollywood

Andreas Falkenhahn

i

Table of Contents

1 General information . 1
1.1 Introduction . 1
1.2 Terms and conditions . 2
1.3 Requirements . 3
1.4 Installation . 3

2 About GL Galore . 5
2.1 Credits . 5
2.2 Frequently asked questions . 5
2.3 Known issues . 6
2.4 Future . 6
2.5 History . 6

3 Usage . 7
3.1 Activating GL Galore . 7
3.2 Accessing OpenGL from Hollywood . 7
3.3 Using a hardware double buffer . 8
3.4 Drawing graphics . 9
3.5 Using hardware brushes . 10
3.6 Multiple displays . 10
3.7 Working with pointers . 11
3.8 Hollywood bridge . 11
3.9 Increasing execution speed . 11
3.10 Handling mode switches . 12
3.11 GL Galore as a helper plugin . 12
3.12 Internal pixel formats . 13

4 Tutorial . 15
4.1 OpenGL tutorial . 15

5 Examples . 17
5.1 Examples . 17

6 GL reference . 19
6.1 gl.Accum . 19
6.2 gl.AlphaFunc . 20
6.3 gl.AreTexturesResident . 22
6.4 gl.ArrayElement . 23
6.5 gl.Begin . 23
6.6 gl.BindTexture . 25
6.7 gl.Bitmap . 27

ii GL Galore manual

6.8 gl.BlendFunc . 28
6.9 gl.CallList . 30
6.10 gl.CallLists . 31
6.11 gl.Clear . 31
6.12 gl.ClearAccum . 33
6.13 gl.ClearColor . 33
6.14 gl.ClearDepth . 34
6.15 gl.ClearIndex . 34
6.16 gl.ClearStencil . 35
6.17 gl.ClipPlane . 35
6.18 gl.Color . 36
6.19 gl.ColorMask . 37
6.20 gl.ColorMaterial . 38
6.21 gl.ColorPointer . 39
6.22 gl.CopyPixels . 40
6.23 gl.CopyTexImage . 43
6.24 gl.CopyTexSubImage . 44
6.25 gl.CullFace . 46
6.26 gl.DeleteLists . 47
6.27 gl.DeleteTextures . 47
6.28 gl.DepthFunc . 48
6.29 gl.DepthMask . 49
6.30 gl.DepthRange . 49
6.31 gl.Disable . 50
6.32 gl.DisableClientState . 55
6.33 gl.DrawArrays . 56
6.34 gl.DrawBuffer . 57
6.35 gl.DrawElements . 58
6.36 gl.DrawPixels . 59
6.37 gl.DrawPixelsRaw . 60
6.38 gl.EdgeFlag . 65
6.39 gl.EdgeFlagPointer . 65
6.40 gl.Enable . 66
6.41 gl.EnableClientState . 67
6.42 gl.End . 67
6.43 gl.EndList . 67
6.44 gl.EvalCoord . 68
6.45 gl.EvalMesh . 69
6.46 gl.EvalPoint . 71
6.47 gl.FeedbackBuffer . 72
6.48 gl.Finish . 74
6.49 gl.Flush . 74
6.50 gl.Fog . 75
6.51 gl.FreeFeedbackBuffer . 77
6.52 gl.FreeSelectBuffer . 77
6.53 gl.FrontFace . 77
6.54 gl.Frustum . 78
6.55 gl.GenLists . 79

iii

6.56 gl.GenTextures . 80
6.57 gl.Get . 81
6.58 gl.GetArray . 95
6.59 gl.GetClipPlane . 96
6.60 gl.GetError . 97
6.61 gl.GetLight . 98
6.62 gl.GetMap . 100
6.63 gl.GetMaterial . 101
6.64 gl.GetPixelMap . 102
6.65 gl.GetPointer . 103
6.66 gl.GetPolygonStipple . 104
6.67 gl.GetSelectBuffer . 105
6.68 gl.GetString . 105
6.69 gl.GetTexEnv . 106
6.70 gl.GetTexGen . 107
6.71 gl.GetTexImage . 108
6.72 gl.GetTexImageRaw . 109
6.73 gl.GetTexLevelParameter . 111
6.74 gl.GetTexParameter . 112
6.75 gl.Hint . 113
6.76 gl.Index . 115
6.77 gl.IndexMask . 115
6.78 gl.IndexPointer . 116
6.79 gl.InitNames . 117
6.80 gl.InterleavedArrays . 117
6.81 gl.IsEnabled . 119
6.82 gl.IsList . 122
6.83 gl.IsTexture . 123
6.84 gl.Light . 123
6.85 gl.LightModel . 125
6.86 gl.LineStipple . 127
6.87 gl.LineWidth . 128
6.88 gl.ListBase . 129
6.89 gl.LoadIdentity . 130
6.90 gl.LoadMatrix . 130
6.91 gl.LoadName . 131
6.92 gl.LogicOp . 131
6.93 gl.Map . 133
6.94 gl.MapGrid . 137
6.95 gl.Material . 138
6.96 gl.MatrixMode . 139
6.97 gl.MultMatrix . 140
6.98 gl.NewList . 141
6.99 gl.Normal . 142
6.100 gl.NormalPointer . 143
6.101 gl.Ortho . 144
6.102 gl.PassThrough . 145
6.103 gl.PixelMap . 146

iv GL Galore manual

6.104 gl.PixelStore . 148
6.105 gl.PixelTransfer . 152
6.106 gl.PixelZoom . 154
6.107 gl.PointSize . 155
6.108 gl.PolygonMode . 156
6.109 gl.PolygonOffset . 157
6.110 gl.PolygonStipple . 158
6.111 gl.PopAttrib . 159
6.112 gl.PopClientAttrib . 160
6.113 gl.PopMatrix . 160
6.114 gl.PopName . 161
6.115 gl.PrioritizeTextures . 162
6.116 gl.PushAttrib . 163
6.117 gl.PushClientAttrib . 168
6.118 gl.PushMatrix . 169
6.119 gl.PushName . 169
6.120 gl.RasterPos . 170
6.121 gl.ReadBuffer . 172
6.122 gl.ReadPixels . 173
6.123 gl.ReadPixelsRaw . 175
6.124 gl.Rect . 176
6.125 gl.RenderMode . 177
6.126 gl.Rotate . 178
6.127 gl.Scale . 179
6.128 gl.Scissor . 180
6.129 gl.SelectBuffer . 181
6.130 gl.ShadeModel . 183
6.131 gl.StencilFunc . 184
6.132 gl.StencilMask . 185
6.133 gl.StencilOp . 186
6.134 gl.TexCoord . 187
6.135 gl.TexCoordPointer . 188
6.136 gl.TexEnv . 189
6.137 gl.TexGen . 190
6.138 gl.TexImage . 192
6.139 gl.TexImage1D . 192
6.140 gl.TexImage2D . 196
6.141 gl.TexParameter . 199
6.142 gl.TexSubImage . 202
6.143 gl.TexSubImage1D . 203
6.144 gl.TexSubImage2D . 204
6.145 gl.Translate . 206
6.146 gl.Vertex . 207
6.147 gl.VertexPointer . 207
6.148 gl.Viewport . 208

v

7 GLU reference . 211
7.1 glu.BuildMipmaps . 211
7.2 glu.Build1DMipmaps . 211
7.3 glu.Build2DMipmaps . 213
7.4 glu.Build3DMipmaps . 214
7.5 glu.ErrorString . 215
7.6 glu.GetString . 216
7.7 glu.LookAt . 217
7.8 glu.NewNurbsRenderer . 217
7.9 glu.NewQuadric . 218
7.10 glu.Ortho2D . 218
7.11 glu.Perspective . 219
7.12 glu.PickMatrix . 219
7.13 glu.Project . 220
7.14 glu.ScaleImage . 221
7.15 glu.ScaleImageRaw . 221
7.16 glu.UnProject . 223
7.17 nurb:BeginCurve . 223
7.18 nurb:BeginSurface . 224
7.19 nurb:BeginTrim . 224
7.20 nurb:Callback . 225
7.21 nurb:Curve . 227
7.22 nurb:EndCurve . 228
7.23 nurb:EndSurface . 228
7.24 nurb:EndTrim . 228
7.25 nurb:GetProperty . 229
7.26 nurb:LoadSamplingMatrices . 229
7.27 nurb:PwlCurve . 230
7.28 nurb:SetProperty . 230
7.29 nurb:Surface . 233
7.30 quad:Cylinder . 233
7.31 quad:Disk . 234
7.32 quad:DrawStyle . 235
7.33 quad:Normals . 235
7.34 quad:Orientation . 236
7.35 quad:PartialDisk . 236
7.36 quad:Texture . 237
7.37 quad:Sphere . 237

8 GLFW reference . 239
8.1 glfw.GetJoystickAxes . 239
8.2 glfw.GetJoystickButtons . 239
8.3 glfw.GetJoystickName . 240
8.4 glfw.JoystickPresent . 240

vi GL Galore manual

9 Hollywood bridge . 241
9.1 gl.BitmapFromBrush . 241
9.2 gl.DrawPixelsFromBrush . 241
9.3 gl.GetCurrentContext . 242
9.4 gl.GetTexImageToBrush . 242
9.5 gl.ReadPixelsToBrush . 243
9.6 gl.SetCurrentContext . 243
9.7 gl.TexImageFromBrush . 244
9.8 gl.TexSubImageFromBrush . 244
9.9 glu.BuildMipmapsFromBrush . 244

Appendix A Licenses . 247
A.1 LuaGL license . 247
A.2 GLFW license . 247
A.3 SGI Free Software B license . 247
A.4 LGPL license . 248

Index . 257

1

1 General information

1.1 Introduction

GL Galore is a plugin for Hollywood that allows you to access the OpenGL R© 1.1 command
set directly from Hollywood. This makes it possible to write scripts that utilize the host
system’s 3D hardware to create high-performance, butter-smooth 2D and 3D animation
that is calculated completely in hardware by the GPU of your graphics board. This leads
to a huge performance boost over the classic Hollywood graphics API which is mostly
implemented in software. Especially systems with slower CPUs will benefit greatly from
hardware-accelerated drawing offered by OpenGL.

OpenGL is a portable software interface to graphics hardware. It is available for almost
every platform in a variety of flavours. On AmigaOS and compatibles, OpenGL is available
as MiniGL on AmigaOS 4, TinyGL on MorphOS, StormMesa on AmigaOS 3, and Mesa 3D
on AROS. Windows, Mac OS X, and Linux systems are usually shipped with an OpenGL
driver already installed. More information about OpenGL can be obtained from http://

www.opengl.org. You can find good tutorials about learning OpenGL all over the web.

There are two ways of using GL Galore: You can either access the OpenGL 1.1 API directly
or you can use Hollywood’s hardware brush functions without making any direct calls to the
OpenGL API. Whenever GL Galore is activated, Hollywood hardware brushes are mapped
directly to OpenGL textures so they can be drawn and transformed in an extremely fast
way on all supported systems. This is especially useful on Windows, Mac OS X, and Linux
because Hollywood doesn’t support hardware double buffers and brushes on these platforms
by default. With GL Galore, however, hardware double buffers and brushes can be used
on these platforms now too. So GL Galore can also act as a helper plugin here which adds
this functionality to Hollywood without having you write a single line of OpenGL code to
utilize it!

On top of that, GL Galore offers wrapper functions for most commands of the OpenGL
1.1 API. These commands are wrapped directly with little to no changes to their original
syntax. The only exception concerns OpenGL commands that expect a pointer: In this
case, GL Galore usually offers a variant of the command so that it works with Hollywood
tables. However, the original pointer variant is also available in GL Galore and can be used
for time-critical scripts. Additionally, GL Galore also offers some bridging functions that
allow you to convert Hollywood brushes into OpenGL textures and vice versa.

GL Galore can also be useful for rapidly prototyping software written in OpenGL. People
who used to program OpenGL using C will greatly appreciate Hollywood’s convenient mul-
timedia API which offers functions for almost all common tasks. For example, by using GL
Galore to write OpenGL programs you can avoid all the hassle of managing a GL window
using one of the many different toolkits out there. Also, jobs like image loading, sound or
video playback, font handling and image manipulation become ridiculously easy now thanks
to Hollywood’s powerful command set which covers almost 700 functions.

GL Galore utilizes the new display adapter plugin interface introduced with Hollywood 6.0.
Thus, the plugin will not work with any older versions of Hollywood. It requires at least
Hollywood 6.0. Whenever GL Galore is activated, all graphics output will automatically
be routed through OpenGL. To benefit from hardware acceleration, however, Hollywood
scripts have to follow some rules as described in this manual.

http://www.opengl.org
http://www.opengl.org

2 GL Galore manual

GL Galore comes with extensive documentation in various formats like PDF, HTML, Ami-
gaGuide, and CHM that contains a full OpenGL reference and information about special
functions in GL Galore. On top of that, many example scripts are included in the distribu-
tion archive to get you started really quickly.

All of this makes GL Galore the ultimate OpenGL scripting experience combining the best
of both worlds into one powerful plugin: Hollywood’s extensive and convenient multimedia
function set and OpenGL’s raw graphics power!

1.2 Terms and conditions

GL Galore is c© Copyright 2014-2017 by Andreas Falkenhahn (in the following referred to
as "the author"). All rights reserved.

The program is provided "as-is" and the author cannot be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

This plugin may be freely distributed as long as the following three conditions are met:

1. No modifications must be made to the plugin.

2. It is not allowed to sell this plugin.

3. If you want to put this plugin on a coverdisc, you need to ask for permission first.

This software uses LuaGL by Fabio Guerra, Cleyde Marlyse, and Antonio Scuri. See
Section A.1 [LuaGL license], page 247, for details.

This software uses GLFW by Marcus Geelnard and Camilla Berglund. See Section A.2
[GLFW license], page 247, for details.

This software uses StormMesa by Sam Jordan and Brian Paul. See Section A.4 [LGPL
license], page 248, for details.

This documentation is based on the OpenGL R© 2.1 reference manual (C) 1991-2006 Silicon
Graphics, Inc. See Section A.3 [SGI Free Software B license], page 247, for details.

OpenGL R© and the oval logo are trademarks or registered trademarks of Silicon Graphics,
Inc. in the United States and/or other countries worldwide.

Amiga is a registered trademark of Amiga, Inc.

All other trademarks belong to their respective owners.

DISCLAIMER: THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU

Chapter 1: General information 3

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

1.3 Requirements

− Hollywood 6.0 or better

− Windows: requires at least Windows 2000

− Mac OS X: requires at least 10.5 on PowerPC or 10.6 on Intel Macs

− MorphOS: requires TinyGL with MorphOS 3.8 or better

− AmigaOS 3: requires StormMesa, 68040 or 68060, and an FPU

− AmigaOS 4: requires MiniGL

− AROS: requires Mesa 3D

1.4 Installation

Installing GL Galore is straightforward and simple: Just copy the file glgalore.hwp

for the platform to Hollywood’s plugins directory. On all systems except on AmigaOS
and compatibles, plugins must be stored in a directory named Plugins that is in
the same directory as the main Hollywood program. On AmigaOS and compatible
systems, plugins must be installed to LIBS:Hollywood instead. On Mac OS X, the
Plugins directory must be inside the Resources directory of the application bundle,
i.e. inside the HollywoodInterpreter.app/Contents/Resources directory. Note that
HollywoodInterpreter.app is stored inside the Hollywood.app application bundle itself,
namely in Hollywood.app/Contents/Resources.

Afterwards merge the contents of the Examples folder with the Examples folder that is part
of your Hollywood installation. All GL Galore examples will then appear in Hollywood’s
GUI and you can launch and view them conveniently from the Hollywood GUI or IDE.

On Windows you should also copy the file GLGalore.chm to the Docs directory of your
Hollywood installation. Then you will be able to get online help by pressing F1 when the
cursor is over a GL Galore function in the Hollywood IDE.

On Linux and Mac OS copy the GLGalore directory that is inside the Docs directory of the
GL Galore distribution archive to the Docs directory of your Hollywood installation. Note
that on Mac OS the Docs directory is within the Hollywood.app application bundle, i.e. in
Hollywood.app/Contents/Resources/Docs.

5

2 About GL Galore

2.1 Credits

GL Galore was written by Andreas Falkenhahn. Additional coding by Fabio Guerra, Cleyde
Marlyse, and Antonio Scuri. Work on this project was started in January 2014 as a proof-of-
concept demonstration of Hollywood 6.0’s powerful new display adapter API which allows
plugins to take over Hollywood’s entire display handler and replace it with a custom driver.
It was then successively expanded into a full wrapper for the OpenGL 1.1 API including
some bridging functions between Hollywood and OpenGL as well as a hardware brush and
double-buffer driver for all the platforms that are not supported by Hollywood’s inbuilt
hardware brush and double-buffer driver.

Thanks go to Frank Mariak, Mark Olsen, Hans de Ruiter, Frank Wille, Krzysztof Smiechow-
icz, and Sam Jordan.

If you need to contact me, you can either send an e-mail to andreas@airsoftsoftwair.de

or use the contact form on http://www.hollywood-mal.com.

2.2 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the mailing list or forum because your problem might have been covered here.

Q: Why does GL Galore report all keyboard events in upper case notation?

A: That’s a limitation of GLFW which is used by GL Galore. It currently doesn’t allow
listeners to distinguish between upper and lower case key presses when using raw keyboard
listeners. See Section 2.3 [Known issues], page 6, for details. If you have Hollywood 7.0 or
better, you can just listen to the VanillaKey event handler to get the real keyboard events
with full Unicode support.

Q: Why are the Y and Z keys swapped on German keyboards?

A: That’s because GLFW’s raw key listener is based on the US keyboard layout. See
Section 2.3 [Known issues], page 6, for details. If you are on Hollywood 7.0 or better,
you can just listen to the VanillaKey event handler instead. This will give you the real
keyboard events with full Unicode support.

Q: Is there a Hollywood forum where I can get in touch with other users?

A: Yes, please check out the "Community" section of the official Hollywood Portal online
at http://www.hollywood-mal.com.

Q: How do I quit scripts that run in fullscreen mode?

A: Just press CTRL+C. This will always work except when CTRL+C has been explicitly
disabled using Hollywood’s CtrlCQuit() function.

Q: Where can I ask for help?

andreas@airsoftsoftwair.de
http://www.hollywood-mal.com
http://www.hollywood-mal.com

6 GL Galore manual

A: There’s a lively forum at http://forums.hollywood-mal.com and we also have a mailing
list which you can access at airsoft_hollywood@yahoogroups.com. Visit http://www.

hollywood-mal.com for information on how to join the mailing list.

Q: I have found a bug.

A: Please post about it in the dedicated sections of the forum or the mailing list.

2.3 Known issues

Here is a list of things that GL Galore doesn’t support yet or that may be confusing in
some way:

− menus are unsupported

− the mouse wheel is unsupported

− the keyboard listener that is mapped to Hollywood’s OnKeyDown and OnKeyUp event
handlers currently only supports raw key codes based on the US keyboard layout; this
means that all character keys will be returned as upper-case and on German keyboards
the position of the Y and Z keys will be swapped. This is because of a limitation in
GLFW which doesn’t support fine-tuned listening (i.e. key down, key repeat, key up)
using international keyboards; people who are on Hollywood 7.0 or better can just use
the VanillaKey event handler instead; this event handler will deliver real keyboard
events including full Unicode support

− not all display styles are supported

2.4 Future

Here are some things that are on my to do list:

− add support for tesselation

− improve support for OpenGL 1.2

− integrate with FTGL for 3D text effects

− add some more convenience functions that make it easier to use OpenGL

− add support for embedding OpenGL displays in MUI GUIs via MUI Royale

Don’t hesitate to contact me if GL Galore lacks a certain feature that is important for your
project.

2.5 History

Please see the file history.txt for a complete change log of GL Galore.

http://forums.hollywood-mal.com
airsoft_hollywood@yahoogroups.com
http://www.hollywood-mal.com
http://www.hollywood-mal.com

7

3 Usage

3.1 Activating GL Galore

All you have to do to make your script use OpenGL instead of Hollywood’s inbuilt graphics
driver is adding the following line to the top of your script:

@REQUIRE "glgalore"

Alternatively, if you are using Hollywood from a console, you can also start your script like
this:

Hollywood test.hws -requireplugins glgalore

Once the GL Galore plugin has been activated for your script, it will reroute all of Hol-
lywood’s graphics output through OpenGL. Note that this will usually be slower than
Hollywood’s inbuilt graphics driver for scripts that aren’t optimized for OpenGL. To get an
optimal performance with OpenGL, your script needs to use a hardware-accelerated double
buffer. See Section 3.3 [Using a hardware double buffer], page 8, for details.

GL Galore accepts the following arguments in its @REQUIRE call:

ForceFullRefresh:

If this tag is set to False, GL Galore will only refresh the parts of the display
that have actually changed. This is quicker but it doesn’t work correctly with
older OpenGL implementations (especially on Amiga) because they often do
not offer pixel perfect positioning of graphics. That is why this tag defaults to
True, which means that GL Galore will always refresh the full display whenever
something is drawn. Note that this tag is only used when GL Galore is running
without a hardware double buffer. In hardware double-buffered mode, front
and back buffers cause a full refresh anyway.

Here is an example of how to pass arguments to the @REQUIRE preprocessor command:

@REQUIRE "glgalore", {ForceFullRefresh = False}

Alternatively, you can also use the -requiretags console argument to pass these arguments.
See the Hollywood manual for more information.

3.2 Accessing OpenGL from Hollywood

GL Galore directly wraps all OpenGL commands to Hollywood with little to no changes to
their original syntax. After calling @REQUIRE on GL Galore, all GL functions will be made
available inside a "gl" table and the GLU functions will be made available inside a "glu"
table.

Calling OpenGL functions from Hollywood is much simpler than using OpenGL directly
because the argument specification (e.g., ’2d’, ’3f’, ’4sv’) at the end of most OpenGL func-
tions names has been removed. For example, GL Galore’s gl.Light() function binds the
OpenGL functions: glLightf, glLightfv, glLighti, glLightiv. The number of parame-
ters passed to gl.Light() defines the correct function to use.

GL Galore usually uses the floating point versions of all the OpenGL functions with the
highest possible precision. Some functions that have a type parameter simply use the most

8 GL Galore manual

precise possible (usually #GL_DOUBLE or #GL_FLOAT) and the format parameter is not used.
When stride is not used, then it is assumed to be 0.

The color and the vector data can be passed as a Hollywood table or as multiple parameters.
A vector can have 2, 3 or 4 values (x, y, z, w), and colors can have 3 or 4 values (red, green,
blue, alpha).

For example:

v1 = {0, 0}

v2 = {1, 1}

yellow = {1, 1, 0}

gl.Color(yellow)

gl.Vertex(v1)

gl.Vertex(v2)

Or you can also do:

gl.Color(1, 1, 0)

gl.Vertex(0, 0)

gl.Vertex(1, 1)

There are some OpenGL commands that expect a pointer. In this case, GL Galore usually
offers a variant of the command so that it works with Hollywood tables. However, the orig-
inal pointer variant is also available in GL Galore and can be used for time-critical scripts.
For example, gl.ReadPixels() reads pixel data from the frame buffer into a Hollywood
table whereas gl.ReadPixelsRaw() reads pixel data into a memory buffer directly which
is much faster of course, but requires you to work with pointers. See Section 3.7 [Working
with pointers], page 11, for details.

3.3 Using a hardware double buffer

If you want your script to benefit from OpenGL’s hardware-accelerated drawing functions,
you need to use a hardware double buffer and do all your drawing within that double buffer.
Using a hardware double buffer will also ensure that graphics output is synchronized with
your monitor’s refresh rate to prevent any flickering. To get an optimal performance with
OpenGL, your main loop should always look like this:

@REQUIRE "glgalore"

BeginDoubleBuffer(True) ; set up a hardware double buffer

Repeat

.... ; draw the next frame here

Flip() ; wait for vertical refresh, then flip buffers

CheckEvent() ; run event callbacks

Forever

The call to CheckEvent() is only necessary if your script needs to listen to event handlers
that have been installed using InstallEventHandler(). Note that you should not draw the
next frame in an interval callback that runs at a constant frame rate (say 50fps) because
such a setup won’t guarantee that drawing is synchronized with the vertical refresh as
different monitors use different refresh rates so you might get flickery graphics. If you do

Chapter 3: Usage 9

your drawing like above, you can be sure that front and back buffers will be flipped in
perfect synchronization with the monitor’s vertical refresh.

Additionally, you need to take care of how you actually draw your graphics because most of
Hollywood’s drawing commands operate entirely in software mode and thus do not benefit
from hardware acceleration. See Section 3.4 [Drawing graphics], page 9, for details.

Important: OpenGL is designed to be used with double buffers. Thus, all OpenGL drawing
commands must be called within a double buffer. Drawing outside a double buffer with
OpenGL is unsupported.

3.4 Drawing graphics

For an optimal performance you need to be very careful concerning the way you draw your
graphics. Most of Hollywood’s drawing commands are implemented in software only, i.e.
they draw using the CPU instead of the GPU. This can become quite a bottleneck especially
on slower CPUs. Thus, you should draw directly using the OpenGL commands offered by
GL Galore whenever and whereever possible.

Nevertheless, there are a few Hollywood commands which are redirected to use OpenGL
directly when GL Galore has been activated. These are the following:

Box()

Cls()

Line()

Plot()

DisplayBrush()

You can use these commands with OpenGL without any performance penalty. However,
there are some restrictions: Box(), Line(), and WritePixel() will only be redirected to
OpenGL in case the fill style is either #FILLNONE or #FILLCOLOR and no other form styles
like #EDGE or #SHADOW are active. As soon as you want to draw with other fill or form styles,
these commands will fall back to their software counterparts and thus will be very slow.

DisplayBrush() will only use OpenGL directly when called with a hardware brush. See
Section 3.5 [Using hardware brushes], page 10, for details. When used with a software
brush, i.e. a brush that doesn’t reside in video memory, DisplayBrush() will draw the
brush using the CPU which is much slower.

When mixing Hollywood and OpenGL drawing commands, however, there is another po-
tential problem that you have to be aware of: Since OpenGL is a state machine, changes
to the GL state made by one of Hollywood’s drawing commands can affect subsequent calls
to OpenGL commands. Thus, you might need to restore certain states after calling a Hol-
lywood command which is redirected to OpenGL, e.g. the current color, transformation
matrix, matrix mode, enable texturing, blending or depth test again, etc. This can get
quite tedious so it is often easier to use only OpenGL commands in order to avoid having
to restore states after calling Hollywood commands.

Finally, don’t forget that you should do all your drawing inside a hardware double buffer
loop. See Section 3.3 [Using a hardware double buffer], page 8, for details.

10 GL Galore manual

3.5 Using hardware brushes

GL Galore supports the creation of hardware brushes. Hardware brushes reside in GPU
memory and thus can be drawn in no time. On most graphics boards, they can also be
scaled and transformed by the GPU in an extremely efficient way. To make Hollywood
create a hardware brush, all you have to do is set the optional "Hardware" tag to True.
This tag is supported by most of the Hollywood commands which create brushes.

Here is an example:

@REQUIRE "glgalore" ; make sure this line is first

@BRUSH 1, "sprites.png", {Hardware = True}

In the code above, GL Galore will create brush 1 in video memory. It can then be drawn
using the GPU at almost no cost. Keep in mind, though, that hardware brushes can only
be drawn to hardware double buffers. See Section 3.3 [Using a hardware double buffer],
page 8, for details.

To transform a hardware brush, you can use the ScaleBrush(), RotateBrush(), and
TransformBrush() commands. Transformations of hardware brushes are usually also GPU-
accelerated and thus many times faster than transformations done by the CPU.

Note that hardware brushes can only be drawn to the display that was specified when
allocating them. Thus, if your script uses multiple displays, you need to tell Hollywood the
identifier of the display you want to use this hardware brush with. This can be done by
specifying the "Display" tag along the "Hardware" tag. Here is an example:

@REQUIRE "glgalore" ; make sure this line is first

@DISPLAY 1, {Title = "First display"}

@DISPLAY 2, {Title = "Second display"}

@BRUSH 1, "sprites.png", {Hardware = True, Display = 1}

@BRUSH 2, "sprites.png", {Hardware = True, Display = 2}

The code above will allocate brush 1 in a way that it can be drawn to display 1 and it will
allocate brush 2 in a way that it can be drawn to display 2. It won’t be possible, however,
to draw brush 2 to display 1 or brush 1 to display 2! OpenGL hardware brushes are always
display-dependent and can only be drawn to the display they were allocated for.

Please see the Hollywood manual for more information on hardware brushes and hardware
double buffers.

You can also use GL Galore as a helper plugin to add hardware brush support to Hollywood
on Windows, Mac OS X, and Linux. By default, Hollywood doesn’t support hardware
brushes on these systems but GL Galore can add this feature to Hollywood. See Section 3.11
[GL Galore as a helper plugin], page 12, for details.

The SmoothScroll.hws example script that comes with GL Galore demonstrates how to
use hardware brushes and a hardware double buffer without any calls to OpenGL.

3.6 Multiple displays

When using multiple displays, GL Galore maintains a separate OpenGL context for each
display. Thus, you need to tell OpenGL which context all calls to the GL should op-
erate on. This is done by calling the gl.SetCurrentContext() function which makes
the GL context of the specified Hollywood display the current context. See Section 9.6
[gl.SetCurrentContext], page 243, for details.

Chapter 3: Usage 11

When dealing with hardware brushes, you also need to be careful when using multiple
displays because hardware brushes in OpenGL are display-dependent. They can only be
drawn to the display that was used to allocate them. See Section 3.5 [Using hardware
brushes], page 10, for details.

3.7 Working with pointers

Several OpenGL functions expect you to pass a pointer to a raw memory buffer to them.
Working with pointers directly is the most efficient way to interact with OpenGL since
it avoids any overhead created by having to read the contents of Hollywood tables into
memory buffers first.

You can use the functions of Hollywood’s memory block library to allocate memory buffers,
read or write to them, and obtain a pointer to their raw memory buffer. To allocate a mem-
ory buffer, you use the AllocMem() function, to read from a memory buffer you use Peek()
while Poke() can be used to write to a memory buffer. Finally, GetMemPointer() returns
the pointer of a memory block object. You can pass the return value of GetMemPointer()
to all OpenGL functions which expect a pointer argument.

Here is an example:

AllocMem(1, 640*480*4)

Local ptr = GetMemPointer(1)

gl.ReadPixelsRaw(0, 0, 640, 480, #GL_BGRA, #GL_UNSIGNED_BYTE, ptr)

... ; do something with the data

FreeMem(1)

The code above reads 480 rows of 640 pixels into memory block object 1. You could
then write the data to a file using WriteMem(), you could convert it to a table using
MemToTable() or read individual values from it using Peek(). See the documentation of
Hollywood’s memory block library for more information.

3.8 Hollywood bridge

GL Galore offers some additional functions that are not part of the official OpenGL API.
These functions allow you to conveniently use Hollywood objects like brushes with OpenGL.
For example, the gl.TexImageFromBrush() function allows you to upload a Hollywood
brush as an OpenGL texture and the gl.GetTexImageToBrush() functions allows you to
convert an OpenGL texture back into a Hollywood brush.

See the chapter "Hollywood bridge" for all available functions.

3.9 Increasing execution speed

To increase the raw execution speed of your script, you can disable Hollywood’s line hook
using the DisableLineHook() and EnableLineHook() commands. This will improve your
script’s execution speed significantly in case lots of Hollywood code needs to be run to draw
the next frame. Keep in mind, though, that you have to enable the line hook for every
frame you draw or your window will become unresponsive. Here’s what a speed-optimized
implemention of the main loop could look like:

@REQUIRE "glgalore"

12 GL Galore manual

BeginDoubleBuffer(True) ; set up a hardware double buffer

Repeat

DisableLineHook() ; disable line hook while drawing the next frame

p_DrawFrame() ; draw the next frame here

EnableLineHook() ; enable line hook again

Flip() ; wait for vertical refresh, then flip buffers

CheckEvent() ; run event callbacks

Forever

Note that you’ll only notice a speed difference here if p_DrawFrame() executes many lines
of Hollywood code. If p_DrawFrame() only consists of 20 lines of code, you won’t notice
any difference. It’s only noticeable with hundreds of code lines or long loops.

See the documentation of DisableLineHook() and EnableLineHook() in the Hollywood
manual for more information.

3.10 Handling mode switches

As you might know, Hollywood offers a hotkey to switch between windowed and fullscreen
mode. Whenever the user presses ALT+RETURN or COMMAND+RETURN Hollywood
will automatically switch modes between windowed and fullscreen. This behaviour is en-
abled by default. It can be disabled by setting the ModeTag to False in the @DISPLAY

preprocessor command.

When using Hollywood’s inbuilt display driver, mode switches are handled automatically by
Hollywood and there is nothing your script needs to do. This is different with GL Galore.
With GL Galore you will have to reinitialize your GL context after a mode switch. This is
necessary because the old GL context will be destroyed when Hollywood switches modes.
Thus, all current GL states will be lost in a mode switch. This also includes textures and
display lists that your script has allocated. After a mode switch your script’s GL context
will be replaced by a vanilla GL context that is identical to the one your script is started
with.

In order to support mode switches with GL Galore, you have to install a listener on the
ModeSwitch tag using InstallEventHandler(). Whenever this event handler triggers, you
will have to reinitialize your GL context and set all states to the desired values. Normally,
you just have to run your initialization code, that sets up your GL context at the beginning
of the script, again whenever the ModeSwitch event triggers. If this is too much hassle for
you, you can also just disable automatic mode switching.

Please note that it’s not necessary to handle mode switches manually in case you’re not using
the OpenGL API directly. Hardware brushes allocated by GL Galore will be automatically
transferred to the new GL context by GL Galore so you don’t have to do anything about
them. It is only necessary when programming OpenGL directly.

3.11 GL Galore as a helper plugin

GL Galore can also be used as a helper plugin to work around the problem that Hol-
lywood only supports hardware-accelerated double buffers and brushes on AmigaOS and
compatibles. They aren’t supported on Windows, Mac OS X, or Linux. If you install and

Chapter 3: Usage 13

@REQUIRE GL Galore, however, hardware double buffer and hardware brush support will
also be available on Windows, Mac OS X, and Linux because GL Galore supports this.

Thus, you can also use GL Galore as a helper plugin just to get hardware-accelerated double
buffer support on Windows, Mac OS X, and Linux. You don’t even have to use any of the
OpenGL commands directly. You can just @REQUIRE GL Galore, set up a hardware double
buffer and then draw to it using hardware brushes. This allows you to utilize hardware
acceleration without having to write a single line of OpenGL code!

On AmigaOS and compatibles this isn’t necessary since Hollywood already supports hard-
ware accelerated double buffers and brushes by default. Still, using GL Galore on AmigaOS
as a hardware double buffer driver can be of benefit in full screen mode because GL Galore
uses drawing which is perfectly synchronized with the monitor’s vertical refresh so it usually
looks better than double buffers managed by Hollywood directly.

See Section 3.3 [Using a hardware double buffer], page 8, for details.

See Section 3.5 [Using hardware brushes], page 10, for details.

The SmoothScroll.hws example script that comes with GL Galore demonstrates how to
use hardware brushes and a hardware double buffer without any calls to OpenGL.

3.12 Internal pixel formats

OpenGL commands which create textures, e.g. gl.TexImage2D() or gl.CopyTexImage()
accept an internalFormat parameter which allows you to specify the internal format of
the texture. The following format constants are currently supported by GL Galore:

#GL_ALPHA

#GL_ALPHA4

#GL_ALPHA8

#GL_ALPHA12

#GL_ALPHA16

#GL_LUMINANCE

#GL_LUMINANCE4

#GL_LUMINANCE8

#GL_LUMINANCE12

#GL_LUMINANCE16

#GL_LUMINANCE_ALPHA

#GL_LUMINANCE4_ALPHA4

#GL_LUMINANCE6_ALPHA2

#GL_LUMINANCE8_ALPHA8

#GL_LUMINANCE12_ALPHA4

#GL_LUMINANCE12_ALPHA12

#GL_LUMINANCE16_ALPHA16

#GL_INTENSITY

#GL_INTENSITY4

#GL_INTENSITY8

#GL_INTENSITY12

#GL_INTENSITY16

#GL_RGB

#GL_R3_G3_B2

14 GL Galore manual

#GL_RGB4

#GL_RGB5

#GL_RGB8

#GL_RGB10

#GL_RGB12

#GL_RGB16

#GL_RGBA

#GL_RGBA2

#GL_RGBA4

#GL_RGB5_A1

#GL_RGBA8

#GL_RGB10_A2

#GL_RGBA12

#GL_RGBA16

#GL_DEPTH_COMPONENT

Note that gl.TexImage1D() and gl.TexImage2D() also accept the special values 1, 2, 3,
and 4 as valid internal pixel formats but gl.CopyTexImage() doesn’t support this.

15

4 Tutorial

4.1 OpenGL tutorial

Unfortunately, there is currently no tutorial to get you started with GL Galore. The
internet, however, is full of beginner’s tutorials for OpenGL which you can use to get
into the engine. Since GL Galore just wraps the OpenGL API, it is mostly simple and
straightforward to port code written for other programming languages to GL Galore. The
examples that are shipped with GL Galore can also help you to get started with GL Galore.

Finally, the Hollywood forums are always a good place to ask your question if you’re stuck
programming with GL Galore. Just visit http://forums.hollywood-mal.com and ask.

http://forums.hollywood-mal.com

17

5 Examples

5.1 Examples

GL Galore comes with a number of examples that demonstrate certain features and should
allow you to get started really quickly. Here’s a list of examples that are distributed with
GL Galore:

BlockTube
A swirling, falling tunnel of reflective slabs which fade from hue to hue. Original
code by Lars Damerow

Boing A clone of the first graphics demo for the Amiga 1000, which was written by
Dale Luck and RJ Mical during a break at the 1984 CES. Original code by Jim
Brooks

Cel shading
Demonstrates cel shading. Original code by Jeff Molofee

Cityflow Waves move across a sea of boxes. The city swells. The walls are closing in.
Original code by Jamie Zawinski

Cube The OpenGL equivalent of "Hello World"

Gears The classic OpenGL gears demo. Original code by Brian Paul

Gears 2 A variant of the OpenGL gears demo based on code found in the MiniGL SDK

Gears 3 The OpenGL gears demo, this time with a texture

GLMatrix The 3D digital rain effect, as seen in the title sequence of a popular movie.
Based on code by Jamie Zawinski

Morph3D Platonic solids that turn inside out and get spikey. Based on code by Marcelo
F. Vianna

MultiDisplays
Demonstrates how to use multiple displays with GL Galore

Simple Simple rotating GL triangle. Based on code by Camilla Berglund

SmoothScroll
Uses OpenGL for hardware-accelerated 2D drawing of Hollywood brushes

SplitView Renders four views of the same scene in one window. Based on code by Camilla
Berglund

Spots Demonstrates GL lights. Based on code by Mark J. Kilgard

Sproingies Slinky-like creatures walk down an infinite staircase and occasionally explode!
Based on code by Ed Mackey

Warp Example of what an extreme field of view can do

Wave Wave simulation in OpenGL. Based on code by Jakob Thomsen

19

6 GL reference

6.1 gl.Accum

NAME
gl.Accum – operate on the accumulation buffer

SYNOPSIS
gl.Accum(op, value)

FUNCTION
The accumulation buffer is an extended-range color buffer. Images are not rendered into
it. Rather, images rendered into one of the color buffers are added to the contents of
the accumulation buffer after rendering. Effects such as antialiasing (of points, lines,
and polygons), motion blur, and depth of field can be created by accumulating images
generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values.
The number of bits per component in the accumulation buffer depends on the imple-
mentation. You can examine this number by calling gl.Get() four times, with argu-
ments #GL_ACCUM_RED_BITS, #GL_ACCUM_GREEN_BITS, #GL_ACCUM_BLUE_BITS, and #GL_

ACCUM_ALPHA_BITS. Regardless of the number of bits per component, the range of values
stored by each component is -1 through 1 . The accumulation buffer pixels are mapped
one-to-one with frame buffer pixels.

gl.Accum() operates on the accumulation buffer. The first argument, op, is a symbolic
constant that selects an accumulation buffer operation. The second argument, value,
is a floating-point value to be used in that operation. Five operations are specified:
#GL_ACCUM, #GL_LOAD, #GL_ADD, #GL_MULT, and #GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and
applied identically to the red, green, blue, and alpha components of each pixel. If a
gl.Accum() operation results in a value outside the range -1 through 1, the contents of
an accumulation buffer pixel component are undefined.

The operations are as follows:

#GL_ACCUM

Obtains R, G, B, and A values from the buffer currently selected for reading
(See Section 6.121 [gl.ReadBuffer], page 172, for details.). Each component
value is divided by 2^n - 1 , where n is the number of bits allocated to each
color component in the currently selected buffer. The result is a floating-
point value in the range 0 through 1 , which is multiplied by value and added
to the corresponding pixel component in the accumulation buffer, thereby
updating the accumulation buffer.

#GL_LOAD Similar to #GL_ACCUM, except that the current value in the accumulation
buffer is not used in the calculation of the new value. That is, the R, G,
B, and A values from the currently selected buffer are divided by 2^n - 1
, multiplied by value, and then stored in the corresponding accumulation
buffer cell, overwriting the current value.

20 GL Galore manual

#GL_ADD Adds value to each R, G, B, and A in the accumulation buffer.

#GL_MULT Multiplies each R, G, B, and A in the accumulation buffer by value and
returns the scaled component to its corresponding accumulation buffer loca-
tion.

#GL_RETURN

Transfers accumulation buffer values to the color buffer or buffers currently
selected for writing. Each R, G, B, and A component is multiplied by value,
then multiplied by 2^n - 1 , clamped to the range 0 2 n - 1 , and stored
in the corresponding display buffer cell. The only fragment operations that
are applied to this transfer are pixel ownership, scissor, dithering, and color
writemasks.

To clear the accumulation buffer, call gl.ClearAccum() with R, G, B, and A values to
set it to, then call gl.Clear() with the accumulation buffer enabled.

Only pixels within the current scissor box are updated by a gl.Accum() operation.

Please consult an OpenGL reference manual for more information.

INPUTS

op specifies the accumulation buffer operation. Symbolic constants #GL_ACCUM,
#GL_LOAD, #GL_ADD, #GL_MULT, and #GL_RETURN are accepted

value specifies a floating-point value used in the accumulation buffer operation. op
determines how value is used

ERRORS
#GL_INVALID_ENUM is generated if op is not an accepted value.

#GL_INVALID_OPERATION is generated if there is no accumulation buffer.

#GL_INVALID_OPERATION is generated if gl.Accum() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_ACCUM_RED_BITS

gl.Get() with argument #GL_ACCUM_GREEN_BITS

gl.Get() with argument #GL_ACCUM_BLUE_BITS

gl.Get() with argument #GL_ACCUM_ALPHA_BITS

6.2 gl.AlphaFunc

NAME
gl.AlphaFunc – specify the alpha test function

SYNOPSIS
gl.AlphaFunc(func, ref)

FUNCTION
The alpha test discards fragments depending on the outcome of a comparison between
an incoming fragment’s alpha value and a constant reference value. gl.AlphaFunc()

Chapter 6: GL reference 21

specifies the reference value and the comparison function. The comparison is performed
only if alpha testing is enabled. By default, it is not enabled. (See gl.Enable() and
gl.Disable() of #GL_ALPHA_TEST.)

func and ref specify the conditions under which the pixel is drawn. The incoming
alpha value is compared to ref using the function specified by func. If the value passes
the comparison, the incoming fragment is drawn if it also passes subsequent stencil and
depth buffer tests. If the value fails the comparison, no change is made to the frame
buffer at that pixel location. The comparison functions are as follows:

#GL_NEVER

Never passes.

#GL_LESS Passes if the incoming alpha value is less than the reference value.

#GL_EQUAL

Passes if the incoming alpha value is equal to the reference value.

#GL_LEQUAL

Passes if the incoming alpha value is less than or equal to the reference value.

#GL_GREATER

Passes if the incoming alpha value is greater than the reference value.

#GL_NOTEQUAL

Passes if the incoming alpha value is not equal to the reference value.

#GL_GEQUAL

Passes if the incoming alpha value is greater than or equal to the reference
value.

#GL_ALWAYS

Always passes (initial value).

gl.AlphaFunc() operates on all pixel write operations, including those resulting from
the scan conversion of points, lines, polygons, and bitmaps, and from pixel draw and
copy operations. gl.AlphaFunc() does not affect screen clear operations.

Please consult an OpenGL reference manual for more information.

INPUTS

func specifies the alpha comparison function (see above)

ref specifies the reference value that incoming alpha values are compared to.
This value is clamped to the range 0 through 1, where 0 represents the lowest
possible alpha value and 1 the highest possible value (the initial reference
value is 0)

ERRORS
#GL_INVALID_ENUM is generated if func is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.AlphaFunc() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_ALPHA_TEST_FUNC

22 GL Galore manual

gl.Get() with argument #GL_ALPHA_TEST_REF

gl.IsEnabled() with argument #GL_ALPHA_TEST

6.3 gl.AreTexturesResident

NAME
gl.AreTexturesResident – determine if textures are loaded in texture memory

SYNOPSIS
residencesArray = gl.AreTexturesResident(texturesArray)

FUNCTION
GL establishes a working set of textures that are resident in texture memory. These
textures can be bound to a texture target much more efficiently than textures that are
not resident.

gl.AreTexturesResident() queries the texture residence status of the n textures
named by the elements of texturesArray and returns their status in the table
residencesArray.

The residence status of a single bound texture may also be queried by calling
gl.GetTexParameter() with the target argument set to the target to which the texture
is bound, and the pname argument set to #GL_TEXTURE_RESIDENT. This is the only way
that the residence status of a default texture can be queried.

gl.AreTexturesResident() returns the residency status of the textures at the time of
invocation. It does not guarantee that the textures will remain resident at any other
time.

If textures reside in virtual memory (there is no texture memory), they are considered
always resident.

Some implementations may not load a texture until the first use of that texture.

Please consult an OpenGL reference manual for more information.

INPUTS

texturesArray

specifies an array containing the names of the textures to be queried

RESULTS

residencesArray

an array in which the texture residence status is returned

ERRORS
#GL_INVALID_VALUE is generated if any element in texturesArray is 0 or does not name
a texture. In that case, the function returns Nil.

#GL_INVALID_OPERATION is generated if gl.AreTexturesResident() is executed be-
tween the execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexParameter() with parameter name #GL_TEXTURE_RESIDENT retrieves the res-
idence status of a currently bound texture.

Chapter 6: GL reference 23

6.4 gl.ArrayElement

NAME
gl.ArrayElement – render a vertex using the specified vertex array element

SYNOPSIS
gl.ArrayElement(i)

FUNCTION
gl.ArrayElement() commands are used within gl.Begin() / gl.End() pairs to specify
vertex and attribute data for point, line, and polygon primitives. If #GL_VERTEX_ARRAY
is enabled when gl.ArrayElement() is called, a single vertex is drawn, using vertex and
attribute data taken from location i of the enabled arrays. If #GL_VERTEX_ARRAY is not
enabled, no drawing occurs but the attributes corresponding to the enabled arrays are
modified.

Use gl.ArrayElement() to construct primitives by indexing vertex data, rather than by
streaming through arrays of data in first-to-last order. Because each call specifies only a
single vertex, it is possible to explicitly specify per-primitive attributes such as a single
normal for each triangle.

Changes made to array data between the execution of gl.Begin() and the corresponding
execution of gl.End() may affect calls to gl.ArrayElement() that are made within
the same gl.Begin() / gl.End() period in nonsequential ways. That is, a call to
gl.ArrayElement() that precedes a change to array data may access the changed data,
and a call that follows a change to array data may access original data.

gl.ArrayElement() is included in display lists. If gl.ArrayElement() is entered into a
display list, the necessary array data (determined by the array pointers and enables) is
also entered into the display list. Because the array pointers and enables are client-side
state, their values affect display lists when the lists are created, not when the lists are
executed.

Please consult an OpenGL reference manual for more information.

INPUTS

i specifies an index into the enabled vertex data arrays

ERRORS
#GL_INVALID_VALUE may be generated if i is negative.

#GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an
enabled array and the buffer object’s data store is currently mapped.

6.5 gl.Begin

NAME
gl.Begin – delimit the vertices of a primitive or a group of like primitives

SYNOPSIS
gl.Begin(mode)

24 GL Galore manual

FUNCTION
gl.Begin() and gl.End() delimit the vertices that define a primitive or a group of like
primitives. gl.Begin() accepts a single argument that specifies in which of ten ways
the vertices are interpreted. Taking n as an integer count starting at one, and N as the
total number of vertices specified, the interpretations are as follows:

#GL_POINTS

Treats each vertex as a single point. Vertex n defines point n. N points are
drawn.

#GL_LINES

Treats each pair of vertices as an independent line segment. Vertices 2^n -
1 and 2^n define line n. N/2 lines are drawn.

#GL_LINE_STRIP

Draws a connected group of line segments from the first vertex to the last.
Vertices n and n + 1 define line n. N - 1 lines are drawn.

#GL_LINE_LOOP

Draws a connected group of line segments from the first vertex to the last,
then back to the first. Vertices n and n + 1 define line n. The last line,
however, is defined by vertices N and 1. N lines are drawn.

#GL_TRIANGLES

Treats each triplet of vertices as an independent triangle. Vertices 3^n - 2 ,
3^n - 1 , and 3^n define triangle n. N/3 triangles are drawn.

#GL_TRIANGLE_STRIP

Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. For odd n, vertices n, n + 1 , and n +

2 define triangle n. For even n, vertices n + 1 , n, and n + 2 define triangle
n. N - 2 triangles are drawn.

#GL_TRIANGLE_FAN

Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. Vertices 1, n + 1 , and n + 2 define
triangle n. N - 2 triangles are drawn.

#GL_QUADS

Treats each group of four vertices as an independent quadrilateral. Vertices
4^n - 3 , 4^n - 2 , 4^n - 1 , and 4^n define quadrilateral n. N/4 quadrilaterals
are drawn.

#GL_QUAD_STRIP

Draws a connected group of quadrilaterals. One quadrilateral is defined for
each pair of vertices presented after the first pair. Vertices 2^n - 1 , 2^n , 2^n
+ 2 , and 2^n + 1 define quadrilateral n. N/2 - 1 quadrilaterals are drawn.
Note that the order in which vertices are used to construct a quadrilateral
from strip data is different from that used with independent data.

#GL_POLYGON

Draws a single, convex polygon. Vertices 1 through N define this polygon.

Chapter 6: GL reference 25

Only a subset of GL commands can be used between gl.Begin() and gl.End(). The
commands are gl.Vertex(), gl.Color(), gl.Index(), gl.Normal(), gl.TexCoord(),
and gl.Material(), gl.EvalCoord(), gl.EvalPoint(), gl.EdgeFlag(), and
gl.ArrayElement(). Also, it is acceptable to use gl.CallList() or gl.CallLists()
to execute display lists that include only the preceding commands. If any other GL
command is executed between gl.Begin() and gl.End(), the error flag is set and the
command is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that
can be defined between gl.Begin() and gl.End(). Lines, triangles, quadrilaterals, and
polygons that are incompletely specified are not drawn. Incomplete specification results
when either too few vertices are provided to specify even a single primitive or when an
incorrect multiple of vertices is specified. The incomplete primitive is ignored; the rest
are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for
a line, 3 for a triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a
certain multiple of vertices are #GL_LINES (2), #GL_TRIANGLES (3), #GL_QUADS (4), and
#GL_QUAD_STRIP (2).

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies the primitive or primitives that will be created from vertices pre-
sented between gl.Begin() and the subsequent gl.End() (see above)

ERRORS
#GL_INVALID_ENUM is generated if mode is set to an unaccepted value.

#GL_INVALID_OPERATION is generated if gl.Begin() is executed between a gl.Begin()

and the corresponding execution of gl.End().

#GL_INVALID_OPERATION is generated if gl.End() is executed without being preceded
by a glBegin.

#GL_INVALID_OPERATION is generated if an unsupported command is executed between
the execution of gl.Begin() and the corresponding execution gl.End(). See your
OpenGL reference manual for commands that can be executed between gl.Begin()

and gl.End().

6.6 gl.BindTexture

NAME
gl.BindTexture – bind a named texture to a texturing target

SYNOPSIS
gl.BindTexture(target, texture)

FUNCTION
gl.BindTexture() lets you create or use a named texture. Calling gl.BindTexture()

with target set to #GL_TEXTURE_1D or #GL_TEXTURE_2D and texture set to the name of
the new texture binds the texture name to the target. When a texture is bound to a
target, the previous binding for that target is automatically broken.

26 GL Galore manual

Texture names are unsigned integers. The value zero is reserved to represent the default
texture for each texture target. Texture names and the corresponding texture contents
are local to the shared display-list space of the current GL rendering context; two ren-
dering contexts share texture names only if they also share display lists.

You may use gl.GenTextures() to generate a set of new texture names.

When a texture is first bound, it assumes the specified target: A texture first bound
to #GL_TEXTURE_1D becomes one-dimensional texture, a texture first bound to #GL_

TEXTURE_2D becomes two-dimensional texture. The state of a one-dimensional texture
immediately after it is first bound is equivalent to the state of the default #GL_TEXTURE_
1D at GL initialization, and similarly for two-dimensional textures.

While a texture is bound, GL operations on the target to which it is bound affect the
bound texture, and queries of the target to which it is bound return state from the
bound texture. If texture mapping is active on the target to which a texture is bound,
the bound texture is used. In effect, the texture targets become aliases for the textures
currently bound to them, and the texture name zero refers to the default textures that
were bound to them at initialization.

A texture binding created with gl.BindTexture() remains active until a different
texture is bound to the same target, or until the bound texture is deleted with
gl.DeleteTextures().

Once created, a named texture may be re-bound to its same original target as often
as needed. It is usually much faster to use gl.BindTexture() to bind an existing
named texture to one of the texture targets than it is to reload the texture image using
gl.TexImage1D() or gl.TexImage2D(). For additional control over performance, use
gl.PrioritizeTextures().

gl.BindTexture() is included in display lists.

Please consult an OpenGL reference manual for more information.

INPUTS

target specifies the target to which the texture is bound. Must be either #GL_

TEXTURE_1D or #GL_TEXTURE_2D

texture specifies the name of a texture

ERRORS
#GL_INVALID_ENUM is generated if target is not one of the allowable values.

#GL_INVALID_OPERATION is generated if texture was previously created with a target
that doesn’t match that of target.

#GL_INVALID_OPERATION is generated if gl.BindTexture() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_TEXTURE_BINDING_1D

gl.Get() with argument #GL_TEXTURE_BINDING_2D

Chapter 6: GL reference 27

6.7 gl.Bitmap

NAME
gl.Bitmap – draw a bitmap

SYNOPSIS
gl.Bitmap(xorig, yorig, xmove, ymove[, bitmapArray])

FUNCTION
A bitmap is a binary image. When drawn, the bitmap is positioned relative to the
current raster position, and frame buffer pixels corresponding to 1’s in the bitmap are
written using the current raster color or index. Frame buffer pixels corresponding to 0’s
in the bitmap are not modified.

gl.Bitmap() takes up to five arguments. The first pair specifies the location of the
bitmap origin relative to the lower left corner of the bitmap image. The second pair
of arguments specifies x and y offsets to be added to the current raster position after
the bitmap has been drawn. The final argument is a table containing pixel data of the
bitmap image itself.

The bitmap image is interpreted like image data for the gl.DrawPixels() command,
with the bitmap’s width and height corresponding to the width and height arguments
of that command, and with type set to GL_BITMAP and format set to GL_COLOR_INDEX.
Modes specified using gl.PixelStore() affect the interpretation of bitmap image data;
modes specified using gl.PixelTransfer() do not.

If the current raster position is invalid, gl.Bitmap() is ignored. Otherwise, the lower
left corner of the bitmap image is positioned at the window coordinates xw = xr - xo
and yw = yr - yo where (xr,yr) is the raster position and (xo,yo) is the bitmap origin.
Fragments are then generated for each pixel corresponding to a 1 (one) in the bitmap
image. These fragments are generated using the current raster z coordinate, color or
color index, and current raster texture coordinates. They are then treated just as if they
had been generated by a point, line, or polygon, including texture mapping, fogging, and
all per-fragment operations such as alpha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster position
are offset by xmove and ymove. No change is made to the z coordinate of the current
raster position, or to the current raster color, texture coordinates, or index.

To set a valid raster position outside the viewport, first set a valid raster position inside
the viewport, then call gl.Bitmap() without the bitmap parameter and with xmove and
ymove set to the offsets of the new raster position. This technique is useful when panning
an image around the viewport.

Please consult an OpenGL reference manual for more information.

INPUTS

xorig specify the location of the x origin in the bitmap image. The origin is
measured from the lower left corner of the bitmap, with right and up being
the positive axes.

yorig specify the location of the y origin in the bitmap image. The origin is
measured from the lower left corner of the bitmap, with right and up being
the positive axes.

28 GL Galore manual

xmove specify the x offset to be added to the current raster position after the bitmap
is drawn

ymove specify the y offset to be added to the current raster position after the bitmap
is drawn

bitmapArray

optional: table containing bitmap data

ERRORS
#GL_INVALID_OPERATION is generated if glBitmap is executed between the execution of
gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_CURRENT_RASTER_POSITION

gl.Get() with argument #GL_CURRENT_RASTER_COLOR

gl.Get() with argument #GL_CURRENT_RASTER_SECONDARY_COLOR

gl.Get() with argument #GL_CURRENT_RASTER_DISTANCE

gl.Get() with argument #GL_CURRENT_RASTER_INDEX

gl.Get() with argument #GL_CURRENT_RASTER_TEXTURE_COORDS

gl.Get() with argument #GL_CURRENT_RASTER_POSITION_VALID

6.8 gl.BlendFunc

NAME
gl.BlendFunc – specify pixel arithmetic

SYNOPSIS
gl.BlendFunc(sfactor, dfactor)

FUNCTION
In RGBA mode, pixels can be drawn using a function that blends the incoming (source)
RGBA values with the RGBA values that are already in the frame buffer (the destina-
tion values). Blending is initially disabled. Use gl.Enable() and gl.Disable() with
argument #GL_BLEND to enable and disable blending.

gl.BlendFunc() defines the operation of blending when it is enabled. sfactor specifies
which of nine methods is used to scale the source color components. dfactor specifies
which of eight methods is used to scale the destination color components. The eleven
possible methods are described in the following table. Each method defines four scale
factors, one each for red, green, blue, and alpha.

In the table and in subsequent equations, source and destination color components are
referred to as (Rs, Gs, Bs, As) and (Rd, Gd, Bd, Ad). They are understood to have
integer values between 0 and (kR, kG, kB, kA), where

kc = 2^mc - 1

and (mR, mG, mB, mA) is the number of red, green, blue, and alpha bitplanes.

Chapter 6: GL reference 29

Source and destination scale factors are referred to as (sR, sG, sB, sA) and (dR, dG, dB,
dA). The scale factors described in the table, denoted (fR, fG, fB, fA), represent either
source or destination factors. All scale factors have range [0,1].

Parameter | (fR, fG, fB, fA)

#GL_ZERO | (0, 0, 0, 0)

#GL_ONE | (1, 1, 1, 1)

#GL_SRC_COLOR | (Rs/kR, Gs/kG, Bs/kB, As/kA)

#GL_ONE_MINUS_SRC_COLOR | (1, 1, 1, 1) - (Rs/kR, Gs/kG, Bs/kB, As/kA)

#GL_DST_COLOR | (Rd/kR, Gd/kG, Bd/kB, Ad/kA)

#GL_ONE_MINUS_DST_COLOR | (1, 1, 1, 1) - (Rd/kR, Gd/kG, Bd/kB, Ad/kA)

#GL_SRC_ALPHA | (As/kA, As/kA, As/kA, As/kA)

#GL_ONE_MINUS_SRC_ALPHA | (1, 1, 1, 1) - (As/kA, As/kA, As/kA, As/kA)

#GL_DST_ALPHA | (Ad/kA, Ad/kA, Ad/kA, Ad/kA)

#GL_ONE_MINUS_DST_ALPHA | (1, 1, 1, 1) - (Ad/kA, Ad/kA, Ad/kA, Ad/kA)

#GL_SRC_ALPHA_SATURATE | (i, i, i, 1)

In the table,

i = min(As, kA - Ad) / kA

To determine the blended RGBA values of a pixel when drawing in RGBA mode, the
system uses the following equations:

Rd = min(kR, Rs sR + Rd dR)

Gd = min(kG, Gs sG + Gd dG)

Bd = min(kB, Bs sB + Bd dB)

Ad = min(kA, As sA + Ad dA)

Despite the apparent precision of the above equations, blending arithmetic is not exactly
specified, because blending operates with imprecise integer color values. However, a
blend factor that should be equal to 1 is guaranteed not to modify its multiplicand, and
a blend factor equal to 0 reduces its multiplicand to 0. For example, when sfactor

is #GL_SRC_ALPHA, dfactor is #GL_ONE_MINUS_SRC_ALPHA, and As is equal to kA, the
equations reduce to simple replacement:

Rd = Rs

Gd = Gs

Bd = Bs

Ad = As

Transparency is best implemented using blend function (#GL_SRC_ALPHA, #GL_ONE_

MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this trans-
parency calculation does not require the presence of alpha bitplanes in the frame buffer.
Blend function (#GL_SRC_ALPHA, #GL_ONE_MINUS_SRC_ALPHA) is also useful for rendering
antialiased points and lines in arbitrary order.

Polygon antialiasing is optimized using blend function (#GL_SRC_ALPHA_SATURATE, #GL_
ONE) with polygons sorted from nearest to farthest. (See Section 6.40 [gl.Enable], page 66,
for information on polygon antialiasing. Look for #GL_POLYGON_SMOOTH) Destination
alpha bitplanes, which must be present for this blend function to operate correctly, store
the accumulated coverage.

30 GL Galore manual

Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0
(KA), representing complete opacity, to 0.0 (0), representing complete transparency.

When more than one color buffer is enabled for drawing, the GL performs blending
separately for each enabled buffer, using the contents of that buffer for destination color.
(See Section 6.34 [gl.DrawBuffer], page 57, for details.)

Blending affects only RGBA rendering. It is ignored by color index renderers.

Please consult an OpenGL reference manual for more information.

INPUTS

sfactor specifies how the red, green, blue, and alpha source blending factors are
computed (see above)

dfactor specifies how the red, green, blue, and alpha destination blending factors are
computed (see above)

ERRORS
#GL_INVALID_ENUM is generated if either sfactor or dfactor is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.BlendFunc() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_BLEND_SRC

gl.Get() with argument #GL_BLEND_DST

gl.IsEnabled() with argument #GL_BLEND

6.9 gl.CallList

NAME
gl.CallList – execute a display list

SYNOPSIS
gl.CallList(list)

FUNCTION
gl.CallList() causes the named display list to be executed. The commands saved in
the display list are executed in order, just as if they were called without using a display
list. If list has not been defined as a display list, gl.CallList() is ignored.

gl.CallList() can appear inside a display list. To avoid the possibility of infinite
recursion resulting from display lists calling one another, a limit is placed on the nesting
level of display lists during display-list execution. This limit is at least 64, and it depends
on the implementation.

GL state is not saved and restored across a call to gl.CallList(). Thus, changes
made to GL state during the execution of a display list remain after execution of the
display list is completed. Use gl.PushAttrib(), gl.PopAttrib(), gl.PushMatrix(),
and gl.PopMatrix() to preserve GL state across gl.CallList() calls.

Display lists can be executed between a call to glBegin and the corresponding call to
glEnd, as long as the display list includes only commands that are allowed in this interval.

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 31

INPUTS

list specifies the integer name of the display list to be executed

ASSOCIATED GETS
gl.Get() with argument #GL_MAX_LIST_NESTING

6.10 gl.CallLists

NAME
gl.CallLists – execute a list of display lists

SYNOPSIS
gl.CallLists(listArray)

FUNCTION
gl.CallLists() causes each display list in the list of names passed as lists to be executed.
As a result, the commands saved in each display list are executed in order, just as if they
were called without using a display list. Names of display lists that have not been defined
are ignored.

gl.CallLists() provides an efficient means for executing more than one display list.

An additional level of indirection is made available with the gl.ListBase() command,
which specifies an unsigned offset that is added to each display-list name specified in
lists before that display list is executed.

gl.CallLists() can appear inside a display list. To avoid the possibility of infinite
recursion resulting from display lists calling one another, a limit is placed on the nesting
level of display lists during display-list execution. This limit is at least 64, and it depends
on the implementation.

GL state is not saved and restored across a call to gl.CallLists(). Thus, changes
made to GL state during the execution of a display list remain after execution of the
display list is completed. Use gl.PushAttrib(), gl.PopAttrib(), gl.PushMatrix(),
and gl.PopMatrix() to preserve GL state across gl.CallLists() calls.

Please consult an OpenGL reference manual for more information.

INPUTS

listArray

specifies an array of name offsets in the display list

ASSOCIATED GETS
gl.Get() with argument #GL_LIST_BASE

gl.Get() with argument #GL_MAX_LIST_NESTING

6.11 gl.Clear

NAME
gl.Clear – clear buffers to preset values

32 GL Galore manual

SYNOPSIS
gl.Clear(mask)

FUNCTION
gl.Clear() sets the bitplane area of the window to values previously selected by
gl.ClearColor(), gl.ClearIndex(), gl.ClearDepth(), gl.ClearStencil(), and
gl.ClearAccum(). Multiple color buffers can be cleared simultaneously by selecting
more than one buffer at a time using gl.DrawBuffer().

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect the
operation of gl.Clear(). The scissor box bounds the cleared region. Alpha function,
blend function, logical operation, stenciling, texture mapping, and depth-buffering are
ignored by gl.Clear().

gl.Clear() takes a single argument that is the bitwise OR of several values indicating
which buffer is to be cleared.

The values are as follows:

#GL_COLOR_BUFFER_BIT

Indicates the buffers currently enabled for color writing.

#GL_DEPTH_BUFFER_BIT

Indicates the depth buffer.

#GL_ACCUM_BUFFER_BIT

Indicates the accumulation buffer.

#GL_STENCIL_BUFFER_BIT

Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for
that buffer.

If a buffer is not present, then a gl.Clear() directed at that buffer has no effect.

Please consult an OpenGL reference manual for more information.

INPUTS

mask bitwise OR of masks that indicate the buffers to be cleared. The four masks
are #GL_COLOR_BUFFER_BIT, #GL_DEPTH_BUFFER_BIT, #GL_ACCUM_BUFFER_
BIT, and #GL_STENCIL_BUFFER_BIT

ERRORS
#GL_INVALID_VALUE is generated if any bit other than the four defined bits is set in
mask.

#GL_INVALID_OPERATION is generated if gl.Clear() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_ACCUM_CLEAR_VALUE

gl.Get() with argument #GL_DEPTH_CLEAR_VALUE

gl.Get() with argument #GL_INDEX_CLEAR_VALUE

gl.Get() with argument #GL_COLOR_CLEAR_VALUE

gl.Get() with argument #GL_STENCIL_CLEAR_VALUE

Chapter 6: GL reference 33

6.12 gl.ClearAccum

NAME
gl.ClearAccum – specify clear values for the accumulation buffer

SYNOPSIS
gl.ClearAccum(red, green, blue, alpha)

FUNCTION
gl.ClearAccum() specifies the red, green, blue, and alpha values used by gl.Clear()

to clear the accumulation buffer.

Values specified by gl.ClearAccum() are clamped to the range -1 through 1.

Please consult an OpenGL reference manual for more information.

INPUTS

red specify the red value used when the accumulation buffer is cleared; the initial
value is 0

green specify the green value used when the accumulation buffer is cleared; the
initial value is 0

blue specify the blue value used when the accumulation buffer is cleared; the
initial value is 0

alpha specify the alpha value used when the accumulation buffer is cleared; the
initial value is 0

ERRORS
#GL_INVALID_OPERATION is generated if gl.ClearAccum() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_ACCUM_CLEAR_VALUE

6.13 gl.ClearColor

NAME
gl.ClearColor – specify clear values for the color buffers

SYNOPSIS
gl.ClearColor(red, green, blue, alpha)

FUNCTION
gl.ClearColor() specifies the red, green, blue, and alpha values used by gl.Clear() to
clear the color buffers. Values specified by gl.ClearColor() are clamped to the range
0 through 1.

Please consult an OpenGL reference manual for more information.

INPUTS

red specify the red value used when the color buffers are cleared; the initial value
is 0

34 GL Galore manual

green specify the green value used when the color buffers are cleared; the initial
value is 0

blue specify the blue value used when the color buffers are cleared; the initial
value is 0

alpha specify the alpha value used when the color buffers are cleared; the initial
value is 0

ERRORS
#GL_INVALID_OPERATION is generated if gl.ClearColor() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_COLOR_CLEAR_VALUE

6.14 gl.ClearDepth

NAME
gl.ClearDepth – specify the clear value for the depth buffer

SYNOPSIS
gl.ClearDepth(depth)

FUNCTION
gl.ClearDepth() specifies the depth value used by gl.Clear() to clear the depth buffer.
Values specified by gl.ClearDepth() are clamped to the range 0 through 1.

Please consult an OpenGL reference manual for more information.

INPUTS

depth specifies the depth value used when the depth buffer is cleared; the initial
value is 1

ERRORS
#GL_INVALID_OPERATION is generated if gl.ClearDepth() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_DEPTH_CLEAR_VALUE

6.15 gl.ClearIndex

NAME
gl.ClearIndex – specify the clear value for the color index buffers

SYNOPSIS
gl.ClearIndex(c)

FUNCTION
gl.ClearIndex() specifies the index used by gl.Clear() to clear the color index buffers.
c is not clamped. Rather, c is converted to a fixed-point value with unspecified precision

Chapter 6: GL reference 35

to the right of the binary point. The integer part of this value is then masked with 2^m-1
, where m is the number of bits in a color index stored in the frame buffer.

Please consult an OpenGL reference manual for more information.

INPUTS

c specifies the index used when the color index buffers are cleared; the initial
value is 0

ERRORS
#GL_INVALID_OPERATION is generated if gl.ClearIndex() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_INDEX_CLEAR_VALUE

gl.Get() with argument #GL_INDEX_BITS

6.16 gl.ClearStencil

NAME
gl.ClearStencil – specify the clear value for the stencil buffer

SYNOPSIS
gl.ClearStencil(s)

FUNCTION
gl.ClearStencil() specifies the index used by gl.Clear() to clear the stencil buffer.
s is masked with 2^m-1 , where m is the number of bits in the stencil buffer.

Please consult an OpenGL reference manual for more information.

INPUTS

s specifies the index used when the stencil buffer is cleared; the initial value is
0

ERRORS
#GL_INVALID_OPERATION is generated if gl.ClearStencil() is executed between the
execution of glBegin and the corresponding execution of glEnd

ASSOCIATED GETS
gl.Get() with argument #GL_STENCIL_CLEAR_VALUE

gl.Get() with argument #GL_STENCIL_BITS

6.17 gl.ClipPlane

NAME
gl.ClipPlane – specify a plane against which all geometry is clipped

SYNOPSIS
gl.ClipPlane(plane, equationArray)

36 GL Galore manual

FUNCTION
Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and
z. gl.ClipPlane() allows the specification of additional planes, not necessarily perpen-
dicular to the x, y, or z axis, against which all geometry is clipped. To determine the
maximum number of additional clipping planes, call gl.Get() with argument #GL_MAX_
CLIP_PLANES. All implementations support at least six such clipping planes. Because
the resulting clipping region is the intersection of the defined half-spaces, it is always
convex.

gl.ClipPlane() specifies a half-space using a four-component plane equation. When
gl.ClipPlane() is called, equation is transformed by the inverse of the modelview ma-
trix and stored in the resulting eye coordinates. Subsequent changes to the modelview
matrix have no effect on the stored plane-equation components. If the dot product of
the eye coordinates of a vertex with the stored plane equation components is positive or
zero, the vertex is in with respect to that clipping plane. Otherwise, it is out.

To enable and disable clipping planes, call gl.Enable() and gl.Disable() with the
argument #GL_CLIP_PLANEi, where i is the plane number.

All clipping planes are initially defined as (0, 0, 0, 0) in eye coordinates and are disabled.

It is always the case that #GL_CLIP_PLANEi = #GL_CLIP_PLANE0 + i.

Please consult an OpenGL reference manual for more information.

INPUTS

plane specifies which clipping plane is being positioned; symbolic names of the
form #GL_CLIP_PLANEi, where i is an integer between 0 and #GL_MAX_CLIP_

PLANES -1 , are accepted

equationArray

specifies an array of four double-precision floating-point values; these values
are interpreted as a plane equation

ERRORS
#GL_INVALID_ENUM is generated if plane is not an accepted value

#GL_INVALID_OPERATION is generated if gl.ClipPlane() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.GetClipPlane()

gl.IsEnabled() with argument #GL_CLIP_PLANEi

6.18 gl.Color

NAME
gl.Color – set the current color

SYNOPSIS
gl.Color(red, green, blue[, alpha])

Chapter 6: GL reference 37

FUNCTION
The GL stores both a current single-valued color index and a current four-valued RGBA
color. gl.Color() sets a new four-valued RGBA color. If the optional alpha argument
is omitted, it will be set to 1.0.

Current color values are stored in floating-point format such that the largest repre-
sentable value maps to 1.0 (full intensity), and 0 maps to 0.0 (zero intensity).

Alternatively, you can also pass a table containing three or four floating-point values
specifying the red, green, blue, and alpha values for the color.

The initial value for the current color is (1, 1, 1, 1).

The current color can be updated at any time. In particular, gl.Color() can be called
between a call to gl.Begin() and the corresponding call to gl.End().

Please consult an OpenGL reference manual for more information.

INPUTS

red specify new red value for the current color

green specify new green value for the current color

blue specify new blue value for the current color

alpha optional: specify new alpha value for the current color (defaults to 1.0)

ASSOCIATED GETS
gl.Get() with argument #GL_CURRENT_COLOR

gl.Get() with argument #GL_RGBA_MODE

6.19 gl.ColorMask

NAME
gl.ColorMask – enable and disable writing of frame buffer color components

SYNOPSIS
gl.ColorMask(red, green, blue, alpha)

FUNCTION
gl.ColorMask() specifies whether the individual color components in the frame buffer
can or cannot be written. If red is #GL_FALSE, for example, no change is made to the red
component of any pixel in any of the color buffers, regardless of the drawing operation
attempted. The initial values are all #GL_TRUE, indicating that the color components
can be written.

Changes to individual bits of components cannot be controlled. Rather, changes are
either enabled or disabled for entire color components.

Please consult an OpenGL reference manual for more information.

INPUTS

red specify whether red can or cannot be written into the frame buffer

green specify whether green can or cannot be written into the frame buffer

38 GL Galore manual

blue specify whether blue can or cannot be written into the frame buffer

alpha specify whether alpha can or cannot be written into the frame buffer

ERRORS
#GL_INVALID_OPERATION is generated if gl.ColorMask() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_COLOR_WRITEMASK

gl.Get() with argument #GL_RGBA_MODE

6.20 gl.ColorMaterial

NAME
gl.ColorMaterial – cause a material color to track the current color

SYNOPSIS
gl.ColorMaterial(face, mode)

FUNCTION
gl.ColorMaterial() specifies which material parameters track the current color. When
#GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by mode,
of the material or materials specified by face, track the current color at all times. face
can be set to #GL_FRONT, #GL_BACK, or #GL_FRONT_AND_BACK. The initial value is #GL_
FRONT_AND_BACK.

The following values can be passed in the mode parameter: #GL_EMISSION, #GL_AMBIENT,
#GL_DIFFUSE, #GL_SPECULAR, and #GL_AMBIENT_AND_DIFFUSE. The initial value is #GL_
AMBIENT_AND_DIFFUSE.

To enable and disable #GL_COLOR_MATERIAL, call gl.Enable() and gl.Disable() with
argument #GL_COLOR_MATERIAL. #GL_COLOR_MATERIAL is initially disabled.

gl.ColorMaterial() makes it possible to change a subset of material parameters for
each vertex using only the gl.Color() command, without calling gl.Material().
If only such a subset of parameters is to be specified for each vertex, calling
gl.ColorMaterial() is preferable to calling gl.Material().

Call gl.ColorMaterial() before enabling #GL_COLOR_MATERIAL.

Calling gl.DrawElements() or gl.DrawArrays() may leave the current color indetermi-
nate, if the color array is enabled. If gl.ColorMaterial() is enabled while the current
color is indeterminate, the lighting material state specified by face and mode is also
indeterminate.

If the GL version is 1.1 or greater, and #GL_COLOR_MATERIAL is enabled, evaluated color
values affect the results of the lighting equation as if the current color were being modi-
fied, but no change is made to the tracking lighting parameter of the current color.

Please consult an OpenGL reference manual for more information.

INPUTS

face specifies whether front, back, or both front and back material parameters
should track the current color

Chapter 6: GL reference 39

mode specifies which of several material parameters track the current color (see
above)

ERRORS
#GL_INVALID_ENUM is generated if face or mode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.ColorMaterial() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_COLOR_MATERIAL

gl.Get() with argument #GL_COLOR_MATERIAL_PARAMETER

gl.Get() with argument #GL_COLOR_MATERIAL_FACE

6.21 gl.ColorPointer

NAME
gl.ColorPointer – define an array of colors

SYNOPSIS
gl.ColorPointer(colorArray[, size])

FUNCTION
gl.ColorPointer() specifies an array of color components to use when rendering.
colorArray can be either a one-dimensional table consisting of an arbitrary number of
consecutive color values or a two-dimensional table consisting of an arbitrary number of
subtables which contain 3 or 4 color values each. If colorArray is a one-dimensional
table, you need to pass the optional size argument as well to define the size of each
color component in colorArray. size must be either 3 or 4. If colorArray is a
two-dimensional table, size is automatically determined by the number of items in the
first subtable, which must be either three or four as well.

When using a two-dimensional table, please keep in mind that the number of color values
in each subtable must be constant. It is not allowed to use differing numbers of color
values in the individual subtables. The number of color values is defined by the number
of elements in the first subtable and all following subtables must use the very same
number of color values.

If you pass Nil in colorArray, the color array buffer will be freed but it won’t be
removed from OpenGL. You need to do this manually, e.g. by disabling the color array
or defining a new one.

To enable and disable the color array, call gl.EnableClientState() and
gl.DisableClientState() with the argument #GL_COLOR_ARRAY. If enabled, the color
array is used when gl.DrawArrays(), gl.DrawElements(), or gl.ArrayElement() is
called.

The color array is initially disabled and isn’t accessed when gl.DrawArrays(),
gl.DrawElements(), or gl.ArrayElement() is called.

Execution of gl.ColorPointer() is not allowed between the execution of gl.Begin()
and the corresponding execution of gl.End(), but an error may or may not be generated.
If no error is generated, the operation is undefined.

40 GL Galore manual

gl.ColorPointer() is typically implemented on the client side.

Color array parameters are client-side state and are therefore not saved or restored
by gl.PushAttrib() and gl.PopAttrib(). Use gl.PushClientAttrib() and
gl.PopClientAttrib() instead.

Please consult an OpenGL reference manual for more information.

INPUTS

colorArray

one- or two-dimensional table containing color values or Nil (see above)

size optional: size of each color component; must be either 3 or 4 and is only
used with one-dimensional tables (see above)

ERRORS
#GL_INVALID_VALUE is generated if size is not 3 or 4.

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_COLOR_ARRAY

gl.Get() with argument #GL_COLOR_ARRAY_SIZE

gl.Get() with argument #GL_COLOR_ARRAY_TYPE

gl.Get() with argument #GL_COLOR_ARRAY_STRIDE

gl.Get() with argument #GL_COLOR_ARRAY_POINTER

6.22 gl.CopyPixels

NAME
gl.CopyPixels – copy pixels in the frame buffer

SYNOPSIS
gl.CopyPixels(x, y, width, height, type)

FUNCTION
gl.CopyPixels() copies a screen-aligned rectangle of pixels from the specified frame
buffer location to a region relative to the current raster position. Its operation is well
defined only if the entire pixel source region is within the exposed portion of the window.
Results of copies from outside the window, or from regions of the window that are not
exposed, are hardware dependent and undefined.

x and y specify the window coordinates of the lower left corner of the rectangular region
to be copied. width and height specify the dimensions of the rectangular region to be
copied. Both width and height must not be negative.

Several parameters control the processing of the pixel data while it is being copied.
These parameters are set with three commands: gl.PixelTransfer(), gl.PixelMap(),
and gl.PixelZoom(). This reference page describes the effects on gl.CopyPixels() of
most, but not all, of the parameters specified by these three commands.

gl.CopyPixels() copies values from each pixel with the lower left-hand corner at
(x+i,y+j) for 0 <= i < width and 0 <= j < height. This pixel is said to be the ith pixel in

Chapter 6: GL reference 41

the jth row. Pixels are copied in row order from the lowest to the highest row, left to
right in each row.

type specifies whether color, depth, or stencil data is to be copied. The details of the
transfer for each data type are as follows:

#GL_COLOR

Indices or RGBA colors are read from the buffer currently specified as the
read source buffer (See Section 6.121 [gl.ReadBuffer], page 172, for details.).
If the GL is in color index mode, each index that is read from this buffer is
converted to a fixed-point format with an unspecified number of bits to the
right of the binary point. Each index is then shifted left by #GL_INDEX_SHIFT
bits, and added to #GL_INDEX_OFFSET. If #GL_INDEX_SHIFT is negative, the
shift is to the right. In either case, zero bits fill otherwise unspecified bit
locations in the result. If #GL_MAP_COLOR is true, the index is replaced
with the value that it references in lookup table #GL_PIXEL_MAP_I_TO_I.
Whether the lookup replacement of the index is done or not, the integer
part of the index is then ANDed with 2^b-1 , where b is the number of bits
in a color index buffer.

If the GL is in RGBA mode, the red, green, blue, and alpha components of
each pixel that is read are converted to an internal floating-point format with
unspecified precision. The conversion maps the largest representable compo-
nent value to 1.0, and component value 0 to 0.0. The resulting floating-point
color values are then multiplied by #GL_c_SCALE and added to #GL_c_BIAS,
where c is RED, GREEN, BLUE, and ALPHA for the respective color com-
ponents. The results are clamped to the range [0,1]. If #GL_MAP_COLOR is
true, each color component is scaled by the size of lookup table #GL_PIXEL_
MAP_c_TO_c, then replaced by the value that it references in that table. c is
R, G, B, or A.

If the ARB imaging extension is supported, the color values may be addi-
tionally processed by color-table lookups, color-matrix transformations, and
convolution filters.

The GL then converts the resulting indices or RGBA colors to fragments by
attaching the current raster position z coordinate and texture coordinates
to each pixel, then assigning window coordinates (xr+i,yr+j) , where (xr,yr)
is the current raster position, and the pixel was the ith pixel in the jth row.
These pixel fragments are then treated just like the fragments generated
by rasterizing points, lines, or polygons. Texture mapping, fog, and all
the fragment operations are applied before the fragments are written to the
frame buffer.

#GL_DEPTH

Depth values are read from the depth buffer and converted directly to an
internal floating-point format with unspecified precision. The resulting
floating-point depth value is then multiplied by #GL_DEPTH_SCALE and
added to #GL_DEPTH_BIAS. The result is clamped to the range [0,1].

The GL then converts the resulting depth components to fragments by at-
taching the current raster position color or color index and texture coordi-

42 GL Galore manual

nates to each pixel, then assigning window coordinates (xr+i,yr+j), where
(xr,yr) is the current raster position, and the pixel was the ith pixel in the
jth row. These pixel fragments are then treated just like the fragments gen-
erated by rasterizing points, lines, or polygons. Texture mapping, fog, and
all the fragment operations are applied before the fragments are written to
the frame buffer.

#GL_STENCIL

Stencil indices are read from the stencil buffer and converted to an internal
fixed-point format with an unspecified number of bits to the right of the
binary point. Each fixed-point index is then shifted left by #GL_INDEX_SHIFT
bits, and added to #GL_INDEX_OFFSET. If #GL_INDEX_SHIFT is negative, the
shift is to the right. In either case, zero bits fill otherwise unspecified bit
locations in the result. If #GL_MAP_STENCIL is true, the index is replaced
with the value that it references in lookup table #GL_PIXEL_MAP_S_TO_S.
Whether the lookup replacement of the index is done or not, the integer
part of the index is then ANDed with 2^b-1 , where b is the number of bits
in the stencil buffer. The resulting stencil indices are then written to the
stencil buffer such that the index read from the ith location of the jth row is
written to location (xr+i,yr+j), where (xr,yr) is the current raster position.
Only the pixel ownership test, the scissor test, and the stencil writemask
affect these write operations.

The rasterization described thus far assumes pixel zoom factors of 1.0. If
gl.PixelZoom() is used to change the x and y pixel zoom factors, pixels are converted
to fragments as follows. If (xr,yr) is the current raster position, and a given pixel is
in the ith location in the jth row of the source pixel rectangle, then fragments are
generated for pixels whose centers are in the rectangle with corners at

(xr + zoomx_i, yr + zoomy_j)

and

(xr + zoomx_(i + 1), yr + zoomy_(j + 1))

where zoomx is the value of #GL_ZOOM_X and zoomy is the value of #GL_ZOOM_Y.

Modes specified by gl.PixelStore() have no effect on the operation of the command
gl.CopyPixels().

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the x coordinate of the lower left corner of the rectangular region of
pixels to be copied

y specify the y coordinate of the lower left corner of the rectangular region of
pixels to be copied

width specify the dimensions of the rectangular region of pixels to be copied; both
must be nonnegative

height specify the dimensions of the rectangular region of pixels to be copied; both
must be nonnegative

Chapter 6: GL reference 43

type specifies whether color values, depth values, or stencil values are to be copied;
symbolic constants #GL_COLOR, #GL_DEPTH, and #GL_STENCIL are accepted

ERRORS
#GL_INVALID_ENUM is generated if type is not an accepted value.

#GL_INVALID_VALUE is generated if either width or height is negative.

#GL_INVALID_OPERATION is generated if type is #GL_DEPTH and there is no depth buffer.

#GL_INVALID_OPERATION is generated if type is #GL_STENCIL and there is no stencil
buffer.

#GL_INVALID_OPERATION is generated if gl.CopyPixels() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_CURRENT_RASTER_POSITION

gl.Get() with argument #GL_CURRENT_RASTER_POSITION_VALID

6.23 gl.CopyTexImage

NAME
gl.CopyTexImage – copy pixels into a texture image

SYNOPSIS
gl.CopyTexImage(level, internalFormat, border, x, y, width[, height])

FUNCTION
gl.CopyTexImage() defines a one- or two-dimensional texture image with pixels from
the current #GL_READ_BUFFER. If the optional height argument is omitted, a one-
dimensional texture will be defined, otherwise a two-dimensional texture will be defined.

The screen-aligned pixel rectangle with lower left corner at (x, y) and with a width of
width+2*border and a height of height+2*border defines the texture array at the mipmap
level specified by level.

internalformat specifies the internal format of the texture array. See Section 3.12
[Internal pixel formats], page 13, for details. Note that in contrast to gl.TexImage1D()

and gl.TexImage2D() the values 1, 2, 3, and 4 are not supported by the internalFormat
parameter with gl.CopyTexImage().

The pixels in the rectangle are processed exactly as if gl.CopyPixels() had been called,
but the process stops just before final conversion. At this point all pixel component values
are clamped to the range [0,1] and then converted to the texture’s internal format for
storage in the texel array.

Pixel ordering is such that lower x and y screen coordinates correspond to lower s and t
texture coordinates.

If any of the pixels within the specified rectangle of the current #GL_READ_BUFFER are
outside the window associated with the current rendering context, then the values ob-
tained for those pixels are undefined.

Texturing has no effect in color index mode.

44 GL Galore manual

An image with height or width of 0 indicates a NULL texture.

Please consult an OpenGL reference manual for more information.

INPUTS

level specifies the level-of-detail number. Level 0 is the base image level. Level n
is the nth mipmap reduction image

internalFormat

specifies the internal format of the texture; must be one of the pixel format
constants (see above)

border specifies the width of the border; must be either 0 or 1

x specify the x coordinate of the lower left corner of the rectangular region of
pixels to be copied

y specify the y coordinate of the lower left corner of the rectangular region of
pixels to be copied

width specifies the width of the texture image. Must be 0 or 2^n+2*border for
some integer n

height optional: specifies the height of the texture image. Must be 0 or
2^n+2*border for some integer n (defaults to 1)

ERRORS
#GL_INVALID_VALUE is generated if level is less than 0.

#GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is
the returned value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_VALUE is generated if internalformat is not an allowable value.

#GL_INVALID_VALUE is generated if width is less than 0 or greater than 2 + #GL_MAX_

TEXTURE_SIZE.

#GL_INVALID_VALUE is generated if non-power-of-two textures are not supported and the
width cannot be represented as 2^n+2*border for some integer value of n.

#GL_INVALID_VALUE is generated if border is not 0 or 1.

#GL_INVALID_OPERATION is generated if gl.CopyTexImage() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.GetTexImage()

gl.IsEnabled() with argument #GL_TEXTURE_2D or #GL_TEXTURE_1D

6.24 gl.CopyTexSubImage

NAME
gl.CopyTexSubImage – copy a two-dimensional texture subimage

SYNOPSIS
gl.CopyTexSubImage(level, x, y, xoffset, width[, yoffset, height])

Chapter 6: GL reference 45

FUNCTION
gl.CopyTexSubImage() replaces a rectangular portion of a one- or two-dimensional tex-
ture image with pixels from the current #GL_READ_BUFFER (rather than from main mem-
ory, as is the case for gl.TexSubImage2D()). If the last two arguments are omitted,
a rectangular portion of a one-dimension texture image is replaced, otherwise a two-
dimensional texture image is the target.

The screen-aligned pixel rectangle with lower left corner at (x,y) and with width width

and height height replaces the portion of the texture array with x indices xoffset

through xoffset + width - 1, inclusive, and y indices yoffset through yoffset +

height - 1, inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if gl.CopyPixels() had been called,
but the process stops just before final conversion. At this point, all pixel component
values are clamped to the range [0,1] and then converted to the texture’s internal format
for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the
texture array as it was originally specified. It is not an error to specify a subtexture with
zero width or height, but such a specification has no effect.

If any of the pixels within the specified rectangle of the current #GL_READ_BUFFER are
outside the read window associated with the current rendering context, then the values
obtained for those pixels are undefined.

No change is made to the internalformat, width, height, or border parameters of the
specified texture array or to texel values outside the specified subregion.

Texturing has no effect in color index mode.

gl.PixelStore() and gl.PixelTransfer() modes affect texture images in exactly the
way they affect gl.DrawPixels().

Please consult an OpenGL reference manual for more information.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level; level n is
the nth mipmap reduction image

x specify the x coordinate of the lower left corner of the rectangular region of
pixels to be copied

y specify the y coordinate of the lower left corner of the rectangular region of
pixels to be copied

xoffset specifies a texel offset in the x direction within the texture array

width specifies the width of the texture subimage

yoffset optional: specifies a texel offset in the y direction within the texture array

height optional: specifies the height of the texture subimage

ERRORS
#GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous gl.TexImage2D() or gl.CopyTexImage() operation.

#GL_INVALID_VALUE is generated if level is less than 0.

46 GL Galore manual

#GL_INVALID_VALUE may be generated if level > log2(max), where max is the returned
value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_VALUE is generated if xoffset < -b , xoffset + width > w - b , yoffset < -b ,
or yoffset + height > h -b , where w is the #GL_TEXTURE_WIDTH, h is the #GL_TEXTURE_

HEIGHT, and b is the #GL_TEXTURE_BORDER of the texture image being modified. Note
that w and h include twice the border width.

#GL_INVALID_OPERATION is generated if gl.CopyTexSubImage() is executed between
the execution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.GetTexImage()

gl.IsEnabled() with argument #GL_TEXTURE_2D or #GL_TEXTURE_1D

6.25 gl.CullFace

NAME
gl.CullFace – specify whether front- or back-facing facets can be culled

SYNOPSIS
gl.CullFace(mode)

FUNCTION
gl.CullFace() specifies whether front- or back-facing facets are culled (as specified by
mode) when facet culling is enabled. Facet culling is initially disabled. To enable and
disable facet culling, call the gl.Enable() and gl.Disable() commands with the argu-
ment #GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons, and rectangles.

gl.FrontFace() specifies which of the clockwise and counterclockwise facets are front-
facing and back-facing. See Section 6.53 [gl.FrontFace], page 77, for details.

If mode is #GL_FRONT_AND_BACK, no facets are drawn, but other primitives such as points
and lines are drawn.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies whether front- or back-facing facets are candidates for culling; sym-
bolic constants #GL_FRONT, #GL_BACK, and #GL_FRONT_AND_BACK are ac-
cepted; the initial value is #GL_BACK

ERRORS
#GL_INVALID_ENUM is generated if mode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.CullFace() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_CULL_FACE

gl.Get() with argument #GL_CULL_FACE_MODE

Chapter 6: GL reference 47

6.26 gl.DeleteLists

NAME
gl.DeleteLists – delete a contiguous group of display lists

SYNOPSIS
gl.DeleteLists(list, range)

FUNCTION
gl.DeleteLists() causes a contiguous group of display lists to be deleted. list is the
name of the first display list to be deleted, and range is the number of display lists to
delete. All display lists d with list <= d <= list + range - 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are
available for reuse at a later time. Names within the range that do not have an associated
display list are ignored. If range is 0, nothing happens.

Please consult an OpenGL reference manual for more information.

INPUTS

list specifies the integer name of the first display list to delete

range specifies the number of display lists to delete

ERRORS
#GL_INVALID_VALUE is generated if range is negative.

#GL_INVALID_OPERATION is generated if gl.DeleteLists() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End()

6.27 gl.DeleteTextures

NAME
gl.DeleteTextures – delete named textures

SYNOPSIS
gl.DeleteTextures(texturesArray)

FUNCTION
gl.DeleteTextures() deletes all textures passed in the table texturesArray. After a
texture is deleted, it has no contents or dimensionality, and its name is free for reuse
(for example by gl.GenTextures()). If a texture that is currently bound is deleted, the
binding reverts to 0 (the default texture).

gl.DeleteTextures() silently ignores 0’s and names that do not correspond to existing
textures.

Please consult an OpenGL reference manual for more information.

INPUTS

texturesArray

specifies an array of textures to be deleted

ERRORS
#GL_INVALID_OPERATION is generated if glDeleteTextures is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End()

48 GL Galore manual

ASSOCIATED GETS
gl.IsTexture()

6.28 gl.DepthFunc

NAME
gl.DepthFunc – specify the value used for depth buffer comparisons

SYNOPSIS
gl.DepthFunc(func)

FUNCTION
gl.DepthFunc() specifies the function used to compare each incoming pixel depth value
with the depth value present in the depth buffer. The comparison is performed only if
depth testing is enabled. (See gl.Enable() and gl.Disable() of #GL_DEPTH_TEST)

func specifies the conditions under which the pixel will be drawn. The comparison
functions are as follows:

#GL_NEVER

Never passes.

#GL_LESS Passes if the incoming depth value is less than the stored depth value.

#GL_EQUAL

Passes if the incoming depth value is equal to the stored depth value.

#GL_LEQUAL

Passes if the incoming depth value is less than or equal to the stored depth
value.

#GL_GREATER

Passes if the incoming depth value is greater than the stored depth value.

#GL_NOTEQUAL

Passes if the incoming depth value is not equal to the stored depth value.

#GL_GEQUAL

Passes if the incoming depth value is greater than or equal to the stored
depth value.

#GL_ALWAYS

Always passes.

The initial value of func is #GL_LESS. Initially, depth testing is disabled. If depth testing
is disabled or if no depth buffer exists, it is as if the depth test always passes.

Even if the depth buffer exists and the depth mask is non-zero, the depth buffer is not
updated if the depth test is disabled.

Please consult an OpenGL reference manual for more information.

INPUTS

func specifies the depth comparison function (see above)

Chapter 6: GL reference 49

ERRORS
#GL_INVALID_ENUM is generated if func is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.DepthFunc() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_DEPTH_FUNC

gl.IsEnabled() with argument #GL_DEPTH_TEST

6.29 gl.DepthMask

NAME
gl.DepthMask – enable or disable writing into the depth buffer

SYNOPSIS
gl.DepthMask(flag)

FUNCTION
gl.DepthMask() specifies whether the depth buffer is enabled for writing. If flag is #GL_
FALSE, depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer
writing is enabled.

Please consult an OpenGL reference manual for more information.

INPUTS

flag specifies whether the depth buffer is enabled for writing; if flag is #GL_

FALSE, depth buffer writing is disabled, otherwise, it is enabled; initially,
depth buffer writing is enabled

ERRORS
#GL_INVALID_OPERATION is generated if gl.DepthMask() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_DEPTH_WRITEMASK

6.30 gl.DepthRange

NAME
gl.DepthRange – specify mapping of depth values from normalized device coordinates to
window coordinates

SYNOPSIS
gl.DepthRange(zNear, zFar)

FUNCTION
After clipping and division by w, depth coordinates range from -1 to 1, corresponding
to the near and far clipping planes. gl.DepthRange() specifies a linear mapping of the
normalized depth coordinates in this range to window depth coordinates. Regardless of

50 GL Galore manual

the actual depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components). Thus, the values accepted
by gl.DepthRange() are both clamped to this range before they are accepted.

The setting of (0,1) maps the near plane to 0 and the far plane to 1. With this mapping,
the depth buffer range is fully utilized.

It is not necessary that nearVal be less than farVal. Reverse mappings such as nearVal
= 1 , and farVal = 0 are acceptable.

Please consult an OpenGL reference manual for more information.

INPUTS

zNear specifies the mapping of the near clipping plane to window coordinates; the
initial value is 0

zFar specifies the mapping of the far clipping plane to window coordinates; the
initial value is 1

ERRORS
#GL_INVALID_OPERATION is generated if gl.DepthRange() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_DEPTH_RANGE

6.31 gl.Disable

NAME
gl.Disable – disable server-side GL capabilities

SYNOPSIS
gl.Disable(cap)

FUNCTION
gl.Disable() disables various capabilities. Use gl.IsEnabled() or gl.Get() to deter-
mine the current setting of any capability. The initial value for each capability with the
exception of #GL_DITHER is #GL_FALSE. The initial value for #GL_DITHER is #GL_TRUE.

gl.Disable() takes a single argument, cap, which can assume one of the following
values:

#GL_ALPHA_TEST

If enabled, do alpha testing. See Section 6.2 [gl.AlphaFunc], page 20, for
details..

#GL_AUTO_NORMAL

If enabled, generate normal vectors when either #GL_MAP2_VERTEX_3 or #GL_
MAP2_VERTEX_4 is used to generate vertices. See Section 6.93 [gl.Map],
page 133, for details.

#GL_BLEND

If enabled, blend the computed fragment color values with the values in the
color buffers. See See Section 6.8 [gl.BlendFunc], page 28, for details.

Chapter 6: GL reference 51

#GL_CLIP_PLANEi

If enabled, clip geometry against user-defined clipping plane i. See See
Section 6.17 [gl.ClipPlane], page 35, for details.

#GL_COLOR_LOGIC_OP

If enabled, apply the currently selected logical operation to the computed
fragment color and color buffer values. See See Section 6.92 [gl.LogicOp],
page 131, for details.

#GL_COLOR_MATERIAL

If enabled, have one or more material parameters track the current color.
See See Section 6.20 [gl.ColorMaterial], page 38, for details.

#GL_CULL_FACE

If enabled, cull polygons based on their winding in window coordinates. See
See Section 6.25 [gl.CullFace], page 46, for details.

#GL_DEPTH_TEST

If enabled, do depth comparisons and update the depth buffer. Note that
even if the depth buffer exists and the depth mask is non-zero, the depth
buffer is not updated if the depth test is disabled. See See Section 6.28
[gl.DepthFunc], page 48, for details. and See Section 6.30 [gl.DepthRange],
page 49, for details.

#GL_DITHER

If enabled, dither color components or indices before they are written to the
color buffer.

#GL_FOG If enabled and no fragment shader is active, blend a fog color into the post-
texturing color. See See Section 6.50 [gl.Fog], page 75, for details.

#GL_INDEX_LOGIC_OP

If enabled, apply the currently selected logical operation to the incoming
index and color buffer indices. See See Section 6.92 [gl.LogicOp], page 131,
for details.

#GL_LIGHTi

If enabled, include light i in the evaluation of the lighting equation. See
See Section 6.85 [gl.LightModel], page 125, for details. and See Section 6.84
[gl.Light], page 123, for details.

#GL_LIGHTING

If enabled and no vertex shader is active, use the current lighting parameters
to compute the vertex color or index. Otherwise, simply associate the current
color or index with each vertex. See Section 6.95 [gl.Material], page 138,
for details. See Section 6.85 [gl.LightModel], page 125, for details. See
Section 6.84 [gl.Light], page 123, for details.

#GL_LINE_SMOOTH

If enabled, draw lines with correct filtering. Otherwise, draw aliased lines.
See Section 6.87 [gl.LineWidth], page 128, for details.

52 GL Galore manual

#GL_LINE_STIPPLE

If enabled, use the current line stipple pattern when drawing lines. See
Section 6.86 [gl.LineStipple], page 127, for details.

#GL_MAP1_COLOR_4

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate RGBA values. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_INDEX

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate color indices. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_NORMAL

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate normals. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_1

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate s texture coordinates. See Section 6.93 [gl.Map], page 133, for
details.

#GL_MAP1_TEXTURE_COORD_2

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate s and t texture coordinates. See Section 6.93 [gl.Map], page 133,
for details.

#GL_MAP1_TEXTURE_COORD_3

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate s, t, and r texture coordinates. See Section 6.93 [gl.Map], page 133,
for details.

#GL_MAP1_TEXTURE_COORD_4

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate s, t, r, and q texture coordinates. See Section 6.93 [gl.Map],
page 133, for details.

#GL_MAP1_VERTEX_3

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate x, y, and z vertex coordinates. See Section 6.93 [gl.Map], page 133,
for details.

#GL_MAP1_VERTEX_4

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate homogeneous x, y, z, and w vertex coordinates. See Section 6.93
[gl.Map], page 133, for details.

#GL_MAP2_COLOR_4

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate RGBA values. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_INDEX

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate color indices. See Section 6.93 [gl.Map], page 133, for details.

Chapter 6: GL reference 53

#GL_MAP2_NORMAL

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate normals. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_TEXTURE_COORD_1

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate s texture coordinates. See Section 6.93 [gl.Map], page 133, for
details.

#GL_MAP2_TEXTURE_COORD_2

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate s and t texture coordinates. See Section 6.93 [gl.Map], page 133,
for details.

#GL_MAP2_TEXTURE_COORD_3

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate s, t, and r texture coordinates. See Section 6.93 [gl.Map], page 133,
for details.

#GL_MAP2_TEXTURE_COORD_4

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate s, t, r, and q texture coordinates. See Section 6.93 [gl.Map],
page 133, for details.

#GL_MAP2_VERTEX_3

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate x, y, and z vertex coordinates. See Section 6.93 [gl.Map], page 133,
for details.

#GL_MAP2_VERTEX_4

If enabled, calls to gl.EvalCoord(), gl.EvalMesh(), and gl.EvalPoint()

generate homogeneous x, y, z, and w vertex coordinates. See Section 6.93
[gl.Map], page 133, for details.

#GL_NORMALIZE

If enabled and no vertex shader is active, normal vectors are normalized
to unit length after transformation and before lighting. See Section 6.99
[gl.Normal], page 142, for details. See Section 6.100 [gl.NormalPointer],
page 143, for details.

#GL_POINT_SMOOTH

If enabled, draw points with proper filtering. Otherwise, draw aliased points.
See Section 6.107 [gl.PointSize], page 155, for details.

#GL_POLYGON_OFFSET_FILL

If enabled, and if the polygon is rendered in #GL_FILL mode, an offset is
added to depth values of a polygon’s fragments before the depth comparison
is performed. See Section 6.109 [gl.PolygonOffset], page 157, for details.

#GL_POLYGON_OFFSET_LINE

If enabled, and if the polygon is rendered in #GL_LINE mode, an offset is
added to depth values of a polygon’s fragments before the depth comparison
is performed. See Section 6.109 [gl.PolygonOffset], page 157, for details.

54 GL Galore manual

#GL_POLYGON_OFFSET_POINT

If enabled, an offset is added to depth values of a polygon’s fragments before
the depth comparison is performed, if the polygon is rendered in GL POINT
mode. See glPolygonOffset.

#GL_POLYGON_SMOOTH

If enabled, draw polygons with proper filtering. Otherwise, draw aliased
polygons. For correct antialiased polygons, an alpha buffer is needed and
the polygons must be sorted front to back.

#GL_POLYGON_STIPPLE

If enabled, use the current polygon stipple pattern when rendering polygons.
See Section 6.110 [gl.PolygonStipple], page 158, for details.

#GL_SCISSOR_TEST

If enabled, discard fragments that are outside the scissor rectangle. See
Section 6.128 [gl.Scissor], page 180, for details.

#GL_STENCIL_TEST

If enabled, do stencil testing and update the stencil buffer. See Section 6.131
[gl.StencilFunc], page 184, for details. See Section 6.133 [gl.StencilOp],
page 186, for details.

#GL_TEXTURE_1D

If enabled and no fragment shader is active, one-dimensional texturing is
performed (unless two- or three-dimensional or cube-mapped texturing is
also enabled). See Section 6.139 [gl.TexImage1D], page 192, for details.

#GL_TEXTURE_2D

If enabled and no fragment shader is active, two-dimensional texturing is
performed (unless three-dimensional or cube-mapped texturing is also en-
abled). See Section 6.140 [gl.TexImage2D], page 196, for details.

#GL_TEXTURE_GEN_Q

If enabled and no vertex shader is active, the q texture coordinate is
computed using the texture generation function defined with gl.TexGen().
Otherwise, the current q texture coordinate is used. See Section 6.137
[gl.TexGen], page 190, for details.

#GL_TEXTURE_GEN_R

If enabled and no vertex shader is active, the r texture coordinate is
computed using the texture generation function defined with gl.TexGen().
Otherwise, the current r texture coordinate is used. See Section 6.137
[gl.TexGen], page 190, for details.

#GL_TEXTURE_GEN_S

If enabled and no vertex shader is active, the s texture coordinate is
computed using the texture generation function defined with gl.TexGen().
Otherwise, the current s texture coordinate is used. See Section 6.137
[gl.TexGen], page 190, for details.

Chapter 6: GL reference 55

#GL_TEXTURE_GEN_T

If enabled and no vertex shader is active, the t texture coordinate is
computed using the texture generation function defined with gl.TexGen().
Otherwise, the current t texture coordinate is used. See Section 6.137
[gl.TexGen], page 190, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

cap specifies a symbolic constant indicating a GL capability

ERRORS
#GL_INVALID_ENUM is generated if cap is not one of the values listed previously.

#GL_INVALID_OPERATION is generated if gl.Enable() or gl.Disable() is executed be-
tween the execution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.IsEnabled()

gl.Get()

6.32 gl.DisableClientState

NAME
gl.DisableClientState – disable client-side capability

SYNOPSIS
gl.DisableClientState(cap)

FUNCTION
gl.DisableClientState() disables individual client-side capabilities. By default, all
client-side capabilities are disabled. gl.DisableClientState() takes a single argument,
cap, which can assume one of the following values:

#GL_COLOR_ARRAY

If enabled, the color array is enabled for writing and used during render-
ing when gl.ArrayElement(), gl.DrawArrays(), or gl.DrawElements()

is called. See Section 6.21 [gl.ColorPointer], page 39, for details.

#GL_EDGE_FLAG_ARRAY

If enabled, the edge flag array is enabled for writing and used during render-
ing when gl.ArrayElement(), gl.DrawArrays(), or gl.DrawElements()

is called. See Section 6.39 [gl.EdgeFlagPointer], page 65, for details.

#GL_INDEX_ARRAY

If enabled, the index array is enabled for writing and used during render-
ing when gl.ArrayElement(), gl.DrawArrays(), or gl.DrawElements()

is called. See Section 6.78 [gl.IndexPointer], page 116, for details.

#GL_NORMAL_ARRAY

If enabled, the normal array is enabled for writing and used during render-
ing when gl.ArrayElement(), gl.DrawArrays(), or gl.DrawElements()

is called. See Section 6.100 [gl.NormalPointer], page 143, for details.

56 GL Galore manual

#GL_TEXTURE_COORD_ARRAY

If enabled, the texture coordinate array is enabled for writing and
used during rendering when gl.ArrayElement(), gl.DrawArrays(), or
gl.DrawElements() is called. See Section 6.135 [gl.TexCoordPointer],
page 188, for details.

#GL_VERTEX_ARRAY

If enabled, the vertex array is enabled for writing and used during render-
ing when gl.ArrayElement(), gl.DrawArrays(), or gl.DrawElements()

is called. See Section 6.147 [gl.VertexPointer], page 207, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

array specifies the capability to disable (see above for supported constants)

ERRORS
#GL_INVALID_ENUM is generated if cap is not an accepted value.

gl.DisableClientState() is not allowed between the execution of gl.Begin() and
the corresponding gl.End(), but an error may or may not be generated. If no error is
generated, the behavior is undefined.

6.33 gl.DrawArrays

NAME
gl.DrawArrays – render primitives from array data

SYNOPSIS
gl.DrawArrays(mode, first, count)

FUNCTION
gl.DrawArrays() specifies multiple geometric primitives with very few subroutine calls.
Instead of calling a GL procedure to pass each individual vertex, normal, texture co-
ordinate, edge flag, or color, you can prespecify separate arrays of vertices, normals,
and colors and use them to construct a sequence of primitives with a single call to
gl.DrawArrays().

When gl.DrawArrays() is called, it uses count sequential elements from each enabled
array to construct a sequence of geometric primitives, beginning with element first.
mode specifies what kind of primitives are constructed and how the array elements con-
struct those primitives. If #GL_VERTEX_ARRAY is not enabled, no geometric primitives
are generated. mode can be set to the symbolic constants #GL_POINTS, #GL_LINE_

STRIP, #GL_LINE_LOOP, #GL_LINES, #GL_TRIANGLE_STRIP, #GL_TRIANGLE_FAN, #GL_

TRIANGLES, #GL_QUAD_STRIP, #GL_QUADS, or #GL_POLYGON.

Vertex attributes that are modified by gl.DrawArrays() have an unspecified value after
gl.DrawArrays() returns. For example, if #GL_COLOR_ARRAY is enabled, the value of
the current color is undefined after gl.DrawArrays() executes. Attributes that aren’t
modified remain well defined.

gl.DrawArrays() is included in display lists. If gl.DrawArrays() is entered into a
display list, the necessary array data (determined by the array pointers and enables) is

Chapter 6: GL reference 57

also entered into the display list. Because the array pointers and enables are client-side
state, their values affect display lists when the lists are created, not when the lists are
executed.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies what kind of primitives to render (see above)

first specifies the starting index in the enabled arrays

count specifies the number of indices to be rendered

ERRORS
#GL_INVALID_ENUM is generated if mode is not an accepted value.

#GL_INVALID_VALUE is generated if count is negative.

#GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an
enabled array and the buffer object’s data store is currently mapped.

#GL_INVALID_OPERATION is generated if glDrawArrays is executed between the execution
of glBegin and the corresponding glEnd.

6.34 gl.DrawBuffer

NAME
gl.DrawBuffer – specify which color buffers are to be drawn into

SYNOPSIS
gl.DrawBuffer(mode)

FUNCTION
When colors are written to the frame buffer, they are written into the color buffers
specified by gl.DrawBuffer(). The following constants can be passed in mode:

#GL_NONE No color buffers are written.

#GL_FRONT_LEFT

Only the front left color buffer is written.

#GL_FRONT_RIGHT

Only the front right color buffer is written.

#GL_BACK_LEFT

Only the back left color buffer is written.

#GL_BACK_RIGHT

Only the back right color buffer is written.

#GL_FRONT

Only the front left and front right color buffers are written. If there is no
front right color buffer, only the front left color buffer is written.

#GL_BACK Only the back left and back right color buffers are written. If there is no
back right color buffer, only the back left color buffer is written.

58 GL Galore manual

#GL_LEFT Only the front left and back left color buffers are written. If there is no back
left color buffer, only the front left color buffer is written.

#GL_RIGHT

Only the front right and back right color buffers are written. If there is no
back right color buffer, only the front right color buffer is written.

#GL_FRONT_AND_BACK

All the front and back color buffers (front left, front right, back left, back
right) are written. If there are no back color buffers, only the front left and
front right color buffers are written. If there are no right color buffers, only
the front left and back left color buffers are written. If there are no right or
back color buffers, only the front left color buffer is written.

#GL_AUXi Only auxiliary color buffer i is written where i is between 0 and the value
of #GL_AUX_BUFFERS minus 1. Note that #GL_AUX_BUFFERS is not the upper
limit; use gl.Get() to query the number of available aux buffers. It is always
the case that #GL_AUXi = #GL_AUX0 + i.

If more than one color buffer is selected for drawing, then blending or logical operations
are computed and applied independently for each color buffer and can produce different
results in each buffer.

Monoscopic contexts include only left buffers, and stereoscopic contexts include both
left and right buffers. Likewise, single-buffered contexts include only front buffers, and
double-buffered contexts include both front and back buffers. The context is selected at
GL initialization.

The initial value is #GL_FRONT for single-buffered contexts, and #GL_BACK for double-
buffered contexts.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies up to four color buffers to be drawn into (see above)

ERRORS
#GL_INVALID_ENUM is generated if mode is not an accepted value.

#GL_INVALID_OPERATION is generated if none of the buffers indicated by mode exists.

#GL_INVALID_OPERATION is generated if gl.DrawBuffer() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_DRAW_BUFFER

gl.Get() with argument #GL_AUX_BUFFERS

6.35 gl.DrawElements

NAME
gl.DrawElements – render primitives from array data

Chapter 6: GL reference 59

SYNOPSIS
gl.DrawElements(mode, indicesArray)

FUNCTION
gl.DrawElements() specifies multiple geometric primitives with very few subroutine
calls. Instead of calling a GL function to pass each individual vertex, normal, texture
coordinate, edge flag, or color, you can prespecify separate arrays of vertices, normals,
and so on, and use them to construct a sequence of primitives with a single call to
gl.DrawElements().

When gl.DrawElements() is called, it reads sequential elements from an enabled array
and constructs a sequence of geometric primitives. mode specifies what kind of primi-
tives are constructed and how the array elements construct these primitives. mode can
be set to the symbolic constants #GL_POINTS, #GL_LINE_STRIP, #GL_LINE_LOOP, #GL_
LINES, #GL_TRIANGLE_STRIP, #GL_TRIANGLE_FAN, #GL_TRIANGLES, #GL_QUAD_STRIP,
#GL_QUADS, and #GL_POLYGON. If more than one array is enabled, each is used. If
#GL_VERTEX_ARRAY is not enabled, no geometric primitives are constructed.

Vertex attributes that are modified by gl.DrawElements() have an unspecified value
after gl.DrawElements() returns. For example, if #GL_COLOR_ARRAY is enabled, the
value of the current color is undefined after gl.DrawElements() executes. Attributes
that aren’t modified maintain their previous values.

gl.DrawElements() is included in display lists. If gl.DrawElements() is entered into a
display list, the necessary array data (determined by the array pointers and enables) is
also entered into the display list. Because the array pointers and enables are client-side
state, their values affect display lists when the lists are created, not when the lists are
executed.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies what kind of primitives to render (see above)

indicesArray

specifies an array where the indices are stored; the indices in this array are
treated as values of type #GL_UNSIGNED_INT

ERRORS
#GL_INVALID_ENUM is generated if mode is not an accepted value.

#GL_INVALID_OPERATION is generated if a non-zero buffer object name is bound to an
enabled array or the element array and the buffer object’s data store is currently mapped.

#GL_INVALID_OPERATION is generated if gl.DrawElements() is executed between the
execution of glBegin and the corresponding glEnd.

6.36 gl.DrawPixels

NAME
gl.DrawPixels – write a block of pixels to the frame buffer

SYNOPSIS
gl.DrawPixels(width, height, format, pixelsArray)

60 GL Galore manual

FUNCTION
This function does the same as gl.DrawPixelsRaw() except that the pixel data is not
passed as a raw memory buffer but as a table containing width*height number of elements
describing a pixel each. This is of course not as efficient as using raw memory buffers
because the table’s pixel data has to be copied to a raw memory buffer first.

Note that gl.DrawPixels() expects data of type #GL_FLOAT inside the pixelsArray

table.

See Section 6.37 [gl.DrawPixelsRaw], page 60, for more details on the parameters ac-
cepted by this function.

Please consult an OpenGL reference manual for more information.

INPUTS

width specify the width of the pixel rectangle to be written into the frame buffer

height specify the height of the pixel rectangle to be written into the frame buffer

format specifies the format of the pixel data (see above for supported formats)

pixelsArray

specifies an array containing the pixel data; data in this array is treated as
#GL_FLOAT

6.37 gl.DrawPixelsRaw

NAME
gl.DrawPixelsRaw – write a block of pixels to the frame buffer

SYNOPSIS
gl.DrawPixelsRaw(width, height, format, type, pixels)

FUNCTION
gl.DrawPixelsRaw() reads pixel data from memory and writes it into the frame buffer
relative to the current raster position, provided that the raster position is valid. Use
gl.RasterPos() to set the current raster position; use gl.Get() with argument #GL_
CURRENT_RASTER_POSITION_VALID to determine if the specified raster position is valid,
and gl.Get() with argument #GL_CURRENT_RASTER_POSITION to query the raster posi-
tion.

Several parameters define the encoding of pixel data in memory and control the process-
ing of the pixel data before it is placed in the frame buffer. These parameters are set
with four commands: gl.PixelStore(), gl.PixelTransfer(), gl.PixelMap(), and
gl.PixelZoom(). This reference page describes the effects on gl.DrawPixelsRaw() of
many, but not all, of the parameters specified by these four commands.

Data is read from pixels as a sequence of signed or unsigned bytes, signed or unsigned
shorts, signed or unsigned integers, or single-precision floating-point values, depending on
type which can be #GL_UNSIGNED_BYTE, #GL_BYTE, #GL_BITMAP, #GL_UNSIGNED_SHORT,
#GL_SHORT, #GL_UNSIGNED_INT, #GL_INT, or #GL_FLOAT. Each of these bytes, shorts,
integers, or floating-point values is interpreted as one color or depth component, or one
index, depending on format. Indices are always treated individually. Color components

Chapter 6: GL reference 61

are treated as groups of one, two, three, or four values, again based on format. Both indi-
vidual indices and groups of components are referred to as pixels. If type is #GL_BITMAP,
the data must be unsigned bytes, and format must be either #GL_COLOR_INDEX or #GL_
STENCIL_INDEX. Each unsigned byte is treated as eight 1-bit pixels, with bit ordering
determined by #GL_UNPACK_LSB_FIRST (See Section 6.104 [gl.PixelStore], page 148, for
details.).

width * height pixels are read from memory, starting at location pixels. By default,
these pixels are taken from adjacent memory locations, except that after all width pixels
are read, the read pointer is advanced to the next four-byte boundary. The four-byte
row alignment is specified by gl.PixelStore() with argument #GL_UNPACK_ALIGNMENT,
and it can be set to one, two, four, or eight bytes. Other pixel store parameters specify
different read pointer advancements, both before the first pixel is read and after all width
pixels are read. See Section 6.104 [gl.PixelStore], page 148, for details.

The width * height pixels that are read from memory are each operated on in the same
way, based on the values of several parameters specified by gl.PixelTransfer() and
gl.PixelMap(). The details of these operations, as well as the target buffer into which
the pixels are drawn, are specific to the format of the pixels, as specified by format.
format can assume one of 13 symbolic values:

#GL_COLOR_INDEX

Each pixel is a single value, a color index. It is converted to fixed-point
format, with an unspecified number of bits to the right of the binary point,
regardless of the memory data type. Floating-point values convert to true
fixed-point values.

Each fixed-point index is then shifted left by #GL_INDEX_SHIFT bits and
added to #GL_INDEX_OFFSET. If #GL_INDEX_SHIFT is negative, the shift is
to the right. In either case, zero bits fill otherwise unspecified bit locations
in the result.

If the GL is in RGBA mode, the resulting index is converted to an RGBA
pixel with the help of the #GL_PIXEL_MAP_I_TO_R, #GL_PIXEL_MAP_I_TO_G,
#GL_PIXEL_MAP_I_TO_B, and #GL_PIXEL_MAP_I_TO_A tables. If the GL is
in color index mode, and if #GL_MAP_COLOR is true, the index is replaced
with the value that it references in lookup table #GL_PIXEL_MAP_I_TO_I.
Whether the lookup replacement of the index is done or not, the integer
part of the index is then ANDed with 2^b-1, where b is the number of bits
in a color index buffer.

The GL then converts the resulting indices or RGBA colors to fragments by
attaching the current raster position z coordinate and texture coordinates to
each pixel, then assigning x and y window coordinates to the nth fragment
such that

xn = xr + n % width

yn = yr + n / width

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or poly-
gons. Texture mapping, fog, and all the fragment operations are applied
before the fragments are written to the frame buffer.

62 GL Galore manual

#GL_STENCIL_INDEX

Each pixel is a single value, a stencil index. It is converted to fixed-point
format, with an unspecified number of bits to the right of the binary point,
regardless of the memory data type. Floating-point values convert to true
fixed-point values.

Each fixed-point index is then shifted left by #GL_INDEX_SHIFT bits, and
added to #GL_INDEX_OFFSET. If #GL_INDEX_SHIFT is negative, the shift is
to the right. In either case, zero bits fill otherwise unspecified bit locations
in the result. If #GL_MAP_STENCIL is true, the index is replaced with the
value that it references in lookup table #GL_PIXEL_MAP_S_TO_S. Whether
the lookup replacement of the index is done or not, the integer part of the
index is then ANDed with 2^b-1, where b is the number of bits in the stencil
buffer. The resulting stencil indices are then written to the stencil buffer
such that the nth index is written to location

xn = xr + n % width

yn = yr + n / width

where (xr,yr) is the current raster position. Only the pixel ownership test,
the scissor test, and the stencil writemask affect these write operations.

#GL_DEPTH_COMPONENT

Each pixel is a single-depth component. Floating-point data is converted
directly to an internal floating-point format with unspecified precision. The
resulting floating-point depth value is then multiplied by #GL_DEPTH_SCALE

and added to #GL_DEPTH_BIAS. The result is clamped to the range [0,1].

The GL then converts the resulting depth components to fragments by at-
taching the current raster position color or color index and texture coordi-
nates to each pixel, then assigning x and y window coordinates to the nth
fragment such that

xn = xr + n % width

yn = yr + n / width

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or poly-
gons. Texture mapping, fog, and all the fragment operations are applied
before the fragments are written to the frame buffer.

#GL_RGBA Each pixel is a four-component group: For #GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha. Floating-
point values are converted directly to an internal floating-point format with
unspecified precision. The resulting floating-point color values are then mul-
tiplied by #GL_c_SCALE and added to #GL_c_BIAS, where c is RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

If #GL_MAP_COLOR is true, each color component is scaled by the size of lookup
table #GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references
in that table. c is R, G, B, or A respectively.

Chapter 6: GL reference 63

The GL then converts the resulting RGBA colors to fragments by attaching
the current raster position z coordinate and texture coordinates to each pixel,
then assigning x and y window coordinates to the nth fragment such that

xn = xr + n % width

yn = yr + n / width

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or poly-
gons. Texture mapping, fog, and all the fragment operations are applied
before the fragments are written to the frame buffer.

#GL_RED Each pixel is a single red component. This component is converted to the
internal floating-point format in the same way the red component of an
RGBA pixel is. It is then converted to an RGBA pixel with green and blue
set to 0, and alpha set to 1. After this conversion, the pixel is treated as if
it had been read as an RGBA pixel.

#GL_GREEN

Each pixel is a single green component. This component is converted to the
internal floating-point format in the same way the green component of an
RGBA pixel is. It is then converted to an RGBA pixel with red and blue
set to 0, and alpha set to 1. After this conversion, the pixel is treated as if
it had been read as an RGBA pixel.

#GL_BLUE Each pixel is a single blue component. This component is converted to the
internal floating-point format in the same way the blue component of an
RGBA pixel is. It is then converted to an RGBA pixel with red and green
set to 0, and alpha set to 1. After this conversion, the pixel is treated as if
it had been read as an RGBA pixel.

#GL_ALPHA

Each pixel is a single alpha component. This component is converted to the
internal floating-point format in the same way the alpha component of an
RGBA pixel is. It is then converted to an RGBA pixel with red, green, and
blue set to 0. After this conversion, the pixel is treated as if it had been read
as an RGBA pixel.

#GL_RGB Each pixel is a three-component group: red first, followed by green, followed
by blue. Each component is converted to the internal floating-point format
in the same way the red, green, and blue components of an RGBA pixel are.
The color triple is converted to an RGBA pixel with alpha set to 1. After
this conversion, the pixel is treated as if it had been read as an RGBA pixel.

#GL_LUMINANCE

Each pixel is a single luminance component. This component is converted
to the internal floating-point format in the same way the red component of
an RGBA pixel is. It is then converted to an RGBA pixel with red, green,
and blue set to the converted luminance value, and alpha set to 1. After this
conversion, the pixel is treated as if it had been read as an RGBA pixel.

64 GL Galore manual

#GL_LUMINANCE_ALPHA

Each pixel is a two-component group: luminance first, followed by alpha.
The two components are converted to the internal floating-point format in
the same way the red component of an RGBA pixel is. They are then
converted to an RGBA pixel with red, green, and blue set to the converted
luminance value, and alpha set to the converted alpha value. After this
conversion, the pixel is treated as if it had been read as an RGBA pixel.

The rasterization described so far assumes pixel zoom factors of 1. If gl.PixelZoom()
is used to change the x and y pixel zoom factors, pixels are converted to fragments as
follows. If (xr,yr) is the current raster position, and a given pixel is in the nth column
and mth row of the pixel rectangle, then fragments are generated for pixels whose centers
are in the rectangle with corners at

(xr + zoomx_n, yr + zoomy_m)

and

(xr + zoomx_(n + 1), yr + zoomy_(m + 1))

where zoomx is the value of #GL_ZOOM_X and zoomy is the value of #GL_ZOOM_Y.

Please note that this command operates directly with memory pointers. There is also a
version which works with tables instead of memory pointers, but this is slower of course.
See Section 6.36 [gl.DrawPixels], page 59, for details. See Section 3.7 [Working with
pointers], page 11, for details on how to use memory pointers with Hollywood.

Please consult an OpenGL reference manual for more information.

INPUTS

width specifies the width of the pixel rectangle to be written into the frame buffer

height specifies the height of the pixel rectangle to be written into the frame buffer

format specifies the format of the pixel data (see above for supported formats)

type specifies the data type of the pixel data (see above)

pixels specifies a pointer to the pixel data

ERRORS
#GL_INVALID_ENUM is generated if format or type is not one of the accepted values.

#GL_INVALID_ENUM is generated if type is #GL_BITMAP and format is not either #GL_

COLOR_INDEX or #GL_STENCIL_INDEX.

#GL_INVALID_VALUE is generated if either width or height is negative.

#GL_INVALID_OPERATION is generated if format is #GL_STENCIL_INDEX and there is no
stencil buffer.

#GL_INVALID_OPERATION is generated if format is #GL_RED, #GL_GREEN, #GL_BLUE, #GL_
ALPHA, #GL_RGB, #GL_RGBA, #GL_LUMINANCE, or #GL_LUMINANCE_ALPHA, and the GL is
in color index mode.

#GL_INVALID_OPERATION is generated if gl.DrawPixelsRaw() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_CURRENT_RASTER_POSITION

Chapter 6: GL reference 65

gl.Get() with argument #GL_CURRENT_RASTER_POSITION_VALID

6.38 gl.EdgeFlag

NAME
gl.EdgeFlag – flag edges as either boundary or nonboundary

SYNOPSIS
gl.EdgeFlag(flag)

FUNCTION
Each vertex of a polygon, separate triangle, or separate quadrilateral specified between a
gl.Begin() / gl.End() pair is marked as the start of either a boundary or nonboundary
edge. If the current edge flag is true when the vertex is specified, the vertex is marked
as the start of a boundary edge. Otherwise, the vertex is marked as the start of a
nonboundary edge. gl.EdgeFlag() sets the edge flag bit to #GL_TRUE if flag is #GL_

TRUE and to #GL_FALSE otherwise. The initial value is #GL_TRUE.

The vertices of connected triangles and connected quadrilaterals are always marked as
boundary, regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if #GL_POLYGON_
MODE is set to #GL_POINT or #GL_LINE. See Section 6.108 [gl.PolygonMode], page 156,
for details.

The current edge flag can be updated at any time. In particular, gl.EdgeFlag() can be
called between a call to gl.Begin() and the corresponding call to gl.End().

Please consult an OpenGL reference manual for more information.

INPUTS

flag specifies the current edge flag value (either #GL_TRUE or #GL_FALSE)

ASSOCIATED GETS
gl.Get() with argument #GL_EDGE_FLAG

6.39 gl.EdgeFlagPointer

NAME
gl.EdgeFlagPointer – define an array of edge flags

SYNOPSIS
gl.EdgeFlagPointer(flagsArray)

FUNCTION
gl.EdgeFlagPointer() specifies an array of boolean edge flags to use when rendering.
If you pass Nil in flagsArray, the edge flag array buffer will be freed but it won’t be
removed from OpenGL. You need to do this manually, e.g. by disabling the edge flag
array or defining a new one.

When an edge flag array is specified, it is saved as client-side state, in addition to the
current vertex array buffer object binding.

66 GL Galore manual

To enable and disable the edge flag array, call gl.EnableClientState() and
gl.DisableClientState() with the argument #GL_EDGE_FLAG_ARRAY. If enabled,
the edge flag array is used when gl.DrawArrays(), gl.DrawElements(), or
gl.ArrayElement() is called.

Edge flags are not supported for interleaved vertex array formats. See Section 6.80
[gl.InterleavedArrays], page 117, for details.

The edge flag array is initially disabled and isn’t accessed when gl.DrawArrays(),
gl.DrawElements(), or gl.ArrayElement() is called.

Execution of gl.EdgeFlagPointer() is not allowed between the execution of
gl.Begin() and the corresponding execution of gl.End(), but an error may or may
not be generated. If no error is generated, the operation is undefined.

gl.EdgeFlagPointer() is typically implemented on the client side.

Edge flag array parameters are client-side state and are therefore not saved or re-
stored by gl.PushAttrib() and gl.PopAttrib(). Use gl.PushClientAttrib() and
gl.PopClientAttrib() instead.

Please consult an OpenGL reference manual for more information.

INPUTS

flagsArray

specifies a table containing an array of edge flags or Nil

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_EDGE_FLAG_ARRAY

gl.Get() with argument #GL_EDGE_FLAG_ARRAY_POINTER

6.40 gl.Enable

NAME
gl.Enable – enable server-side GL capabilities

SYNOPSIS
gl.Enable(cap)

FUNCTION
gl.Enable() enables various capabilities. Use gl.IsEnabled() or gl.Get() to deter-
mine the current setting of any capability. The initial value for each capability with the
exception of #GL_DITHER is #GL_FALSE. The initial value for #GL_DITHER is #GL_TRUE.

See Section 6.31 [gl.Disable], page 50, for a list of supported capabilities.

Please consult an OpenGL reference manual for more information.

INPUTS

cap specifies a symbolic constant indicating a GL capability

Chapter 6: GL reference 67

6.41 gl.EnableClientState

NAME
gl.EnableClientState – enable client-side capability

SYNOPSIS
gl.EnableClientState(cap)

FUNCTION
gl.EnableClientState() enables individual client-side capabilities. By default, all
client-side capabilities are disabled. gl.EnableClientState() takes a single argument,
cap. See Section 6.32 [gl.DisableClientState], page 55, for a list of supported capabilities.

Please consult an OpenGL reference manual for more information.

INPUTS

cap specifies the capability to enable

6.42 gl.End

NAME
gl.End – delimit the vertices of a primitive or a group of like primitives

SYNOPSIS
gl.End()

FUNCTION
See Section 6.5 [gl.Begin], page 23, for details.

INPUTS
none

ERRORS
ASSOCIATED GETS

6.43 gl.EndList

NAME
gl.EndList – replace a display list

SYNOPSIS
gl.EndList()

FUNCTION
See Section 6.98 [gl.NewList], page 141, for details.

Please consult an OpenGL reference manual for more information.

INPUTS
none

ERRORS
#GL_INVALID_OPERATION is generated if gl.EndList() is called without a preceding
gl.NewList()

68 GL Galore manual

6.44 gl.EvalCoord

NAME
gl.EvalCoord – evaluate enabled one- and two-dimensional maps

SYNOPSIS
gl.EvalCoord(u[, v])

FUNCTION
gl.EvalCoord() evaluates enabled one- or two-dimensional maps at argument u or u

and v. To define a map, call gl.Map(); to enable and disable it, call gl.Enable() and
gl.Disable().

When the gl.EvalCoord() command is issued, all currently enabled maps of the in-
dicated dimension are evaluated. Then, for each enabled map, it is as if the corre-
sponding GL command had been issued with the computed value. That is, if #GL_
MAP1_INDEX or #GL_MAP2_INDEX is enabled, a gl.Index() command is simulated. If
#GL_MAP1_COLOR_4 or #GL_MAP2_COLOR_4 is enabled, a gl.Color() command is sim-
ulated. If #GL_MAP1_NORMAL or #GL_MAP2_NORMAL is enabled, a normal vector is pro-
duced, and if any of the constants #GL_MAP1_TEXTURE_COORD_1, #GL_MAP1_TEXTURE_
COORD_2, #GL_MAP1_TEXTURE_COORD_3, #GL_MAP1_TEXTURE_COORD_4, or also the con-
stants #GL_MAP2_TEXTURE_COORD_1, #GL_MAP2_TEXTURE_COORD_2, #GL_MAP2_TEXTURE_
COORD_3, or #GL_MAP2_TEXTURE_COORD_4 is enabled, then the GL will simulate an ap-
propriate gl.TexCoord() command.

For color, color index, normal, and texture coordinates the GL uses evaluated values
instead of current values for those evaluations that are enabled, and current values
otherwise, However, the evaluated values do not update the current values. Thus, if
gl.Vertex() commands are interspersed with gl.EvalCoord() commands, the color,
normal, and texture coordinates associated with the gl.Vertex() commands are not
affected by the values generated by the gl.EvalCoord() commands, but only by the
most recent gl.Color(), gl.Index(), gl.Normal(), and gl.TexCoord() commands.

No commands are issued for maps that are not enabled. If more than one texture eval-
uation is enabled for a particular dimension (for example, #GL_MAP2_TEXTURE_COORD_1
and #GL_MAP2_TEXTURE_COORD_2), then only the evaluation of the map that produces
the larger number of coordinates (in this case, #GL_MAP2_TEXTURE_COORD_2) is carried
out. #GL_MAP1_VERTEX_4 overrides #GL_MAP1_VERTEX_3, and #GL_MAP2_VERTEX_4 over-
rides #GL_MAP2_VERTEX_3, in the same manner. If neither a three- nor a four-component
vertex map is enabled for the specified dimension, the gl.EvalCoord() command is ig-
nored.

If you have enabled automatic normal generation, by calling gl.Enable() with argument
#GL_AUTO_NORMAL, gl.EvalCoord() generates surface normals analytically, regardless of
the contents or enabling of the #GL_MAP2_NORMAL map. If automatic normal generation
is disabled, the corresponding normal map #GL_MAP2_NORMAL, if enabled, is used to
produce a normal. If neither automatic normal generation nor a normal map is enabled,
no normal is generated for gl.EvalCoord() commands.

Alternatively, you can also pass a table containing one or two domain coordinates to
gl.EvalCoord().

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 69

INPUTS

u specifies a value that is the domain coordinate u to the basis function defined
in a previous gl.Map() command

v optional: specifies a value that is the domain coordinate v to the basis
function defined in a previous gl.Map() command

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_MAP1_VERTEX_3

gl.IsEnabled() with argument #GL_MAP1_VERTEX_4

gl.IsEnabled() with argument #GL_MAP1_INDEX

gl.IsEnabled() with argument #GL_MAP1_COLOR_4

gl.IsEnabled() with argument #GL_MAP1_NORMAL

gl.IsEnabled() with argument #GL_MAP1_TEXTURE_COORD_1

gl.IsEnabled() with argument #GL_MAP1_TEXTURE_COORD_2

gl.IsEnabled() with argument #GL_MAP1_TEXTURE_COORD_3

gl.IsEnabled() with argument #GL_MAP1_TEXTURE_COORD_4

gl.IsEnabled() with argument #GL_MAP2_VERTEX_3

gl.IsEnabled() with argument #GL_MAP2_VERTEX_4

gl.IsEnabled() with argument #GL_MAP2_INDEX

gl.IsEnabled() with argument #GL_MAP2_COLOR_4

gl.IsEnabled() with argument #GL_MAP2_NORMAL

gl.IsEnabled() with argument #GL_MAP2_TEXTURE_COORD_1

gl.IsEnabled() with argument #GL_MAP2_TEXTURE_COORD_2

gl.IsEnabled() with argument #GL_MAP2_TEXTURE_COORD_3

gl.IsEnabled() with argument #GL_MAP2_TEXTURE_COORD_4

gl.IsEnabled() with argument #GL_AUTO_NORMAL

gl.GetMap()

6.45 gl.EvalMesh

NAME
gl.EvalMesh – compute a one- or two-dimensional grid of points or lines

SYNOPSIS
gl.EvalMesh(mode, i1, i2[, j1, j2])

FUNCTION
This function can be used to compute a one- or two-dimensional grid of points or lines.
If you omit the last two parameters, a one-dimensional mesh is computed, otherwise a
two-dimensional will be computed.

gl.MapGrid() and gl.EvalMesh() are used in tandem to efficiently generate and eval-
uate a series of evenly spaced map domain values. gl.EvalMesh() steps through the

70 GL Galore manual

integer domain of a one- or two-dimensional grid, whose range is the domain of the
evaluation maps specified by gl.Map(). mode determines whether the resulting vertices
are connected as points, lines, or filled polygons (the latter is only supported for two-
dimensional grids). In the one-dimensional case, gl.EvalMesh(), the mesh is generated
as if the following code fragment were executed:

gl.Begin(type)

For Local i = i1 To i2 Do gl.EvalCoord(i*du+u1)

gl.End()

where du = (u2-u1)/n and n, u1, and u2 are the arguments to the most recent
gl.MapGrid() command. type is #GL_POINTS if mode is #GL_POINT, or #GL_LINES if
mode is #GL_LINE. The one absolute numeric requirement is that if i = n, then the
value computed from i*du+u1 is exactly u2.

In the two-dimensional case, gl.EvalMesh(), let

du = (u2-u1)/n

dv = (v2-v1)/m,

where n, u1, u2, m, v1, and v2 are the arguments to the most recent gl.MapGrid()

command. Then, if mode is #GL_FILL, the gl.EvalMesh() command is equivalent to:

For Local j = j1 To j2 - 1

gl.Begin(#GL_QUAD_STRIP)

For Local i = i1 To i2

gl.EvalCoord(i*du+u1, j*dv+v1)

gl.EvalCoord(i*du+u1, (j+1)*dv+v1)

Next

gl.End()

Next

If mode is #GL_LINE, then a call to gl.EvalMesh() is equivalent to:

For Local j = j1 To j2

gl.Begin(#GL_LINE_STRIP)

For Local i = i1 To i2

gl.EvalCoord(i*du+u1, j*dv+v1)

Next

gl.End()

Next

For Local i = i1 To i2

gl.Begin(#GL_LINE_STRIP)

For Local j = j1 To j2

gl.EvalCoord(i*du+u1, j*dv+v1)

Next

gl.End()

Next

And finally, if mode is #GL_POINT, then a call to gl.EvalMesh() is equivalent to:

gl.Begin(#GL_POINTS)

For Local j = j1 To j2

For Local i = i1 To i2

Chapter 6: GL reference 71

gl.EvalCoord(i*du+u1, j*dv+v1)

Next

Next

gl.End()

In all three cases, the only absolute.numeric requirements are that if i = n, then the
value computed from i*du+u1 is exactly u2, and if j = m, then the value computed from
j*dv+v1 is exactly v2.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies whether to compute a mesh of points, lines or polygons; symbolic
constants #GL_POINT, #GL_LINE, and in case of a two-dimensional mesh,
#GL_FILL are accepted

i1 specify the first integer value for grid domain variable i

i2 specify the last integer value for grid domain variable i

j1 optional: specify the first integer value for grid domain variable j

j2 optional: specify the last integer value for grid domain variable j

ERRORS
#GL_INVALID_ENUM is generated if mode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.EvalMesh() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_MAP1_GRID_DOMAIN

gl.Get() with argument #GL_MAP2_GRID_DOMAIN

gl.Get() with argument #GL_MAP1_GRID_SEGMENTS

gl.Get() with argument #GL_MAP2_GRID_SEGMENTS

6.46 gl.EvalPoint

NAME
gl.EvalPoint – generate and evaluate a single point in a mesh

SYNOPSIS
gl.EvalPoint(i[, j])

FUNCTION
gl.MapGrid() and gl.EvalMesh() are used in tandem to efficiently generate and eval-
uate a series of evenly spaced map domain values. gl.EvalPoint() can be used to
evaluate a single grid point in the same gridspace that is traversed by gl.EvalMesh().
Calling gl.EvalPoint() with a single argument is equivalent to calling

gl.EvalCoord(i*du+u1)

where

du = (u2-u1)/n

72 GL Galore manual

and n, u1, and u2 are the arguments to the most recent gl.MapGrid() command. The
one absolute numeric requirement is that if i = n, then the value computed from i*du+u1
is exactly u2.

In the two-dimensional case, gl.EvalPoint(), let

du = (u2-u1)/n

dv = (v2-v1)/m

where n, u1, u2, m, v1, and v2 are the arguments to the most recent gl.MapGrid()

command. Then the gl.EvalPoint() command is equivalent to calling

gl.EvalCoord(i*du+u1, j*dv+v1)

The only absolute numeric requirements are that if i = n, then the value computed from
i*du+u1 is exactly u2, and if j = m, then the value computed from j*dv+v1 is exactly
v2.

Please consult an OpenGL reference manual for more information.

INPUTS

i specifies the integer value for grid domain variable i

j optional: specifies the integer value for grid domain variable j

ASSOCIATED GETS
gl.Get() with argument #GL_MAP1_GRID_DOMAIN

gl.Get() with argument #GL_MAP2_GRID_DOMAIN

gl.Get() with argument #GL_MAP1_GRID_SEGMENTS

gl.Get() with argument #GL_MAP2_GRID_SEGMENTS

6.47 gl.FeedbackBuffer

NAME
gl.FeedbackBuffer – controls feedback mode

SYNOPSIS
buffer = gl.FeedbackBuffer(size, type)

FUNCTION
The gl.FeedbackBuffer() function controls feedback. Feedback, like selection, is a GL
mode. The mode is selected by calling gl.RenderMode() with #GL_FEEDBACK. When the
GL is in feedback mode, no pixels are produced by rasterization. Instead, information
about primitives that would have been rasterized is fed back to the application using the
GL.

gl.FeedbackBuffer() has two arguments: size indicates the size of the array that
is to be returned, in items of #GL_FLOAT. type is a symbolic constant describing the
information that is fed back for each vertex. gl.FeedbackBuffer() must be issued
before feedback mode is enabled (by calling gl.RenderMode() with argument #GL_

FEEDBACK). Setting #GL_FEEDBACK without establishing the feedback buffer, or calling
gl.FeedbackBuffer() while the GL is in feedback mode, is an error.

When gl.RenderMode() is called while in feedback mode, it returns the number of
entries placed in the feedback array and resets the feedback array pointer to the base of

Chapter 6: GL reference 73

the feedback buffer. The returned value never exceeds size. If the feedback data required
more room than was available in buffer, gl.RenderMode() returns a negative value. To
take the GL out of feedback mode, call gl.RenderMode() with a parameter value other
than #GL_FEEDBACK.

While in feedback mode, each primitive, bitmap, or pixel rectangle that would be raster-
ized generates a block of values that are copied into the feedback array. If doing so would
cause the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all), and an overflow flag is set. Each block
begins with a code indicating the primitive type, followed by values that describe the
primitive’s vertices and associated data. Entries are also written for bitmaps and pixel
rectangles. Feedback occurs after polygon culling and gl.PolygonMode() interpretation
of polygons has taken place, so polygons that are culled are not returned in the feedback
buffer. It can also occur after polygons with more than three edges are broken up into
triangles, if the GL implementation renders polygons by performing this decomposition.

The gl.PassThrough() command can be used to insert a marker into the feedback
buffer. See Section 6.102 [gl.PassThrough], page 145, for details.

Following is the grammar for the blocks of values written into the feedback buffer. Each
primitive is indicated with a unique identifying value followed by some number of vertices.
Polygon entries include an integer value indicating how many vertices follow. A vertex
is fed back as some number of floating-point values, as determined by type. Colors are
fed back as four values in RGBA mode and one value in color index mode.

Feedback vertex coordinates are in window coordinates, except w, which is in clip coor-
dinates. Feedback colors are lighted, if lighting is enabled. Feedback texture coordinates
are generated, if texture coordinate generation is enabled. They are always transformed
by the texture matrix

gl.FeedbackBuffer(), when used in a display list, is not compiled into the display list
but is executed immediately.

Please note that gl.FeedbackBuffer() returns only the texture coordinate of texture
unit #GL_TEXTURE0.

To free a buffer allocated by this function, call gl.FreeFeedbackBuffer(). See
Section 6.51 [gl.FreeFeedbackBuffer], page 77, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

size specifies the maximum number of values that will be returned

type specifies a symbolic constant that describes the information that will be
returned for each vertex; #GL_2D, #GL_3D, #GL_3D_COLOR, #GL_3D_COLOR_
TEXTURE, and #GL_4D_COLOR_TEXTURE are accepted

RESULTS

buffer pointer to feedback buffer

ERRORS
#GL_INVALID_ENUM is generated if type is not an accepted value.

#GL_INVALID_VALUE is generated if size is negative.

74 GL Galore manual

#GL_INVALID_OPERATION is generated if gl.FeedbackBuffer() is called while the render
mode is #GL_FEEDBACK, or if gl.RenderMode() is called with argument #GL_FEEDBACK
before gl.FeedbackBuffer() is called at least once.

#GL_INVALID_OPERATION is generated if gl.FeedbackBuffer() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_RENDER_MODE

gl.Get() with argument #GL_FEEDBACK_BUFFER_POINTER

gl.Get() with argument #GL_FEEDBACK_BUFFER_SIZE

gl.Get() with argument #GL_FEEDBACK_BUFFER_TYPE

6.48 gl.Finish

NAME
gl.Finish – block until all GL execution is complete

SYNOPSIS
gl.Finish()

FUNCTION
gl.Finish() does not return until the effects of all previously called GL commands are
complete. Such effects include all changes to GL state, all changes to connection state,
and all changes to the frame buffer contents.

gl.Finish() requires a round trip to the server.

Please consult an OpenGL reference manual for more information.

INPUTS
none

ERRORS
#GL_INVALID_OPERATION is generated if gl.Finish() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End() .

6.49 gl.Flush

NAME
gl.Flush – force execution of GL commands in finite time

SYNOPSIS
gl.Flush()

FUNCTION
Different GL implementations buffer commands in several different locations, including
network buffers and the graphics accelerator itself. glFlush empties all of these buffers,
causing all issued commands to be executed as quickly as they are accepted by the actual
rendering engine. Though this execution may not be completed in any particular time
period, it does complete in finite time.

Chapter 6: GL reference 75

Because any GL program might be executed over a network, or on an accelerator that
buffers commands, all programs should call gl.Flush() whenever they count on having
all of their previously issued commands completed. For example, call gl.Flush() before
waiting for user input that depends on the generated image.

gl.Flush() can return at any time. It does not wait until the execution of all previously
issued GL commands is complete.

Please consult an OpenGL reference manual for more information.

INPUTS
none

ERRORS
#GL_INVALID_OPERATION is generated if gl.Flush() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End() .

6.50 gl.Fog

NAME
gl.Fog – specify fog parameters

SYNOPSIS
gl.Fog(pname, param)

FUNCTION
Fog is initially disabled. While enabled, fog affects rasterized geometry, bitmaps, and
pixel blocks, but not buffer clear operations. To enable and disable fog, call gl.Enable()
and gl.Disable() with argument #GL_FOG.

gl.Fog() assigns the value or values in params to the fog parameter specified by pname.
The following values are accepted for pname:

#GL_FOG_MODE

param is a single floating-point value that specifies the equation to be used
to compute the fog blend factor, f. Three symbolic constants are accepted:
#GL_LINEAR, #GL_EXP, and #GL_EXP2. The equations corresponding to these
symbolic constants are defined below. The initial fog mode is #GL_EXP.

#GL_FOG_DENSITY

param is a single floating-point value that specifies density, the fog density
used in both exponential fog equations. Only nonnegative densities are ac-
cepted. The initial fog density is 1.

#GL_FOG_START

param is a single floating-point value that specifies start, the near distance
used in the linear fog equation. The initial near distance is 0.

#GL_FOG_END

param is a single floating-point value that specifies end, the far distance used
in the linear fog equation. The initial far distance is 1.

76 GL Galore manual

#GL_FOG_INDEX

param is a single floating-point value that specifies i f , the fog color index.
The initial fog index is 0.

#GL_FOG_COLOR

param must be a table containing four floating-point values that specify Cf,
the fog color. All color components are clamped to the range [0,1]. The
initial fog color is (0, 0, 0, 0).

Fog blends a fog color with each rasterized pixel fragment’s post-texturing color using a
blending factor f. Factor f is computed in one of three ways, depending on the fog mode.
Let c be the distance in eye coordinates from the origin to the fragment being fogged.
The equation for #GL_LINEAR fog is

f = (end - c) / (end - start)

The equation for #GL_EXP fog is

f = e^(-density*c)

The equation for #GL_EXP2 fog is

f = e^(-density*c)^2

Regardless of the fog mode, f is clamped to the range [0,1] after it is computed. Then, if
the GL is in RGBA color mode, the fragment’s red, green, and blue colors, represented
by Cr , are replaced by

Cr’ = f*Cr+(1-f)*Cf

Fog does not affect a fragment’s alpha component.

In color index mode, the fragment’s color index ir is replaced by

ir’ = f*ir+(1-f)*if

Please consult an OpenGL reference manual for more information.

INPUTS

pname specifies a single-valued fog parameter; #GL_FOG_MODE, #GL_FOG_DENSITY,
#GL_FOG_START, #GL_FOG_END, #GL_FOG_INDEX, and #GL_FOG_COLOR are ac-
cepted

param specifies the value that pname will be set to

ERRORS
#GL_INVALID_ENUM is generated if pname is not an accepted value, or if pname is #GL_

FOG_MODE and param is not an accepted value.

#GL_INVALID_VALUE is generated if pname is #GL_FOG_DENSITY and param is negative.

#GL_INVALID_OPERATION is generated if gl.Fog() is executed between the execution of
gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_FOG

gl.Get() with argument #GL_FOG_COLOR

gl.Get() with argument #GL_FOG_INDEX

gl.Get() with argument #GL_FOG_DENSITY

Chapter 6: GL reference 77

gl.Get() with argument #GL_FOG_START

gl.Get() with argument #GL_FOG_END

gl.Get() with argument #GL_FOG_MODE

6.51 gl.FreeFeedbackBuffer

NAME
gl.FreeFeedbackBuffer – free feedback mode buffer

SYNOPSIS
gl.FreeFeedbackBuffer(buffer)

FUNCTION
This function frees a buffer allocated by gl.FeedbackBuffer(). See Section 6.47
[gl.FeedbackBuffer], page 72, for details.

Note that this function doesn’t detach the buffer from the GL. You need to do this
manually, e.g. by changing the render mode using gl.RenderMode().

Please consult an OpenGL reference manual for more information.

INPUTS

buffer a buffer allocated by gl.FeedbackBuffer()

6.52 gl.FreeSelectBuffer

NAME
gl.FreeSelectBuffer – free selection mode buffer

SYNOPSIS
gl.FreeSelectBuffer(buffer)

FUNCTION
This function frees a buffer allocated by gl.SelectBuffer(). See Section 6.129
[gl.SelectBuffer], page 181, for details.

Note that this function doesn’t detach the buffer from the GL. You need to do this
manually, e.g. by changing the render mode using gl.RenderMode().

Please consult an OpenGL reference manual for more information.

INPUTS

buffer a buffer allocated by gl.SelectBuffer()

6.53 gl.FrontFace

NAME
gl.FrontFace – define front- and back-facing polygons

78 GL Galore manual

SYNOPSIS
gl.FrontFace(mode)

FUNCTION
In a scene composed entirely of opaque closed surfaces, back-facing polygons are never
visible. Eliminating these invisible polygons has the obvious benefit of speeding up the
rendering of the image. To enable and disable elimination of back-facing polygons, call
gl.Enable() and gl.Disable() with argument #GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if
an imaginary object following the path from its first vertex, its second vertex, and so
on, to its last vertex, and finally back to its first vertex, moves in a clockwise direction
about the interior of the polygon. The polygon’s winding is said to be counterclockwise
if the imaginary object following the same path moves in a counterclockwise direction
about the interior of the polygon. gl.FrontFace() specifies whether polygons with
clockwise winding in window coordinates, or counterclockwise winding in window coor-
dinates, are taken to be front-facing. Passing #GL_CCW to mode selects counterclockwise
polygons as front-facing; #GL_CW selects clockwise polygons as front-facing. By default,
counterclockwise polygons are taken to be front-facing.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies the orientation of front-facing polygons; #GL_CW and #GL_CCW are
accepted; the initial value is #GL_CCW

ERRORS
#GL_INVALID_ENUM is generated if mode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.FrontFace() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_FRONT_FACE

6.54 gl.Frustum

NAME
gl.Frustum – multiply the current matrix by a perspective matrix

SYNOPSIS
gl.Frustum(left, right, bottom, top, zNear, zFar)

FUNCTION
gl.Frustum() describes a perspective matrix that produces a perspective projection.
(left,bottom,-zNear) and (right,top,-zNear) specify the points on the near clipping plane
that are mapped to the lower left and upper right corners of the window, respectively,
assuming that the eye is located at (0, 0, 0). -zFar specifies the location of the far
clipping plane. Both zNear and zFar must be positive. Consult an OpenGL reference
for the corresponding matrix.

Chapter 6: GL reference 79

The current matrix is multiplied by this matrix with the result replacing the current
matrix. That is, if M is the current matrix and F is the frustum perspective matrix,
then M is replaced with M*F.

Use gl.PushMatrix() and gl.PopMatrix() to save and restore the current matrix stack.

Depth buffer precision is affected by the values specified for zNear and zFar. The greater
the ratio of far to near is, the less effective the depth buffer will be at distinguishing
between surfaces that are near each other. If

r = zFar / zNear

roughly ld(r) bits of depth buffer precision are lost. Because r approaches infinity as
zNear approaches zero, zNear must never be set to zero.

Please consult an OpenGL reference manual for more information.

INPUTS

left specify the coordinate for the left vertical clipping plane

right specify the coordinate for the right vertical clipping plane

bottom specify the coordinate for the bottom horizontal clipping plane

top specify the coordinate for the top horizontal clipping plane

zNear specify the distance to the near depth clipping plane; must be positive

zFar specify the distance to the far depth clipping plane; must be positive

ERRORS
#GL_INVALID_VALUE is generated if zNear or zFar is not positive, or if left = right, or
bottom = top, or zNear = zFar.

#GL_INVALID_OPERATION is generated if gl.Frustum() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

6.55 gl.GenLists

NAME
gl.GenLists – generate a contiguous set of empty display lists

SYNOPSIS
num = gl.GenLists(range)

FUNCTION
gl.GenLists() has one argument, range. It returns an integer n such that range

contiguous empty display lists, named n, n + 1 , ... , n + range - 1, are created. If range
is 0, if there is no group of range contiguous names available, or if any error is generated,
no display lists are generated, and 0 is returned.

Please consult an OpenGL reference manual for more information.

80 GL Galore manual

INPUTS

range specifies the number of contiguous empty display lists to be generated

RESULTS

num name of first empty display list

ERRORS
#GL_INVALID_VALUE is generated if range is negative.

#GL_INVALID_OPERATION is generated if gl.GenLists() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.IsList()

6.56 gl.GenTextures

NAME
gl.GenTextures – generate texture names

SYNOPSIS
texturesArray = gl.GenTextures(n)

FUNCTION
gl.GenTextures() generates n texture names and returns them in the table
texturesArray. There is no guarantee that the names form a contiguous set of integers;
however, it is guaranteed that none of the returned names was in use immediately
before the call to gl.GenTextures().

The generated textures have no dimensionality; they assume the dimensionality of the
texture target to which they are first bound (See Section 6.6 [gl.BindTexture], page 25,
for details.).

Texture names returned by a call to gl.GenTextures() are not returned by subsequent
calls, unless they are first deleted with gl.DeleteTextures().

Please consult an OpenGL reference manual for more information.

INPUTS

n specifies the number of texture names to be generated

RESULTS

texturesArray

table containing n number of texture names

ERRORS
#GL_INVALID_VALUE is generated if n is negative.

#GL_INVALID_OPERATION is generated if gl.GenTextures() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.IsTexture()

Chapter 6: GL reference 81

6.57 gl.Get

NAME
gl.Get – return the value or values of a selected parameter

SYNOPSIS
param, ... = gl.Get(pname)

FUNCTION
This command return values for simple state variables in GL. pname is a symbolic con-
stant indicating the state variable to be returned. The following symbolic constants are
accepted by pname:

#GL_ACCUM_ALPHA_BITS

param returns one value, the number of alpha bitplanes in the accumulation
buffer.

#GL_ACCUM_BLUE_BIT

param returns one value, the number of blue bitplanes in the accumulation
buffer.

#GL_ACCUM_CLEAR_VALUE

param returns four values: the red, greeen, blue, and alpha values used to
clear the accumulation buffer. See Section 6.12 [gl.ClearAccum], page 33,
for details.

#GL_ACCUM_GREEN_BITS

param returns one value, the number of green bitplanes in the accumulation
buffer.

#GL_ACCUM_RED_BITS

param returns one value, the number of red bitplanes in the accumulation
buffer.

#GL_ALPHA_BIAS

param returns one value, the alpha bias factor used during pixel transfers.
See Section 6.105 [gl.PixelTransfer], page 152, for details.

#GL_ALPHA_BITS

param returns one value, the number of alpha bitplanes in each color buffer.

#GL_ALPHA_SCALE

param returns one value, the alpha scale factor used during pixel transfers.
See Section 6.105 [gl.PixelTransfer], page 152, for details.

#GL_ALPHA_TEST

param returns a single Boolean value indicating whether alpha testing of
fragments is enabled. See Section 6.2 [gl.AlphaFunc], page 20, for details.

#GL_ALPHA_TEST_FUNC

param returns one value, the symbolic name of the alpha test function. See
Section 6.2 [gl.AlphaFunc], page 20, for details.

#GL_ALPHA_TEST_REF

param returns one value, the reference value for the alpha test. See
Section 6.2 [gl.AlphaFunc], page 20, for details.

82 GL Galore manual

#GL_ATTRIB_STACK_DEPTH

param returns one value, the depth of the attribute stack. If the stack is
empty, zero is returned. See Section 6.116 [gl.PushAttrib], page 163, for
details.

#GL_AUTO_NORMAL

param returns a single Boolean value indicating whether 2-D map evalu-
ation automatically generates surface normals. See Section 6.93 [gl.Map],
page 133, for details.

#GL_AUX_BUFFERS

param returns one value, the number of auxiliary color buffers.

#GL_BLEND

param returns a single Boolean value indicating whether blending is enabled.
See Section 6.8 [gl.BlendFunc], page 28, for details.

#GL_BLEND_DST

param returns one value, the symbolic constant identifying the destination
blend function. See Section 6.8 [gl.BlendFunc], page 28, for details.

#GL_BLEND_SRC

param returns one value, the symbolic constant identifying the source blend
function. See Section 6.8 [gl.BlendFunc], page 28, for details.

#GL_BLUE_BIAS

param returns one value, the blue bias factor used during pixel transfers. See
Section 6.105 [gl.PixelTransfer], page 152, for details.

#GL_BLUE_BITS

param returns one value, the number of blue bitplanes in each color buffer.

#GL_BLUE_SCALE

param returns one value, the blue scale factor used during pixel transfers.
See Section 6.105 [gl.PixelTransfer], page 152, for details.

#GL_CLIP_PLANEi

param returns a single Boolean value indicating whether the specified clip-
ping plane is enabled. See Section 6.17 [gl.ClipPlane], page 35, for details..

#GL_COLOR_CLEAR_VALUE

param returns four values: the red, green, blue, and alpha values used to
clear the color buffers. See Section 6.13 [gl.ClearColor], page 33, for details..

#GL_COLOR_MATERIAL

param returns a single Boolean value indicating whether one or more
material parameters are tracking the current color. See Section 6.20
[gl.ColorMaterial], page 38, for details.

#GL_COLOR_MATERIAL_FACE

param returns one value, a symbolic constant indicating which materials
have a parameter that is tracking the current color. See Section 6.20
[gl.ColorMaterial], page 38, for details.

Chapter 6: GL reference 83

#GL_COLOR_MATERIAL_PARAMETER

param returns one value, a symbolic constant indicating which material pa-
rameters are tracking the current color. See Section 6.20 [gl.ColorMaterial],
page 38, for details.

#GL_COLOR_WRITEMASK

param returns four Boolean values: the red, green, blue, and alpha write
enables for the color buffers. See Section 6.19 [gl.ColorMask], page 37, for
details.

#GL_CULL_FACE

param returns a single Boolean value indicating whether polygon culling is
enabled. See Section 6.25 [gl.CullFace], page 46, for details.

#GL_CULL_FACE_MODE

param returns one value, a symbolic constant indicating which polygon faces
are to be culled. See Section 6.25 [gl.CullFace], page 46, for details.

#GL_CURRENT_COLOR

param returns four values: the red, green, blue, and alpha values of the
current color. See Section 6.18 [gl.Color], page 36, for details.

#GL_CURRENT_INDEX

param returns one value, the current color index. See Section 6.76 [gl.Index],
page 115, for details.

#GL_CURRENT_NORMAL

param returns three values: the x, y, and z values of the current normal. See
Section 6.99 [gl.Normal], page 142, for details.

#GL_CURRENT_RASTER_COLOR

param returns four values: the red, green, blue, and alpha values of the cur-
rent raster position. See Section 6.120 [gl.RasterPos], page 170, for details.

#GL_CURRENT_RASTER_INDEX

param returns one value, the color index of the current raster position. See
Section 6.120 [gl.RasterPos], page 170, for details.

#GL_CURRENT_RASTER_POSITION

param returns four values: the x, y, z, and w components of the current raster
position. x, y, and z are in window coordinates, and w is in clip coordinates.
See Section 6.120 [gl.RasterPos], page 170, for details.

#GL_CURRENT_RASTER_TEXTURE_COORDS

param returns four values: the s, t, r, and q current raster texture co-
ordinates. See Section 6.120 [gl.RasterPos], page 170, for details. See
Section 6.134 [gl.TexCoord], page 187, for details.

#GL_CURRENT_RASTER_POSITION_VALID

param returns a single Boolean value indicating whether the current raster
position is valid. See Section 6.120 [gl.RasterPos], page 170, for details.

#GL_CURRENT_TEXTURE_COORDS

param returns four values: the s, t, r, and q current texture coordinates. See
Section 6.134 [gl.TexCoord], page 187, for details.

84 GL Galore manual

#GL_DEPTH_BITS

param returns one value, the number of bitplanes in the depth buffer.

#GL_DEPTH_CLEAR_VALUE

param returns one value, the value that is used to clear the depth buffer. See
Section 6.14 [gl.ClearDepth], page 34, for details.

#GL_DEPTH_FUNC

param returns one value, the symbolic constant that indicates the depth
comparison function. See Section 6.28 [gl.DepthFunc], page 48, for details.

#GL_DEPTH_RANGE

param returns two values: the near and far mapping limits for the depth
buffer. See Section 6.30 [gl.DepthRange], page 49, for details.

#GL_DEPTH_WRITEMASK

param returns a single Boolean value indicating if the depth buffer is enabled
for writing. See Section 6.29 [gl.DepthMask], page 49, for details.

#GL_DOUBLEBUFFER

param returns a single Boolean value indicating whether double buffering is
supported.

#GL_DRAW_BUFFER

param returns one value, a symbolic constant indicating which buffers are
being drawn to. See Section 6.34 [gl.DrawBuffer], page 57, for details.

#GL_EDGE_FLAG

param returns a single Boolean value indication whether the current edge
flag is true or false. See Section 6.38 [gl.EdgeFlag], page 65, for details.

#GL_FOG param returns a single Boolean value indicating whether fogging is enabled.
See Section 6.50 [gl.Fog], page 75, for details.

#GL_FOG_COLOR

param returns four values: the red, green, blue, and alpha components of
the fog color. See Section 6.50 [gl.Fog], page 75, for details.

#GL_FOG_DENSITY

param returns one value, the fog density parameter. See Section 6.50 [gl.Fog],
page 75, for details.

#GL_FOG_END

param returns one value, the end factor for the linear fog equation. See
Section 6.50 [gl.Fog], page 75, for details.

#GL_FOG_HINT

param returns one value, a symbolic constant indicating the mode of the fog
hint. See See Section 6.75 [gl.Hint], page 113, for details.

#GL_FOG_INDEX

param returns one value, the fog color index. See Section 6.50 [gl.Fog],
page 75, for details.

Chapter 6: GL reference 85

#GL_FOG_MODE

param returns one value, a symbolic constant indicating which fog equation
is selected. See Section 6.50 [gl.Fog], page 75, for details.

#GL_FOG_START

param returns one value, the start factor for the linear fog equation. See
Section 6.50 [gl.Fog], page 75, for details.

#GL_FRONT_FACE

param returns one value, a symbolic constant indicating whether clockwise or
counterclockwise polygon winding is treated as front-facing. See Section 6.53
[gl.FrontFace], page 77, for details.

#GL_GREEN_BIAS

param returns one value, the green bias factor used during pixel transfers.

#GL_GREEN_BITS

param returns one value, the number of green bitplanes in each color buffer.

#GL_GREEN_SCALE

param returns one value, the green scale factor used during pixel transfers.
See Section 6.105 [gl.PixelTransfer], page 152, for details.

#GL_INDEX_BITS

param returns one value, the number of bitplanes in each color index buffer.

#GL_INDEX_CLEAR_VALUE

param returns one value, the color index used to clear the color index buffers.
See Section 6.15 [gl.ClearIndex], page 34, for details.

#GL_INDEX_MODE

param returns a single Boolean value indicating whether the GL is in color
index mode (true) or RGBA mode (false).

#GL_INDEX_OFFSET

param returns one value, the offset added to color and stencil indices during
pixel transfers. See Section 6.105 [gl.PixelTransfer], page 152, for details.

#GL_INDEX_SHIFT

param returns one value, the amount that color and stencil indices are shifted
during pixel transfers. See Section 6.105 [gl.PixelTransfer], page 152, for
details.

#GL_INDEX_WRITEMASK

param returns one value, a mask indicating which bitplanes of each color
index buffer can be written. See Section 6.77 [gl.IndexMask], page 115, for
details.

#GL_LIGHTi

param returns a single Boolean value indicating whether the specified light
is enabled. See Section 6.84 [gl.Light], page 123, for details. See Section 6.85
[gl.LightModel], page 125, for details.

86 GL Galore manual

#GL_LIGHTING

param returns a single Boolean value indicating whether lighting is enabled.
See Section 6.85 [gl.LightModel], page 125, for details.

#GL_LIGHT_MODEL_AMBIENT

param returns four values: the red, green, blue, and alpha components of
the ambient intensity of the entire scene. See Section 6.85 [gl.LightModel],
page 125, for details.

#GL_LIGHT_MODEL_LOCAL_VIEWER

param returns a single Boolean value indicating whether specular reflection
calculations treat the viewer as being local to the scene. See Section 6.85
[gl.LightModel], page 125, for details.

#GL_LIGHT_MODEL_TWO_SIDE

param returns a single Boolean value indicating whether separate materi-
als are used to compute lighting for front- and back-facing polygons. See
Section 6.85 [gl.LightModel], page 125, for details.

#GL_LINE_SMOOTH

param returns a single Boolean value indicating whether antialiasing of lines
is enabled. See Section 6.87 [gl.LineWidth], page 128, for details.

#GL_LINE_STIPPLE

param returns a single Boolean value indicating whether stippling of lines is
enabled. See Section 6.86 [gl.LineStipple], page 127, for details.

#GL_LINE_STIPPLE_PATTERN

param returns one value, the 16-bit line stipple pattern. See Section 6.86
[gl.LineStipple], page 127, for details.

#GL_LINE_STIPPLE_REPEAT

param returns one value, the line stipple repeat factor. See Section 6.86
[gl.LineStipple], page 127, for details.

#GL_LINE_WIDTH

param returns one value, the line width as specified with gl.LineWidth().

#GL_LINE_WIDTH_GRANULARITY

param returns one value, the width difference between adjacent supported
widths for antialiased lines. See Section 6.87 [gl.LineWidth], page 128, for
details.

#GL_LINE_WIDTH_RANGE

param returns two values: the smallest and largest supported widths for
antialiased lines. See Section 6.87 [gl.LineWidth], page 128, for details.

#GL_LIST_BASE

param returns one value, the base offset added to all names in arrays pre-
sented to gl.CallLists(). See Section 6.88 [gl.ListBase], page 129, for
details.

Chapter 6: GL reference 87

#GL_LIST_INDEX

param returns one value, the name of the display list currently under con-
struction. Zero is returned if no display list is currently under construction.
See Section 6.98 [gl.NewList], page 141, for details.

#GL_LIST_MODE

param returns one value, a symbolic constant indicating the construction
mode of the display list currently being constructed. See Section 6.98
[gl.NewList], page 141, for details.

#GL_LOGIC_OP

param returns a single Boolean value indicating whether fragment indexes
are merged into the framebuffer using a logical operation. See Section 6.92
[gl.LogicOp], page 131, for details.

#GL_LOGIC_OP_MODE

param returns one value, a symbolic constant indicating the selected logic
operational mode. See Section 6.92 [gl.LogicOp], page 131, for details.

#GL_MAP1_COLOR_4

param returns a single Boolean value indicating whether 1D evaluation gen-
erates colors. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_GRID_DOMAIN

param returns two values: the endpoints of the 1-D map’s grid domain. See
Section 6.94 [gl.MapGrid], page 137, for details.

#GL_MAP1_GRID_SEGMENTS

param returns one value, the number of partitions in the 1-D map’s grid
domain. See Section 6.94 [gl.MapGrid], page 137, for details.

#GL_MAP1_INDEX

param returns a single Boolean value indicating whether 1D evaluation gen-
erates color indices. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_NORMAL

param returns a single Boolean value indicating whether 1D evaluation gen-
erates normals. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_1

param returns a single Boolean value indicating whether 1D evaluation gener-
ates 1D texture coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_2

param returns a single Boolean value indicating whether 1D evaluation gener-
ates 2D texture coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_3

param returns a single Boolean value indicating whether 1D evaluation gener-
ates 3D texture coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_4

param returns a single Boolean value indicating whether 1D evaluation gener-
ates 4D texture coordinates. See Section 6.93 [gl.Map], page 133, for details.

88 GL Galore manual

#GL_MAP1_VERTEX_3

param returns a single Boolean value indicating whether 1D evaluation gen-
erates 3D vertex coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_VERTEX_4

param returns a single Boolean value indicating whether 1D evaluation gen-
erates 4D vertex coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_COLOR_4

param returns a single Boolean value indicating whether 2D evaluation gen-
erates colors. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_GRID_DOMAIN

param returns four values: the endpoints of the 2-D map’s i and j grid
domains. See Section 6.94 [gl.MapGrid], page 137, for details.

#GL_MAP2_GRID_SEGMENTS

param returns two values: the number of partitions in the 2-D map’s i and
j grid domains. See Section 6.94 [gl.MapGrid], page 137, for details.

#GL_MAP2_INDEX

param returns a single Boolean value indicating whether 2D evaluation gen-
erates color indices. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_NORMAL

param returns a single Boolean value indicating whether 2D evaluation gen-
erates normals. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_TEXTURE_COORD_1

param returns a single Boolean value indicating whether 2D evaluation gener-
ates 1D texture coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_TEXTURE_COORD_2

param returns a single Boolean value indicating whether 2D evaluation gener-
ates 2D texture coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_TEXTURE_COORD_3

param returns a single Boolean value indicating whether 2D evaluation gener-
ates 3D texture coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_TEXTURE_COORD_4

param returns a single Boolean value indicating whether 2D evaluation gener-
ates 4D texture coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_VERTEX_3

param returns a single Boolean value indicating whether 2D evaluation gen-
erates 3D vertex coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_VERTEX_4

param returns a single Boolean value indicating whether 2D evaluation gen-
erates 4D vertex coordinates. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP_COLOR

param returns a single Boolean value indicating if colors and color indices
are to be replaced by table lookup during pixel transfers. See Section 6.105
[gl.PixelTransfer], page 152, for details.

Chapter 6: GL reference 89

#GL_MAP_STENCIL

param returns a single Boolean value indicating if stencil indices are to
be replaced by table lookup during pixel transfers. See Section 6.105
[gl.PixelTransfer], page 152, for details.

#GL_MATRIX_MODE

param returns one value, a symbolic constant indicating which matrix stack
is currently the target of all matrix operations. See glMatrixMode.

#GL_MAX_ATTRIB_STACK_DEPTH

param returns one value, the maximum supported depth of the attribute
stack. See Section 6.116 [gl.PushAttrib], page 163, for details.

#GL_MAX_CLIP_PLANES

param returns one value, the maximum number of application-defined clip-
ping planes. See Section 6.17 [gl.ClipPlane], page 35, for details.

#GL_MAX_EVAL_ORDER

param returns one value, the maximum equation order supported by 1-D
and 2-D evaluators. See Section 6.93 [gl.Map], page 133, for details.

#GL_MAX_LIGHTS

param returns one value, the maximum number of lights. See Section 6.84
[gl.Light], page 123, for details.

#GL_MAX_LIST_NESTING

param returns one value, the maximum recursion depth allowed during
display-list traversal. See Section 6.9 [gl.CallList], page 30, for details.

#GL_MAX_MODELVIEW_STACK_DEPTH

param returns one value, the maximum supported depth of the modelview
matrix stack. See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_MAX_NAME_STACK_DEPTH

param returns one value, the maximum supported depth of the selection
name stack. See Section 6.119 [gl.PushName], page 169, for details.

#GL_MAX_PIXEL_MAP_TABLE

param returns one value, the maximum supported size of a glPixelMap
lookup table. See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_MAX_PROJECTION_STACK_DEPTH

param returns one value, the maximum supported depth of the projection
matrix stack. See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_MAX_TEXTURE_SIZE

param returns one value, the maximum width or height of any texture image
(without borders). See Section 6.139 [gl.TexImage1D], page 192, for details.
See Section 6.140 [gl.TexImage2D], page 196, for details.

#GL_MAX_TEXTURE_STACK_DEPTH

param returns one value, the maximum supported depth of the texture ma-
trix stack. See Section 6.118 [gl.PushMatrix], page 169, for details.

90 GL Galore manual

#GL_MAX_VIEWPORT_DIMS

param returns two values: the maximum supported width and height of the
viewport. See Section 6.148 [gl.Viewport], page 208, for details.

#GL_MODELVIEW_MATRIX

param returns sixteen values: the modelview matrix on the top of the mod-
elview matrix stack. See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_MODELVIEW_STACK_DEPTH

param returns one value, the number of matrices on the modelview matrix
stack. See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_NAME_STACK_DEPTH

param returns one value, the number of names on the selection name stack.
See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_NORMALIZE

param returns a single Boolean value indicating whether normals are au-
tomatically scaled to unit length after they have been transformed to eye
coordinates. See Section 6.99 [gl.Normal], page 142, for details.

#GL_PACK_ALIGNMENT

param returns one value, the byte alignment used for writing pixel data to
memory. See Section 6.104 [gl.PixelStore], page 148, for details.

#GL_PACK_LSB_FIRST

param returns a single Boolean value indicating whether single-bit pixels
being written to memory are written first to the least significant bit of each
unsigned byte. See Section 6.104 [gl.PixelStore], page 148, for details.

#GL_PACK_ROW_LENGTH

param returns one value, the row length used for writing pixel data to mem-
ory. See Section 6.104 [gl.PixelStore], page 148, for details.

#GL_PACK_SKIP_PIXELS

param returns one value, the number of pixel locations skipped before the
first pixel is written into memory. See Section 6.104 [gl.PixelStore], page 148,
for details.

#GL_PACK_SKIP_ROWS

param returns one value, the number of rows of pixel locations skipped before
the first pixel is written into memory. See Section 6.104 [gl.PixelStore],
page 148, for details.

#GL_PACK_SWAP_BYTES

param returns a single Boolean value indicating whether the bytes of two-
byte and four-byte pixel indices and components are swapped before being
written to memory. See Section 6.104 [gl.PixelStore], page 148, for details.

#GL_PIXEL_MAP_A_TO_A_SIZE

param returns one value the size of the alpha-to-alpha pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

Chapter 6: GL reference 91

#GL_PIXEL_MAP_B_TO_B_SIZE

param returns one value, the size of the blue-to-blue pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_PIXEL_MAP_G_TO_G_SIZE

param returns one value, the size of the green-to-green pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_PIXEL_MAP_I_TO_A_SIZE

param returns one value, the size of the index-to-alpha pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_PIXEL_MAP_I_TO_B_SIZE

param returns one value, the size of the index-to-blue pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_PIXEL_MAP_I_TO_G_SIZE

param returns one value, the size of the index-to-green pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_PIXEL_MAP_I_TO_I_SIZE

param returns one value, the size of the index-to-index pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_PIXEL_MAP_I_TO_R_SIZE

param returns one value, the size of the index-to-red pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_PIXEL_MAP_R_TO_R_SIZE

param returns one value, the size of the red-to-red pixel translation table.
See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_PIXEL_MAP_S_TO_S_SIZE

param returns one value, the size of the stencil-to-stencil pixel translation
table. See Section 6.103 [gl.PixelMap], page 146, for details.

#GL_POINT_SIZE

param returns one value, the point size as specified by gl.PointSize().

#GL_POINT_SIZE_GRANULARITY

param returns one value, the size difference between adjacent supported sizes
for antialiased points. See Section 6.107 [gl.PointSize], page 155, for details.

#GL_POINT_SIZE_RANGE

param returns two values: the smallest and largest supported sizes for an-
tialiased points. See Section 6.107 [gl.PointSize], page 155, for details.

#GL_POINT_SMOOTH

param returns a single Boolean value indicating whether antialiasing of points
is enabled. See Section 6.107 [gl.PointSize], page 155, for details.

#GL_POLYGON_MODE

param returns two values: symbolic constants indicating whether front-facing
and back-facing polygons are rasterized as points, lines, or filled polygons.
See Section 6.108 [gl.PolygonMode], page 156, for details.

92 GL Galore manual

#GL_POLYGON_SMOOTH

param returns a single Boolean value indicating whether antialiasing of poly-
gons is enabled. See Section 6.108 [gl.PolygonMode], page 156, for details.

#GL_POLYGON_STIPPLE

param returns a single Boolean value indicating whether stippling of polygons
is enabled. See Section 6.110 [gl.PolygonStipple], page 158, for details.

#GL_PROJECTION_MATRIX

param returns sixteen values: the projection matrix on the top of the projec-
tion matrix stack. See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_PROJECTION_STACK_DEPTH

param returns one value, the number of matrices on the projection matrix
stack. See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_READ_BUFFER

param returns one value, a symbolic constant indicating which color buffer is
selected for reading. See Section 6.122 [gl.ReadPixels], page 173, for details.
See Section 6.1 [gl.Accum], page 19, for details.

#GL_RED_BIAS

param returns one value, the red bias factor used during pixel transfers.

#GL_RED_BITS

param returns one value, the number of red bitplanes in each color buffer.

#GL_RED_SCALE

param returns one value, the red scale factor used during pixel transfers. See
Section 6.105 [gl.PixelTransfer], page 152, for details.

#GL_RENDER_MODE

param returns one value, a symbolic constant indicating whether the GL
is in render, select, or feedback mode. See Section 6.125 [gl.RenderMode],
page 177, for details.

#GL_RGBA_MODE

param returns a single Boolean value indicating whether the GL is in RGBA
mode (true) or color index mode (false). See Section 6.18 [gl.Color], page 36,
for details.

#GL_SCISSOR_BOX

param returns four values: the x and y window coordinates of the scissor
box, follow by its width and height. See Section 6.128 [gl.Scissor], page 180,
for details.

#GL_SCISSOR_TEST

param returns a single Boolean value indicating whether scissoring is enabled.
See Section 6.128 [glScisscor], page 180, for details.

#GL_SHADE_MODEL

param returns one value, a symbolic constant indicating whether the shading
mode is flat or smooth. See Section 6.130 [gl.ShadeModel], page 183, for
details.

Chapter 6: GL reference 93

#GL_STENCIL_BITS

param returns one value, the number of bitplanes in the stencil buffer.

#GL_STENCIL_CLEAR_VALUE

param returns one value, the index to which the stencil bitplanes are cleared.
See Section 6.16 [gl.ClearStencil], page 35, for details.

#GL_STENCIL_FAIL

param returns one value, a symbolic constant indicating what action is taken
when the stencil test fails. See Section 6.133 [gl.StencilOp], page 186, for
details.

#GL_STENCIL_FUNC

param returns one value, a symbolic constant indicating what function is
used to compare the stencil reference value with the stencil buffer value. See
Section 6.131 [gl.StencilFunc], page 184, for details.

#GL_STENCIL_PASS_DEPTH_FAIL

param returns one value, a symbolic constant indicating what action is taken
when the stencil test passes, but the depth test fails. See Section 6.133
[gl.StencilOp], page 186, for details.

#GL_STENCIL_PASS_DEPTH_PASS

param returns one value, a symbolic constant indicating what action is taken
when the stencil test passes and the depth test passes. See Section 6.133
[gl.StencilOp], page 186, for details.

#GL_STENCIL_REF

param returns one value, the reference value that is compared with the con-
tents of the stencil buffer. See Section 6.131 [gl.StencilFunc], page 184, for
details.

#GL_STENCIL_TEST

param returns a single Boolean value indicating whether stencil testing of
fragments is enabled. See glStencilFunc and glStencilOp.

#GL_STENCIL_VALUE_MASK

param returns one value, the mask that is used to mask both the stencil
reference value and the stencil buffer value before they are compared. See
Section 6.131 [gl.StencilFunc], page 184, for details.

#GL_STENCIL_WRITEMASK

param returns one value, the mask that controls writing of the stencil bit-
planes. See Section 6.132 [gl.StencilMask], page 185, for details.

#GL_STEREO

param returns a single Boolean value indicating whether stereo buffers (left
and right) are supported.

#GL_SUBPIXEL_BITS

param returns one value, an estimate of the number of bits of subpixel reso-
lution that are used to position rasterized geometry in window coordinates.

94 GL Galore manual

#GL_TEXTURE_1D

param returns a single Boolean value indicating whether 1D texture mapping
is enabled. See Section 6.139 [gl.TexImage1D], page 192, for details.

#GL_TEXTURE_2D

param returns a single Boolean value indicating whether 2D texture mapping
is enabled. See Section 6.140 [gl.TexImage2D], page 196, for details.

#GL_TEXTURE_GEN_S

param returns a single Boolean value indicating whether automatic genera-
tion of the S texture coordinate is enabled. See Section 6.137 [gl.TexGen],
page 190, for details.

#GL_TEXTURE_GEN_T

param returns a single Boolean value indicating whether automatic genera-
tion of the T texture coordinate is enabled. See Section 6.137 [gl.TexGen],
page 190, for details.

#GL_TEXTURE_GEN_R

param returns a single Boolean value indicating whether automatic genera-
tion of the R texture coordinate is enabled. See Section 6.137 [gl.TexGen],
page 190, for details.

#GL_TEXTURE_GEN_Q

param returns a single Boolean value indicating whether automatic genera-
tion of the Q texture coordinate is enabled. See Section 6.137 [gl.TexGen],
page 190, for details.

#GL_TEXTURE_MATRIX

param returns sixteen values: the texture matrix on the top of the texture
matrix stack. See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_TEXTURE_STACK_DEPTH

param returns one value, the number of matrices on the texture matrix stack.
See Section 6.118 [gl.PushMatrix], page 169, for details.

#GL_UNPACK_ALIGNMENT

param returns one value, the byte alignment used for reading pixel data from
memory. See Section 6.104 [gl.PixelStore], page 148, for details.

#GL_UNPACK_LSB_FIRST

param returns a single Boolean value indicating whether single-bit pixels
being read from memory are read first from the least significant bit of each
unsigned byte. See Section 6.104 [gl.PixelStore], page 148, for details.

#GL_UNPACK_ROW_LENGTH

param returns one value, the row length used for reading pixel data from
memory. See Section 6.104 [gl.PixelStore], page 148, for details.

#GL_UNPACK_SKIP_IMAGES

param returns one value, the number of images skipped before the first (3D)
pixel is read from memory. See Section 6.104 [gl.PixelStore], page 148, for
details.

Chapter 6: GL reference 95

#GL_UNPACK_SKIP_PIXELS

param returns one value, the number of pixel locations skipped before the
first pixel is read from memory. See Section 6.104 [gl.PixelStore], page 148,
for details.

#GL_UNPACK_SKIP_ROWS

param returns one value, the number of rows of pixel locations skipped be-
fore the first pixel is read from memory. See Section 6.104 [gl.PixelStore],
page 148, for details.

#GL_UNPACK_SWAP_BYTES

param returns a single Boolean value indicating whether the bytes of two-
byte and four-byte pixel indices and components are swapped after being
read from memory. See Section 6.104 [gl.PixelStore], page 148, for details.

#GL_VIEWPORT

param returns four values: the x and y window coordinates of the viewport,
follow by its width and height. See Section 6.148 [gl.Viewport], page 208,
for details..

#GL_ZOOM_X

param returns one value, the x pixel zoom factor. See Section 6.106
[gl.PixelZoom], page 154, for details.

#GL_ZOOM_Y

param returns one value, the y pixel zoom factor. See Section 6.106
[gl.PixelZoom], page 154, for details.

Many of the boolean parameters can also be queried more easily using gl.IsEnabled().

Please consult an OpenGL reference manual for more information.

INPUTS

pname specifies the parameter value to be returned (see above for supported con-
stants)

RESULTS

param value of the specified parameter

... additional return values depending on pname

ERRORS
#GL_INVALID_ENUM is generated if pname is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.Get() is executed between the execution of
gl.Begin() and the corresponding execution of gl.End() .

6.58 gl.GetArray

NAME
gl.GetArray – return the value or values of a selected parameter as an array

SYNOPSIS
paramsArray = gl.GetArray(pname)

96 GL Galore manual

FUNCTION
This function does the same as gl.Get() except that the values are returned as an array.
See Section 6.57 [gl.Get], page 81, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

pname specifies the parameter value to be returned

RESULTS

paramsArray

parameter values in an array

ERRORS
#GL_INVALID_ENUM is generated if pname is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.Get() is executed between the execution of
gl.Begin() and the corresponding execution of gl.End() .

6.59 gl.GetClipPlane

NAME
gl.GetClipPlane – return the coefficients of the specified clipping plane

SYNOPSIS
equationArray = gl.GetClipPlane(plane)

FUNCTION
gl.GetClipPlane() returns in equation the four coefficients of the plane equation for
plane.

It is always the case that #GL_CLIP_PLANEi = #GL_CLIP_PLANE0 + i.

If an error is generated, no change is made to the contents of equation.

Please consult an OpenGL reference manual for more information.

INPUTS

plane specifies a clipping plane; the number of clipping planes depends on the
implementation, but at least six clipping planes are supported; they are
identified by symbolic names of the form #GL_CLIP_PLANEi where i ranges
from 0 to the value of #GL_MAX_CLIP_PLANES - 1

RESULTS

equationArray

table with four double-precision values that are the coefficients of the plane
equation of plane in eye coordinates; the initial value is (0, 0, 0, 0)

ERRORS
#GL_INVALID_ENUM is generated if plane is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.GetClipPlane() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End() .

Chapter 6: GL reference 97

6.60 gl.GetError

NAME
gl.GetError – return error information

SYNOPSIS
error = gl.GetError()

FUNCTION
gl.GetError() returns the value of the error flag. Each detectable error is assigned
a numeric code and symbolic name. When an error occurs, the error flag is set to
the appropriate error code value. No other errors are recorded until gl.GetError() is
called, the error code is returned, and the flag is reset to #GL_NO_ERROR. If a call to
gl.GetError() returns #GL_NO_ERROR, there has been no detectable error since the last
call to gl.GetError(), or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any sin-
gle error flag has recorded an error, the value of that flag is returned and that flag
is reset to #GL_NO_ERROR when gl.GetError() is called. If more than one flag has
recorded an error, gl.GetError() returns and clears an arbitrary error flag value. Thus,
gl.GetError() should always be called in a loop, until it returns #GL_NO_ERROR, if all
error flags are to be reset.

Initially, all error flags are set to #GL_NO_ERROR.

The following errors are currently defined:

#GL_NO_ERROR

No error has been recorded. The value of this symbolic constant is guaran-
teed to be 0.

#GL_INVALID_ENUM

An unacceptable value is specified for an enumerated argument. The offend-
ing command is ignored and has no other side effect than to set the error
flag.

#GL_INVALID_VALUE

A numeric argument is out of range. The offending command is ignored and
has no other side effect than to set the error flag.

#GL_INVALID_OPERATION

The specified operation is not allowed in the current state. The offending
command is ignored and has no other side effect than to set the error flag.

#GL_STACK_OVERFLOW

This command would cause a stack overflow. The offending command is
ignored and has no other side effect than to set the error flag.

#GL_STACK_UNDERFLOW

This command would cause a stack underflow. The offending command is
ignored and has no other side effect than to set the error flag.

#GL_OUT_OF_MEMORY

There is not enough memory left to execute the command. The state of the
GL is undefined, except for the state of the error flags, after this error is
recorded.

98 GL Galore manual

When an error flag is set, results of a GL operation are undefined only if #GL_OUT_OF_
MEMORY has occurred. In all other cases, the command generating the error is ignored
and has no effect on the GL state or frame buffer contents. If the generating command
returns a value, it returns 0. If gl.GetError() itself generates an error, it returns 0.

Please consult an OpenGL reference manual for more information.

INPUTS
none

RESULTS

error value of GL’s error flag

ERRORS
#GL_INVALID_OPERATION is generated if gl.GetError() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End() . In this case,
gl.GetError() returns 0.

6.61 gl.GetLight

NAME
gl.GetLight – return light source parameter values

SYNOPSIS
paramsArray = gl.GetLight(light, pname)

FUNCTION
gl.GetLight() returns in paramsArray the value or values of a light source parameter.
light names the light and is a symbolic name of the form #GL_LIGHTi where i ranges
from 0 to the value of #GL_MAX_LIGHTS - 1. #GL_MAX_LIGHTS is an implementation
dependent constant that is greater than or equal to eight. pname specifies one of ten
light source parameters, again by symbolic name.

The following parameters are defined:

#GL_AMBIENT

Returns four floating-point values representing the ambient intensity of the
light source. The initial value is (0, 0, 0, 1).

#GL_DIFFUSE

Returns four floating-point values representing the diffuse intensity of the
light source. The initial value for #GL_LIGHT0 is (1, 1, 1, 1); for other lights,
the initial value is (0, 0, 0, 0).

#GL_SPECULAR

Returns four floating-point values representing the specular intensity of the
light source. The initial value for #GL_LIGHT0 is (1, 1, 1, 1); for other lights,
the initial value is (0, 0, 0, 0).

#GL_POSITION

Returns four floating-point values representing the position of the light
source. The returned values are those maintained in eye coordinates. They

Chapter 6: GL reference 99

will not be equal to the values specified using gl.Light(), unless the
modelview matrix was identity at the time gl.Light() was called. The
initial value is (0, 0, 1, 0).

#GL_SPOT_DIRECTION

Returns three floating-point values representing the direction of the light
source. The returned values are those maintained in eye coordinates. They
will not be equal to the values specified using gl.Light(), unless the mod-
elview matrix was identity at the time gl.Light() was called. Although
spot direction is normalized before being used in the lighting equation, the
returned values are the transformed versions of the specified values prior to
normalization. The initial value is (0,0,-1).

#GL_SPOT_EXPONENT

Returns a single floating-point value representing the spot exponent of the
light. The initial value is 0.

#GL_SPOT_CUTOFF

Returns a single floating-point value representing the spot cutoff angle of the
light. The initial value is 180.

#GL_CONSTANT_ATTENUATION

Returns a single floating-point value representing the constant (not distance-
related) attenuation of the light. The initial value is 1.

#GL_LINEAR_ATTENUATION

Returns a single floating-point value representing the linear attenuation of
the light. The initial value is 0.

#GL_QUADRATIC_ATTENUATION

Returns a single floating-point value representing the quadratic attenuation
of the light. The initial value is 0.

It is always the case that #GL_LIGHT i = #GL_LIGHT0 + i.

Please consult an OpenGL reference manual for more information.

INPUTS

light specifies a light source; the number of possible lights depends on the im-
plementation, but at least eight lights are supported; they are identified by
symbolic names of the form #GL_LIGHTi where i ranges from 0 to the value
of #GL_MAX_LIGHTS - 1

pname specifies a light source parameter for light (see above for possible parame-
ters)

RESULTS

paramsArray

table containing requested data

ERRORS
#GL_INVALID_ENUM is generated if light or pname is not an accepted value.

100 GL Galore manual

#GL_INVALID_OPERATION is generated if gl.GetLight() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End() .

6.62 gl.GetMap

NAME
gl.GetMap – return evaluator parameters

SYNOPSIS
vArray = gl.GetMap(target, query)

FUNCTION
gl.Map() defines an evaluator. gl.GetMap() returns evaluator parameters. target

chooses a map, and query selects a specific parameter. The following values are currently
supported for target:

#GL_MAP1_COLOR_4

#GL_MAP1_INDEX

#GL_MAP1_NORMAL

#GL_MAP1_TEXTURE_COORD_1

#GL_MAP1_TEXTURE_COORD_2

#GL_MAP1_TEXTURE_COORD_3,

#GL_MAP1_TEXTURE_COORD_4

#GL_MAP1_VERTEX_3

#GL_MAP1_VERTEX_4

#GL_MAP2_COLOR_4

#GL_MAP2_INDEX

#GL_MAP2_NORMAL

#GL_MAP2_TEXTURE_COORD_1

#GL_MAP2_TEXTURE_COORD_2

#GL_MAP2_TEXTURE_COORD_3

#GL_MAP2_TEXTURE_COORD_4

#GL_MAP2_VERTEX_3

#GL_MAP2_VERTEX_4

See Section 6.93 [gl.Map], page 133, for details.

query can assume the following values:

#GL_COEFF

v returns the control points for the evaluator function. One-dimensional
evaluators return order control points, and two-dimensional evaluators re-
turn uorder*vorder control points. Each control point consists of one, two,
three, or four double-precision floating-point values. The GL returns two-
dimensional control points in row-major order, incrementing the uorder in-
dex quickly and the vorder index after each row.

#GL_ORDER

v returns the order of the evaluator function. One-dimensional evaluators re-
turn a single value, order. The initial value is 1. Two-dimensional evaluators
return two values, uorder and vorder. The initial value is (1,1).

Chapter 6: GL reference 101

#GL_DOMAIN

v returns the linear u and v mapping parameters. One-dimensional
evaluators return two values, u1 and u2, as specified by gl.Map().
Two-dimensional evaluators return four values (u1, u2, v1, and v2) as
specified by gl.Map().

Please consult an OpenGL reference manual for more information.

INPUTS

target specifies the symbolic name of a map (see above for possible values)

query specifies which parameter to return (see above for possible values)

RESULTS

vArray table containing the requested data

ERRORS
#GL_INVALID_ENUM is generated if either target or query is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.GetMap() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End() .

6.63 gl.GetMaterial

NAME
gl.GetMaterial – return material parameters

SYNOPSIS
paramsArray = gl.GetMaterial(face, pname)

FUNCTION
gl.GetMaterial() returns a table containing the value or values of parameter pname of
material face. The following six parameters can be passed in pname:

#GL_AMBIENT

Returns four floating-point values representing the ambient reflectance of
the material. The initial value is (0.2, 0.2, 0.2, 1.0)

#GL_DIFFUSE

Returns four floating-point values representing the diffuse reflectance of the
material. The initial value is (0.8, 0.8, 0.8, 1.0).

#GL_SPECULAR

Returns four floating-point values representing the specular reflectance of
the material. The initial value is (0, 0, 0, 1).

#GL_EMISSION

Returns four floating-point values representing the emitted light intensity of
the material. The initial value is (0, 0, 0, 1).

#GL_SHININESS

Returns one floating-point value representing the specular exponent of the
material. The initial value is 0.

102 GL Galore manual

#GL_COLOR_INDEXES

Returns three floating-point values representing the ambient, diffuse, and
specular indices of the material. These indices are used only for color index
lighting. (All the other parameters are used only for RGBA lighting.)

Please consult an OpenGL reference manual for more information.

INPUTS

face specifies which of the two materials is being queried; #GL_FRONT or #GL_BACK
are accepted, representing the front and back materials, respectively

pname specifies the material parameter to return (see above for possible values)

RESULTS

paramsArray

table containing the requested data

ERRORS
#GL_INVALID_ENUM is generated if face or pname is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.GetMaterial() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End() .

6.64 gl.GetPixelMap

NAME
gl.GetPixelMap – return the specified pixel map

SYNOPSIS
valuesArray = gl.GetPixelMap(map)

FUNCTION
gl.GetPixelMap() returns the contents of the pixel map specified in map. This can be
one of the following constants:

#GL_PIXEL_MAP_I_TO_I

#GL_PIXEL_MAP_S_TO_S

#GL_PIXEL_MAP_I_TO_R

#GL_PIXEL_MAP_I_TO_G

#GL_PIXEL_MAP_I_TO_B

#GL_PIXEL_MAP_I_TO_A

#GL_PIXEL_MAP_R_TO_R

#GL_PIXEL_MAP_G_TO_G

#GL_PIXEL_MAP_B_TO_B

#GL_PIXEL_MAP_A_TO_A

See Section 6.103 [gl.PixelMap], page 146, for details.

Pixel maps are used during the execution of gl.ReadPixels(), gl.DrawPixels(),
gl.CopyPixels(), and gl.TexImage1D(), gl.TexImage2D(), gl.TexSubImage1D(),
gl.TexSubImage2D(), gl.CopyTexImage() and gl.CopyTexSubImage(), to map color
indices, stencil indices, color components, and depth components to other values.

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 103

INPUTS

map specifies the name of the pixel map to return (see above for possible values)

RESULTS

valuesArray

table containing the pixel map contents

ERRORS
#GL_INVALID_ENUM is generated if map is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.GetPixelMap() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_PIXEL_MAP_I_TO_I_SIZE

gl.Get() with argument #GL_PIXEL_MAP_S_TO_S_SIZE

gl.Get() with argument #GL_PIXEL_MAP_I_TO_R_SIZE

gl.Get() with argument #GL_PIXEL_MAP_I_TO_G_SIZE

gl.Get() with argument #GL_PIXEL_MAP_I_TO_B_SIZE

gl.Get() with argument #GL_PIXEL_MAP_I_TO_A_SIZE

gl.Get() with argument #GL_PIXEL_MAP_R_TO_R_SIZE

gl.Get() with argument #GL_PIXEL_MAP_G_TO_G_SIZE

gl.Get() with argument #GL_PIXEL_MAP_B_TO_B_SIZE

gl.Get() with argument #GL_PIXEL_MAP_A_TO_A_SIZE

gl.Get() with argument #GL_MAX_PIXEL_MAP_TABLE

6.65 gl.GetPointer

NAME
gl.GetPointer – return values of the specified pointer

SYNOPSIS
valuesArray = gl.GetPointer(pname, n)

FUNCTION
gl.GetPointer() returns elements read from a GL pointer. pname is a symbolic constant
indicating the pointer to be used and n specifies how many elements should be read and
returned. pname can be set to the following values:

#GL_COLOR_ARRAY_POINTER

#GL_EDGE_FLAG_ARRAY_POINTER

#GL_FEEDBACK_BUFFER_POINTER

#GL_INDEX_ARRAY_POINTER

#GL_NORMAL_ARRAY_POINTER

#GL_SELECTION_BUFFER_POINTER

#GL_TEXTURE_COORD_ARRAY_POINTER

#GL_VERTEX_ARRAY_POINTER

104 GL Galore manual

The pointers are all client-side state.

The initial value for each pointer is NULL.

Please consult an OpenGL reference manual for more information.

INPUTS

pname specifies the array or buffer pointer to be queried (see above for possible
values)

n number of items to read from pointer

RESULTS

valuesArray

table containing n items read from the respective pointer

ERRORS
#GL_INVALID_ENUM is generated if pname is not an accepted value.

6.66 gl.GetPolygonStipple

NAME
gl.GetPolygonStipple – return the polygon stipple pattern

SYNOPSIS
maskArray = gl.GetPolygonStipple()

FUNCTION
gl.GetPolygonStipple() returns to pattern a 32*32 polygon stipple pattern. The pat-
tern is packed into memory as if gl.ReadPixels() with both height and width of 32,
type of #GL_BITMAP, and format of #GL_COLOR_INDEX were called, and the stipple pattern
were stored in an internal 32*32 color index buffer. Unlike gl.ReadPixels(), however,
pixel transfer operations (shift, offset, pixel map) are not applied to the returned stipple
image. Since #GL_BITMAP uses only 1-bit per pixel, the table returned by this function
will always have exactly 128 elements containing 8 pixels per table element.

Please consult an OpenGL reference manual for more information.

INPUTS
none

RESULTS

maskArray

table containing the stipple pattern; the initial value is all 1’s

ERRORS
#GL_INVALID_OPERATION is generated if gl.GetPolygonStipple() is executed between
the execution of gl.Begin() and the corresponding execution of gl.End() .

Chapter 6: GL reference 105

6.67 gl.GetSelectBuffer

NAME
gl.GetSelectBuffer – read value from the selection buffer

SYNOPSIS
value = gl.GetSelectBuffer(buffer, index)

FUNCTION
This function can be used to read the value at index index in the selection buffer passed
in buffer. This buffer must have been allocated by gl.SelectBuffer(). Values are
read as unsigned four byte integers starting at index 0.

See Section 6.129 [gl.SelectBuffer], page 181, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

buffer memory buffer allocated by gl.SelectBuffer()

index index of the value to read (starting at index 0)

RESULTS

value value at the specified index

6.68 gl.GetString

NAME
gl.GetString – return a string describing the current GL connection

SYNOPSIS
string = gl.GetString(name)

FUNCTION
gl.GetString() returns a pointer to a static string describing some aspect of the current
GL connection. name can be one of the following:

#GL_VENDOR

Returns the company responsible for this GL implementation. This name
does not change from release to release.

#GL_RENDERER

Returns the name of the renderer. This name is typically specific to a partic-
ular configuration of a hardware platform. It does not change from release
to release.

#GL_VERSION

Returns a version or release number.

#GL_EXTENSIONS

Returns a space-separated list of supported extensions to GL.

Because the GL does not include queries for the performance characteristics of an imple-
mentation, some applications are written to recognize known platforms and modify their

106 GL Galore manual

GL usage based on known performance characteristics of these platforms. Strings #GL_
VENDOR and #GL_RENDERER together uniquely specify a platform. They do not change
from release to release and should be used by platform-recognition algorithms.

Some applications want to make use of features that are not part of the standard
GL. These features may be implemented as extensions to the standard GL. The #GL_

EXTENSIONS string is a space-separated list of supported GL extensions. (Extension
names never contain a space character.)

The #GL_VERSION string begins with a version number. The version number uses one of
these forms:

<major_number>.<minor_number>

<major_number>.<minor_number>.<release_number>

Vendor-specific information may follow the version number. Its format depends on the
implementation, but a space always separates the version number and the vendor-specific
information.

The client and server may support different versions or extensions. gl.GetString()

always returns a compatible version number or list of extensions. The release number
always describes the server.

Please consult an OpenGL reference manual for more information.

INPUTS

name specifies a symbolic constant (see above for possible values)

RESULTS

string string describing the current GL connection

ERRORS
#GL_INVALID_ENUM is generated if name is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.GetString() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End() .

6.69 gl.GetTexEnv

NAME
gl.GetTexEnv – return texture environment parameters

SYNOPSIS
paramsArray = gl.GetTexEnv(pname)

FUNCTION
gl.GetTexEnv() returns a table containing selected values of a texture environment that
was specified with gl.TexEnv(). pname names a specific texture environment parameter.
The two parameters are as follows:

#GL_TEXTURE_ENV_MODE

Returns the single-valued texture environment mode, a symbolic constant.

#GL_TEXTURE_ENV_COLOR

Returns four floating-point values that are the texture environment color.

Chapter 6: GL reference 107

Please consult an OpenGL reference manual for more information.

INPUTS

pname specifies the symbolic name of a texture environment parameter (see above
for possible values)

RESULTS

paramsArray

table containing the requested data

ERRORS
#GL_INVALID_ENUM is generated if pname is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.GetTexEnv() is called between a call to
glBegin and the corresponding execution to glEnd.

6.70 gl.GetTexGen

NAME
gl.GetTexGen – return texture coordinate generation parameters

SYNOPSIS
paramsArray = gl.GetTexGen(coord, pname)

FUNCTION
gl.GetTexGen() returns a table containing selected parameters of a texture coordinate
generation function that was specified using gl.TexGen(). coord names one of the (s, t,
r, q) texture coordinates, using the symbolic constants #GL_S, #GL_T, #GL_R, or #GL_Q.

pname specifies one of three symbolic names:

#GL_TEXTURE_GEN_MODE

Returns the single-valued texture generation function, a symbolic constant.
The initial value is #GL_EYE_LINEAR.

#GL_OBJECT_PLANE

This will return the four plane equation coefficients that specify object linear-
coordinate generation.

#GL_EYE_PLANE

Returns the four plane equation coefficients that specify eye linear-coordinate
generation. The returned values are those maintained in eye coordinates.
They are not equal to the values specified using gl.TexGen(), unless the
modelview matrix was identity when gl.TexGen() was called.

Please consult an OpenGL reference manual for more information.

INPUTS

coord specifies a texture coordinate

pname specifies the symbolic name of the value(s) to be returned

108 GL Galore manual

RESULTS

paramsArray

table containing the requested data

ERRORS
#GL_INVALID_ENUM is generated if coord or pname is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.GetTexGen() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End() .

6.71 gl.GetTexImage

NAME
gl.GetTexImage – return a texture image

SYNOPSIS
pixelsArray = gl.GetTexImage(target, level, format)

FUNCTION
gl.GetTexImage() returns the pixels of a texture image. One-dimensional textures are
returned in a one-dimensional table whereas two-dimensional textures are returned in
a table that contains subtables for all rows in the texture. The pixels are returned
as values of type #GL_FLOAT target specifies whether the desired texture image is one
specified by gl.TexImage1D() (#GL_TEXTURE_1D) or gl.TexImage2D() (#GL_TEXTURE_
2D). level specifies the level-of-detail number of the desired image. format specifies
the format of the desired image array. See Section 6.140 [gl.TexImage2D], page 196, for
a description of the acceptable values for the format parameter.

To understand the operation of gl.GetTexImage(), consider the selected internal four-
component texture image to be an RGBA color buffer the size of the image. The se-
mantics of gl.GetTexImage() are then identical to those of gl.ReadPixels(), with the
exception that no pixel transfer operations are performed, when called with the same
format and type, with x and y set to 0, width set to the width of the texture image
(including border if one was specified), and height set to 1 for 1D images, or to the
height of the texture image (including border if one was specified) for 2D images. Be-
cause the internal texture image is an RGBA image, pixel formats #GL_COLOR_INDEX,
#GL_STENCIL_INDEX, and #GL_DEPTH_COMPONENT are not accepted, and pixel type #GL_
BITMAP is not accepted.

If the selected texture image does not contain four components, the following mappings
are applied. Single-component textures are treated as RGBA buffers with red set to
the single-component value, green set to 0, blue set to 0, and alpha set to 1. Two-
component textures are treated as RGBA buffers with red set to the value of component
zero, alpha set to the value of component one, and green and blue set to 0. Finally,
three-component textures are treated as RGBA buffers with red set to component zero,
green set to component one, blue set to component two, and alpha set to 1.

If you want to have fine-tuned control over the pixel type or if you want the pixels to be
written into a memory buffer instead of a table, you can use the gl.GetTexImageRaw()
function instead.

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 109

INPUTS

target specifies which texture is to be obtained (must be #GL_TEXTURE_1D or #GL_
TEXTURE_2D)

level specifies the level-of-detail number of the desired image; level 0 is the base
image level; level n is the nth mipmap reduction image

format specifies a pixel format for the returned data; the supported formats
are #GL_RED, #GL_GREEN, #GL_BLUE, #GL_ALPHA, #GL_RGB, #GL_RGBA,
#GL_LUMINANCE, and #GL_LUMINANCE_ALPHA

RESULTS

pixelsArray

table containing the raw pixels

ERRORS
#GL_INVALID_ENUM is generated if target or format is not an accepted value.

#GL_INVALID_VALUE is generated if level is less than zero or greater than ld(max),
where max is the returned value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_OPERATION is generated if gl.GetTexImage() is called between a call to
glBegin and the corresponding call to glEnd.

ASSOCIATED GETS
gl.GetTexLevelParameter() with argument #GL_TEXTURE_WIDTH

gl.GetTexLevelParameter() with argument #GL_TEXTURE_HEIGHT

gl.GetTexLevelParameter() with argument #GL_TEXTURE_BORDER

gl.GetTexLevelParameter() with argument #GL_TEXTURE_COMPONENTS

gl.Get() with arguments #GL_PACK_ALIGNMENT and others

6.72 gl.GetTexImageRaw

NAME
gl.GetTexImageRaw – return a texture image

SYNOPSIS
gl.GetTexImageRaw(target, level, format, type, pixels)

FUNCTION
gl.GetTexImageRaw() writes the pixels of a texture image to pixels. This
must be a memory buffer allocated by Hollywood’s AllocMem() function and
returned by GetMemPointer(). To determine the required size of pixels, use
gl.GetTexLevelParameter() to determine the dimensions of the internal texture
image, then scale the required number of pixels by the storage required for each pixel,
based on format and type. Be sure to take the pixel storage parameters into account,
especially #GL_PACK_ALIGNMENT.

The supported values for format are #GL_RED, #GL_GREEN, #GL_BLUE, #GL_ALPHA, #GL_
RGB, #GL_RGBA, #GL_LUMINANCE, and #GL_LUMINANCE_ALPHA.

110 GL Galore manual

Supported data types for type are #GL_UNSIGNED_BYTE, #GL_BYTE, #GL_UNSIGNED_

SHORT, #GL_SHORT, #GL_UNSIGNED_INT, #GL_INT, and #GL_FLOAT.

The pixels are written to the memory buffer as values of type type. target specifies
whether the desired texture image is one specified by gl.TexImage1D() (#GL_TEXTURE_
1D) or gl.TexImage2D() (#GL_TEXTURE_2D). level specifies the level-of-detail num-
ber of the desired image. format specifies the format of the desired image array. See
Section 6.140 [gl.TexImage2D], page 196, for a description of the acceptable values for
the format parameter.

To understand the operation of gl.GetTexImageRaw(), consider the selected internal
four-component texture image to be an RGBA color buffer the size of the image. The
semantics of gl.GetTexImageRaw() are then identical to those of gl.ReadPixels(),
with the exception that no pixel transfer operations are performed, when called with
the same format and type, with x and y set to 0, width set to the width of the texture
image (including border if one was specified), and height set to 1 for 1D images, or to
the height of the texture image (including border if one was specified) for 2D images.
Because the internal texture image is an RGBA image, pixel formats #GL_COLOR_INDEX,
#GL_STENCIL_INDEX, and #GL_DEPTH_COMPONENT are not accepted, and pixel type #GL_
BITMAP is not accepted.

If the selected texture image does not contain four components, the following mappings
are applied. Single-component textures are treated as RGBA buffers with red set to
the single-component value, green set to 0, blue set to 0, and alpha set to 1. Two-
component textures are treated as RGBA buffers with red set to the value of component
zero, alpha set to the value of component one, and green and blue set to 0. Finally,
three-component textures are treated as RGBA buffers with red set to component zero,
green set to component one, blue set to component two, and alpha set to 1.

If you want to have the pixels returned in a table instead of a memory buffer, you can
use the gl.GetTexImage() function instead. See Section 3.7 [Working with pointers],
page 11, for details on how to use memory pointers with Hollywood.

Please consult an OpenGL reference manual for more information.

INPUTS

target specifies which texture is to be obtained (must be #GL_TEXTURE_1D or #GL_
TEXTURE_2D)

level specifies the level-of-detail number of the desired image; level 0 is the base
image level; level n is the nth mipmap reduction image

format specifies a pixel format for the returned data (see above)

type specifies a pixel type for the returned data (see above)

pixels pointer to a memory buffer to write the pixels to

ERRORS
#GL_INVALID_ENUM is generated if target, type or format is not an accepted value.

#GL_INVALID_VALUE is generated if level is less than zero or greater than ld(max),
where max is the returned value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_OPERATION is generated if gl.GetTexImageRaw() is called between a call
to glBegin and the corresponding call to glEnd.

Chapter 6: GL reference 111

ASSOCIATED GETS
gl.GetTexLevelParameter() with argument #GL_TEXTURE_WIDTH

gl.GetTexLevelParameter() with argument #GL_TEXTURE_HEIGHT

gl.GetTexLevelParameter() with argument #GL_TEXTURE_BORDER

gl.GetTexLevelParameter() with argument #GL_TEXTURE_COMPONENTS

gl.Get() with arguments #GL_PACK_ALIGNMENT and others

6.73 gl.GetTexLevelParameter

NAME
gl.GetTexLevelParameter – return texture parameter values for a specific level of detail

SYNOPSIS
param = gl.GetTexLevelParameter(target, level, pname)

FUNCTION
gl.GetTexLevelParameter() returns texture parameter values for a specific level-of-
detail value, specified as level. target defines the target texture, either #GL_TEXTURE_
1D, #GL_TEXTURE_2D, #GL_PROXY_TEXTURE_1D, or #GL_PROXY_TEXTURE_2D.

#GL_MAX_TEXTURE_SIZE is not really descriptive enough. It has to report the largest
square texture image that can be accommodated with mipmaps and borders, but a long
skinny texture, or a texture without mipmaps and borders, may easily fit in texture
memory. The proxy targets allow the user to more accurately query whether the GL can
accommodate a texture of a given configuration. If the texture cannot be accommodated,
the texture state variables, which may be queried with gl.GetTexLevelParameter(),
are set to 0. If the texture can be accommodated, the texture state values will be set as
they would be set for a non-proxy target.

pname specifies the texture parameter whose value or values will be returned. The
accepted parameter names are as follows:

#GL_TEXTURE_WIDTH

params returns a single value, the width of the texture image. This value
includes the border of the texture image. The initial value is 0.

#GL_TEXTURE_HEIGHT

params returns a single value, the height of the texture image. This value
includes the border of the texture image. The initial value is 0.

#GL_TEXTURE_DEPTH

params returns a single value, the depth of the texture image. This value
includes the border of the texture image. The initial value is 0.

#GL_TEXTURE_INTERNAL_FORMAT

params returns a single value, the internal format of the texture image.

#GL_TEXTURE_BORDER

params returns a single value, the width in pixels of the border of the texture
image. The initial value is 0.

112 GL Galore manual

#GL_TEXTURE_XXX_SIZE

The internal storage resolution of an individual component (XXX can be
RED, GREEN, BLUE, ALPHA, LUMINANCE, INTENSITY, DEPTH).
The resolution chosen by the GL will be a close match for the resolution
requested by the user with the component argument of gl.TexImage1D(),
gl.TexImage2D(), and gl.CopyTexImage(). The initial value is 0.

Please consult an OpenGL reference manual for more information.

INPUTS

target specifies the symbolic name of the target texture, either #GL_TEXTURE_1D,
#GL_TEXTURE_2D, #GL_PROXY_TEXTURE_1D, or #GL_PROXY_TEXTURE_2D

level specifies the level-of-detail number of the desired image. Level 0 is the base
image level. Level n is the nth mipmap reduction image

pname specifies the symbolic name of a texture parameter (see above for possible
values)

RESULTS

param requested data

ERRORS
#GL_INVALID_ENUM is generated if target or pname is not an accepted value.

#GL_INVALID_VALUE is generated if level is less than 0.

#GL_INVALID_VALUE may be generated if level is greater than ld(max), where max is
the returned value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_OPERATION is generated if gl.GetTexLevelParameter() is executed be-
tween the execution of gl.Begin() and the corresponding execution of gl.End() .

6.74 gl.GetTexParameter

NAME
gl.GetTexParameter – return texture parameter values

SYNOPSIS
param = gl.GetTexParameter(target, pname)

FUNCTION
gl.GetTexParameter() returns the value or values of the texture parameter specified
as pname. target defines the target texture, either #GL_TEXTURE_1D or #GL_TEXTURE_
2D, to specify one- or two-dimensional texturing. pname accepts the same symbols as
gl.TexParameter() with the same interpretations:

#GL_TEXTURE_MAG_FILTER

Returns the single-valued texture magnification filter, a symbolic constant.
The initial value is #GL_LINEAR.

#GL_TEXTURE_MIN_FILTER

Returns the single-valued texture minification filter, a symbolic constant.
The initial value is #GL_NEAREST_MIPMAP_LINEAR.

Chapter 6: GL reference 113

#GL_TEXTURE_WRAP_S

Returns the single-valued wrapping function for texture coordinate s, a sym-
bolic constant. The initial value is #GL_REPEAT.

#GL_TEXTURE_WRAP_T

Returns the single-valued wrapping function for texture coordinate t, a sym-
bolic constant. The initial value is #GL_REPEAT.

#GL_TEXTURE_BORDER_COLOR

Returns four floating-point numbers that comprise the RGBA color of the
texture border. The initial value is (0, 0, 0, 0).

#GL_TEXTURE_PRIORITY

Returns the residence priority of the target texture (or the named texture
bound to it). The initial value is 1. See Section 6.115 [gl.PrioritizeTextures],
page 162, for details.

#GL_TEXTURE_RESIDENT

Returns the residence status of the target texture. If the value returned
in params is #GL_TRUE, the texture is resident in texture memory. See
Section 6.3 [gl.AreTexturesResident], page 22, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

target specifies the symbolic name of the target texture; #GL_TEXTURE_1D and #GL_

TEXTURE_2D are accepted

pname specifies the symbolic name of a texture parameter (see above for supported
values)

RESULTS

param requested data

ERRORS
#GL_INVALID_ENUM is generated if target or pname is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.GetTexParameter() is executed between
the execution of gl.Begin() and the corresponding execution of gl.End() .

6.75 gl.Hint

NAME
gl.Hint – specify implementation-specific hints

SYNOPSIS
gl.Hint(target, mode)

FUNCTION
Certain aspects of GL behavior, when there is room for interpretation, can be controlled
with hints. A hint is specified with two arguments. target is a symbolic constant
indicating the behavior to be controlled, and mode is another symbolic constant indicating

114 GL Galore manual

the desired behavior. The initial value for each target is #GL_DONT_CARE. mode can be
one of the following:

#GL_FASTEST

The most efficient option should be chosen.

#GL_NICEST

The most correct, or highest quality, option should be chosen.

#GL_DONT_CARE

No preference.

Though the implementation aspects that can be hinted are well defined, the interpreta-
tion of the hints depends on the implementation. The hint aspects that can be specified
with target, along with suggested semantics, are as follows:

#GL_FOG_HINT

Indicates the accuracy of fog calculation. If per-pixel fog calculation is not
efficiently supported by the GL implementation, hinting #GL_DONT_CARE or
#GL_FASTEST can result in per-vertex calculation of fog effects.

#GL_LINE_SMOOTH_HINT

Indicates the sampling quality of antialiased lines. If a larger filter function
is applied, hinting #GL_NICEST can result in more pixel fragments being
generated during rasterization.

#GL_PERSPECTIVE_CORRECTION_HINT

Indicates the quality of color, texture coordinate, and fog coordinate interpo-
lation. If perspective-corrected parameter interpolation is not efficiently sup-
ported by the GL implementation, hinting #GL_DONT_CARE or #GL_FASTEST
can result in simple linear interpolation of colors and/or texture coordinates.

#GL_POINT_SMOOTH_HINT

Indicates the sampling quality of antialiased points. If a larger filter function
is applied, hinting #GL_NICEST can result in more pixel fragments being
generated during rasterization.

#GL_POLYGON_SMOOTH_HINT

Indicates the sampling quality of antialiased polygons. Hinting #GL_NICEST

can result in more pixel fragments being generated during rasterization, if a
larger filter function is applied.

The interpretation of hints depends on the implementation. Some implementations ig-
nore gl.Hint() settings.

Please consult an OpenGL reference manual for more information.

INPUTS

target specifies a symbolic constant indicating the behavior to be controlled (see
above for possible values)

mode specifies a symbolic constant indicating the desired behavior; #GL_FASTEST,
#GL_NICEST, and #GL_DONT_CARE are accepted

Chapter 6: GL reference 115

ERRORS
#GL_INVALID_ENUM is generated if either target or mode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.Hint() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End() .

6.76 gl.Index

NAME
gl.Index – set the current color index

SYNOPSIS
gl.Index(c)

FUNCTION
gl.Index() updates the current (single-valued) color index. It takes one argument, the
new value for the current color index.

The current index is stored as a floating-point value. The initial value is 1.

Index values outside the representable range of the color index buffer are not clamped.
However, before an index is dithered (if enabled) and written to the frame buffer, it is
converted to fixed-point format. Any bits in the integer portion of the resulting fixed-
point value that do not correspond to bits in the frame buffer are masked out.

The current index can be updated at any time. In particular, gl.Index() can be called
between a call to gl.Begin() and the corresponding call to gl.End().

Please consult an OpenGL reference manual for more information.

INPUTS

c specifies the new value for the current color index

ASSOCIATED GETS
gl.Get() with argument #GL_CURRENT_INDEX

6.77 gl.IndexMask

NAME
gl.IndexMask – control the writing of individual bits in the color index buffers

SYNOPSIS
gl.IndexMask(mask)

FUNCTION
gl.IndexMask() controls the writing of individual bits in the color index buffers. The
least significant n bits of mask, where n is the number of bits in a color index buffer,
specify a mask. Where a 1 (one) appears in the mask, it’s possible to write to the
corresponding bit in the color index buffer (or buffers). Where a 0 (zero) appears, the
corresponding bit is write-protected.

This mask is used only in color index mode, and it affects only the buffers currently
selected for writing (See Section 6.34 [gl.DrawBuffer], page 57, for details.). Initially, all
bits are enabled for writing.

116 GL Galore manual

Please consult an OpenGL reference manual for more information.

INPUTS

mask specifies a bit mask to enable and disable the writing of individual bits in
the color index buffers; initially, the mask is all 1’s.

ERRORS
#GL_INVALID_OPERATION is generated if gl.IndexMask() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End()

ASSOCIATED GETS
gl.Get() with argument #GL_INDEX_WRITEMASK

6.78 gl.IndexPointer

NAME
gl.IndexPointer – define an array of color indexes

SYNOPSIS
gl.IndexPointer(indexArray)

FUNCTION
gl.IndexPointer() specifies an array of color indexes to use when rendering.
indexArray must be an array containing a number of floating-point values describing
color indexes.

If you pass Nil in indexArray, the color index array buffer will be freed but it won’t be
removed from OpenGL. You need to do this manually, e.g. by disabling the color index
array or defining a new one.

When a color index array is specified, it is saved as client-side state, in addition to the
current vertex array buffer object binding.

To enable and disable the color index array, call gl.EnableClientState() and
gl.DisableClientState() with the argument #GL_INDEX_ARRAY. If enabled,
the color index array is used when gl.DrawArrays(), gl.DrawElements(), or
gl.ArrayElement() is called.

Color indexes are not supported for interleaved vertex array formats (See Section 6.80
[gl.InterleavedArrays], page 117, for details.).

The color index array is initially disabled and isn’t accessed when gl.DrawArrays(),
gl.DrawElements(), or gl.ArrayElement() is called.

Execution of gl.IndexPointer() is not allowed between the execution of gl.Begin()
and the corresponding execution of gl.End(), but an error may or may not be generated.
If no error is generated, the operation is undefined.

gl.IndexPointer() is typically implemented on the client side.

Color index array parameters are client-side state and are therefore not saved or re-
stored by gl.PushAttrib() and gl.PopAttrib(). Use gl.PushClientAttrib() and
gl.PopClientAttrib() instead.

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 117

INPUTS

indexArray

array of color indexes or Nil (see above)

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_INDEX_ARRAY

gl.Get() with argument #GL_INDEX_ARRAY_TYPE

gl.Get() with argument #GL_INDEX_ARRAY_STRIDE

gl.GetPointer() with argument #GL_INDEX_ARRAY_POINTER

6.79 gl.InitNames

NAME
gl.InitNames – initialize the name stack

SYNOPSIS
gl.InitNames()

FUNCTION
The name stack is used during selection mode to allow sets of rendering commands to be
uniquely identified. It consists of an ordered set of unsigned integers. gl.InitNames()
causes the name stack to be initialized to its default empty state.

The name stack is always empty while the render mode is not #GL_SELECT. Calls to
gl.InitNames() while the render mode is not #GL_SELECT are ignored.

Please consult an OpenGL reference manual for more information.

INPUTS
none

ERRORS
#GL_INVALID_OPERATION is generated if gl.InitNames() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_NAME_STACK_DEPTH

gl.Get() with argument #GL_MAX_NAME_STACK_DEPTH

6.80 gl.InterleavedArrays

NAME
gl.InterleavedArrays – simultaneously specify and enable several interleaved arrays

SYNOPSIS
gl.InterleavedArrays(format, stride, data)

FUNCTION
gl.InterleavedArrays() lets you specify and enable individual color, normal, texture
and vertex arrays whose elements are part of a larger aggregate array element. For some
implementations, this is more efficient than specifying the arrays separately.

118 GL Galore manual

data must be a pointer to a raw memory buffer allocated by Hollywood’s AllocMem()
function, containing the relevant array data. Use Hollywood’s GetMemPointer() func-
tion to get the raw pointer address of memory blocks allocated by AllocMem(). See
Section 3.7 [Working with pointers], page 11, for details on how to use memory pointers
with Hollywood.

If stride is 0, the aggregate elements are stored consecutively. Otherwise, stride bytes
occur between the beginning of one aggregate array element and the beginning of the
next aggregate array element.

format serves as a key describing the extraction of individual arrays from the aggregate
array. If format contains a T, then texture coordinates are extracted from the interleaved
array. If C is present, color values are extracted. If N is present, normal coordinates
are extracted. Vertex coordinates are always extracted. The digits 2, 3, and 4 denote
how many values are extracted. F indicates that values are extracted as floating-point
values. Colors may also be extracted as 4 unsigned bytes if 4UB follows the C. If a color
is extracted as 4 unsigned bytes, the vertex array element which follows is located at
the first possible floating-point aligned address. The following symbolic constants are
recognized for format:

#GL_V2F

#GL_V3F

#GL_C4UB_V2F

#GL_C4UB_V3F

#GL_C3F_V3F

#GL_N3F_V3F

#GL_C4F_N3F_V3F

#GL_T2F_V3F

#GL_T4F_V4F

#GL_T2F_C4UB_V3F

#GL_T2F_C3F_V3F

#GL_T2F_N3F_V3F

#GL_T2F_C4F_N3F_V3F

#GL_T4F_C4F_N3F_V4F

If gl.InterleavedArrays() is called while compiling a display list, it is not compiled
into the list, and it is executed immediately.

Execution of gl.InterleavedArrays() is not allowed between the execution of
gl.Begin() and the corresponding execution of gl.End(), but an error may or may
not be generated. If no error is generated, the operation is undefined.

gl.InterleavedArrays() is typically implemented on the client side.

Vertex array parameters are client-side state and are therefore not saved or restored
by gl.PushAttrib() and gl.PopAttrib(). Use gl.PushClientAttrib() and
gl.PopClientAttrib() instead.

Please consult an OpenGL reference manual for more information.

INPUTS

format specifies the type of array to enable (see above for supported formats)

stride specifies the offset in bytes between each aggregate array element

Chapter 6: GL reference 119

data raw memory pointer containing data

ERRORS
#GL_INVALID_ENUM is generated if format is not an accepted value.

6.81 gl.IsEnabled

NAME
gl.IsEnabled – test whether a capability is enabled

SYNOPSIS
bool = gl.IsEnabled(cap)

FUNCTION
gl.IsEnabled() returns #GL_TRUE if cap is an enabled capability and returns #GL_

FALSE otherwise. Initially all capabilities except #GL_DITHER are disabled; #GL_DITHER
is initially enabled.

The following capabilities are accepted for cap:

#GL_ALPHA_TEST

See Section 6.2 [gl.AlphaFunc], page 20, for details.

#GL_AUTO_NORMAL

See Section 6.44 [gl.EvalCoord], page 68, for details.

#GL_BLEND

See Section 6.8 [gl.BlendFunc], page 28, for details. See Section 6.92
[gl.LogicOp], page 131, for details.

#GL_CLIP_PLANEi

See Section 6.17 [gl.ClipPlane], page 35, for details.

#GL_COLOR_ARRAY

See Section 6.21 [gl.ColorPointer], page 39, for details.

#GL_COLOR_LOGIC_OP

See Section 6.92 [gl.LogicOp], page 131, for details.

#GL_COLOR_MATERIAL

See Section 6.20 [gl.ColorMaterial], page 38, for details.

#GL_CULL_FACE

See Section 6.25 [gl.CullFace], page 46, for details.

#GL_DEPTH_TEST

See Section 6.28 [gl.DepthFunc], page 48, for details. See Section 6.30
[gl.DepthRange], page 49, for details.

#GL_DITHER

See Section 6.40 [gl.Enable], page 66, for details.

#GL_EDGE_FLAG_ARRAY

See Section 6.39 [gl.EdgeFlagPointer], page 65, for details.

120 GL Galore manual

#GL_FOG See Section 6.50 [gl.Fog], page 75, for details.

#GL_INDEX_ARRAY

See Section 6.78 [gl.IndexPointer], page 116, for details.

#GL_INDEX_LOGIC_OP

See Section 6.92 [gl.LogicOp], page 131, for details.

#GL_LIGHTi

See Section 6.85 [gl.LightModel], page 125, for details. See Section 6.84
[gl.Light], page 123, for details.

#GL_LIGHTING

See Section 6.95 [gl.Material], page 138, for details. See Section 6.85
[gl.LightModel], page 125, for details. See Section 6.84 [gl.Light], page 123,
for details.

#GL_LINE_SMOOTH

See Section 6.87 [gl.LineWidth], page 128, for details.

#GL_LINE_STIPPLE

See Section 6.86 [gl.LineStipple], page 127, for details.

#GL_MAP1_COLOR_4

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_INDEX

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_NORMAL

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_1

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_2

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_3

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP1_TEXTURE_COORD_4

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_COLOR_4

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_INDEX

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_NORMAL

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_TEXTURE_COORD_1

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_TEXTURE_COORD_2

See Section 6.93 [gl.Map], page 133, for details.

Chapter 6: GL reference 121

#GL_MAP2_TEXTURE_COORD_3

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_TEXTURE_COORD_4

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_VERTEX_3

See Section 6.93 [gl.Map], page 133, for details.

#GL_MAP2_VERTEX_4

See Section 6.93 [gl.Map], page 133, for details.

#GL_NORMAL_ARRAY

See Section 6.100 [gl.NormalPointer], page 143, for details.

#GL_NORMALIZE

See Section 6.99 [gl.Normal], page 142, for details.

#GL_POINT_SMOOTH

See Section 6.107 [gl.PointSize], page 155, for details.

#GL_POLYGON_SMOOTH

See Section 6.108 [gl.PolygonMode], page 156, for details.

#GL_POLYGON_OFFSET_FILL

See Section 6.109 [gl.PolygonOffset], page 157, for details.

#GL_POLYGON_OFFSET_LINE

See Section 6.109 [gl.PolygonOffset], page 157, for details.

#GL_POLYGON_OFFSET_POINT

See Section 6.109 [gl.PolygonOffset], page 157, for details.

#GL_POLYGON_STIPPLE

See Section 6.110 [gl.PolygonStipple], page 158, for details.

#GL_RESCALE_NORMAL

See Section 6.99 [gl.Normal], page 142, for details.

#GL_SCISSOR_TEST

See Section 6.128 [gl.Scissor], page 180, for details.

#GL_STENCIL_TEST

See Section 6.131 [gl.StencilFunc], page 184, for details. See Section 6.133
[gl.StencilOp], page 186, for details.

#GL_TEXTURE_1D

See Section 6.139 [gl.TexImage1D], page 192, for details.

#GL_TEXTURE_2D

See Section 6.140 [gl.TexImage2D], page 196, for details.

#GL_TEXTURE_COORD_ARRAY

See Section 6.135 [gl.TexCoordPointer], page 188, for details.

#GL_TEXTURE_GEN_Q

See Section 6.137 [gl.TexGen], page 190, for details.

122 GL Galore manual

#GL_TEXTURE_GEN_R

See Section 6.137 [gl.TexGen], page 190, for details.

#GL_TEXTURE_GEN_S

See Section 6.137 [gl.TexGen], page 190, for details.

#GL_TEXTURE_GEN_T

See Section 6.137 [gl.TexGen], page 190, for details.

#GL_VERTEX_ARRAY

See Section 6.147 [gl.VertexPointer], page 207, for details.

If an error is generated, gl.IsEnabled() returns 0.

Please consult an OpenGL reference manual for more information.

INPUTS

cap specifies a symbolic constant indicating a GL capability

RESULTS

bool #GL_TRUE or #GL_FALSE

ERRORS
#GL_INVALID_ENUM is generated if cap is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.IsEnabled() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

6.82 gl.IsList

NAME
gl.IsList – determine if a name corresponds to a display list

SYNOPSIS
bool = gl.IsList(list)

FUNCTION
gl.IsList() returns #GL_TRUE if list is the name of a display list and returns #GL_FALSE
if it is not, or if an error occurs.

A name returned by gl.GenLists(), but not yet associated with a display list by calling
gl.NewList(), is not the name of a display list.

Please consult an OpenGL reference manual for more information.

INPUTS

list specifies a potential display list name

RESULTS

bool #GL_TRUE or #GL_FALSE

ERRORS
#GL_INVALID_OPERATION is generated if gl.IsList() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

Chapter 6: GL reference 123

6.83 gl.IsTexture

NAME
gl.IsTexture – determine if a name corresponds to a texture

SYNOPSIS
bool = gl.IsTexture(texture)

FUNCTION
gl.IsTexture() returns #GL_TRUE if texture is currently the name of a texture. If
texture is zero, or is a non-zero value that is not currently the name of a texture, or if
an error occurs, gl.IsTexture() returns #GL_FALSE.

A name returned by gl.GenTextures(), but not yet associated with a texture by calling
gl.BindTexture(), is not the name of a texture.

Please consult an OpenGL reference manual for more information.

INPUTS

texture specifies a value that may be the name of a texture

RESULTS

bool #GL_TRUE or #GL_FALSE

ERRORS
#GL_INVALID_OPERATION is generated if gl.IsTexture() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

6.84 gl.Light

NAME
gl.Light – set light source parameters

SYNOPSIS
gl.Light(light, pname, param)

FUNCTION
gl.Light() sets the values of individual light source parameters. light names the light
and is a symbolic name of the form #GL_LIGHTi, where i ranges from 0 to the value
of #GL_MAX_LIGHTS - 1. pname specifies one of ten light source parameters, again by
symbolic name. param is either a single floating-point value or a table that contains
several floating-point values. This depends on the pname parameter.

To enable and disable lighting calculation, call gl.Enable() and gl.Disable() with
argument #GL_LIGHTING. Lighting is initially disabled. When it is enabled, light sources
that are enabled contribute to the lighting calculation. Light source i is enabled and
disabled using gl.Enable() and gl.Disable() with argument #GL_LIGHTi.

The ten light parameters are as follows:

#GL_AMBIENT

param must contain four floating-point values that specify the ambient
RGBA intensity of the light. The initial ambient light intensity is (0, 0, 0,
1).

124 GL Galore manual

#GL_DIFFUSE

param must contain four floating-point values that specify the diffuse RGBA
intensity of the light. The initial value for #GL_LIGHT0 is (1, 1, 1, 1); for
other lights, the initial value is (0, 0, 0, 1).

#GL_SPECULAR

param must contain four floating-point values that specify the specular
RGBA intensity of the light. The initial value for #GL_LIGHT0 is (1, 1, 1,
1); for other lights, the initial value is (0, 0, 0, 1).

#GL_POSITION

param must contain four floating-point values that specify the position of the
light in homogeneous object coordinates. The position is transformed by the
modelview matrix when gl.Light() is called (just as if it were a point), and
it is stored in eye coordinates. If the w component of the position is 0, the
light is treated as a directional source. Diffuse and specular lighting calcu-
lations take the light’s direction, but not its actual position, into account,
and attenuation is disabled. Otherwise, diffuse and specular lighting calcu-
lations are based on the actual location of the light in eye coordinates, and
attenuation is enabled. The initial position is (0, 0, 1, 0); thus, the initial
light source is directional, parallel to, and in the direction of the -z axis.

#GL_SPOT_DIRECTION

param must contain three floating-point values that specify the direction of
the light in homogeneous object coordinates. The spot direction is trans-
formed by the upper 3x3 of the modelview matrix when gl.Light() is called,
and it is stored in eye coordinates. It is significant only when #GL_SPOT_

CUTOFF is not 180, which it is initially. The initial direction is (0, 0, -1).

#GL_SPOT_EXPONENT

param must be a single floating-point value that specifies the intensity distri-
bution of the light. Only values in the range (0, 128) are accepted. Effective
light intensity is attenuated by the cosine of the angle between the direc-
tion of the light and the direction from the light to the vertex being lighted,
raised to the power of the spot exponent. Thus, higher spot exponents result
in a more focused light source, regardless of the spot cutoff angle (see #GL_

SPOT_CUTOFF, next paragraph). The initial spot exponent is 0, resulting in
uniform light distribution.

#GL_SPOT_CUTOFF

param must be a single floating-point value that specifies the maximum
spread angle of a light source. Only values in the range (0, 90) and the
special value 180 are accepted. If the angle between the direction of the
light and the direction from the light to the vertex being lighted is greater
than the spot cutoff angle, the light is completely masked. Otherwise, its
intensity is controlled by the spot exponent and the attenuation factors. The
initial spot cutoff is 180, resulting in uniform light distribution.

#GL_CONSTANT_ATTENUATION

param must be a single floating-point value that specifies one of the three
light attenuation factors. Only non-negative values are accepted. If the

Chapter 6: GL reference 125

light is positional, rather than directional, its intensity is attenuated by
the reciprocal of the sum of the constant factor, the linear factor times the
distance between the light and the vertex being lighted, and the quadratic
factor times the square of the same distance. The initial attenuation factors
are (1, 0, 0), resulting in no attenuation.

#GL_LINEAR_ATTENUATION

See the documentation of #GL_CONSTANT_ATTENUATION above.

#GL_QUADRATIC_ATTENUATION

See the documentation of #GL_CONSTANT_ATTENUATION above.

It is always the case that #GL_LIGHTi = #GL_LIGHT0 + i.

Please consult an OpenGL reference manual for more information.

INPUTS

light specifies a light (see above)

pname specifies a single-valued light source parameter for light (see above)

param a single floating-point value or a table containing multiple floating-point
values (depends on the pname parameter, see above)

ERRORS
#GL_INVALID_ENUM is generated if either light or pname is not an accepted value.

#GL_INVALID_VALUE is generated if a spot exponent value is specified outside the range
(0, 128) , or if spot cutoff is specified outside the range (0, 90) (except for the special
value 180), or if a negative attenuation factor is specified.

#GL_INVALID_OPERATION is generated if gl.Light() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetLight()

gl.IsEnabled() with argument #GL_LIGHTING

6.85 gl.LightModel

NAME
gl.LightModel – set the lighting model parameters

SYNOPSIS
gl.LightModel(pname, param)

FUNCTION
gl.LightModel() sets the lighting model parameter. pname names a parameter and
params gives the new value. There are three lighting model parameters:

#GL_LIGHT_MODEL_AMBIENT

param must contain four floating-point values that specify the ambient
RGBA intensity of the entire scene. The initial ambient scene intensity is
(0.2, 0.2, 0.2, 1.0).

126 GL Galore manual

#GL_LIGHT_MODEL_LOCAL_VIEWER

param must be a single floating-point value that specifies how specular re-
flection angles are computed. If param is 0, specular reflection angles take
the view direction to be parallel to and in the direction of the -z axis, re-
gardless of the location of the vertex in eye coordinates. Otherwise, specular
reflections are computed from the origin of the eye coordinate system. The
initial value is 0.

#GL_LIGHT_MODEL_TWO_SIDE

param must be a single floating-point value that specifies whether one- or
two-sided lighting calculations are done for polygons. It has no effect on
the lighting calculations for points, lines, or bitmaps. If param is 0, one-
sided lighting is specified, and only the front material parameters are used
in the lighting equation. Otherwise, two-sided lighting is specified. In this
case, vertices of back-facing polygons are lighted using the back material
parameters and have their normals reversed before the lighting equation is
evaluated. Vertices of front-facing polygons are always lighted using the front
material parameters, with no change to their normals. The initial value is 0.

In RGBA mode, the lighted color of a vertex is the sum of the material emission inten-
sity, the product of the material ambient reflectance and the lighting model full-scene
ambient intensity, and the contribution of each enabled light source. Each light source
contributes the sum of three terms: ambient, diffuse, and specular. The ambient light
source contribution is the product of the material ambient reflectance and the light’s
ambient intensity. The diffuse light source contribution is the product of the material
diffuse reflectance, the light’s diffuse intensity, and the dot product of the vertex’s normal
with the normalized vector from the vertex to the light source. The specular light source
contribution is the product of the material specular reflectance, the light’s specular in-
tensity, and the dot product of the normalized vertex-to-eye and vertex-to-light vectors,
raised to the power of the shininess of the material. All three light source contributions
are attenuated equally based on the distance from the vertex to the light source and on
light source direction, spread exponent, and spread cutoff angle. All dot products are
replaced with 0 if they evaluate to a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the material
diffuse reflectance.

In color index mode, the value of the lighted index of a vertex ranges from the ambient
to the specular values passed to gl.Material() using #GL_COLOR_INDEXES. Diffuse and
specular coefficients, computed with a (.30, .59, .11) weighting of the lights’ colors, the
shininess of the material, and the same reflection and attenuation equations as in the
RGBA case, determine how much above ambient the resulting index is.

Please consult an OpenGL reference manual for more information.

INPUTS

pname specifies a single-valued lighting model parameter (see above)

param a single floating-point value or a table containing multiple floating-point
values (depends on the pname parameter, see above)

Chapter 6: GL reference 127

ERRORS
#GL_INVALID_ENUM is generated if pname is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.LightModel() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_LIGHT_MODEL_AMBIENT

gl.Get() with argument #GL_LIGHT_MODEL_LOCAL_VIEWER

gl.Get() with argument #GL_LIGHT_MODEL_TWO_SIDE

gl.IsEnabled() with argument #GL_LIGHTING

6.86 gl.LineStipple

NAME
gl.LineStipple – specify the line stipple pattern

SYNOPSIS
gl.LineStipple(factor, pattern)

FUNCTION
Line stippling masks out certain fragments produced by rasterization; those fragments
will not be drawn. The masking is achieved by using three parameters: the 16-bit line
stipple pattern pattern, the repeat count factor, and an integer stipple counter s.

Counter s is reset to 0 whenever gl.Begin() is called and before each line segment of a

gl.Begin(#GL_LINES)

gl.End()

sequence is generated. It is incremented after each fragment of a unit width aliased line
segment is generated or after each i fragments of an i width line segment are generated.
The i fragments associated with count s are masked out if

pattern bit s factor % 16

is 0, otherwise these fragments are sent to the frame buffer. Bit zero of pattern is the
least significant bit.

Antialiased lines are treated as a sequence of 1*width rectangles for purposes of stippling.
Whether rectangle s is rasterized or not depends on the fragment rule described for aliased
lines, counting rectangles rather than groups of fragments.

To enable and disable line stippling, call gl.Enable() and gl.Disable() with argument
#GL_LINE_STIPPLE. When enabled, the line stipple pattern is applied as described above.
When disabled, it is as if the pattern were all 1’s. Initially, line stippling is disabled.

Alternatively, you can also pass a string consisting of 16 characters that are either 0 or
1 in pattern, e.g. "1111000011110000".

Please consult an OpenGL reference manual for more information.

INPUTS

factor specifies a multiplier for each bit in the line stipple pattern; if factor is 3, for
example, each bit in the pattern is used three times before the next bit in
the pattern is used; factor is clamped to the range [1, 256] and defaults to 1.

128 GL Galore manual

pattern specifies a 16-bit integer whose bit pattern determines which fragments of
a line will be drawn when the line is rasterized; bit zero is used first; the
default pattern is all 1’s.

ERRORS
#GL_INVALID_OPERATION is generated if gl.LineStipple() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_LINE_STIPPLE_PATTERN

gl.Get() with argument #GL_LINE_STIPPLE_REPEAT

gl.IsEnabled() with argument #GL_LINE_STIPPLE

6.87 gl.LineWidth

NAME
gl.LineWidth – specify the width of rasterized lines

SYNOPSIS
gl.LineWidth(width)

FUNCTION
gl.LineWidth() specifies the rasterized width of both aliased and antialiased lines. Us-
ing a line width other than 1 has different effects, depending on whether line antialiasing
is enabled. To enable and disable line antialiasing, call gl.Enable() and gl.Disable()

with argument #GL_LINE_SMOOTH. Line antialiasing is initially disabled.

If line antialiasing is disabled, the actual width is determined by rounding the supplied
width to the nearest integer. (If the rounding results in the value 0, it is as if the line
width were 1.) If delta x >= delta y , i pixels are filled in each column that is rasterized,
where i is the rounded value of width. Otherwise, i pixels are filled in each row that is
rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that
intersects the region lying within the rectangle having width equal to the current line
width, length equal to the actual length of the line, and centered on the mathematical
line segment. The coverage value for each fragment is the window coordinate area of the
intersection of the rectangular region with the corresponding pixel square. This value is
saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported
width is requested, the nearest supported width is used. Only width 1 is guaranteed
to be supported; others depend on the implementation. Likewise, there is a range for
aliased line widths as well. To query the range of supported widths and the size difference
between supported widths within the range, call gl.Get() with arguments #GL_LINE_
WIDTH_RANGE and #GL_LINE_WIDTH_GRANULARITY.

The line width specified by gl.LineWidth() is always returned when #GL_LINE_WIDTH

is queried. Clamping and rounding for aliased and antialiased lines have no effect on the
specified value.

Chapter 6: GL reference 129

Nonantialiased line width may be clamped to an implementation-dependent maximum.
Although this maximum cannot be queried, it must be no less than the maximum value
for antialiased lines, rounded to the nearest integer value.

Please consult an OpenGL reference manual for more information.

INPUTS

width specifies the width of rasterized lines; the initial value is 1

ERRORS
#GL_INVALID_VALUE is generated if width is less than or equal to 0.

#GL_INVALID_OPERATION is generated if gl.LineWidth() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_LINE_WIDTH

gl.Get() with argument #GL_LINE_WIDTH_RANGE

gl.Get() with argument #GL_LINE_WIDTH_GRANULARITY

gl.IsEnabled() with argument #GL_LINE_SMOOTH

6.88 gl.ListBase

NAME
gl.ListBase – set the display-list base for gl.CallLists()

SYNOPSIS
gl.ListBase(base)

FUNCTION
gl.CallLists() specifies an array of offsets. Display-list names are generated by adding
base to each offset. Names that reference valid display lists are executed; the others are
ignored.

Please consult an OpenGL reference manual for more information.

INPUTS

base specifies an integer offset that will be added to gl.CallLists() offsets to
generate display-list names; the initial value is 0

ERRORS
#GL_INVALID_OPERATION is generated if gl.ListBase() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_LIST_BASE

130 GL Galore manual

6.89 gl.LoadIdentity

NAME
gl.LoadIdentity – replace the current matrix with the identity matrix

SYNOPSIS
gl.LoadIdentity()

FUNCTION
gl.LoadIdentity() replaces the current matrix with the identity matrix. It is semanti-
cally equivalent to calling gl.LoadMatrix() with the identity matrix but in some cases
it is more efficient.

Please consult an OpenGL reference manual for more information.

INPUTS
none

ERRORS
#GL_INVALID_OPERATION is generated if gl.LoadIdentity() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End() .

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

6.90 gl.LoadMatrix

NAME
gl.LoadMatrix – replace the current matrix with the specified matrix

SYNOPSIS
gl.LoadMatrix(mArray)

FUNCTION
gl.LoadMatrix() replaces the current matrix with the one whose elements are specified
in mArray. The current matrix is the projection matrix, modelview matrix, or tex-
ture matrix, depending on the current matrix mode (See Section 6.96 [gl.MatrixMode],
page 139, for details.). mArray must store its values in column-major order.

Please consult an OpenGL reference manual for more information.

INPUTS

mArray specifies an array containing 16 consecutive values, which are used as the
elements of a 4*4 column-major matrix

ERRORS
#GL_INVALID_OPERATION is generated if gl.LoadMatrix() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End() .

Chapter 6: GL reference 131

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

6.91 gl.LoadName

NAME
gl.LoadName – load a name onto the name stack

SYNOPSIS
gl.LoadName(name)

FUNCTION
The name stack is used during selection mode to allow sets of rendering commands to
be uniquely identified. It consists of an ordered set of unsigned integers and is initially
empty.

gl.LoadName() causes name to replace the value on the top of the name stack.

The name stack is always empty while the render mode is not #GL_SELECT. Calls to
gl.LoadName() while the render mode is not #GL_SELECT are ignored.

Please consult an OpenGL reference manual for more information.

INPUTS

name specifies a name that will replace the top value on the name stack

ERRORS
#GL_INVALID_OPERATION is generated if gl.LoadName() is called while the name stack
is empty.

#GL_INVALID_OPERATION is generated if gl.LoadName() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_NAME_STACK_DEPTH

gl.Get() with argument #GL_MAX_NAME_STACK_DEPTH

6.92 gl.LogicOp

NAME
gl.LogicOp – specify a logical pixel operation for color index rendering

SYNOPSIS
gl.LogicOp(opcode)

FUNCTION
gl.LogicOp() specifies a logical operation that, when enabled, is applied between the
incoming color index or RGBA color and the color index or RGBA color at the corre-
sponding location in the frame buffer. To enable or disable the logical operation, call

132 GL Galore manual

gl.Enable() and gl.Disable() using the symbolic constant #GL_COLOR_LOGIC_OP for
RGBA mode or #GL_INDEX_LOGIC_OP for color index mode. The initial value is disabled
for both operations.

#GL_CLEAR

0

#GL_SET 1

#GL_COPY s

#GL_COPY_INVERTED

~s

#GL_NOOP d

#GL_INVERT

~d

#GL_AND s & d

#GL_NAND ~(s & d)

#GL_OR s | d

#GL_NOR ~(s | d)

#GL_XOR s ^ d

#GL_EQUIV

~(s ^ d)

#GL_AND_REVERSE

s & ~d

#GL_AND_INVERTED

~s & d

#GL_OR_REVERSE

s | ~d

#GL_OR_INVERTED

~s | d

opcode is a symbolic constant chosen from the list above. In the explanation of the
logical operations, s represents the incoming color index and d represents the index in
the frame buffer. Standard C-language operators are used. As these bitwise operators
suggest, the logical operation is applied independently to each bit pair of the source and
destination indices or colors.

Color index logical operations are always supported. RGBA logical operations are sup-
ported only if the GL version is 1.1 or greater.

When more than one RGBA color or index buffer is enabled for drawing, logical oper-
ations are performed separately for each enabled buffer, using for the destination value
the contents of that buffer (See Section 6.34 [gl.DrawBuffer], page 57, for details.).

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 133

INPUTS

opcode specifies a symbolic constant that selects a logical operation (see above for
supported constants)

ERRORS
#GL_INVALID_ENUM is generated if opcode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.LogicOp() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_LOGIC_OP_MODE.

gl.IsEnabled() with argument #GL_COLOR_LOGIC_OP or #GL_INDEX_LOGIC_OP.

6.93 gl.Map

NAME
gl.Map – define a one- or two-dimensional evaluator

SYNOPSIS
gl.Map(target, u1, u2, pointsArray)

gl.Map(target, u1, u2, v1, v2, pointsArray)

FUNCTION
Evaluators provide a way to use polynomial or rational polynomial mapping to produce
vertices, normals, texture coordinates, and colors. The values produced by an evaluator
are sent to further stages of GL processing just as if they had been presented using
gl.Vertex(), gl.Normal(), gl.TexCoord(), and gl.Color() commands, except that
the generated values do not update the current normal, texture coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree
supported by the GL implementation) can be described using evaluators. These include
almost all splines used in computer graphics: B-splines, Bezier curves, Hermite splines,
and so on.

gl.Map() is used to define the basis and to specify what kind of values are produced.
Once defined, a map can be enabled and disabled by calling gl.Enable() and
gl.Disable() with the map name, one of the nine predefined values for target described
below. gl.EvalCoord() evaluates the one-dimensional maps that are enabled. When
gl.EvalCoord() presents a value u or values u and v, the Bernstein functions are
evaluated using u^ and v^ , where

u^ = (u - u1) / (u2 - u1)

v^ = (v - v1) / (v2 - v1)

target is a symbolic constant that indicates what kind of control points are provided
in pointsArray, and what output is generated when the map is evaluated. In one-
dimensional mode it can assume one of the following nine predefined values:

#GL_MAP1_VERTEX_3

Each control point is three floating-point values representing x, y, and z.
Internal gl.Vertex() commands are generated when the map is evaluated.

134 GL Galore manual

#GL_MAP1_VERTEX_4

Each control point is four floating-point values representing x, y, z, and w.
Internal gl.Vertex() commands are generated when the map is evaluated.

#GL_MAP1_INDEX

Each control point is a single floating-point value representing a color index.
Internal gl.Index() commands are generated when the map is evaluated
but the current index is not updated with the value of these gl.Index()

commands.

#GL_MAP1_COLOR_4

Each control point is four floating-point values representing red, green, blue,
and alpha. Internal gl.Color() commands are generated when the map
is evaluated but the current color is not updated with the value of these
gl.Color() commands.

#GL_MAP1_NORMAL

Each control point is three floating-point values representing the x, y, and
z components of a normal vector. Internal gl.Normal() commands are
generated when the map is evaluated but the current normal is not updated
with the value of these gl.Normal() commands.

#GL_MAP1_TEXTURE_COORD_1

Each control point is a single floating-point value representing the s texture
coordinate. Internal gl.TexCoord() commands are generated when the map
is evaluated but the current texture coordinates are not updated with the
value of these gl.TexCoord() commands.

#GL_MAP1_TEXTURE_COORD_2

Each control point is two floating-point values representing the s and t tex-
ture coordinates. Internal gl.TexCoord() commands are generated when
the map is evaluated but the current texture coordinates are not updated
with the value of these gl.TexCoord() commands.

#GL_MAP1_TEXTURE_COORD_3

Each control point is three floating-point values representing the s, t, and r
texture coordinates. Internal gl.TexCoord() commands are generated when
the map is evaluated but the current texture coordinates are not updated
with the value of these gl.TexCoord() commands.

#GL_MAP1_TEXTURE_COORD_4

Each control point is four floating-point values representing the s, t, r, and q
texture coordinates. Internal gl.TexCoord() commands are generated when
the map is evaluated but the current texture coordinates are not updated
with the value of these gl.TexCoord() commands.

In two-dimensional mode the following predefined constants are supported:

#GL_MAP2_VERTEX_3

Each control point is three floating-point values representing x, y, and z.
Internal gl.Vertex() commands are generated when the map is evaluated.

Chapter 6: GL reference 135

#GL_MAP2_VERTEX_4

Each control point is four floating-point values representing x, y, z, and w.
Internal gl.Vertex() commands are generated when the map is evaluated.

#GL_MAP2_INDEX

Each control point is a single floating-point value representing a color index.
Internal gl.Index() commands are generated when the map is evaluated
but the current index is not updated with the value of these gl.Index()

commands.

#GL_MAP2_COLOR_4

Each control point is four floating-point values representing red, green, blue,
and alpha. Internal gl.Color() commands are generated when the map
is evaluated but the current color is not updated with the value of these
gl.Color() commands.

#GL_MAP2_NORMAL

Each control point is three floating-point values representing the x, y, and
z components of a normal vector. Internal gl.Normal() commands are
generated when the map is evaluated but the current normal is not updated
with the value of these gl.Normal() commands.

#GL_MAP2_TEXTURE_COORD_1

Each control point is a single floating-point value representing the s texture
coordinate. Internal gl.TexCoord() commands are generated when the map
is evaluated but the current texture coordinates are not updated with the
value of these gl.TexCoord() commands.

#GL_MAP2_TEXTURE_COORD_2

Each control point is two floating-point values representing the s and t tex-
ture coordinates. Internal gl.TexCoord() commands are generated when
the map is evaluated but the current texture coordinates are not updated
with the value of these gl.TexCoord() commands.

#GL_MAP2_TEXTURE_COORD_3

Each control point is three floating-point values representing the s, t, and r
texture coordinates. Internal gl.TexCoord() commands are generated when
the map is evaluated but the current texture coordinates are not updated
with the value of these gl.TexCoord() commands.

#GL_MAP2_TEXTURE_COORD_4

Each control point is four floating-point values representing the s, t, r, and q
texture coordinates. Internal gl.TexCoord() commands are generated when
the map is evaluated but the current texture coordinates are not updated
with the value of these gl.TexCoord() commands.

Initially, #GL_AUTO_NORMAL is enabled. If #GL_AUTO_NORMAL is enabled, normal vectors
are generated when either #GL_MAP2_VERTEX_3 or #GL_MAP2_VERTEX_4 is used to gener-
ate vertices.

Please consult an OpenGL reference manual for more information.

136 GL Galore manual

INPUTS

target specifies the kind of values that are generated by the evaluator (see above)

u1 specify a linear mapping of u, as presented to gl.EvalCoord(), to u^ , the
variable that is evaluated by the equations specified by this command

u2 specify a linear mapping of u, as presented to gl.EvalCoord(), to u^ , the
variable that is evaluated by the equations specified by this command

v1 specify a linear mapping of v, as presented to gl.EvalCoord(), to v^ , one
of the two variables that are evaluated by the equations specified by this
command

v2 specify a linear mapping of v, as presented to gl.EvalCoord(), to v^ , one
of the two variables that are evaluated by the equations specified by this
command

pointsArray

specifies a table containing a number of control points (see above)

ERRORS
#GL_INVALID_ENUM is generated if target is not an accepted value.

#GL_INVALID_VALUE is generated if u1 is equal to u2, or if v1 is equal to v2.

#GL_INVALID_OPERATION is generated if gl.Map() is executed between the execution of
gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetMap()

gl.Get() with argument #GL_MAX_EVAL_ORDER

gl.IsEnabled() with argument #GL_MAP1_VERTEX_3

gl.IsEnabled() with argument #GL_MAP1_VERTEX_4

gl.IsEnabled() with argument #GL_MAP1_INDEX

gl.IsEnabled() with argument #GL_MAP1_COLOR_4

gl.IsEnabled() with argument #GL_MAP1_NORMAL

gl.IsEnabled() with argument #GL_MAP1_TEXTURE_COORD_1

gl.IsEnabled() with argument #GL_MAP1_TEXTURE_COORD_2

gl.IsEnabled() with argument #GL_MAP1_TEXTURE_COORD_3

gl.IsEnabled() with argument #GL_MAP1_TEXTURE_COORD_4

gl.IsEnabled() with argument #GL_MAP2_VERTEX_3

gl.IsEnabled() with argument #GL_MAP2_VERTEX_4

gl.IsEnabled() with argument #GL_MAP2_INDEX

gl.IsEnabled() with argument #GL_MAP2_COLOR_4

gl.IsEnabled() with argument #GL_MAP2_NORMAL

gl.IsEnabled() with argument #GL_MAP2_TEXTURE_COORD_1

gl.IsEnabled() with argument #GL_MAP2_TEXTURE_COORD_2

gl.IsEnabled() with argument #GL_MAP2_TEXTURE_COORD_3

gl.IsEnabled() with argument #GL_MAP2_TEXTURE_COORD_4

Chapter 6: GL reference 137

6.94 gl.MapGrid

NAME
gl.MapGrid – define a one- or two-dimensional mesh

SYNOPSIS
gl.MapGrid(un, u1, u2[, vn, v1, v2])

FUNCTION
gl.MapGrid() and gl.EvalMesh() are used together to efficiently generate and evaluate
a series of evenly-spaced map domain values. gl.EvalMesh() steps through the integer
domain of a one- or two-dimensional grid, whose range is the domain of the evaluation
maps specified by gl.Map().

gl.MapGrid() specifies the linear grid mappings between the i (or i and j) integer
grid coordinates, to the u (or u and v) floating-point evaluation map coordinates. See
Section 6.93 [gl.Map], page 133, for details of how u and v coordinates are evaluated.

In one-dimensional mode, gl.MapGrid() specifies a single linear mapping such that
integer grid coordinate 0 maps exactly to u1, and integer grid coordinate un maps exactly
to u2. All other integer grid coordinates i are mapped so that

u = i(u2 - u1) / un + u1

In two-dimensional mode gl.MapGrid() specifies two such linear mappings. One maps
integer grid coordinate i = 0 exactly to u1, and integer grid coordinate i = un exactly
to u2. The other maps integer grid coordinate j = 0 exactly to v1, and integer grid
coordinate j = vn exactly to v2. Other integer grid coordinates i and j are mapped such
that

u = i(u2 - u1) / un + u1

v = j(v2 - v1) / vn + v1

The mappings specified by gl.MapGrid() are used identically by gl.EvalMesh() and
gl.EvalPoint().

Please consult an OpenGL reference manual for more information.

INPUTS

un specifies the number of partitions in the grid range interval [u1, u2]; must
be positive

u1 specify the mappings for integer grid domain values i = 0 and i = un

u2 specify the mappings for integer grid domain values i = 0 and i = un

vn optional: specifies the number of partitions in the grid range interval [v1,
v2]

v1 optional: specify the mappings for integer grid domain values j = 0 and j =
vn

v2 optional: specify the mappings for integer grid domain values j = 0 and j =
vn

ERRORS
#GL_INVALID_VALUE is generated if either un or vn is not positive.

138 GL Galore manual

#GL_INVALID_OPERATION is generated if gl.MapGrid() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MAP1_GRID_DOMAIN

gl.Get() with argument #GL_MAP2_GRID_DOMAIN

gl.Get() with argument #GL_MAP1_GRID_SEGMENTS

gl.Get() with argument #GL_MAP2_GRID_SEGMENTS

6.95 gl.Material

NAME
gl.Material – specify material parameters for the lighting model

SYNOPSIS
gl.Material(face, pname, param)

FUNCTION
gl.Material() assigns values to material parameters. There are two matched sets of
material parameters. One, the front-facing set, is used to shade points, lines, bitmaps,
and all polygons (when two-sided lighting is disabled), or just front-facing polygons (when
two-sided lighting is enabled). The other set, back-facing, is used to shade back-facing
polygons only when two-sided lighting is enabled. See Section 6.85 [gl.LightModel],
page 125, for details concerning one- and two-sided lighting calculations.

gl.Material() takes three arguments. The first, face, specifies whether the #GL_FRONT
materials, the #GL_BACK materials, or both #GL_FRONT_AND_BACK materials will be mod-
ified. The second, pname, specifies which of several parameters in one or both sets will
be modified. The third, param, specifies what value or values will be assigned to the
specified parameter. It can be single floating-point value or a table containing multiple
floating-point values.

Material parameters are used in the lighting equation that is optionally applied to each
vertex. The equation is discussed in the gl.LightModel() reference page. The parame-
ters that can be specified using gl.Material(), and their interpretations by the lighting
equation, are as follows:

#GL_AMBIENT

param must be a table containing four floating-point values that specify the
ambient RGBA reflectance of the material. The initial ambient reflectance
for both front- and back-facing materials is (0.2, 0.2, 0.2, 1.0).

#GL_DIFFUSE

param must be a table containing four floating-point values that specify the
diffuse RGBA reflectance of the material. The initial diffuse reflectance for
both front- and back-facing materials is (0.8, 0.8, 0.8, 1.0).

#GL_SPECULAR

param must be a table containing four floating-point values that specify the
specular RGBA reflectance of the material. The initial specular reflectance
for both front- and back-facing materials is (0, 0, 0, 1).

Chapter 6: GL reference 139

#GL_EMISSION

param must be a table containing four floating-point values that specify the
RGBA emitted light intensity of the material. The initial emission intensity
for both front- and back-facing materials is (0, 0, 0, 1).

#GL_SHININESS

param must be a single floating-point value that specifies the RGBA specular
exponent of the material. Only values in the range (0,128) are accepted. The
initial specular exponent for both front- and back-facing materials is 0.

#GL_AMBIENT_AND_DIFFUSE

Equivalent to calling gl.Material() twice with the same parameter values,
once with #GL_AMBIENT and once with #GL_DIFFUSE.

#GL_COLOR_INDEXES

param must be a table containing three floating-point values specifying the
color indices for ambient, diffuse, and specular lighting. These three values,
and #GL_SHININESS, are the only material values used by the color index
mode lighting equation. See Section 6.85 [gl.LightModel], page 125, for a
discussion of color index lighting.

The material parameters can be updated at any time. In particular, gl.Material() can
be called between a call to gl.Begin() and the corresponding call to gl.End(). If only a
single material parameter is to be changed per vertex, however, gl.ColorMaterial() is
preferred over gl.Material() (See Section 6.20 [gl.ColorMaterial], page 38, for details.).

While the ambient, diffuse, specular and emission material parameters all have alpha
components, only the diffuse alpha component is used in the lighting computation.

Please consult an OpenGL reference manual for more information.

INPUTS

face specifies which face or faces are being updated; must be one of #GL_FRONT,
#GL_BACK, or #GL_FRONT_AND_BACK

pname specifies the material parameter of the face or faces that is being updated
(see above)

param a floating-point value (or a table containing multiple floating-point values)
that pname will be set to

ERRORS
#GL_INVALID_ENUM is generated if either face or pname is not an accepted value.

#GL_INVALID_VALUE is generated if a specular exponent outside the range (0,128) is
specified.

ASSOCIATED GETS
gl.GetMaterial()

6.96 gl.MatrixMode

NAME
gl.MatrixMode – specify which matrix is the current matrix

140 GL Galore manual

SYNOPSIS
gl.MatrixMode(mode)

FUNCTION
gl.MatrixMode() sets the current matrix mode. mode can assume one of three values:

#GL_MODELVIEW

Applies subsequent matrix operations to the modelview matrix stack.

#GL_PROJECTION

Applies subsequent matrix operations to the projection matrix stack.

#GL_TEXTURE

Applies subsequent matrix operations to the texture matrix stack.

To find out which matrix stack is currently the target of all matrix operations, call
gl.Get() with argument #GL_MATRIX_MODE. The initial value is #GL_MODELVIEW.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies which matrix stack is the target for subsequent matrix operations
(see above)

ERRORS
#GL_INVALID_ENUM is generated if mode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.MatrixMode() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

6.97 gl.MultMatrix

NAME
gl.MultMatrix – multiply the current matrix with the specified matrix

SYNOPSIS
gl.MultMatrix(mArray)

FUNCTION
gl.MultMatrix() multiplies the current matrix with the one specified using mArray,
and replaces the current matrix with the product.

The current matrix is determined by the current matrix mode (See Section 6.96
[gl.MatrixMode], page 139, for details.). It is either the projection matrix, modelview
matrix, or the texture matrix.

While the elements of the matrix are specified with double precision, the GL may store
or operate on these values in less-than-single precision.

In many computer languages, 4x4 arrays are represented in row-major order. The trans-
formations just described represent these matrices in column-major order. The order of
the multiplication is important. For example, if the current transformation is a rotation,

Chapter 6: GL reference 141

and gl.MultMatrix() is called with a translation matrix, the translation is done directly
on the coordinates to be transformed, while the rotation is done on the results of that
translation.

Please consult an OpenGL reference manual for more information.

INPUTS

mArray table containing 16 consecutive values that are used as the elements of a 4x4
column-major matrix

ERRORS
#GL_INVALID_OPERATION is generated if glMultMatrix is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

6.98 gl.NewList

NAME
gl.NewList – create or replace a display list

SYNOPSIS
gl.NewList(list, mode)

FUNCTION
Display lists are groups of GL commands that have been stored for subsequent execution.
Display lists are created with gl.NewList(). All subsequent commands are placed in
the display list, in the order issued, until gl.EndList() is called.

gl.NewList() has two arguments. The first argument, list, is a positive integer that
becomes the unique name for the display list. Names can be created and reserved with
gl.GenLists() and tested for uniqueness with gl.IsList(). The second argument,
mode, is a symbolic constant that can assume one of two values:

#GL_COMPILE

Commands are merely compiled.

#GL_COMPILE_AND_EXECUTE

Commands are executed as they are compiled into the display list.

Certain commands are not compiled into the display list but are executed
immediately, regardless of the display list mode that is currently active. These
commands are gl.AreTexturesResident(), gl.ColorPointer(), gl.DeleteLists(),
gl.DeleteTextures(), and gl.DisableClientState(), gl.EdgeFlagPointer(),
gl.EnableClientState(), and gl.FeedbackBuffer(), gl.Finish(), gl.Flush(),
gl.GenLists(), gl.GenTextures(), gl.IndexPointer(), gl.InterleavedArrays(),
gl.IsEnabled(), and also gl.IsList(), gl.IsTexture(), gl.NormalPointer(),

142 GL Galore manual

gl.PopClientAttrib(), and finally also gl.PixelStore(), gl.PushClientAttrib(),
gl.ReadPixels(), gl.RenderMode(), gl.SelectBuffer(), gl.TexCoordPointer(),
gl.VertexPointer(), and all of the gl.Get() commands.

When gl.EndList() is encountered, the display-list definition is completed by associ-
ating the list with the unique name list (specified in the gl.NewList() command). If
a display list with name list already exists, it is replaced only when gl.EndList() is
called.

gl.CallList() and gl.CallLists() can be entered into display lists. Commands in
the display list or lists executed by gl.CallList() or gl.CallLists() are not included
in the display list being created, even if the list creation mode is #GL_COMPILE_AND_

EXECUTE.

A display list is just a group of commands and arguments, so errors generated by com-
mands in a display list must be generated when the list is executed. If the list is created
in #GL_COMPILE mode, errors are not generated until the list is executed.

Please consult an OpenGL reference manual for more information.

INPUTS

list specifies the display-list name as an integer

mode specifies the compilation mode, which can be #GL_COMPILE or #GL_COMPILE_
AND_EXECUTE

ERRORS
#GL_INVALID_VALUE is generated if list is 0.

#GL_INVALID_ENUM is generated if mode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.EndList() is called without a preceding
gl.NewList(), or if gl.NewList() is called while a display list is being defined.

#GL_INVALID_OPERATION is generated if gl.NewList() or gl.EndList() is executed
between the execution of gl.Begin() and the corresponding execution of gl.End().

#GL_OUT_OF_MEMORY is generated if there is insufficient memory to compile the display
list. If the GL version is 1.1 or greater, no change is made to the previous contents of the
display list, if any, and no other change is made to the GL state. (It is as if no attempt
had been made to create the new display list.)

ASSOCIATED GETS
gl.IsList()

gl.Get() with argument #GL_LIST_INDEX

gl.Get() with argument #GL_LIST_MODE

6.99 gl.Normal

NAME
gl.Normal – set the current normal vector

SYNOPSIS
gl.Normal(nx, ny, nz)

Chapter 6: GL reference 143

FUNCTION
The current normal is set to the given floating-point coordinates whenever gl.Normal()
is issued. The initial value of the current normal is the unit vector, (0, 0, 1). Alterna-
tively, gl.Normal() can also be called with a single table element containing the x, y, z
normal coordinates.

Normals specified with gl.Normal() need not have unit length. If #GL_NORMALIZE is
enabled, then normals of any length specified with gl.Normal() are normalized after
transformation. If #GL_RESCALE_NORMAL is enabled, normals are scaled by a scaling
factor derived from the modelview matrix. #GL_RESCALE_NORMAL requires that the orig-
inally specified normals were of unit length, and that the modelview matrix contain only
uniform scales for proper results. To enable and disable normalization, call gl.Enable()
and gl.Disable() with either #GL_NORMALIZE or #GL_RESCALE_NORMAL. Normalization
is initially disabled.

The current normal can be updated at any time. In particular, gl.Normal() can be
called between a call to gl.Begin() and the corresponding call to gl.End().

Please consult an OpenGL reference manual for more information.

INPUTS

nx specify the x coordinate of the new current normal

ny specify the y coordinate of the new current normal

nz specify the z coordinate of the new current normal

ASSOCIATED GETS
gl.Get() with argument #GL_CURRENT_NORMAL

gl.IsEnabled() with argument #GL_NORMALIZE

gl.IsEnabled() with argument #GL_RESCALE_NORMAL

6.100 gl.NormalPointer

NAME
gl.NormalPointer – define an array of normals

SYNOPSIS
gl.NormalPointer(normalArray[, type])

FUNCTION
gl.NormalPointer() specifies an array of normals to use when rendering. normalArray
can be either a one-dimensional table consisting of an arbitrary number of consecutive
normals or a two-dimensional table consisting of an arbitrary number of subtables which
contain a normal each. Every normal must contain x, y, and z coordinates specified as
floating-point values. If normalArray is a one-dimensional table, you need to set the
optional type argument to #GL_TRUE. If normalArray is a two-dimensional table, you
can leave out the optional type argument or set it to #GL_FALSE.

If you pass Nil in normalArray, the normal array buffer will be freed but it won’t be
removed from OpenGL. You need to do this manually, e.g. by disabling the normal array
or defining a new one.

144 GL Galore manual

To enable and disable the normal array, call gl.EnableClientState() and
gl.DisableClientState() with the argument #GL_NORMAL_ARRAY. If enabled, the nor-
mal array is used when gl.DrawArrays(), gl.DrawElements(), or gl.ArrayElement()
is called.

The normal array is initially disabled and isn’t accessed when gl.DrawArrays(),
gl.DrawElements(), or gl.ArrayElement() is called.

Execution of gl.NormalPointer() is not allowed between the execution of gl.Begin()
and the corresponding execution of gl.End(), but an error may or may not be generated.
If no error is generated, the operation is undefined.

gl.NormalPointer() is typically implemented on the client side.

Normal array parameters are client-side state and are therefore not saved or restored
by gl.PushAttrib() and gl.PopAttrib(). Use gl.PushClientAttrib() and
gl.PopClientAttrib() instead.

Please consult an OpenGL reference manual for more information.

INPUTS

normalArray

one- or two-dimensional table containing normal values or Nil (see above)

type optional: #GL_TRUE if the table in argument 1 is a one-dimensional table,
else #GL_FALSE (defaults to #GL_FALSE)

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_NORMAL_ARRAY

gl.Get() with argument #GL_NORMAL_ARRAY_TYPE

gl.Get() with argument #GL_NORMAL_ARRAY_STRIDE

gl.GetPointer() with argument #GL_NORMAL_ARRAY_POINTER

6.101 gl.Ortho

NAME
gl.Ortho – multiply the current matrix with an orthographic matrix

SYNOPSIS
gl.Ortho(left, right, bottom, top, zNear, zFar)

FUNCTION
gl.Ortho() describes a transformation that produces a parallel projection. The current
matrix (See Section 6.96 [gl.MatrixMode], page 139, for details.) is multiplied by this
matrix and the result replaces the current matrix, as if gl.MultMatrix() were called
with the following matrix as its argument:

A 0 0 tx

0 B 0 ty

0 0 C tz

0 0 0 1

where

A = 2 / (right - left)

Chapter 6: GL reference 145

B = 2 / (top - bottom)

C = -2 / (far - near)

tx = -(right + left) / (right - left)

ty = -(top + bottom) / (top - bottom)

tz = -(zFar + zNear) / (zFar - zNear)

Typically, the matrix mode is #GL_PROJECTION, and (left, bottom, -zNear) and (right,
top, -zNear) specify the points on the near clipping plane that are mapped to the lower
left and upper right corners of the window, respectively, assuming that the eye is located
at (0, 0, 0). -zFar specifies the location of the far clipping plane. Both zNear and zFar
can be either positive or negative.

Use gl.PushMatrix() and gl.PopMatrix() to save and restore the current matrix stack.

Please consult an OpenGL reference manual for more information.

INPUTS

left specify the coordinate for the left vertical clipping plane

right specify the coordinate for the right vertical clipping plane

bottom specify the coordinate for the bottom horizontal clipping plane

top specify the coordinate for the top horizontal clipping plane

zNear specify the distance to the nearer depth clipping plane; this value is negative
if the plane is to be behind the viewer

zFar specify the distance to the farther depth clipping plane; this value is negative
if the plane is to be behind the viewer

ERRORS
#GL_INVALID_VALUE is generated if left = right, or bottom = top, or zNear = zFar.

#GL_INVALID_OPERATION is generated if gl.Ortho() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

6.102 gl.PassThrough

NAME
gl.PassThrough – place a marker in the feedback buffer

SYNOPSIS
gl.PassThrough(token)

FUNCTION
Feedback is a GL render mode. The mode is selected by calling gl.RenderMode()

with #GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by

146 GL Galore manual

rasterization. Instead, information about primitives that would have been rasterized is
fed back to the application using the GL. See Section 6.47 [gl.FeedbackBuffer], page 72,
for a description of the feedback buffer and the values in it.

gl.PassThrough() inserts a user-defined marker in the feedback buffer when it is
executed in feedback mode. token is returned as if it were a primitive; it is indicated
with its own unique identifying value: #GL_PASS_THROUGH_TOKEN. The order of
gl.PassThrough() commands with respect to the specification of graphics primitives is
maintained.

gl.PassThrough() is ignored if the GL is not in feedback mode.

Please consult an OpenGL reference manual for more information.

INPUTS

token specifies a marker value to be placed in the feedback buffer following a #GL_

PASS_THROUGH_TOKEN

ERRORS
#GL_INVALID_OPERATION is generated if gl.PassThrough() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_RENDER_MODE

6.103 gl.PixelMap

NAME
gl.PixelMap – set up pixel transfer maps

SYNOPSIS
gl.PixelMap(map, valuesArray)

FUNCTION
gl.PixelMap() sets up translation tables, or maps, used by gl.CopyPixels(),
gl.CopyTexImage(), gl.CopyTexSubImage(), gl.DrawPixels(), gl.ReadPixels(),
gl.TexImage(), and also gl.TexImage1D(), gl.TexImage2D(), gl.TexSubImage(),
gl.TexSubImage1D(), and gl.TexSubImage2D(). Use of these maps is described
completely in the gl.PixelTransfer() reference page, and partly in the reference
pages for the pixel and texture image commands. Only the specification of the maps is
described in this reference page.

map is a symbolic map name, indicating one of ten maps to set. values is a table that
contains an array of values for the specified map name. The ten maps are as follows:

#GL_PIXEL_MAP_I_TO_I

Maps color indices to color indices.

#GL_PIXEL_MAP_S_TO_S

Maps stencil indices to stencil indices.

#GL_PIXEL_MAP_I_TO_R

Maps color indices to red components.

Chapter 6: GL reference 147

#GL_PIXEL_MAP_I_TO_G

Maps color indices to green components.

#GL_PIXEL_MAP_I_TO_B

Maps color indices to blue components.

#GL_PIXEL_MAP_I_TO_A

Maps color indices to alpha components.

#GL_PIXEL_MAP_R_TO_R

Maps red components to red components.

#GL_PIXEL_MAP_G_TO_G

Maps green components to green components.

#GL_PIXEL_MAP_B_TO_B

Maps blue components to blue components.

#GL_PIXEL_MAP_A_TO_A

Maps alpha components to alpha components.

The entries in a map are specified as floating-point numbers. Maps that store color com-
ponent values (all but #GL_PIXEL_MAP_I_TO_I and #GL_PIXEL_MAP_S_TO_S) retain their
values in floating-point format, with unspecified mantissa and exponent sizes. Floating-
point values specified by gl.PixelMap() are converted directly to the internal floating-
point format of these maps, then clamped to the range [0,1].

Maps that store indices, #GL_PIXEL_MAP_I_TO_I and #GL_PIXEL_MAP_S_TO_S, retain
their values in fixed-point format, with an unspecified number of bits to the right of the
binary point. Floating-point values specified by gl.PixelMap() are converted directly
to the internal fixed-point format of these maps.

The following table shows the initial sizes and values for each of the maps. Maps that are
indexed by either color or stencil indices must have mapsize = 2n for some n or the results
are undefined. The maximum allowable size for each map depends on the implementation
and can be determined by calling glGet with argument #GL_MAX_PIXEL_MAP_TABLE. The
single maximum applies to all maps; it is at least 32.

Map Lookup Index Lookup Value Def Size Def Value

--

#GL_PIXEL_MAP_I_TO_I color index color index 1 0

#GL_PIXEL_MAP_S_TO_S stencil index stencil index 1 0

#GL_PIXEL_MAP_I_TO_R color index R 1 0

#GL_PIXEL_MAP_I_TO_G color index G 1 0

#GL_PIXEL_MAP_I_TO_B color index B 1 0

#GL_PIXEL_MAP_I_TO_A color index A 1 0

#GL_PIXEL_MAP_R_TO_R R R 1 0

#GL_PIXEL_MAP_G_TO_G G G 1 0

#GL_PIXEL_MAP_B_TO_B B B 1 0

#GL_PIXEL_MAP_A_TO_A A A 1 0

Please consult an OpenGL reference manual for more information.

INPUTS

map specifies a symbolic map name (see above for supported names)

148 GL Galore manual

valuesArray

specifies a table containing an array of values

ERRORS
#GL_INVALID_ENUM is generated if map is not an accepted value.

#GL_INVALID_VALUE is generated if mapsize is less than one or larger than #GL_MAX_

PIXEL_MAP_TABLE.

#GL_INVALID_VALUE is generated if map is #GL_PIXEL_MAP_I_TO_I, #GL_PIXEL_MAP_
S_TO_S, #GL_PIXEL_MAP_I_TO_R, #GL_PIXEL_MAP_I_TO_G, #GL_PIXEL_MAP_I_TO_B, or
#GL_PIXEL_MAP_I_TO_A, and mapsize is not a power of two.

#GL_INVALID_OPERATION is generated if gl.PixelMap() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetPixelMap()

gl.Get() with argument #GL_PIXEL_MAP_I_TO_I_SIZE

gl.Get() with argument #GL_PIXEL_MAP_S_TO_S_SIZE

gl.Get() with argument #GL_PIXEL_MAP_I_TO_R_SIZE

gl.Get() with argument #GL_PIXEL_MAP_I_TO_G_SIZE

gl.Get() with argument #GL_PIXEL_MAP_I_TO_B_SIZE

gl.Get() with argument #GL_PIXEL_MAP_I_TO_A_SIZE

gl.Get() with argument #GL_PIXEL_MAP_R_TO_R_SIZE

gl.Get() with argument #GL_PIXEL_MAP_G_TO_G_SIZE

gl.Get() with argument #GL_PIXEL_MAP_B_TO_B_SIZE

gl.Get() with argument #GL_PIXEL_MAP_A_TO_A_SIZE

gl.Get() with argument #GL_MAX_PIXEL_MAP_TABLE

6.104 gl.PixelStore

NAME
gl.PixelStore – set pixel storage modes

SYNOPSIS
gl.PixelStore(pname, param)

FUNCTION
gl.PixelStore() sets pixel storage modes that affect the operation of subsequent
gl.DrawPixels() and gl.ReadPixels() as well as the unpacking of polygon stipple
patterns (See Section 6.110 [gl.PolygonStipple], page 158, for details.), bitmaps (See
Section 6.7 [gl.Bitmap], page 27, for details.), texture patterns (See Section 6.138
[gl.TexImage], page 192, for details.).

pname is a symbolic constant indicating the parameter to be set, and param is the new
value. Six of the twelve storage parameters affect how pixel data is returned to client
memory. They are as follows:

Chapter 6: GL reference 149

#GL_PACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components,
color indices, or stencil indices is reversed. That is, if a four-byte component
consists of bytes b0, b1, b2, b3, it is stored in memory as b3, b2, b1, b0
if #GL_PACK_SWAP_BYTES is true. #GL_PACK_SWAP_BYTES has no effect on
the memory order of components within a pixel, only on the order of bytes
within components or indices. For example, the three components of a #GL_

RGB format pixel are always stored with red first, green second, and blue
third, regardless of the value of #GL_PACK_SWAP_BYTES.

#GL_PACK_LSB_FIRST

If true, bits are ordered within a byte from least significant to most signif-
icant; otherwise, the first bit in each byte is the most significant one. This
parameter is significant for bitmap data only.

#GL_PACK_ROW_LENGTH

If greater than 0, #GL_PACK_ROW_LENGTH defines the number of pixels in a
row. If the first pixel of a row is placed at location p in memory, then the
location of the first pixel of the next row is obtained by skipping a certain
number of components or indices. See an OpenGL reference manual for
details.

#GL_PACK_SKIP_PIXELS

This value is provided as a convenience to the programmer; it provides no
functionality that cannot be duplicated simply by incrementing the pointer
passed to gl.ReadPixels(). Setting #GL_PACK_SKIP_PIXELS to i is equiv-
alent to incrementing the pointer by in components or indices, where n is
the number of components or indices in each pixel.

#GL_PACK_SKIP_ROWS

This value is provided as a convenience to the programmer; it provides no
functionality that cannot be duplicated simply by incrementing the pointer
passed to gl.ReadPixels(). Setting #GL_PACK_SKIP_ROWS to j is equivalent
to incrementing the pointer by jm components or indices, where m is the
number of components or indices per row, as just computed in the #GL_

PACK_ROW_LENGTH section.

#GL_PACK_ALIGNMENT

Specifies the alignment requirements for the start of each pixel row in mem-
ory. The allowable values are 1 (byte-alignment), 2 (rows aligned to even-
numbered bytes), 4 (word-alignment), and 8 (rows start on double-word
boundaries).

The other six of the twelve storage parameters affect how pixel data is read
from client memory. These values are then significant for gl.DrawPixels(),
gl.TexImage(), and furthermore also for gl.TexImage1D(), gl.TexImage2D(),
gl.TexSubImage(), gl.TexSubImage1D(), gl.TexSubImage2D(), gl.Bitmap(), and
gl.PolygonStipple(). They are as follows:

150 GL Galore manual

#GL_UNPACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components,
color indices, or stencil indices is reversed. That is, if a four-byte component
consists of bytes b0 , b1 , b2 , b3 , it is taken from memory as b3 , b2 ,
b1 , b0 if #GL_UNPACK_SWAP_BYTES is true. #GL_UNPACK_SWAP_BYTES has no
effect on the memory order of components within a pixel, only on the order
of bytes within components or indices. For example, the three components
of a #GL_RGB format pixel are always stored with red first, green second, and
blue third, regardless of the value of #GL_UNPACK_SWAP_BYTES.

#GL_UNPACK_LSB_FIRST

If true, bits are ordered within a byte from least significant to most signifi-
cant; otherwise, the first bit in each byte is the most significant one. This is
relevant only for bitmap data.

#GL_UNPACK_ROW_LENGTH

If greater than 0, #GL_UNPACK_ROW_LENGTH defines the number of pixels in
a row. If the first pixel of a row is placed at location p in memory, then the
location of the first pixel of the next row is obtained by skipping a certain
number of components or indices. See an OpenGL reference manual for
details.

#GL_UNPACK_SKIP_PIXELS

This value is provided as a convenience to the programmer; it provides no
functionality that cannot be duplicated by incrementing the pointer passed
to gl.DrawPixels(), or to gl.TexImage(), or also to gl.TexImage1D()

and gl.TexImage2D(), additionally also to gl.TexSubImage(), or to
gl.TexSubImage1D() and gl.TexSubImage2D(), gl.Bitmap(), or to
gl.PolygonStipple() Setting #GL_UNPACK_SKIP_PIXELS to i is equivalent
to incrementing the pointer by in components or indices, where n is the
number of components or indices in each pixel.

#GL_UNPACK_SKIP_ROWS

This value is provided as a convenience to the programmer; it provides no
functionality that cannot be duplicated by incrementing the pointer passed
to gl.DrawPixels(), or to gl.TexImage(), or also to gl.TexImage1D()

and gl.TexImage2D(), additionally also to gl.TexSubImage(), or to
gl.TexSubImage1D() and gl.TexSubImage2D(), gl.Bitmap(), or to
gl.PolygonStipple() Setting #GL_UNPACK_SKIP_ROWS to j is equivalent
to incrementing the pointer by jk components or indices, where k is
the number of components or indices per row, as just computed in the
#GL_UNPACK_ROW_LENGTH section.

#GL_UNPACK_ALIGNMENT

Specifies the alignment requirements for the start of each pixel row in mem-
ory. The allowable values are 1 (byte-alignment), 2 (rows aligned to even-
numbered bytes), 4 (word-alignment), and 8 (rows start on double-word
boundaries).

The following table gives the type, initial value, and range of valid values for each storage
parameter that can be set with gl.PixelStore().

Chapter 6: GL reference 151

pname | Type | Default | Valid Range

#GL_PACK_SWAP_BYTES | boolean | false | true or false

#GL_PACK_LSB_FIRST | boolean | false | true or false

#GL_PACK_ROW_LENGTH | integer | 0 | [0,oo)

#GL_PACK_SKIP_ROWS | integer | 0 | [0,oo)

#GL_PACK_SKIP_PIXELS | integer | 0 | [0,oo)

#GL_PACK_ALIGNMENT | integer | 4 | 1, 2, 4, or 8

#GL_UNPACK_SWAP_BYTES | boolean | false | true or false

#GL_UNPACK_LSB_FIRST | boolean | false | true or false

#GL_UNPACK_ROW_LENGTH | integer | 0 | [0,oo)

#GL_UNPACK_SKIP_ROWS | integer | 0 | [0,oo)

#GL_UNPACK_SKIP_PIXELS| integer | 0 | [0,oo)

#GL_UNPACK_ALIGNMENT | integer | 4 | 1, 2, 4, or 8

The pixel storage modes in effect when gl.DrawPixels(), gl.ReadPixels(), or
gl.TexImage(), gl.TexImage1D(), or gl.TexImage2D(), or gl.TexSubImage(),
gl.TexSubImage1D(), or also GL’s gl.TexSubImage2D(), or gl.Bitmap(), or
gl.PolygonStipple() is placed in a display list control the interpretation of memory
data. The pixel storage modes in effect when a display list is executed are not
significant.

Pixel storage modes are client state and must be pushed and restored using
gl.PushClientAttrib() and gl.PopClientAttrib().

Please consult an OpenGL reference manual for more information.

INPUTS

pname specifies the symbolic name of the parameter to be set (see above for possible
modes)

param specifies the value that pname is set to

ERRORS
#GL_INVALID_ENUM is generated if pname is not an accepted value.

#GL_INVALID_VALUE is generated if a negative row length, pixel skip, or row skip value
is specified, or if alignment is specified as other than 1, 2, 4, or 8.

#GL_INVALID_OPERATION is generated if gl.PixelStore() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_PACK_SWAP_BYTES

gl.Get() with argument #GL_PACK_LSB_FIRST

gl.Get() with argument #GL_PACK_ROW_LENGTH

gl.Get() with argument #GL_PACK_SKIP_ROWS

gl.Get() with argument #GL_PACK_SKIP_PIXELS

gl.Get() with argument #GL_PACK_ALIGNMENT

gl.Get() with argument #GL_UNPACK_SWAP_BYTES

gl.Get() with argument #GL_UNPACK_LSB_FIRST

152 GL Galore manual

gl.Get() with argument #GL_UNPACK_ROW_LENGTH

gl.Get() with argument #GL_UNPACK_SKIP_ROWS

gl.Get() with argument #GL_UNPACK_SKIP_PIXELS

gl.Get() with argument #GL_UNPACK_ALIGNMENT

6.105 gl.PixelTransfer

NAME
gl.PixelTransfer – set pixel transfer modes

SYNOPSIS
gl.PixelTransfer(pname, param)

FUNCTION
gl.PixelTransfer() sets pixel transfer modes that affect the operation of subsequent
gl.CopyPixels(), gl.CopyTexImage(), gl.CopyTexSubImage(), gl.DrawPixels(),
gl.ReadPixels(), or also GL’s gl.TexImage(), gl.TexImage1D(), gl.TexImage2D(),
gl.TexSubImage(), gl.TexSubImage1D(), and gl.TexSubImage2D() commands.
The algorithms that are specified by pixel transfer modes operate on pixels after
they are read from the frame buffer (gl.CopyPixels(), gl.CopyTexImage(),
gl.CopyTexSubImage(), gl.ReadPixels()) or in case they are unpacked from client
memory (gl.DrawPixels(), gl.TexImage(), gl.TexImage1D(), gl.TexImage2D(),
gl.TexSubImage(), gl.TexSubImage1D(), and gl.TexSubImage2D()). Pixel transfer
operations happen in the same order, and in the same manner, regardless of the
command that resulted in the pixel operation. Pixel storage modes (See Section 6.104
[gl.PixelStore], page 148, for details.) control the unpacking of pixels being read from
client memory, and the packing of pixels being written back into client memory.

Pixel transfer operations handle four fundamental pixel types: color, color index, depth,
and stencil. Color pixels consist of four floating-point values with unspecified mantissa
and exponent sizes, scaled such that 0 represents zero intensity and 1 represents full
intensity. Color indices comprise a single fixed-point value, with unspecified precision to
the right of the binary point. Depth pixels comprise a single floating-point value, with
unspecified mantissa and exponent sizes, scaled such that 0.0 represents the minimum
depth buffer value, and 1.0 represents the maximum depth buffer value. Finally, stencil
pixels comprise a single fixed-point value, with unspecified precision to the right of the
binary point.

The pixel transfer operations performed on the four basic pixel types are as follows:

Color Each of the four color components is multiplied by a scale factor, then added
to a bias factor. That is, the red component is multiplied by #GL_RED_

SCALE, then added to #GL_RED_BIAS; the green component is multiplied
by #GL_GREEN_SCALE, then added to #GL_GREEN_BIAS; the blue component
is multiplied by #GL_BLUE_SCALE, then added to #GL_BLUE_BIAS; and the
alpha component is multiplied by #GL_ALPHA_SCALE, then added to #GL_

ALPHA_BIAS. After all four color components are scaled and biased, each is
clamped to the range [0, 1]. All color, scale, and bias values are specified

Chapter 6: GL reference 153

with gl.PixelTransfer(). If #GL_MAP_COLOR is true, each color component
is scaled by the size of the corresponding color-to-color map, then replaced
by the contents of that map indexed by the scaled component. That is,
the red component is scaled by #GL_PIXEL_MAP_R_TO_R_SIZE, then replaced
by the contents of #GL_PIXEL_MAP_R_TO_R indexed by itself. The green
component is scaled by #GL_PIXEL_MAP_G_TO_G_SIZE, then replaced by the
contents of #GL_PIXEL_MAP_G_TO_G indexed by itself. The blue component
is scaled by #GL_PIXEL_MAP_B_TO_B_SIZE, then replaced by the contents
of #GL_PIXEL_MAP_B_TO_B indexed by itself. And the alpha component is
scaled by #GL_PIXEL_MAP_A_TO_A_SIZE, then replaced by the contents of
#GL_PIXEL_MAP_A_TO_A indexed by itself. All components taken from the
maps are then clamped to the range [0, 1]. #GL_MAP_COLOR is specified with
gl.PixelTransfer(). The contents of the various maps are specified with
gl.PixelMap().

Color index
Each color index is shifted left by #GL_INDEX_SHIFT bits; any bits beyond
the number of fraction bits carried by the fixed-point index are filled with
zeros. If #GL_INDEX_SHIFT is negative, the shift is to the right, again zero
filled. Then #GL_INDEX_OFFSET is added to the index. #GL_INDEX_SHIFT

and #GL_INDEX_OFFSET are specified with gl.PixelTransfer().

From this point, operation diverges depending on the required format of the
resulting pixels. If the resulting pixels are to be written to a color index
buffer, or if they are being read back to client memory in #GL_COLOR_INDEX

format, the pixels continue to be treated as indices. If #GL_MAP_COLOR is
true, each index is masked by 2^n - 1, where n is #GL_PIXEL_MAP_I_TO_I_
SIZE, then replaced by the contents of #GL_PIXEL_MAP_I_TO_I indexed by
the masked value. #GL_MAP_COLOR is specified with gl.PixelTransfer().
The contents of the index map is specified with glPixelMap.

If the resulting pixels are to be written to an RGBA color buffer, or if they
are read back to client memory in a format other than #GL_COLOR_INDEX,
the pixels are converted from indices to colors by referencing the four maps
#GL_PIXEL_MAP_I_TO_R, #GL_PIXEL_MAP_I_TO_G, #GL_PIXEL_MAP_I_TO_B,
and #GL_PIXEL_MAP_I_TO_A. Before being dereferenced, the index is masked
by 2^n - 1, where n is #GL_PIXEL_MAP_I_TO_R_SIZE for the red map, #GL_
PIXEL_MAP_I_TO_G_SIZE for the green map, #GL_PIXEL_MAP_I_TO_B_SIZE
for the blue map, and #GL_PIXEL_MAP_I_TO_A_SIZE for the alpha map. All
components taken from the maps are then clamped to the range [0, 1]. The
contents of the four maps is specified with gl.PixelMap().

Depth Each depth value is multiplied by #GL_DEPTH_SCALE, added to #GL_DEPTH_

BIAS, then clamped to the range [0, 1].

Stencil Each index is shifted #GL_INDEX_SHIFT bits just as a color index is, then
added to #GL_INDEX_OFFSET. If #GL_MAP_STENCIL is true, each index is
masked by 2^n - 1, where n is #GL_PIXEL_MAP_S_TO_S_SIZE, then replaced
by the contents of #GL_PIXEL_MAP_S_TO_S indexed by the masked value.

Please consult an OpenGL reference manual for more information.

154 GL Galore manual

INPUTS

pname specifies the symbolic name of the pixel transfer parameter to be set (see
above)

param specifies the value that pname is set to

ERRORS
#GL_INVALID_ENUM is generated if pname is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.PixelTransfer() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MAP_COLOR

gl.Get() with argument #GL_MAP_STENCIL

gl.Get() with argument #GL_INDEX_SHIFT

gl.Get() with argument #GL_INDEX_OFFSET

gl.Get() with argument #GL_RED_SCALE

gl.Get() with argument #GL_RED_BIAS

gl.Get() with argument #GL_GREEN_SCALE

gl.Get() with argument #GL_GREEN_BIAS

gl.Get() with argument #GL_BLUE_SCALE

gl.Get() with argument #GL_BLUE_BIAS

gl.Get() with argument #GL_ALPHA_SCALE

gl.Get() with argument #GL_ALPHA_BIAS

gl.Get() with argument #GL_DEPTH_SCALE

gl.Get() with argument #GL_DEPTH_BIAS

6.106 gl.PixelZoom

NAME
gl.PixelZoom – specify the pixel zoom factors

SYNOPSIS
gl.PixelZoom(xfactor, yfactor)

FUNCTION
gl.PixelZoom() specifies values for the x and y zoom factors. During the execution of
gl.DrawPixels() or gl.CopyPixels(), if (xr,yr) is the current raster position, and a
given element is in the mth row and nth column of the pixel rectangle, then pixels whose
centers are in the rectangle with corners at

(xr+n*xfactor, yr+m*yfactor)

(xr+(n+1)*xfactor,yr+(m+1)*yfactor)

are candidates for replacement. Any pixel whose center lies on the bottom or left edge
of this rectangular region is also modified.

Chapter 6: GL reference 155

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the
resulting image about the current raster position.

Please consult an OpenGL reference manual for more information.

INPUTS

xfactor specify the x zoom factor for pixel write operations

yfactor specify the y zoom factor for pixel write operations

ERRORS
#GL_INVALID_OPERATION is generated if glPixelZoom is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_ZOOM_X

gl.Get() with argument #GL_ZOOM_Y

6.107 gl.PointSize

NAME
gl.PointSize – specify the diameter of rasterized points

SYNOPSIS
gl.PointSize(size)

FUNCTION
gl.PointSize() specifies the rasterized diameter of both aliased and antialiased points.
Using a point size other than 1 has different effects, depending on whether point an-
tialiasing is enabled. To enable and disable point antialiasing, call gl.Enable() and
gl.Disable() with argument #GL_POINT_SMOOTH. Point antialiasing is initially dis-
abled.

If point antialiasing is disabled, the actual size is determined by rounding the supplied
size to the nearest integer. (If the rounding results in the value 0, it is as if the point
size were 1.) If the rounded size is odd, then the center point (x,y) of the pixel fragment
that represents the point is computed as

(xw + 0.5, yw + 0.5)

where w subscripts indicate window coordinates. All pixels that lie within the square
grid of the rounded size centered at (x,y) make up the fragment. If the size is even, the
center point is

(xw + 0.5, yw + 0.5)

and the rasterized fragment’s centers are the half-integer window coordinates within the
square of the rounded size centered at (x,y). All pixel fragments produced in raster-
izing a non-antialiased point are assigned the same associated data, that of the vertex
corresponding to the point.

If antialiasing is enabled, then point rasterization produces a fragment for each pixel
square that intersects the region lying within the circle having diameter equal to the
current point size and centered at the point’s (xw,yw). The coverage value for each

156 GL Galore manual

fragment is the window coordinate area of the intersection of the circular region with
the corresponding pixel square. This value is saved and used in the final rasterization
step. The data associated with each fragment is the data associated with the point being
rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is
requested, the nearest supported size is used. Only size 1 is guaranteed to be supported;
others depend on the implementation. To query the range of supported sizes and the
size difference between supported sizes within the range, call gl.Get() with arguments
#GL_POINT_SIZE_RANGE and #GL_POINT_SIZE_GRANULARITY.

The point size specified by gl.PointSize() is always returned when #GL_POINT_SIZE

is queried. Clamping and rounding for aliased and antialiased points have no effect on
the specified value.

A non-antialiased point size may be clamped to an implementation-dependent maximum.
Although this maximum cannot be queried, it must be no less than the maximum value
for antialiased points, rounded to the nearest integer value.

Please consult an OpenGL reference manual for more information.

INPUTS

size specifies the diameter of rasterized points; the initial value is 1

ERRORS
#GL_INVALID_VALUE is generated if size is less than or equal to 0.

#GL_INVALID_OPERATION is generated if gl.PointSize() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_POINT_SIZE

gl.Get() with argument #GL_POINT_SIZE_RANGE

gl.Get() with argument #GL_POINT_SIZE_GRANULARITY

gl.IsEnabled() with argument #GL_POINT_SMOOTH

6.108 gl.PolygonMode

NAME
gl.PolygonMode – select a polygon rasterization mode

SYNOPSIS
gl.PolygonMode(face, mode)

FUNCTION
gl.PolygonMode() controls the interpretation of polygons for rasterization. face de-
scribes which polygons mode applies to: front-facing polygons (#GL_FRONT), back-facing
polygons (#GL_BACK), or both (#GL_FRONT_AND_BACK). The polygon mode affects only
the final rasterization of polygons. In particular, a polygon’s vertices are lit and the
polygon is clipped and possibly culled before these modes are applied.

Chapter 6: GL reference 157

Three modes are defined and can be specified in mode:

#GL_POINT

Polygon vertices that are marked as the start of a boundary edge are drawn
as points. Point attributes such as #GL_POINT_SIZE and #GL_POINT_SMOOTH

control the rasterization of the points. Polygon rasterization attributes other
than #GL_POLYGON_MODE have no effect.

#GL_LINE Boundary edges of the polygon are drawn as line segments. They are treated
as connected line segments for line stippling; the line stipple counter and
pattern are not reset between segments (see glLineStipple). Line attributes
such as #GL_LINE_WIDTH and #GL_LINE_SMOOTH control the rasterization of
the lines. Polygon rasterization attributes other than #GL_POLYGON_MODE

have no effect.

#GL_FILL The interior of the polygon is filled. Polygon attributes such as
#GL_POLYGON_STIPPLE and #GL_POLYGON_SMOOTH control the rasterization
of the polygon.

The initial value is #GL_FILL for both front- and back-facing polygons.

Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are
generated internally by the GL when it decomposes polygons; they can be set explicitly
using gl.EdgeFlag().

Please consult an OpenGL reference manual for more information.

INPUTS

face specifies the polygons that mode applies to (see above)

mode specifies how polygons will be rasterized (see above)

ERRORS
#GL_INVALID_ENUM is generated if either face or mode is not an accepted value.

#GL_INVALID_OPERATION is generated if gl.PolygonMode() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_POLYGON_MODE

6.109 gl.PolygonOffset

NAME
gl.PolygonOffset – set the scale and units used to calculate depth values

SYNOPSIS
gl.PolygonOffset(factor, units)

FUNCTION
When #GL_POLYGON_OFFSET_FILL, #GL_POLYGON_OFFSET_LINE, or #GL_POLYGON_

OFFSET_POINT is enabled, each fragment’s depth value will be offset after it is
interpolated from the depth values of the appropriate vertices. The value of the offset is

158 GL Galore manual

factor * delta(Z) + r * units , where delta(Z) is a measurement of the change in depth
relative to the screen area of the polygon, and r is the smallest value that is guaranteed
to produce a resolvable offset for a given implementation. The offset is added before
the depth test is performed and before the value is written into the depth buffer.

gl.PolygonOffset() is useful for rendering hidden-line images, for applying decals to
surfaces, and for rendering solids with highlighted edges.

gl.PolygonOffset() has no effect on depth coordinates placed in the feedback buffer.

gl.PolygonOffset() has no effect on selection.

Please consult an OpenGL reference manual for more information.

INPUTS

factor specifies a scale factor that is used to create a variable depth offset for each
polygon; the initial value is 0

units is multiplied by an implementation-specific value to create a constant depth
offset; the initial value is 0

ERRORS
#GL_INVALID_OPERATION is generated if gl.PolygonOffset() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_POLYGON_OFFSET_FILL, #GL_POLYGON_OFFSET_

LINE, or #GL_POLYGON_OFFSET_POINT.

gl.Get() with argument #GL_POLYGON_OFFSET_FACTOR or #GL_POLYGON_OFFSET_UNITS.

6.110 gl.PolygonStipple

NAME
gl.PolygonStipple – set the polygon stippling pattern

SYNOPSIS
gl.PolygonStipple(maskArray)

FUNCTION
Polygon stippling, like line stippling (See Section 6.86 [gl.LineStipple], page 127, for
details.), masks out certain fragments produced by rasterization, creating a pattern.
Stippling is independent of polygon antialiasing.

maskArray is a table containing a 32*32 stipple pattern stored as a monochrome bitmap
that uses only 1 bit per pixel. The bitmap is passed in a table that consists of chunks
of 8 pixels packed into one byte. Thus, for a 32*32 stipple pattern you’ll have to pass
a table that contains 128 byte elements containing 8 pixels each. This can be either a
one-dimensional table containing 128 byte entries or a two-dimensional table containing
32 subtables of 4 byte entries each (those 4 byte entries describe a row of 32 pixels
each.) The data is passed to the GL in a contiguous memory block without any padding
or special alignments so make sure that no exotic settings with gl.PixelStore() are
active because gl.PolygonStipple() expects the pattern data to be stored in memory
just like the pixel data supplied to a gl.DrawPixels() call with height and width both

Chapter 6: GL reference 159

equal to 32, a pixel format of #GL_COLOR_INDEX, and data type of #GL_BITMAP. That
is, the stipple pattern is represented as a 32x32 array of 1-bit color indices packed in
unsigned bytes. gl.PixelStore() parameters like #GL_UNPACK_SWAP_BYTES and #GL_

UNPACK_LSB_FIRST affect the assembling of the bits into a stipple pattern. Pixel transfer
operations (shift, offset, pixel map) are not applied to the stipple image, however.

To enable and disable polygon stippling, call gl.Enable() and gl.Disable() with ar-
gument #GL_POLYGON_STIPPLE. Polygon stippling is initially disabled. If it’s enabled,
a rasterized polygon fragment with window coordinates xw and yw is sent to the next
stage of the GL if and only if the (xw%32)th bit in the (yw%32)th row of the stipple
pattern is 1 (one). When polygon stippling is disabled, it is as if the stipple pattern
consists of all 1’s.

Please consult an OpenGL reference manual for more information.

INPUTS

maskArray

specifies a table that contains a 32x32 stipple pattern

ERRORS
#GL_INVALID_OPERATION is generated if gl.PolygonStipple() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetPolygonStipple()

gl.IsEnabled() with argument #GL_POLYGON_STIPPLE

6.111 gl.PopAttrib

NAME
gl.PopAttrib – pop the server attribute stack

SYNOPSIS
gl.PopAttrib()

FUNCTION
gl.PopAttrib() restores the values of the state variables saved with the last
gl.PushAttrib() command. Those not saved are left unchanged.

See Section 6.116 [gl.PushAttrib], page 163, for a list of supported state variables.

It is an error to pop attributes off an empty stack. In that case, the error flag is set and
no other change is made to GL state.

Please consult an OpenGL reference manual for more information.

INPUTS
none

ERRORS
#GL_STACK_UNDERFLOW is generated if gl.PopAttrib() is called while the attribute stack
is empty.

#GL_INVALID_OPERATION is generated if gl.PopAttrib() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

160 GL Galore manual

ASSOCIATED GETS
gl.Get() with argument #GL_ATTRIB_STACK_DEPTH

gl.Get() with argument #GL_MAX_ATTRIB_STACK_DEPTH

6.112 gl.PopClientAttrib

NAME
gl.PopClientAttrib – pop the client attribute stack

SYNOPSIS
gl.PopClientAttrib()

FUNCTION
gl.PopClientAttrib() restores the values of the client-state variables saved with the
last gl.PushClientAttrib(). Those not saved are left unchanged.

See Section 6.117 [gl.PushClientAttrib], page 168, for a list of supported client state
variables.

It is an error to pop attributes off an empty stack. In that case, the error flag is set, and
no other change is made to GL state.

Please consult an OpenGL reference manual for more information.

INPUTS
none

ERRORS
#GL_STACK_UNDERFLOW is generated if gl.PopClientAttrib() is called while the at-
tribute stack is empty.

ASSOCIATED GETS
gl.Get() with argument #GL_ATTRIB_STACK_DEPTH

gl.Get() with argument #GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

6.113 gl.PopMatrix

NAME
gl.PopMatrix – pop the current matrix stack

SYNOPSIS
gl.PopMatrix()

FUNCTION
gl.PopMatrix() pops the current matrix stack, replacing the current matrix with the
one below it on the stack.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to pop a matrix stack that contains only a single matrix. In that case, the
error flag is set and no other change is made to GL state.

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 161

INPUTS
none

ERRORS
#GL_STACK_UNDERFLOW is generated if gl.PopMatrix() is called while the current matrix
stack contains only a single matrix.

#GL_INVALID_OPERATION is generated if gl.PopMatrix() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

gl.Get() with argument #GL_MODELVIEW_STACK_DEPTH

gl.Get() with argument #GL_PROJECTION_STACK_DEPTH

gl.Get() with argument #GL_TEXTURE_STACK_DEPTH

gl.Get() with argument #GL_MAX_MODELVIEW_STACK_DEPTH

gl.Get() with argument #GL_MAX_PROJECTION_STACK_DEPTH

gl.Get() with argument #GL_MAX_TEXTURE_STACK_DEPTH

6.114 gl.PopName

NAME
gl.PopName – pop the name stack

SYNOPSIS
gl.PopName()

FUNCTION
The name stack is used during selection mode to allow sets of rendering commands to
be uniquely identified. It consists of an ordered set of unsigned integers and is initially
empty.

gl.PopName() pops one name off the top of the stack.

The maximum name stack depth is implementation-dependent; call #GL_MAX_NAME_

STACK_DEPTH to find out the value for a particular implementation. It is an error to
pop a name off an empty stack. It is also an error to manipulate the name stack between
the execution of gl.Begin() and the corresponding execution of gl.End(). In any of
these cases, the error flag is set and no other change is made to GL state.

The name stack is always empty while the render mode is not #GL_SELECT. Calls to
gl.PopName() while the render mode is not #GL_SELECT are ignored.

Please consult an OpenGL reference manual for more information.

INPUTS
none

162 GL Galore manual

ERRORS
#GL_STACK_UNDERFLOW is generated if gl.PopName() is called while the name stack is
empty.

#GL_INVALID_OPERATION is generated if gl.PopName() is executed between a call to
glBegin and the corresponding call to glEnd.

ASSOCIATED GETS
gl.Get() with argument #GL_NAME_STACK_DEPTH

gl.Get() with argument #GL_MAX_NAME_STACK_DEPTH

6.115 gl.PrioritizeTextures

NAME
gl.PrioritizeTextures – set texture residence priority

SYNOPSIS
gl.PrioritizeTextures(texturesArray, prioritiesArray)

FUNCTION
gl.PrioritizeTextures() assigns the texture priorities given in prioritiesArray to
the textures named in texturesArray.

The GL establishes a "working set" of textures that are resident in texture memory.
These textures may be bound to a texture target much more efficiently than textures that
are not resident. By specifying a priority for each texture, gl.PrioritizeTextures()
allows applications to guide the GL implementation in determining which textures should
be resident.

The priorities given in prioritiesArray are clamped to the range (0,1) before they are
assigned. 0 indicates the lowest priority; textures with priority 0 are least likely to be
resident. 1 indicates the highest priority; textures with priority 1 are most likely to be
resident. However, textures are not guaranteed to be resident until they are used.

gl.PrioritizeTextures() silently ignores attempts to prioritize texture 0 or any tex-
ture name that does not correspond to an existing texture.

gl.PrioritizeTextures() does not require that any of the textures named by textures
be bound to a texture target. gl.TexParameter() may also be used to set a texture’s
priority, but only if the texture is currently bound. This is the only way to set the
priority of a default texture.

Please consult an OpenGL reference manual for more information.

INPUTS

texturesArray

specifies an array containing the names of the textures to be prioritized

prioritiesArray

specifies an array containing the texture priorities; a priority given in an ele-
ment of priorities applies to the texture named by the corresponding element
of textures

Chapter 6: GL reference 163

ERRORS
#GL_INVALID_OPERATION is generated if gl.PrioritizeTextures() is executed between
the execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexParameter() with parameter name #GL_TEXTURE_PRIORITY retrieves the pri-
ority of a currently bound texture

6.116 gl.PushAttrib

NAME
gl.PushAttrib – push the server attribute stack

SYNOPSIS
gl.PushAttrib(mask)

FUNCTION
gl.PushAttrib() takes one argument, a mask that indicates which groups of state
variables to save on the attribute stack. Symbolic constants are used to set bits in the
mask. mask is typically constructed by ORing several of these constants together. The
special mask #GL_ALL_ATTRIB_BITS can be used to save all stackable states.

The symbolic mask constants and their associated GL state are as follows:

#GL_ACCUM_BUFFER_BIT

Accumulation buffer clear value

#GL_COLOR_BUFFER_BIT

#GL_ALPHA_TEST enable bit

Alpha test function and reference value

#GL_BLEND enable bit

Blending source and destination functions

Constant blend color

Blending equation

#GL_DITHER enable bit

#GL_DRAW_BUFFER setting

#GL_COLOR_LOGIC_OP enable bit

#GL_INDEX_LOGIC_OP enable bit

Logic op function

Color mode and index mode clear values

Color mode and index mode writemasks

#GL_CURRENT_BIT

Current RGBA color

Current color index

Current normal vector

Current texture coordinates

164 GL Galore manual

Current raster position

#GL_CURRENT_RASTER_POSITION_VALID flag

RGBA color associated with current raster position

Color index associated with current raster position

Texture coordinates associated with current raster position

#GL_EDGE_FLAG flag

#GL_DEPTH_BUFFER_BIT

#GL_DEPTH_TEST enable bit

Depth buffer test function

Depth buffer clear value

#GL_DEPTH_WRITEMASK enable bit

#GL_ENABLE_BIT

#GL_ALPHA_TEST flag

#GL_AUTO_NORMAL flag

#GL_BLEND flag

Enable bits for the user-definable clipping planes

#GL_COLOR_MATERIAL

#GL_CULL_FACE flag

#GL_DEPTH_TEST flag

#GL_DITHER flag

#GL_FOG flag

#GL_LIGHTi where 0 .le. i < #GL_MAX_LIGHTS

#GL_LIGHTING flag

#GL_LINE_SMOOTH flag

#GL_LINE_STIPPLE flag

#GL_COLOR_LOGIC_OP flag

#GL_INDEX_LOGIC_OP flag

#GL_MAP1_x where x is a map type

#GL_MAP2_x where x is a map type

#GL_NORMALIZE flag

#GL_POINT_SMOOTH flag

#GL_POLYGON_OFFSET_LINE flag

#GL_POLYGON_OFFSET_FILL flag

#GL_POLYGON_OFFSET_POINT flag

#GL_POLYGON_SMOOTH flag

#GL_POLYGON_STIPPLE flag

#GL_SCISSOR_TEST flag

#GL_STENCIL_TEST flag

#GL_TEXTURE_1D flag

Chapter 6: GL reference 165

#GL_TEXTURE_2D flag

Flags #GL_TEXTURE_GEN_x where x is S, T, R, or Q

#GL_EVAL_BIT

#GL_MAP1_x enable bits, where x is a map type

#GL_MAP2_x enable bits, where x is a map type

1D grid endpoints and divisions

2D grid endpoints and divisions

#GL_AUTO_NORMAL enable bit

#GL_FOG_BIT

#GL_FOG enable bit

Fog color

Fog density

Linear fog start

Linear fog end

Fog index

#GL_FOG_MODE value

#GL_HINT_BIT

#GL_PERSPECTIVE_CORRECTION_HINT setting

#GL_POINT_SMOOTH_HINT setting

#GL_LINE_SMOOTH_HINT setting

#GL_POLYGON_SMOOTH_HINT setting

#GL_FOG_HINT setting

#GL_LIGHTING_BIT

#GL_COLOR_MATERIAL enable bit

#GL_COLOR_MATERIAL_FACE value

Color material parameters that are tracking the current color

Ambient scene color

#GL_LIGHT_MODEL_LOCAL_VIEWER value

#GL_LIGHT_MODEL_TWO_SIDE setting

#GL_LIGHTING enable bit

Enable bit for each light

Ambient, diffuse, and specular intensity for each light

Direction, position, exponent, and cutoff angle for each light

Constant, linear, and quadratic attenuation factors for each light

Ambient, diffuse, specular, and emissive color for each material

Ambient, diffuse, and specular color indices for each material

Specular exponent for each material

#GL_SHADE_MODEL setting

166 GL Galore manual

#GL_LINE_BIT

#GL_LINE_SMOOTH flag

#GL_LINE_STIPPLE enable bit

Line stipple pattern and repeat counter

Line width

#GL_LIST_BIT

#GL_LIST_BASE setting

#GL_PIXEL_MODE_BIT

#GL_RED_BIAS and #GL_RED_SCALE settings

#GL_GREEN_BIAS and #GL_GREEN_SCALE values

#GL_BLUE_BIAS and #GL_BLUE_SCALE

#GL_ALPHA_BIAS and #GL_ALPHA_SCALE

#GL_DEPTH_BIAS and #GL_DEPTH_SCALE

#GL_INDEX_OFFSET and #GL_INDEX_SHIFT values

#GL_MAP_COLOR and #GL_MAP_STENCIL flags

#GL_ZOOM_X and #GL_ZOOM_Y factors

#GL_READ_BUFFER setting

#GL_POINT_BIT

#GL_POINT_SMOOTH flag Point size

#GL_POLYGON_BIT

#GL_CULL_FACE enable bit

#GL_CULL_FACE_MODE value

#GL_FRONT_FACE indicator

#GL_POLYGON_MODE setting

#GL_POLYGON_SMOOTH flag

#GL_POLYGON_STIPPLE enable bit

#GL_POLYGON_OFFSET_FILL flag

#GL_POLYGON_OFFSET_LINE flag

#GL_POLYGON_OFFSET_POINT flag

#GL_POLYGON_OFFSET_FACTOR

#GL_POLYGON_OFFSET_UNITS

#GL_POLYGON_STIPPLE_BIT

Polygon stipple image

#GL_SCISSOR_BIT

#GL_SCISSOR_TEST flag

Scissor box

#GL_STENCIL_BUFFER_BIT

#GL_STENCIL_TEST enable bit

Stencil function and reference value

Chapter 6: GL reference 167

Stencil value mask

Stencil fail, pass, and depth buffer pass actions

Stencil buffer clear value

Stencil buffer writemask

#GL_TEXTURE_BIT

Enable bits for the four texture coordinates

Border color for each texture image

Minification function for each texture image

Magnification function for each texture image

Texture coordinates and wrap mode for each texture image

Color and mode for each texture environment

Enable bits #GL_TEXTURE_GEN_x, x is S, T, R, and Q

#GL_TEXTURE_GEN_MODE setting for S, T, R, and Q

gl.TexGen() plane equations for S, T, R, and Q

Current texture bindings (for example, #GL_TEXTURE_2D_BINDING)

#GL_TRANSFORM_BIT

Coefficients of the six clipping planes

Enable bits for the user-definable clipping planes

#GL_MATRIX_MODE value

#GL_NORMALIZE flag

#GL_VIEWPORT_BIT

Depth range (near and far)

Viewport origin and extent

It is an error to push attributes onto a full stack. In that case, the error flag is set and
no other change is made to GL state.

Initially, the attribute stack is empty.

Not all values for GL state can be saved on the attribute stack. For example, render
mode state, and select and feedback state cannot be saved. Client state must be saved
with gl.PushClientAttrib().

The depth of the attribute stack depends on the implementation, but it must be at least
16.

Please consult an OpenGL reference manual for more information.

INPUTS

mask specifies a mask that indicates which attributes to save (see above)

ERRORS
#GL_STACK_OVERFLOW is generated if gl.PushAttrib() is called while the attribute stack
is full.

#GL_INVALID_OPERATION is generated if gl.PushAttrib() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

168 GL Galore manual

ASSOCIATED GETS
gl.Get() with argument #GL_ATTRIB_STACK_DEPTH

gl.Get() with argument #GL_MAX_ATTRIB_STACK_DEPTH

6.117 gl.PushClientAttrib

NAME
gl.PushClientAttrib – push the client attribute stack

SYNOPSIS
gl.PushClientAttrib(mask)

FUNCTION
gl.PushClientAttrib() takes one argument, a mask that indicates which groups of
client-state variables to save on the client attribute stack. Symbolic constants are used
to set bits in the mask. mask is typically constructed by specifying the bitwise-or of
several of these constants together. The special mask #GL_CLIENT_ALL_ATTRIB_BITS

can be used to save all stackable client state.

The symbolic mask constants and their associated GL client state are as follows:

#GL_CLIENT_PIXEL_STORE_BIT

Pixel storage modes

#GL_CLIENT_VERTEX_ARRAY_BIT

Vertex arrays (and enables)

It is an error to push attributes onto a full client attribute stack. In that case, the error
flag is set, and no other change is made to GL state.

Initially, the client attribute stack is empty.

Not all values for GL client state can be saved on the attribute stack. For example, select
and feedback state cannot be saved.

The depth of the attribute stack depends on the implementation, but it must be at least
16.

Use gl.PushAttrib() to push state that is kept on the server. Only pixel storage modes
and vertex array state may be pushed with gl.PushClientAttrib().

Please consult an OpenGL reference manual for more information.

INPUTS

mask specifies a mask that indicates which attributes to save (see above)

ERRORS
#GL_STACK_OVERFLOW is generated if gl.PushClientAttrib() is called while the at-
tribute stack is full.

ASSOCIATED GETS
gl.Get() with argument #GL_ATTRIB_STACK_DEPTH

gl.Get() with argument #GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

Chapter 6: GL reference 169

6.118 gl.PushMatrix

NAME
gl.PushMatrix – push the current matrix stack

SYNOPSIS
gl.PushMatrix()

FUNCTION
There is a stack of matrices for each of the matrix modes. In #GL_MODELVIEW mode,
the stack depth is at least 32. In the other modes, #GL_COLOR, #GL_PROJECTION, and
#GL_TEXTURE, the depth is at least 2. The current matrix in any mode is the matrix on
the top of the stack for that mode.

gl.PushMatrix() pushes the current matrix stack down by one, duplicating the current
matrix. That is, after a gl.PushMatrix() call, the matrix on top of the stack is identical
to the one below it.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to push a full matrix stack. In that case, the error flag is set and no other
change is made to GL state.

Please consult an OpenGL reference manual for more information.

INPUTS
none

ERRORS
#GL_STACK_OVERFLOW is generated if gl.PushMatrix() is called while the current matrix
stack is full.

#GL_INVALID_OPERATION is generated if gl.PushMatrix() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

gl.Get() with argument #GL_MODELVIEW_STACK_DEPTH

gl.Get() with argument #GL_PROJECTION_STACK_DEPTH

gl.Get() with argument #GL_TEXTURE_STACK_DEPTH

gl.Get() with argument #GL_MAX_MODELVIEW_STACK_DEPTH

gl.Get() with argument #GL_MAX_PROJECTION_STACK_DEPTH

gl.Get() with argument #GL_MAX_TEXTURE_STACK_DEPTH

6.119 gl.PushName

NAME
gl.PushName – push the name stack

170 GL Galore manual

SYNOPSIS
gl.PushName(name)

FUNCTION
The name stack is used during selection mode to allow sets of rendering commands to
be uniquely identified. It consists of an ordered set of unsigned integers and is initially
empty.

gl.PushName() causes name to be pushed onto the name stack.

The maximum name stack depth is implementation-dependent; call #GL_MAX_NAME_

STACK_DEPTH to find out the value for a particular implementation. It is an error to
push a name onto a full stack. It is also an error to manipulate the name stack between
the execution of gl.Begin() and the corresponding execution of gl.End(). In any of
these cases, the error flag is set and no other change is made to GL state.

The name stack is always empty while the render mode is not #GL_SELECT. Calls to
gl.PushName() while the render mode is not #GL_SELECT are ignored.

Please consult an OpenGL reference manual for more information.

INPUTS

name specifies a name that will be pushed onto the name stack

ERRORS
#GL_STACK_OVERFLOW is generated if gl.PushName() is called while the name stack is
full.

#GL_INVALID_OPERATION is generated if gl.PushName() is executed between a call to
glBegin and the corresponding call to glEnd.

ASSOCIATED GETS
gl.Get() with argument #GL_NAME_STACK_DEPTH

gl.Get() with argument #GL_MAX_NAME_STACK_DEPTH

6.120 gl.RasterPos

NAME
gl.RasterPos – specify the raster position for pixel operations

SYNOPSIS
gl.RasterPos(x, y[, z, w])

FUNCTION
The GL maintains a 3D position in window coordinates. This position, called the raster
position, is used to position pixel and bitmap write operations. It is maintained with
subpixel accuracy. See Section 6.7 [gl.Bitmap], page 27, for details. See Section 6.36
[gl.DrawPixels], page 59, for details. See Section 6.22 [gl.CopyPixels], page 40, for details.

The current raster position consists of three window coordinates (x, y, z), a clip coor-
dinate value (w), an eye coordinate distance, a valid bit, and associated color data and
texture coordinates. The w coordinate is a clip coordinate, because w is not projected
to window coordinates.

Chapter 6: GL reference 171

The object coordinates presented by gl.RasterPos() are treated just like those of a
gl.Vertex() command: They are transformed by the current modelview and projection
matrices and passed to the clipping stage. If the vertex is not culled, then it is projected
and scaled to window coordinates, which become the new current raster position, and the
#GL_CURRENT_RASTER_POSITION_VALID flag is set. If the vertex is culled, then the valid
bit is cleared and the current raster position and associated color and texture coordinates
are undefined.

The current raster position also includes some associated color data and texture co-
ordinates. If lighting is enabled, then #GL_CURRENT_RASTER_COLOR (in RGBA mode)
or #GL_CURRENT_RASTER_INDEX (in color index mode) is set to the color produced by
the lighting calculation (see gl.Light(), gl.LightModel(), and gl.ShadeModel()). If
lighting is disabled, current color (in RGBA mode, state variable #GL_CURRENT_COLOR)
or color index (in color index mode, state variable #GL_CURRENT_INDEX) is used to update
the current raster color.

Likewise, #GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of
#GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture generation
functions (See Section 6.137 [gl.TexGen], page 190, for details.). Finally, the distance
from the origin of the eye coordinate system to the vertex as transformed by only the
modelview matrix replaces #GL_CURRENT_RASTER_DISTANCE.

Initially, the current raster position is (0, 0, 0, 1), the current raster distance is 0, the
valid bit is set, the associated RGBA color is (1, 1, 1, 1), the associated color index is 1,
and the associated texture coordinates are (0, 0, 0, 1). In RGBA mode, #GL_CURRENT_
RASTER_INDEX is always 1; in color index mode, the current raster RGBA color always
maintains its initial value.

The raster position is modified by gl.RasterPos() and gl.Bitmap().

When the raster position coordinates are invalid, drawing commands that are based on
the raster position are ignored (that is, they do not result in changes to GL state).

Calling gl.DrawElements() may leave the current color or index indeterminate. If
gl.RasterPos() is executed while the current color or index is indeterminate, the current
raster color or current raster index remains indeterminate.

Alternatively, gl.RasterPos() can also be called with a single table argument containing
two to four coordinates to set as the new raster position.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the x object coordinates for the raster position

y specify the y object coordinates for the raster position

z optional: specify the z object coordinates for the raster position (defaults to
0)

w optional: specify the w object coordinates for the raster position (defaults
to 1)

ERRORS
#GL_INVALID_OPERATION is generated if gl.RasterPos() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

172 GL Galore manual

ASSOCIATED GETS
gl.Get() with argument #GL_CURRENT_RASTER_POSITION

gl.Get() with argument #GL_CURRENT_RASTER_POSITION_VALID

gl.Get() with argument #GL_CURRENT_RASTER_DISTANCE

gl.Get() with argument #GL_CURRENT_RASTER_COLOR

gl.Get() with argument #GL_CURRENT_RASTER_INDEX

gl.Get() with argument #GL_CURRENT_RASTER_TEXTURE_COORDS

6.121 gl.ReadBuffer

NAME
gl.ReadBuffer – select a color buffer source for pixels

SYNOPSIS
gl.ReadBuffer(mode)

FUNCTION
gl.ReadBuffer() specifies a color buffer as the source for subsequent gl.ReadPixels(),
gl.CopyTexImage(), gl.CopyTexSubImage(), and gl.CopyPixels() commands. mode
accepts one of twelve or more predefined values. #GL_AUX0 through #GL_AUX3 are always
defined. In a fully configured system, #GL_FRONT, #GL_LEFT, and #GL_FRONT_LEFT all
name the front left buffer, #GL_FRONT_RIGHT and #GL_RIGHT name the front right buffer,
and #GL_BACK_LEFT and #GL_BACK name the back left buffer.

Non-stereo double-buffered configurations have only a front left and a back left buffer.
Single-buffered configurations have a front left and a front right buffer if stereo, and
only a front left buffer if nonstereo. It is an error to specify a non-existent buffer to
gl.ReadBuffer().

mode is initially #GL_FRONT in single-buffered configurations and #GL_BACK in double-
buffered configurations.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies a color buffer (see above)

ERRORS
#GL_INVALID_ENUM is generated if mode is not one of the twelve (or more) accepted
values.

#GL_INVALID_OPERATION is generated if mode specifies a buffer that does not exist.

#GL_INVALID_OPERATION is generated if gl.ReadBuffer() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_READ_BUFFER

Chapter 6: GL reference 173

6.122 gl.ReadPixels

NAME
gl.ReadPixels – read a block of pixels from the frame buffer

SYNOPSIS
pixelsArray = gl.ReadPixels(x, y, width, height, format)

FUNCTION
gl.ReadPixels() returns pixel data from the frame buffer, starting with the pixel whose
lower left corner is at location (x, y), in a table. Several parameters control the processing
of the pixel data before it is placed into the table. These parameters are set with
three commands: gl.PixelStore(), gl.PixelTransfer(), and gl.PixelMap(). This
reference page describes the effects on gl.ReadPixels() of most, but not all of the
parameters specified by these three commands.

gl.ReadPixels() returns values from each pixel with lower left corner at (x + i, y + j)
for 0 <= i < width and 0 <= j < height. This pixel is said to be the ith pixel in the jth
row. Pixels are returned in row order from the lowest to the highest row, left to right in
each row.

gl.ReadPixels() always uses type #GL_FLOAT to read the pixels from the frame
buffer. For fine-tuned control over the data type of the pixel data, you can use
gl.ReadPixelsRaw() instead. See Section 6.123 [gl.ReadPixelsRaw], page 175, for
details.

format specifies the format for the returned pixel values; accepted values are:

#GL_COLOR_INDEX

Color indices are read from the color buffer selected by gl.ReadBuffer().
Each index is converted to fixed point, shifted left or right depending on the
value and sign of #GL_INDEX_SHIFT, and added to #GL_INDEX_OFFSET. If
#GL_MAP_COLOR is #GL_TRUE, indices are replaced by their mappings in the
table #GL_PIXEL_MAP_I_TO_I.

#GL_STENCIL_INDEX

Stencil values are read from the stencil buffer. Each index is converted to
fixed point, shifted left or right depending on the value and sign of #GL_
INDEX_SHIFT, and added to #GL_INDEX_OFFSET. If #GL_MAP_STENCIL is
#GL_TRUE, indices are replaced by their mappings in the table #GL_PIXEL_

MAP_S_TO_S.

#GL_DEPTH_COMPONENT

Depth values are read from the depth buffer. Each component is converted
to floating point such that the minimum depth value maps to 0 and the
maximum value maps to 1. Each component is then multiplied by #GL_

DEPTH_SCALE, added to #GL_DEPTH_BIAS, and finally clamped to the range
(0,1).

#GL_RED Processing differs depending on whether color buffers store color indices or
RGBA color components. If color indices are stored, they are read from
the color buffer selected by gl.ReadBuffer(). Each index is converted to

174 GL Galore manual

fixed point, shifted left or right depending on the value and sign of #GL_
INDEX_SHIFT, and added to #GL_INDEX_OFFSET. Indices are then replaced
by the red, green, blue, and alpha values obtained by indexing the tables
#GL_PIXEL_MAP_I_TO_R, #GL_PIXEL_MAP_I_TO_G, #GL_PIXEL_MAP_I_TO_B,
and #GL_PIXEL_MAP_I_TO_A. Each table must be of size 2^n , but n may be
different for different tables. Before an index is used to look up a value in a
table of size 2^n , it must be masked against 2^n - 1.

If RGBA color components are stored in the color buffers, they are read
from the color buffer selected by gl.ReadBuffer(). Each color component
is converted to floating point such that zero intensity maps to 0.0 and full
intensity maps to 1.0. Each component is then multiplied by #GL_c_SCALE

and added to #GL_c_BIAS, where c is RED, GREEN, BLUE, or ALPHA.
Finally, if #GL_MAP_COLOR is #GL_TRUE, each component is clamped to the
range (0,1), scaled to the size of its corresponding table, and is then replaced
by its mapping in the table #GL_PIXEL_MAP_c_TO_c, where c is R, G, B, or
A.

Unneeded data is then discarded. For example, #GL_RED discards the green,
blue, and alpha components, while #GL_RGB discards only the alpha compo-
nent. #GL_LUMINANCE computes a single-component value as the sum of the
red, green, and blue components, and #GL_LUMINANCE_ALPHA does the same,
while keeping alpha as a second value. The final values are clamped to the
range (0,1).

#GL_GREEN

See above in #GL_RED.

#GL_BLUE See above in #GL_RED.

#GL_ALPHA

See above in #GL_RED.

#GL_RGB See above in #GL_RED.

#GL_RGBA See above in #GL_RED.

#GL_LUMINANCE

See above in #GL_RED.

#GL_LUMINANCE_ALPHA

See above in #GL_RED.

The shift, scale, bias, and lookup factors just described are all specified by
gl.PixelTransfer(). The lookup table contents themselves are specified by
gl.PixelMap().

Return values are placed in the table as follows. If format is #GL_COLOR_INDEX, #GL_
STENCIL_INDEX, #GL_DEPTH_COMPONENT, #GL_RED, #GL_GREEN, #GL_BLUE, #GL_ALPHA, or
#GL_LUMINANCE, a single floating-point value is returned. #GL_RGB returns three values,
#GL_RGBA returns four values, and #GL_LUMINANCE_ALPHA returns two values for each
pixel, with all values corresponding to a single pixel occupying contiguous space in data.
Storage parameters set by gl.PixelStore(), such as #GL_PACK_LSB_FIRST and #GL_

PACK_SWAP_BYTES, affect the way that data is written into memory. See Section 6.104
[gl.PixelStore], page 148, for details.

Chapter 6: GL reference 175

Values for pixels that lie outside the window connected to the current GL context are
undefined.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the left coordinate of a rectangular block of pixels

y specify the lower coordinate of a rectangular block of pixels

width width of the pixel rectangle

height height of the pixel rectangle

format format of the pixel data (see above)

RESULTS

pixelsArray

a table containing the pixel data

ERRORS
#GL_INVALID_ENUM is generated if format is not an accepted value.

#GL_INVALID_VALUE is generated if either width or height is negative.

#GL_INVALID_OPERATION is generated if format is #GL_COLOR_INDEX and the color
buffers store RGBA color components.

#GL_INVALID_OPERATION is generated if format is #GL_STENCIL_INDEX and there is no
stencil buffer.

#GL_INVALID_OPERATION is generated if format is #GL_DEPTH_COMPONENT and there is
no depth buffer.

#GL_INVALID_OPERATION is generated if gl.ReadPixels() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_INDEX_MODE

6.123 gl.ReadPixelsRaw

NAME
gl.ReadPixelsRaw – read a block of pixels from the frame buffer

SYNOPSIS
gl.ReadPixelsRaw(x, y, width, height, format, type, pixels)

FUNCTION
This does the same as gl.ReadPixels() but doesn’t return the pixels in a table. Instead,
the pixels are written directly to a memory block that has to be passed in pixels. This
must be a memory buffer allocated by Hollywood’s AllocMem() function and returned
by GetMemPointer(). See Section 3.7 [Working with pointers], page 11, for details on
how to use memory pointers with Hollywood.

See Section 6.122 [gl.ReadPixels], page 173, for a list of supported types for the format
parameter.

176 GL Galore manual

Additionally, gl.ReadPixelsRaw() also allows you to define the data type that should
be used when reading pixels from the frame buffer. type can assume the following
values: #GL_UNSIGNED_BYTE, #GL_BYTE, #GL_BITMAP, #GL_UNSIGNED_SHORT, #GL_SHORT,
#GL_UNSIGNED_INT, #GL_INT, or #GL_FLOAT. gl.ReadPixels() always uses #GL_FLOAT.
With gl.ReadPixelsRaw() you can adjust this parameter to your specific needs.

See Section 6.122 [gl.ReadPixels], page 173, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the left coordinate of a rectangular block of pixels

y specify the lower coordinate of a rectangular block of pixels

width width of the pixel rectangle

height height of the pixel rectangle

format format of the pixel data (see above)

type specifies the data type of the pixel data (see above)

pixels pointer to a memory buffer to write the pixels to

ERRORS
#GL_INVALID_ENUM is generated if format or type is not an accepted value.

#GL_INVALID_VALUE is generated if either width or height is negative.

#GL_INVALID_OPERATION is generated if format is #GL_COLOR_INDEX and the color
buffers store RGBA color components.

#GL_INVALID_OPERATION is generated if format is #GL_STENCIL_INDEX and there is no
stencil buffer.

#GL_INVALID_OPERATION is generated if format is #GL_DEPTH_COMPONENT and there is
no depth buffer.

#GL_INVALID_OPERATION is generated if gl.ReadPixels() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_INDEX_MODE

6.124 gl.Rect

NAME
gl.Rect – draw a rectangle

SYNOPSIS
gl.Rect(x1, y1, x2, y2)

FUNCTION
gl.Rect() supports efficient specification of rectangles as two corner points. Each rect-
angle command takes four arguments, organized as two consecutive pairs of (x,y) coor-
dinates. Alternatively, you can also pass two tables containing (x,y) coordinates each to
gl.Rect(). The resulting rectangle is defined in the z = 0 plane.

Chapter 6: GL reference 177

gl.Rect(x1, y1, x2, y2) is exactly equivalent to the following sequence:

gl.Begin(#GL_POLYGON)

gl.Vertex(x1, y1)

gl.Vertex(x2, y1)

gl.Vertex(x2, y2)

gl.Vertex(x1, y2)

gl.End()

Note that if the second vertex is above and to the right of the first vertex, the rectangle
is constructed with a counter-clockwise winding.

Please consult an OpenGL reference manual for more information.

INPUTS

x1 specifies one vertex of the rectangle

y1 specifies one vertex of the rectangle

x2 specifies the opposite vertex of the rectangle

y2 specifies the opposite vertex of the rectangle

ERRORS
#GL_INVALID_OPERATION is generated if gl.Rect() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

6.125 gl.RenderMode

NAME
gl.RenderMode – set rasterization mode

SYNOPSIS
r = gl.RenderMode(mode)

FUNCTION
gl.RenderMode() sets the rasterization mode. It takes one argument, mode, which can
assume one of three predefined values:

#GL_RENDER

Render mode. Primitives are rasterized, producing pixel fragments, which
are written into the frame buffer. This is the normal mode and also the
default mode.

#GL_SELECT

Selection mode. No pixel fragments are produced, and no change to the
frame buffer contents is made. Instead, a record of the names of primi-
tives that would have been drawn if the render mode had been #GL_RENDER

is returned in a select buffer, which must be created (See Section 6.129
[gl.SelectBuffer], page 181, for details.) before selection mode is entered.

#GL_FEEDBACK

Feedback mode. No pixel fragments are produced, and no change to the
frame buffer contents is made. Instead, the coordinates and attributes of ver-
tices that would have been drawn if the render mode had been #GL_RENDER

178 GL Galore manual

is returned in a feedback buffer, which must be created (See Section 6.47
[gl.FeedbackBuffer], page 72, for details.) before feedback mode is entered.

The return value of gl.RenderMode() is determined by the render mode at the time
gl.RenderMode() is called, rather than by mode. The values returned for the three
render modes are as follows:

#GL_RENDER

0.

#GL_SELECT

The number of hit records transferred to the select buffer.

#GL_FEEDBACK

The number of values (not vertices) transferred to the feedback buffer.

See Section 6.129 [gl.SelectBuffer], page 181, for more details concerning selection oper-
ation.

See Section 6.47 [gl.FeedbackBuffer], page 72, for more details concerning feedback op-
eration.

If an error is generated, gl.RenderMode() returns 0 regardless of the current render
mode.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies the rasterization mode; the initial value is #GL_RENDER (see above)

RESULTS

r return code (see above)

ERRORS
#GL_INVALID_ENUM is generated if mode is not one of the three accepted values.

#GL_INVALID_OPERATION is generated if gl.SelectBuffer() is called while the render
mode is #GL_SELECT, or if gl.RenderMode() is called with argument #GL_SELECT before
gl.SelectBuffer() is called at least once.

#GL_INVALID_OPERATION is generated if gl.FeedbackBuffer() is called while the render
mode is #GL_FEEDBACK, or if gl.RenderMode() is called with argument #GL_FEEDBACK
before gl.FeedbackBuffer() is called at least once.

#GL_INVALID_OPERATION is generated if gl.RenderMode() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_RENDER_MODE

6.126 gl.Rotate

NAME
gl.Rotate – multiply the current matrix by a rotation matrix

Chapter 6: GL reference 179

SYNOPSIS
gl.Rotate(angle, x, y, z)

FUNCTION
gl.Rotate() produces a rotation of angle degrees around the vector (x,y,z). The current
matrix (See Section 6.96 [gl.MatrixMode], page 139, for details.) is multiplied by a
rotation matrix with the product replacing the current matrix.

If the matrix mode is either #GL_MODELVIEW or #GL_PROJECTION, all objects drawn after
gl.Rotate() is called are rotated.

Use gl.PushMatrix() and gl.PopMatrix() to save and restore the unscaled coordinate
system.

This rotation follows the right-hand rule, so if the vector (x,y,z) points toward the user,
the rotation will be counterclockwise.

Please consult an OpenGL reference manual for more information.

INPUTS

angle specifies the angle of rotation, in degrees

x specify the x coordinate of a vector

y specify the y coordinate of a vector

z specify the z coordinate of a vector

ERRORS
#GL_INVALID_OPERATION is generated if gl.Rotate() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

6.127 gl.Scale

NAME
gl.Scale – multiply the current matrix by a general scaling matrix

SYNOPSIS
gl.Scale(x, y, z)

FUNCTION
gl.Scale() produces a nonuniform scaling along the x, y, and z axes. The three param-
eters indicate the desired scale factor along each of the three axes.

The current matrix (See Section 6.96 [gl.MatrixMode], page 139, for details.) is
multiplied by this scale matrix, and the product replaces the current matrix as if
gl.MultMatrix() were called with the following matrix as its argument:

x 0 0 0

180 GL Galore manual

0 y 0 0

0 0 z 0

0 0 0 1

If the matrix mode is either #GL_MODELVIEW or #GL_PROJECTION, all objects drawn after
gl.Scale() is called are scaled.

Use gl.PushMatrix() and gl.PopMatrix() to save and restore the unscaled coordinate
system.

If scale factors other than 1 are applied to the modelview matrix and lighting is enabled,
lighting often appears wrong. In that case, enable automatic normalization of normals
by calling gl.Enable() with the argument #GL_NORMALIZE.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify scale factor along the x axis

y specify scale factor along the y axis

z specify scale factor along the z axis

ERRORS
#GL_INVALID_OPERATION is generated if gl.Scale() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

6.128 gl.Scissor

NAME
gl.Scissor – define the scissor box

SYNOPSIS
gl.Scissor(x, y, width, height)

FUNCTION
gl.Scissor() defines a rectangle, called the scissor box, in window coordinates. The
first two arguments, x and y, specify the lower left corner of the box. width and height

specify the width and height of the box.

To enable and disable the scissor test, call gl.Enable() and gl.Disable() with ar-
gument #GL_SCISSOR_TEST. The test is initially disabled. While the test is enabled,
only pixels that lie within the scissor box can be modified by drawing commands.
Window coordinates have integer values at the shared corners of frame buffer pixels.
gl.Scissor(0,0,1,1) allows modification of only the lower left pixel in the window, and
gl.Scissor(0,0,0,0) doesn’t allow modification of any pixels in the window.

Chapter 6: GL reference 181

When the scissor test is disabled, it is as though the scissor box includes the entire
window.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the left corner of the scissor box; initally 0

y specify the lower corner of the scissor box; initially 0

width specify the width of the scissor box

height specify the height of the scissor box

ERRORS
#GL_INVALID_VALUE is generated if either width or height is negative.

#GL_INVALID_OPERATION is generated if gl.Scissor() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_SCISSOR_BOX

gl.IsEnabled() with argument #GL_SCISSOR_TEST

6.129 gl.SelectBuffer

NAME
gl.SelectBuffer – establish a buffer for selection mode values

SYNOPSIS
buffer = gl.SelectBuffer(size)

FUNCTION
gl.SelectBuffer() allocates a memory buffer of the size specified in the size argu-
ment and returns a pointer to this buffer. Values from the name stack will be written
to this buffer (see gl.InitNames(), gl.LoadName(), gl.PushName()) when the ren-
dering mode is #GL_SELECT (See Section 6.125 [gl.RenderMode], page 177, for details.).
gl.SelectBuffer() must be issued before selection mode is enabled, and it must not
be issued while the rendering mode is #GL_SELECT.

You can read values from the memory buffer returned by gl.SelectBuffer() by
calling gl.GetSelectBuffer() or accessing the buffer directly using Hollywood’s
GetMemPointer() and Peek() functions. When accessing the buffer directly, please
note that the first four bytes in the buffer contain the size of the selection buffer in
bytes.

A programmer can use selection to determine which primitives are drawn into some
region of a window. The region is defined by the current modelview and perspective
matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a
primitive or a raster position intersects the clipping volume defined by the viewing frus-
tum and the user-defined clipping planes, this primitive causes a selection hit. (With
polygons, no hit occurs if the polygon is culled.) When a change is made to the name

182 GL Galore manual

stack, or when gl.RenderMode() is called, a hit record is copied to buffer if any hits
have occurred since the last such event (name stack change or gl.RenderMode() call).
The hit record consists of the number of names in the name stack at the time of the
event, followed by the minimum and maximum depth values of all vertices that hit since
the previous event, followed by the name stack contents, bottom name first.

Depth values (which are in the range [0,1]) are multiplied by 2^32 - 1, before being placed
in the hit record.

An internal index into buffer is reset to 0 whenever selection mode is entered. Each time
a hit record is copied into buffer, the index is incremented to point to the cell just past
the end of the block of names, that is, to the next available cell if the hit record is larger
than the number of remaining locations in buffer, as much data as can fit is copied, and
the overflow flag is set. If the name stack is empty when a hit record is copied, that
record consists of 0 followed by the minimum and maximum depth values.

To exit selection mode, call gl.RenderMode() with an argument other than #GL_SELECT.
Whenever gl.RenderMode() is called while the render mode is #GL_SELECT, it returns
the number of hit records copied to buffer, resets the overflow flag and the selection
buffer pointer, and initializes the name stack to be empty. If the overflow bit was set
when gl.RenderMode() was called, a negative hit record count is returned.

The contents of buffer is undefined until gl.RenderMode() is called with an argument
other than #GL_SELECT.

gl.Begin() / gl.End() primitives and calls to gl.RasterPos() can result in hits.

To free a buffer allocated by this function, call gl.FreeSelectBuffer(). See Section 6.52
[gl.FreeSelectBuffer], page 77, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

size specifies the size of the buffer in bytes

RESULTS

buffer memory buffer to use in selection mode

ERRORS
#GL_INVALID_VALUE is generated if size is negative.

#GL_INVALID_OPERATION is generated if gl.SelectBuffer() is called while the render
mode is #GL_SELECT, or if gl.RenderMode() is called with argument #GL_SELECT before
gl.SelectBuffer() is called at least once.

#GL_INVALID_OPERATION is generated if gl.SelectBuffer() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_NAME_STACK_DEPTH

gl.Get() with argument #GL_SELECTION_BUFFER_SIZE

gl.GetPointer() with argument #GL_SELECTION_BUFFER_POINTER

Chapter 6: GL reference 183

6.130 gl.ShadeModel

NAME
gl.ShadeModel – select flat or smooth shading

SYNOPSIS
gl.ShadeModel(mode)

FUNCTION
GL primitives can have either flat or smooth shading. Smooth shading, the default,
causes the computed colors of vertices to be interpolated as the primitive is rasterized,
typically assigning different colors to each resulting pixel fragment. Flat shading selects
the computed color of just one vertex and assigns it to all the pixel fragments generated
by rasterizing a single primitive. In either case, the computed color of a vertex is the
result of lighting if lighting is enabled, or it is the current color at the time the vertex
was specified if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Starting when gl.Begin() is
issued and counting vertices and primitives from 1, the GL gives each flat-shaded line
segment i the computed color of vertex i + 1, its second vertex. Counting similarly from
1, the GL gives each flat-shaded polygon the computed color of the vertex listed in the
following table. This is the last vertex to specify the polygon in all cases except single
polygons, where the first vertex specifies the flat-shaded color.

Primitive Type of Polygon i | Vertex

Single polygon (i == 1) | 1

Triangle strip | i + 2

Triangle fan | i + 2

Independent triangle | 3i

Quad strip | 2i + 2

Independent quad | 4i

Flat and smooth shading are specified by gl.ShadeModel() with mode set to #GL_FLAT

and #GL_SMOOTH, respectively.

Please consult an OpenGL reference manual for more information.

INPUTS

mode specifies a symbolic value representing a shading technique; accepted values
are #GL_FLAT and #GL_SMOOTH; the initial value is #GL_SMOOTH

ERRORS
#GL_INVALID_ENUM is generated if mode is any value other than #GL_FLAT or #GL_SMOOTH.

#GL_INVALID_OPERATION is generated if gl.ShadeModel() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_SHADE_MODEL

184 GL Galore manual

6.131 gl.StencilFunc

NAME
gl.StencilFunc – set function and reference value for stencil testing

SYNOPSIS
gl.StencilFunc(func, ref, mask)

FUNCTION
Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. Stencil
planes are first drawn into using GL drawing primitives, then geometry and images
are rendered using the stencil planes to mask out portions of the screen. Stenciling is
typically used in multipass rendering algorithms to achieve special effects, such as decals,
outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison
between the reference value and the value in the stencil buffer. To enable and disable
the test, call gl.Enable() and gl.Disable() with argument #GL_STENCIL_TEST. To
specify actions based on the outcome of the stencil test, call gl.StencilOp().

func is a symbolic constant that determines the stencil comparison function. It accepts
one of eight values, shown in the following list. ref is an integer reference value that
is used in the stencil comparison. It is clamped to the range (0,2^n-1) , where n is
the number of bitplanes in the stencil buffer. mask is bitwise ANDed with both the
reference value and the stored stencil value, with the ANDed values participating in the
comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the
following list shows the effect of each comparison function that can be specified by func.
Only if the comparison succeeds is the pixel passed through to the next stage in the
rasterization process (See Section 6.133 [gl.StencilOp], page 186, for details.). All tests
treat stencil values as unsigned integers in the range (0,2^n-1) , where n is the number
of bitplanes in the stencil buffer.

The following values are accepted by func:

#GL_NEVER

Always fails.

#GL_LESS Passes if (ref & mask) < (stencil & mask).

#GL_LEQUAL

Passes if (ref & mask) <= (stencil & mask).

#GL_GREATER

Passes if (ref & mask) > (stencil & mask).

#GL_GEQUAL

Passes if (ref & mask) >= (stencil & mask).

GL_EQUAL Passes if (ref & mask) = (stencil & mask).

GL_NOTEQUAL

Passes if (ref & mask) != (stencil & mask).

#GL_ALWAYS

Always passes.

Chapter 6: GL reference 185

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification
can occur and it is as if the stencil test always passes.

Please consult an OpenGL reference manual for more information.

INPUTS

func specifies the test function; the initial value is #GL_ALWAYS (see above)

ref specifies the reference value for the stencil test; the initial value is 0

mask specifies a mask that is ANDed with both the reference value and the stored
stencil value when the test is done; the initial value is all 1’s

ERRORS
#GL_INVALID_ENUM is generated if func is not one of the eight accepted values.

#GL_INVALID_OPERATION is generated if gl.StencilFunc() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_STENCIL_FUNC, #GL_STENCIL_VALUE_MASK, #GL_STENCIL_
REF, or #GL_STENCIL_BITS

gl.IsEnabled() with argument #GL_STENCIL_TEST

6.132 gl.StencilMask

NAME
gl.StencilMask – control the writing of individual bits in the stencil planes

SYNOPSIS
gl.StencilMask(mask)

FUNCTION
gl.StencilMask() controls the writing of individual bits in the stencil planes. The least
significant n bits of mask, where n is the number of bits in the stencil buffer, specify a
mask. Where a 1 appears in the mask, it’s possible to write to the corresponding bit in
the stencil buffer. Where a 0 appears, the corresponding bit is write-protected. Initially,
all bits are enabled for writing.

Please consult an OpenGL reference manual for more information.

INPUTS

mask specifies a bit mask to enable and disable writing of individual bits in the
stencil planes; initially, the mask is all 1’s

ERRORS
#GL_INVALID_OPERATION is generated if gl.StencilMask() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_STENCIL_WRITEMASK, #GL_STENCIL_BACK_WRITEMASK, or
#GL_STENCIL_BITS

186 GL Galore manual

6.133 gl.StencilOp

NAME
gl.StencilOp – set stencil test actions

SYNOPSIS
gl.StencilOp(fail, zfail, zpass)

FUNCTION
Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You
draw into the stencil planes using GL drawing primitives, then render geometry and
images, using the stencil planes to mask out portions of the screen. Stenciling is typically
used in multipass rendering algorithms to achieve special effects, such as decals, outlining,
and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison
between the value in the stencil buffer and a reference value. To enable and disable the
test, call gl.Enable() and gl.Disable() with argument #GL_STENCIL_TEST; to control
it, call gl.StencilFunc().

gl.StencilOp() takes three arguments that indicate what happens to the stored stencil
value while stenciling is enabled. If the stencil test fails, no change is made to the pixel’s
color or depth buffers, and fail specifies what happens to the stencil buffer contents.
The following eight actions are possible.

#GL_KEEP Keeps the current value.

#GL_ZERO Sets the stencil buffer value to 0.

#GL_REPLACE

Sets the stencil buffer value to ref, as specified by gl.StencilFunc().

#GL_INCR Increments the current stencil buffer value. Clamps to the maximum repre-
sentable unsigned value.

#GL_DECR Decrements the current stencil buffer value. Clamps to 0.

#GL_INVERT

Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decre-
mented, values are clamped to 0 and 2^n - 1, where n is the value returned by querying
#GL_STENCIL_BITS.

The other two arguments to gl.StencilOp() specify stencil buffer actions that de-
pend on whether subsequent depth buffer tests succeed (zpass) or fail (zfail) (See
Section 6.28 [gl.DepthFunc], page 48, for details.). The actions are specified using the
same eight symbolic constants as fail. Note that zfail is ignored when there is no
depth buffer, or when the depth buffer is not enabled. In these cases, fail and zpass

specify stencil action when the stencil test fails and passes, respectively.

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can
occur and it is as if the stencil tests always pass, regardless of any call to gl.StencilOp().

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 187

INPUTS

fail specifies the action to take when the stencil test fails; the initial value is
#GL_KEEP (see above)

zfail specifies the stencil action when the stencil test passes, but the depth test
fails; zfail accepts the same symbolic constants as fail; the initial value is
#GL_KEEP

zpass specifies the stencil action when both the stencil test and the depth test pass,
or when the stencil test passes and either there is no depth buffer or depth
testing is not enabled; zpass accepts the same symbolic constants as fail;
the initial value is #GL_KEEP

ERRORS
#GL_INVALID_ENUM is generated if fail, zfail, or zpass is any value other than the
eight defined constant values.

#GL_INVALID_OPERATION is generated if gl.StencilOp() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with one of the following arguments: #GL_STENCIL_FAIL, #GL_STENCIL_

PASS_DEPTH_PASS, #GL_STENCIL_PASS_DEPTH_FAIL, #GL_STENCIL_BACK_FAIL, or
#GL_STENCIL_BITS

gl.IsEnabled() with argument #GL_STENCIL_TEST

6.134 gl.TexCoord

NAME
gl.TexCoord – set the current texture coordinates

SYNOPSIS
gl.TexCoord(s[, t, r, q])

FUNCTION
gl.TexCoord() specifies texture coordinates in one, two, three, or four dimensions.

The current texture coordinates are part of the data that is associated with each vertex
and with the current raster position. Initially, the values for s, t, r, and q are (0, 0, 0,
1).

The current texture coordinates can be updated at any time. In particular,
gl.TexCoord() can be called between a call to gl.Begin() and the corresponding call
to gl.End().

Alternatively, you can also pass a table that contains one to four coordinates to
gl.TexCoord().

Please consult an OpenGL reference manual for more information.

INPUTS

s specify the s texture coordinate

t optional: specify the t texture coordinate (defaults to 0)

188 GL Galore manual

r optional: specify the r texture coordinate (defaults to 0)

q optional: specify the q texture coordinate (defaults to 1)

ASSOCIATED GETS
gl.Get() with argument #GL_CURRENT_TEXTURE_COORDS

6.135 gl.TexCoordPointer

NAME
gl.TexCoordPointer – define an array of texture coordinates

SYNOPSIS
gl.TexCoordPointer(vArray[, size])

FUNCTION
gl.TexCoordPointer() specifies an array of texture coordinates to use when render-
ing. vArray can be either a one-dimensional table consisting of an arbitrary number
of consecutive texture coordinates or a two-dimensional table consisting of an arbitrary
number of subtables which contain 1 to 4 texture coordinates each. If vArray is a one-
dimensional table, you need to pass the optional size argument as well to define the
number of texture coordinates per array element. size must be a value in the range of
1 to 4. If vArray is a two-dimensional table, size is automatically determined by the
number of items in the first subtable, which must be in the range of 1 to 4 as well.

When using a two-dimensional table, please keep in mind that the number of texture
coordinates in each subtable must be constant. It is not allowed to use differing numbers
of texture coordinates in the individual subtables. The number of texture coordinates is
defined by the number of elements in the first subtable and all following subtables must
use the very same number of coordinates.

If you pass Nil in vArray, the texture coordinates array buffer will be freed but it won’t
be removed from OpenGL. You need to do this manually, e.g. by disabling the texture
coordinates array or defining a new one.

To enable and disable a texture coordinate array, call gl.EnableClientState() and
gl.DisableClientState() with the argument #GL_TEXTURE_COORD_ARRAY. If enabled,
the texture coordinate array is used when gl.DrawArrays(), gl.DrawElements(), or
gl.ArrayElement() is called.

Each texture coordinate array is initially disabled and isn’t accessed when
gl.DrawArrays(), gl.DrawElements(), or gl.ArrayElement() is called.

Execution of gl.TexCoordPointer() is not allowed between the execution of
gl.Begin() and the corresponding execution of gl.End(), but an error may or may
not be generated. If no error is generated, the operation is undefined.

gl.TexCoordPointer() is typically implemented on the client side.

Texture coordinate array parameters are client-side state and are therefore not saved or
restored by gl.PushAttrib() and gl.PopAttrib(). Use gl.PushClientAttrib() and
gl.PopClientAttrib() instead.

Please consult an OpenGL reference manual for more information.

Chapter 6: GL reference 189

INPUTS

vArray one- or two-dimensional table containing texture coordinates or Nil (see
above)

size optional: texture coordinates per array element; must be between 1 to 4 and
is only used with one-dimensional tables (see above)

ERRORS
#GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_TEXTURE_COORD_ARRAY

gl.Get() with argument #GL_TEXTURE_COORD_ARRAY_SIZE

gl.Get() with argument #GL_TEXTURE_COORD_ARRAY_TYPE

gl.Get() with argument #GL_TEXTURE_COORD_ARRAY_STRIDE

gl.GetPointer() with argument #GL_TEXTURE_COORD_ARRAY_POINTER

6.136 gl.TexEnv

NAME
gl.TexEnv – set texture environment parameters

SYNOPSIS
gl.TexEnv(pname, param)

FUNCTION
A texture environment specifies how texture values are interpreted when a fragment is
textured. pname can be either #GL_TEXTURE_ENV_MODE or #GL_TEXTURE_ENV_COLOR. If
pname is #GL_TEXTURE_ENV_MODE, then param must be the symbolic name of a texture
function. Four texture functions may be specified: #GL_MODULATE, #GL_DECAL, #GL_
BLEND, and #GL_REPLACE.

A texture function acts on the fragment to be textured using the texture image value
that applies to the fragment (See Section 6.141 [gl.TexParameter], page 199, for details.)
and produces an RGBA color for that fragment. See an OpenGL reference manual for
information on how the RGBA color is produced for each of the three texture functions
that can be chosen.

If pname is #GL_TEXTURE_ENV_COLOR, param must be a table containing an array that
holds an RGBA color consisting of four floating-point values.

#GL_TEXTURE_ENV_MODE defaults to #GL_MODULATE and #GL_TEXTURE_ENV_COLOR de-
faults to (0, 0, 0, 0)

Please consult an OpenGL reference manual for more information.

INPUTS

pname specifies the symbolic name of a texture environment parameter (see above)

param table or single value specifying the parameter

190 GL Galore manual

ERRORS
#GL_INVALID_ENUM is generated when pname is not one of the accepted defined values,
or when param should have a defined constant value (based on the value of pname) and
does not.

#GL_INVALID_OPERATION is generated if gl.TexEnv() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexEnv()

6.137 gl.TexGen

NAME
gl.TexGen – control the generation of texture coordinates

SYNOPSIS
gl.TexGen(coord, pname, param)

FUNCTION
gl.TexGen() selects a texture-coordinate generation function or supplies coefficients for
one of the functions. coord names one of the (s, t, r, q) texture coordinates; it must
be one of the symbols #GL_S, #GL_T, #GL_R, or #GL_Q. pname must be one of three
symbolic constants: #GL_TEXTURE_GEN_MODE, #GL_OBJECT_PLANE, or #GL_EYE_PLANE.
If pname is #GL_TEXTURE_GEN_MODE, then param chooses a mode, one of #GL_OBJECT_
LINEAR, #GL_EYE_LINEAR, or #GL_SPHERE_MAP. If pname is either #GL_OBJECT_PLANE

or #GL_EYE_PLANE, param contains coefficients for the corresponding texture generation
function.

If the texture generation function is #GL_OBJECT_LINEAR, the function

g = p1x0 + p2y0 + p3z0 + p4w0

is used, where g is the value computed for the coordinate named in coord, p1, p2,
p3, and p4 are the four values supplied in param, and x0, y0, z0, and w0 are the object
coordinates of the vertex. This function can be used, for example, to texture-map terrain
using sea level as a reference plane (defined by p1, p2, p3, and p4). The altitude of a
terrain vertex is computed by the #GL_OBJECT_LINEAR coordinate generation function
as its distance from sea level; that altitude can then be used to index the texture image
to map white snow onto peaks and green grass onto foothills.

If the texture generation function is #GL_EYE_LINEAR, the function

g = p1’x0 + p2’y0 + p3’z0 + p4’w0

is used, where

(p1’ p2’ p3’ p4’) = (p1 p2 p3 p4) M^-1

and x0, y0, z0, and w0 are the eye coordinates of the vertex, p1, p2, p3, and p4 are the
values supplied in param, and M is the modelview matrix when gl.TexGen() is invoked.
If M is poorly conditioned or singular, texture coordinates generated by the resulting
function may be inaccurate or undefined.

Note that the values in param define a reference plane in eye coordinates. The modelview
matrix that is applied to them may not be the same one in effect when the polygon

Chapter 6: GL reference 191

vertices are transformed. This function establishes a field of texture coordinates that
can produce dynamic contour lines on moving objects.

If pname is #GL_SPHERE_MAP and coord is either #GL_S or #GL_T, s and t texture coordi-
nates are generated as follows. Let u be the unit vector pointing from the origin to the
polygon vertex (in eye coordinates). Let n’ be the current normal, after transformation
to eye coordinates. Let f = (fx fy fz)^T be the reflection vector such that

f = u - 2n’ n’^Tu

Finally, let m = 2 sqrt(fx^2 + fy^2 + (fz + 1)^2). Then the values assigned to the s and
t texture coordinates are

s = fx/m + 1/2

t = fy/m + 1/2

To enable or disable a texture-coordinate generation function, call gl.Enable() or
gl.Disable() with one of the symbolic texture-coordinate names (#GL_TEXTURE_GEN_
S, #GL_TEXTURE_GEN_T, #GL_TEXTURE_GEN_R, or #GL_TEXTURE_GEN_Q) as the argument.
When enabled, the specified texture coordinate is computed according to the generating
function associated with that coordinate. When disabled, subsequent vertices take the
specified texture coordinate from the current set of texture coordinates. Initially, all
texture generation functions are set to #GL_EYE_LINEAR and are disabled. Both s plane
equations are (1, 0, 0, 0), both t plane equations are (0, 1, 0, 0), and all r and q plane
equations are (0, 0, 0, 0).

Please consult an OpenGL reference manual for more information.

INPUTS

coord specifies a texture coordinate; must be one of #GL_S, #GL_T, #GL_R, or #GL_Q

pname specifies the symbolic name of the texture-coordinate generation function or
function parameters (see above)

param single value or table containing parameters for pname (see above)

ERRORS
#GL_INVALID_ENUM is generated when coord or pname is not an accepted defined value,
or when pname is #GL_TEXTURE_GEN_MODE and param is not an accepted defined value.

#GL_INVALID_ENUM is generated when pname is #GL_TEXTURE_GEN_MODE, param is #GL_
SPHERE_MAP, and coord is either #GL_R or #GL_Q.

#GL_INVALID_OPERATION is generated if gl.TexGen() is executed between the execution
of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexGen()

gl.IsEnabled() with argument #GL_TEXTURE_GEN_S

gl.IsEnabled() with argument #GL_TEXTURE_GEN_T

gl.IsEnabled() with argument #GL_TEXTURE_GEN_R

gl.IsEnabled() with argument #GL_TEXTURE_GEN_Q

192 GL Galore manual

6.138 gl.TexImage

NAME
gl.TexImage – specify a one- or two-dimensional texture image

SYNOPSIS
gl.TexImage(level, internalformat, format, type, pixels[, border])

FUNCTION
This function does the same as gl.TexImage1D() and gl.TexImage2D() except that the
pixel data is not passed in a raw memory buffer but as table containing one subtable for
each row of pixels. This is of course not as efficient as using raw memory buffers because
the table’s pixel data has to be copied to a raw memory buffer first.

Width and height of the texture will be automatically determined by the layout of the
table in pixels. If there is only one subtable within pixels, gl.TexImage() will define
a texture of type #GL_TEXTURE_1D. If there are multiple subtables within pixels, #GL_
TEXTURE_2D will be used.

Note that only #GL_FLOAT and #GL_UNSIGNED_BYTE are currently supported for type and
internalformat only accepts #GL_RGB, #GL_RGBA, #GL_ALPHA, #GL_LUMINANCE, #GL_
LUMINANCE_ALPHA, #GL_DEPTH_COMPONENT and the values 1, 2, 3, and 4.

See Section 6.140 [gl.TexImage2D], page 196, for more details on the parameters accepted
by this function.

Please consult an OpenGL reference manual for more information.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level, level n is
the nth mipmap reduction image

internalformat

specifies the number of color components in the texture; must be 1, 2, 3, or
4, or a symbolic constant (see above)

format specifies the format of the pixel data (see above)

type specifies the data type of the pixel data (see above)

pixels specifies a two-dimensional table containing pixel data

border optional: specifies the width of the border (defaults to 0)

6.139 gl.TexImage1D

NAME
gl.TexImage1D – specify a one-dimensional texture image

SYNOPSIS
gl.TexImage1D(level, internalformat, width, border, format, type, pixels)

FUNCTION
Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable one-dimensional texturing, call
gl.Enable() and gl.Disable() with argument #GL_TEXTURE_1D.

Chapter 6: GL reference 193

Texture images are defined with gl.TexImage1D(). The arguments describe the param-
eters of the texture image, such as width, width of the border, level-of-detail number (See
Section 6.141 [gl.TexParameter], page 199, for details.), and the internal resolution and
format used to store the image. The last three arguments describe how the image is rep-
resented in memory; they are identical to the pixel formats used for gl.DrawPixels().

Data is read from pixels as a sequence of signed or unsigned bytes, shorts, or longs, or
single-precision floating-point values, depending on type. These values are grouped into
sets of one, two, three, or four values, depending on format, to form elements. If type
is #GL_BITMAP, the data is considered as a string of unsigned bytes (and format must be
#GL_COLOR_INDEX). Each data byte is treated as eight 1-bit elements, with bit ordering
determined by #GL_UNPACK_LSB_FIRST (See Section 6.104 [gl.PixelStore], page 148, for
details.).

The first element corresponds to the left end of the texture array. Subsequent elements
progress left-to-right through the remaining texels in the texture array. The final element
corresponds to the right end of the texture array.

format determines the composition of each element in pixels. It can assume one of nine
symbolic values:

#GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to
fixed point (with an unspecified number of zero bits to the right of the
binary point), shifted left or right depending on the value and sign of
#GL_INDEX_SHIFT, and added to #GL_INDEX_OFFSET (See Section 6.105
[gl.PixelTransfer], page 152, for details.). The resulting index is converted
to a set of color components using the #GL_PIXEL_MAP_I_TO_R, #GL_

PIXEL_MAP_I_TO_G, #GL_PIXEL_MAP_I_TO_B, and #GL_PIXEL_MAP_I_TO_A

tables, and clamped to the range [0,1].

#GL_RED Each element is a single red component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for green and
blue, and 1 for alpha. Each component is then multiplied by the signed scale
factor #GL_c_SCALE, added to the signed bias #GL_c_BIAS, and clamped to
the range [0, 1] (See Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_GREEN

Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red and
blue, and 1 for alpha. Each component is then multiplied by the signed scale
factor #GL_c_SCALE, added to the signed bias #GL_c_BIAS, and clamped to
the range [0, 1] (See Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_BLUE Each element is a single blue component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red and
green, and 1 for alpha. Each component is then multiplied by the signed scale
factor #GL_c_SCALE, added to the signed bias #GL_c_BIAS, and clamped to
the range [0, 1] (See Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_ALPHA

Each element is a single alpha component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red, green,

194 GL Galore manual

and blue. Each component is then multiplied by the signed scale factor #GL_
c_SCALE, added to the signed bias #GL_c_BIAS, and clamped to the range
[0, 1] (See Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_RGB Each element is an RGB triple. The GL converts it to floating point and
assembles it into an RGBA element by attaching 1 for alpha. Each compo-
nent is then multiplied by the signed scale factor #GL_c_SCALE, added to the
signed bias #GL_c_BIAS, and clamped to the range [0, 1] (See Section 6.105
[gl.PixelTransfer], page 152, for details.).

#GL_RGBA Each element contains all four components. Each component is multiplied
by the signed scale factor #GL_c_SCALE, added to the signed bias #GL_c_

BIAS, and clamped to the range [0, 1] (See Section 6.105 [gl.PixelTransfer],
page 152, for details.).

#GL_LUMINANCE

Each element is a single luminance value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the lumi-
nance value three times for red, green, and blue and attaching 1 for alpha.
Each component is then multiplied by the signed scale factor #GL_c_SCALE,
added to the signed bias #GL_c_BIAS, and clamped to the range [0, 1] (See
Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating point,
then assembles it into an RGBA element by replicating the luminance value
three times for red, green, and blue. Each component is then multiplied
by the signed scale factor #GL_c_SCALE, added to the signed bias #GL_c_

BIAS, and clamped to the range [0, 1] (See Section 6.105 [gl.PixelTransfer],
page 152, for details.).

#GL_DEPTH_COMPONENT

Each element is a single depth component. It is converted to floating-
point, then multiplied by the signed scale factor #GL_DEPTH_SCALE, added
to the signed bias #GL_DEPTH_BIAS, and clamped to the range [0, 1] (See
Section 6.105 [gl.PixelTransfer], page 152, for details.).

If an application wants to store the texture at a certain resolution or in a certain for-
mat, it can request the resolution and format with internalformat. internalformat

specifies the internal format of the texture array. See Section 3.12 [Internal pixel for-
mats], page 13, for details. The GL will choose an internal representation that closely
approximates that requested by internalformat, but it may not match exactly. (The
representations specified by #GL_LUMINANCE, #GL_LUMINANCE_ALPHA, #GL_RGB, and #GL_

RGBA must match exactly. The numeric values 1, 2, 3, and 4 may also be used to specify
the above representations.)

A one-component texture image uses only the red component of the RGBA color ex-
tracted from pixels. A two-component image uses the R and A values. A three-
component image uses the R, G, and B values. A four-component image uses all of
the RGBA components.

Texturing has no effect in color index mode.

Chapter 6: GL reference 195

The texture image can be represented by the same data formats as the pixels in
a gl.DrawPixels() command, except that #GL_STENCIL_INDEX and #GL_DEPTH_

COMPONENT cannot be used. gl.PixelStore() and gl.PixelTransfer() modes affect
texture images in exactly the way they affect gl.DrawPixels().

Please note that this command operates directly with memory pointers. There is also a
version which works with tables instead of memory pointers, but this is slower of course.
See Section 6.138 [gl.TexImage], page 192, for details. See Section 3.7 [Working with
pointers], page 11, for details on how to use memory pointers with Hollywood.

Please consult an OpenGL reference manual for more information.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level, level n is
the nth mipmap reduction image

internalformat

specifies the number of color components in the texture; must be 1, 2, 3, or
4, or a symbolic constant (see above)

width specifies the width of the texture image; must be 2^n + 2*border for some
integer n; all implementations support texture images that are at least 64
texels wide

border specifies the width of the border; must be either 0 or 1

format specifies the format of the pixel data (see above)

type specifies the data type of the pixel data (see above)

pixels specifies a pointer to the image data in memory

ERRORS
#GL_INVALID_ENUM is generated if format is not an accepted format constant. Format
constants other than #GL_STENCIL_INDEX are accepted.

#GL_INVALID_ENUM is generated if type is not a type constant.

#GL_INVALID_ENUM is generated if type is #GL_BITMAP and format is not #GL_COLOR_
INDEX.

#GL_INVALID_VALUE is generated if level is less than 0.

#GL_INVALID_VALUE may be generated if level is greater than log2max, where max is
the returned value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the
accepted resolution and format symbolic constants.

#GL_INVALID_VALUE is generated if width or height is less than 0 or greater than 2 +

#GL_MAX_TEXTURE_SIZE, or if either cannot be represented as 2k + 2*border for some
integer value of k.

#GL_INVALID_VALUE is generated if border is not 0 or 1.

#GL_INVALID_OPERATION is generated if gl.TexImage1D() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexImage()

196 GL Galore manual

gl.IsEnabled() with argument #GL_TEXTURE_1D

6.140 gl.TexImage2D

NAME
gl.TexImage2D – specify a two-dimensional texture image

SYNOPSIS
gl.TexImage2D(level, internalformat, w, h, border, format, type, pixels)

FUNCTION
Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable two-dimensional texturing, call
gl.Enable() and gl.Disable() with argument #GL_TEXTURE_2D.

To define texture images, call gl.TexImage2D(). The arguments describe the parameters
of the texture image, such as height, width, width of the border, level-of-detail number
(See Section 6.141 [gl.TexParameter], page 199, for details.), and number of color com-
ponents provided. The last three arguments describe how the image is represented in
memory; they are identical to the pixel formats used for glDrawPixels.

Data is read from pixels as a sequence of signed or unsigned bytes, shorts, or longs, or
single-precision floating-point values, depending on type which can be #GL_UNSIGNED_

BYTE, #GL_BYTE, #GL_BITMAP, #GL_UNSIGNED_SHORT, #GL_SHORT, #GL_UNSIGNED_INT,
#GL_INT, and #GL_FLOAT. These values are grouped into sets of one, two, three, or
four values, depending on format, to form elements. If type is #GL_BITMAP, the data
is considered as a string of unsigned bytes (and format must be #GL_COLOR_INDEX).
Each data byte is treated as eight 1-bit elements, with bit ordering determined by #GL_

UNPACK_LSB_FIRST (See Section 6.104 [gl.PixelStore], page 148, for details.).

The first element corresponds to the lower left corner of the texture image. Subsequent
elements progress left-to-right through the remaining texels in the lowest row of the
texture image, and then in successively higher rows of the texture image. The final
element corresponds to the upper right corner of the texture image.

format determines the composition of each element in pixels. It can assume one of nine
symbolic values:

#GL_COLOR_INDEX

Each element is a single value, a color index. The GL converts it to
fixed point (with an unspecified number of zero bits to the right of the
binary point), shifted left or right depending on the value and sign of
#GL_INDEX_SHIFT, and added to #GL_INDEX_OFFSET (See Section 6.105
[gl.PixelTransfer], page 152, for details.). The resulting index is converted
to a set of color components using the #GL_PIXEL_MAP_I_TO_R, #GL_

PIXEL_MAP_I_TO_G, #GL_PIXEL_MAP_I_TO_B, and #GL_PIXEL_MAP_I_TO_A

tables, and clamped to the range [0,1].

#GL_RED Each element is a single red component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for green and
blue, and 1 for alpha. Each component is then multiplied by the signed scale

Chapter 6: GL reference 197

factor #GL_c_SCALE, added to the signed bias #GL_c_BIAS, and clamped to
the range [0, 1] (See Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_GREEN

Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red and
blue, and 1 for alpha. Each component is then multiplied by the signed scale
factor #GL_c_SCALE, added to the signed bias #GL_c_BIAS, and clamped to
the range [0, 1] (See Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_BLUE Each element is a single blue component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red and
green, and 1 for alpha. Each component is then multiplied by the signed scale
factor #GL_c_SCALE, added to the signed bias #GL_c_BIAS, and clamped to
the range [0, 1] (See Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_ALPHA

Each element is a single alpha component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0 for red, green,
and blue. Each component is then multiplied by the signed scale factor #GL_
c_SCALE, added to the signed bias #GL_c_BIAS, and clamped to the range
[0, 1] (See Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_RGB Each element is an RGB triple. The GL converts it to floating point and
assembles it into an RGBA element by attaching 1 for alpha. Each compo-
nent is then multiplied by the signed scale factor #GL_c_SCALE, added to the
signed bias #GL_c_BIAS, and clamped to the range [0, 1] (See Section 6.105
[gl.PixelTransfer], page 152, for details.).

#GL_RGBA Each element contains all four components. Each component is multiplied
by the signed scale factor #GL_c_SCALE, added to the signed bias #GL_c_

BIAS, and clamped to the range [0, 1] (See Section 6.105 [gl.PixelTransfer],
page 152, for details.).

#GL_LUMINANCE

Each element is a single luminance value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the lumi-
nance value three times for red, green, and blue and attaching 1 for alpha.
Each component is then multiplied by the signed scale factor #GL_c_SCALE,
added to the signed bias #GL_c_BIAS, and clamped to the range [0, 1] (See
Section 6.105 [gl.PixelTransfer], page 152, for details.).

#GL_LUMINANCE_ALPHA

Each element is a luminance/alpha pair. The GL converts it to floating point,
then assembles it into an RGBA element by replicating the luminance value
three times for red, green, and blue. Each component is then multiplied
by the signed scale factor #GL_c_SCALE, added to the signed bias #GL_c_

BIAS, and clamped to the range [0, 1] (See Section 6.105 [gl.PixelTransfer],
page 152, for details.).

198 GL Galore manual

#GL_DEPTH_COMPONENT

Each element is a single depth component. It is converted to floating-
point, then multiplied by the signed scale factor #GL_DEPTH_SCALE, added
to the signed bias #GL_DEPTH_BIAS, and clamped to the range [0, 1] (See
Section 6.105 [gl.PixelTransfer], page 152, for details.).

If an application wants to store the texture at a certain resolution or in a certain for-
mat, it can request the resolution and format with internalformat. internalformat

specifies the internal format of the texture array. See Section 3.12 [Internal pixel for-
mats], page 13, for details. The GL will choose an internal representation that closely
approximates that requested by internalformat, but it may not match exactly. (The
representations specified by #GL_LUMINANCE, #GL_LUMINANCE_ALPHA, #GL_RGB, and #GL_

RGBA must match exactly. The numeric values 1, 2, 3, and 4 may also be used to specify
the above representations.)

A one-component texture image uses only the red component of the RGBA color ex-
tracted from pixels. A two-component image uses the R and A values. A three-
component image uses the R, G, and B values. A four-component image uses all of
the RGBA components.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in
a gl.DrawPixels() command, except that #GL_STENCIL_INDEX and #GL_DEPTH_

COMPONENT cannot be used. gl.PixelStore() and gl.PixelTransfer() modes affect
texture images in exactly the way they affect gl.DrawPixels().

Please note that this command operates directly with memory pointers. There is also a
version which works with tables instead of memory pointers, but this is slower of course.
See Section 6.138 [gl.TexImage], page 192, for details. See Section 3.7 [Working with
pointers], page 11, for details on how to use memory pointers with Hollywood.

Please consult an OpenGL reference manual for more information.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level, level n is
the nth mipmap reduction image

internalformat

specifies the number of color components in the texture; must be 1, 2, 3, or
4, or a symbolic constant (see above)

w specifies the width of the texture image; must be 2^n + 2*border for some
integer n; all implementations support texture images that are at least 64
texels wide

h specifies the height of the texture image; must be 2^m + 2*border for some
integer m; all implementations support texture images that are at least 64
texels high

border specifies the width of the border; must be either 0 or 1

format specifies the format of the pixel data (see above)

type specifies the data type of the pixel data (see above)

Chapter 6: GL reference 199

pixels specifies a pointer to the image data in memory

ERRORS
#GL_INVALID_ENUM is generated if format is not an accepted format constant. Format
constants other than #GL_STENCIL_INDEX are accepted.

#GL_INVALID_ENUM is generated if type is not a type constant.

#GL_INVALID_ENUM is generated if type is #GL_BITMAP and format is not #GL_COLOR_
INDEX.

#GL_INVALID_VALUE is generated if level is less than 0.

#GL_INVALID_VALUE may be generated if level is greater than log2max, where max is
the returned value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the
accepted resolution and format symbolic constants.

#GL_INVALID_VALUE is generated if width or height is less than 0 or greater than 2 +

#GL_MAX_TEXTURE_SIZE, or if either cannot be represented as 2k + 2*border for some
integer value of k.

#GL_INVALID_VALUE is generated if border is not 0 or 1.

#GL_INVALID_OPERATION is generated if gl.TexImage2D() is executed between the ex-
ecution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexImage()

gl.IsEnabled() with argument #GL_TEXTURE_2D

6.141 gl.TexParameter

NAME
gl.TexParameter – set texture parameters

SYNOPSIS
gl.TexParameter(target, pname, param)

FUNCTION
Texture mapping is a technique that applies an image onto an object’s surface as if the
image were a decal or cellophane shrink-wrap. The image is created in texture space,
with an (s, t) coordinate system. A texture is a one- or two-dimensional image and a set
of parameters that determine how samples are derived from the image.

gl.TexParameter() assigns the value or values in param to the texture parameter
specified as pname. target defines the target texture, either #GL_TEXTURE_1D or #GL_
TEXTURE_2D. The following symbols are accepted in pname:

#GL_TEXTURE_MIN_FILTER

The texture minifying function is used whenever the pixel being textured
maps to an area greater than one texture element. There are six defined
minifying functions. Two of them use the nearest one or nearest four texture
elements to compute the texture value. The other four use mipmaps.

200 GL Galore manual

A mipmap is an ordered set of arrays representing the same image at progres-
sively lower resolutions: 2^a for 1D mipmaps and 2^a*2^b for 2D mipmaps.

For example, if a 2D texture has dimensions 2^m*2^n, there are max(m,
n) + 1 mipmaps. The first mipmap is the original texture, with dimen-
sions 2^m*2^n. Each subsequent mipmap has dimensions 2^k-1*2^l-1, where
2^k*2^l are the dimensions of the previous mipmap, until either k=0 or l=0.
At that point, subsequent mipmaps have dimension 1*2^l-1 or 2^k-1*1 un-
til the final mipmap, which has dimension 1x1. To define the mipmaps,
call gl.TexImage1D(), gl.TexImage2D(), or gl.CopyTexImage() with the
level argument indicating the order of the mipmaps. Level 0 is the original
texture; level max(m, n) is the final 1x1 mipmap. param supplies a function
for minifying the texture as one of the following:

#GL_NEAREST

Returns the value of the texture element that is nearest (in Man-
hattan distance) to the center of the pixel being textured.

#GL_LINEAR

Returns the weighted average of the four texture elements that
are closest to the center of the pixel being textured. These can
include border texture elements, depending on the values of #GL_
TEXTURE_WRAP_S and #GL_TEXTURE_WRAP_T, and on the exact
mapping.

#GL_NEAREST_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the
pixel being textured and uses the #GL_NEAREST criterion (the
texture element nearest to the center of the pixel) to produce a
texture value.

#GL_LINEAR_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of
the pixel being textured and uses the #GL_LINEAR criterion (a
weighted average of the four texture elements that are closest
to the center of the pixel) to produce a texture value.

#GL_NEAREST_MIPMAP_LINEAR

Chooses the two mipmaps that most closely match the size of
the pixel being textured and uses the #GL_NEAREST criterion (the
texture element nearest to the center of the pixel) to produce a
texture value from each mipmap. The final texture value is a
weighted average of those two values.

#GL_LINEAR_MIPMAP_LINEAR

Chooses the two mipmaps that most closely match the size of
the pixel being textured and uses the #GL_LINEAR criterion (a
weighted average of the four texture elements that are closest
to the center of the pixel) to produce a texture value from each
mipmap. The final texture value is a weighted average of those
two values.

Chapter 6: GL reference 201

As more texture elements are sampled in the minification process, fewer
aliasing artifacts will be apparent. While the #GL_NEAREST and #GL_LINEAR

minification functions can be faster than the other four, they sample only
one or four texture elements to determine the texture value of the pixel being
rendered and can produce moire patterns or ragged transitions. The initial
value of #GL_TEXTURE_MIN_FILTER is #GL_NEAREST_MIPMAP_LINEAR.

#GL_TEXTURE_MAG_FILTER

The texture magnification function is used when the pixel being textured
maps to an area less than or equal to one texture element. It sets the tex-
ture magnification function to either #GL_NEAREST or #GL_LINEAR (see be-
low). #GL_NEAREST is generally faster than #GL_LINEAR, but it can produce
textured images with sharper edges because the transition between texture
elements is not as smooth. The initial value of #GL_TEXTURE_MAG_FILTER is
#GL_LINEAR.

#GL_NEAREST

Returns the value of the texture element that is nearest (in Man-
hattan distance) to the center of the pixel being textured.

#GL_LINEAR

Returns the weighted average of the four texture elements that
are closest to the center of the pixel being textured. These can
include border texture elements, depending on the values of #GL_
TEXTURE_WRAP_S and #GL_TEXTURE_WRAP_T, and on the exact
mapping.

#GL_TEXTURE_WRAP_S

Sets the wrap parameter for texture coordinate s to #GL_CLAMP or #GL_

REPEAT. #GL_CLAMP causes s coordinates to be clamped to the range [0, 1]
and is useful for preventing wrapping artifacts when mapping a single image
onto an object. #GL_REPEAT causes the integer part of the s coordinate to be
ignored; the GL uses only the fractional part, thereby creating a repeating
pattern. Border texture elements are accessed only if wrapping is set to
#GL_CLAMP. Initially, #GL_TEXTURE_WRAP_S is set to #GL_REPEAT.

#GL_TEXTURE_WRAP_T

Sets the wrap parameter for texture coordinate t to #GL_CLAMP or #GL_

REPEAT. See the discussion under #GL_TEXTURE_WRAP_S. Initially, #GL_

TEXTURE_WRAP_T is set to #GL_REPEAT.

#GL_TEXTURE_WRAP_R_EXT

Sets the wrap parameter for texture coordinate r to #GL_CLAMP or #GL_

REPEAT. See the discussion under #GL_TEXTURE_WRAP_S. Initially, #GL_

TEXTURE_WRAP_R_EXT is set to #GL_REPEAT.

#GL_TEXTURE_BORDER_COLOR

Sets a border color. param must be a table containing four floating-point
values that comprise the RGBA color of the texture border. Initially, the
border color is (0, 0, 0, 0).

202 GL Galore manual

#GL_TEXTURE_PRIORITY

Specifies the texture residence priority of the currently bound tex-
ture. Permissible values are in the range [0, 1]. See Section 6.115
[gl.PrioritizeTextures], page 162, for details.

Suppose that a program has enabled texturing (by calling gl.Enable() with argu-
ment #GL_TEXTURE_1D or #GL_TEXTURE_2D) and has set #GL_TEXTURE_MIN_FILTER to
one of the functions that requires a mipmap. If either the dimensions of the texture
images currently defined (with previous calls to gl.TexImage1D(), gl.TexImage2D() or
gl.CopyTexImage()) do not follow the proper sequence for mipmaps (described above),
or there are fewer texture images defined than are needed, or the set of texture images
have differing numbers of texture components, then it is as if texture mapping were
disabled.

Linear filtering accesses the four nearest texture elements only in 2D textures. In 1D
textures, linear filtering accesses the two nearest texture elements.

Please consult an OpenGL reference manual for more information.

INPUTS

target specifies the target texture, which must be either #GL_TEXTURE_1D or #GL_
TEXTURE_2D

pname specifies the symbolic name of a texture parameter (see above)

param specifies a single value or a table containing the value for pname

ERRORS
#GL_INVALID_ENUM is generated if target or pname is not one of the accepted defined
values.

#GL_INVALID_ENUM is generated if param should have a defined constant value (based on
the value of pname) and does not.

#GL_INVALID_OPERATION is generated if gl.TexParameter() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexParameter()

gl.GetTexLevelParameter()

6.142 gl.TexSubImage

NAME
gl.TexSubImage – specify a one- or two-dimensional texture subimage

SYNOPSIS
gl.TexSubImage(level, format, type, pixels, xoffset[, yoffset])

FUNCTION
This function does the same as gl.TexSubImage1D() and gl.TexSubImage2D() except
that the pixel data is not passed in a raw memory buffer but as table containing one

Chapter 6: GL reference 203

subtable for each row of pixels. This is of course not as efficient as using raw memory
buffers because the table’s pixel data has to be copied to a raw memory buffer first.

Width and height of the texture will be automatically determined by the layout of the
table in pixels. If there is only one subtable within pixels, gl.TexSubImage() will
define a texture of type #GL_TEXTURE_1D. If there are multiple subtables within pixels,
#GL_TEXTURE_2D will be used.

Note that only #GL_FLOAT and #GL_UNSIGNED_BYTE are currently supported for type.

See Section 6.144 [gl.TexSubImage2D], page 204, for more details on the parameters
accepted by this function.

Please consult an OpenGL reference manual for more information.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level; level n is
the nth mipmap reduction image

format specifies the format of the pixel data (see above)

type specifies the data type of the pixel data (see above)

pixels specifies a one- or two-dimensional with pixel data

xoffset specifies a texel offset in the x direction within the texture array

yoffset optional: specifies a texel offset in the y direction within the texture array
(only required for two-dimensional textures)

6.143 gl.TexSubImage1D

NAME
gl.TexSubImage1D – specify a two-dimensional texture subimage

SYNOPSIS
gl.TexSubImage1D(level, xoffset, width, format, type, pixelsUserData)

FUNCTION
Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable or disable one-dimensional texturing, call
gl.Enable() and gl.Disable() with argument #GL_TEXTURE_1D.

gl.TexSubImage1D() redefines a contiguous subregion of an existing one-dimensional
texture image. The texels referenced by pixels replace the portion of the existing texture
array with X indices xoffset and xoffset + width - 1, inclusive. This region may not
include any texels outside the range of the texture array as it was originally specified. It
is not an error to specify a subtexture with width of 0, but such a specification has no
effect.

Texturing has no effect in color index mode.

gl.PixelStore() and gl.PixelTransfer() modes affect texture images in exactly the
way they affect gl.DrawPixels().

See Section 6.139 [gl.TexImage1D], page 192, for more details on the parameters accepted
by this function.

204 GL Galore manual

Please note that this command operates directly with memory pointers. There is also a
version which works with tables instead of memory pointers, but this is slower of course.
See Section 6.142 [gl.TexSubImage], page 202, for details. See Section 3.7 [Working with
pointers], page 11, for details on how to use memory pointers with Hollywood.

Please consult an OpenGL reference manual for more information.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level; level n is
the nth mipmap reduction image

xoffset specifies a texel offset in the x direction within the texture array

width specifies the width of the texture subimage

format specifies the format of the pixel data (see above)

type specifies the data type of the pixel data (see above)

pixels specifies a pointer to the image data in memory

ERRORS
#GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous gl.TexImage1D() operation.

#GL_INVALID_VALUE is generated if level is less than 0.

#GL_INVALID_VALUE may be generated if level is greater than log2max, where max is
the returned value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_VALUE is generated if xoffset < -b, or if (xoffset + width) > (w - b), where
w is the #GL_TEXTURE_WIDTH, and b is the width of the #GL_TEXTURE_BORDER of the
texture image being modified. Note that w includes twice the border width.

#GL_INVALID_VALUE is generated if width is less than 0.

#GL_INVALID_ENUM is generated if format is not an accepted format constant.

#GL_INVALID_ENUM is generated if type is not a type constant.

#GL_INVALID_ENUM is generated if type is #GL_BITMAP and format is not #GL_COLOR_

INDEX.

#GL_INVALID_OPERATION is generated if gl.TexSubImage1D() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexImage()

gl.IsEnabled() with argument #GL_TEXTURE_1D

6.144 gl.TexSubImage2D

NAME
gl.TexSubImage2D – specify a two-dimensional texture subimage

SYNOPSIS
gl.TexSubImage2D(level, xoff, yoff, w, h, format, type, pixels)

Chapter 6: GL reference 205

FUNCTION
Texturing maps a portion of a specified texture image onto each graphical primitive
for which texturing is enabled. To enable and disable two-dimensional texturing, call
gl.Enable() and gl.Disable() with argument #GL_TEXTURE_2D.

gl.TexSubImage2D() redefines a contiguous subregion of an existing two-dimensional
texture image. The texels referenced by pixels replace the portion of the existing
texture array with X indices xoffset and xoffset + width - 1, inclusive, and Y indices
yoffset and yoffset + height - 1, inclusive. This region may not include any texels
outside the range of the texture array as it was originally specified. It is not an error to
specify a subtexture with zero width or height, but such a specification has no effect.

Texturing has no effect in color index mode.

gl.PixelStore() and gl.PixelTransfer() modes affect texture images in exactly the
way they affect gl.DrawPixels().

See Section 6.140 [gl.TexImage2D], page 196, for more details on the parameters accepted
by this function.

Please note that this command operates directly with memory pointers. There is also a
version which works with tables instead of memory pointers, but this is slower of course.
See Section 6.142 [gl.TexSubImage], page 202, for details. See Section 3.7 [Working with
pointers], page 11, for details on how to use memory pointers with Hollywood.

Please consult an OpenGL reference manual for more information.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level; level n is
the nth mipmap reduction image

xoffset specifies a texel offset in the x direction within the texture array

yoffset specifies a texel offset in the y direction within the texture array

width specifies the width of the texture subimage

height specifies the height of the texture subimage

format specifies the format of the pixel data (see above)

type specifies the data type of the pixel data (see above)

pixels specifies a pointer to the image data in memory

ERRORS
#GL_INVALID_OPERATION is generated if the texture array has not been defined by a
previous gl.TexImage2D() operation.

#GL_INVALID_VALUE is generated if level is less than 0.

#GL_INVALID_VALUE may be generated if level is greater than log2max, where max is
the returned value of #GL_MAX_TEXTURE_SIZE.

#GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset <

-b, or (yoffset + height) > (h - b), where w is the #GL_TEXTURE_WIDTH, h is the #GL_

TEXTURE_HEIGHT, and b is the border width of the texture image being modified. Note
that w and h include twice the border width.

#GL_INVALID_VALUE is generated if width or height is less than 0.

206 GL Galore manual

#GL_INVALID_ENUM is generated if format is not an accepted format constant.

#GL_INVALID_ENUM is generated if type is not a type constant.

#GL_INVALID_ENUM is generated if type is #GL_BITMAP and format is not #GL_COLOR_
INDEX.

#GL_INVALID_OPERATION is generated if gl.TexSubImage2D() is executed between the
execution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.GetTexImage()

gl.IsEnabled() with argument #GL_TEXTURE_2D

6.145 gl.Translate

NAME
gl.Translate – multiply the current matrix by a translation matrix

SYNOPSIS
gl.Translate(x, y, z)

FUNCTION
gl.Translate() produces a translation by (x,y,z). The current matrix (See Section 6.96
[gl.MatrixMode], page 139, for details.) is multiplied by this translation matrix, with
the product replacing the current matrix, as if gl.MultMatrix() were called with the
following matrix for its argument:

1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

If the matrix mode is either #GL_MODELVIEW or #GL_PROJECTION, all objects drawn after
a call to gl.Translate() are translated.

Use gl.PushMatrix() and gl.PopMatrix() to save and restore the untranslated coor-
dinate system.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the x coordinate of a translation vector

y specify the y coordinate of a translation vector

z specify the z coordinate of a translation vector

ERRORS
#GL_INVALID_OPERATION is generated if gl.Translate() is executed between the exe-
cution of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_MATRIX_MODE

gl.Get() with argument #GL_MODELVIEW_MATRIX

Chapter 6: GL reference 207

gl.Get() with argument #GL_PROJECTION_MATRIX

gl.Get() with argument #GL_TEXTURE_MATRIX

6.146 gl.Vertex

NAME
gl.Vertex – specify a vertex

SYNOPSIS
gl.Vertex(x, y[, z, w])

FUNCTION
gl.Vertex() is used within gl.Begin() / gl.End() pairs to specify point, line, and
polygon vertices. The current color, normal, texture coordinates, and fog coordinate are
associated with the vertex when gl.Vertex() is called.

When only x and y are specified, z defaults to 0 and w defaults to 1. When x, y, and z
are specified, w defaults to 1.

Alternatively, you can also pass a table containing two to four vertex coordinates to this
function.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the x coordinate of a vertex

y specify the y coordinate of a vertex

z optional: specify the z coordinate of a vertex (defaults to 0)

w optional: specify the w coordinate of a vertex (defaults to 1)

6.147 gl.VertexPointer

NAME
gl.VertexPointer – define an array of vertex data

SYNOPSIS
gl.VertexPointer(vertexArray[, size])

FUNCTION
gl.VertexPointer() specifies an array of vertex coordinates to use when rendering.
vertexArray can be either a one-dimensional table consisting of an arbitrary number
of consecutive vertex coordinates or a two-dimensional table consisting of an arbitrary
number of subtables which contain 2 to 4 texture coordinates each. If vertexArray is
a one-dimensional table, you need to pass the optional size argument as well to define
the number of vertex coordinates per array element. size must be a value in the range
of 2 to 4. If vertexArray is a two-dimensional table, size is automatically determined
by the number of items in the first subtable, which must be in the range of 2 to 4 as
well.

208 GL Galore manual

When using a two-dimensional table, please keep in mind that the number of vertex
coordinates in each subtable must be constant. It is not allowed to use differing numbers
of vertex coordinates in the individual subtables. The number of vertex coordinates is
defined by the number of elements in the first subtable and all following subtables must
use the very same number of coordinates.

If you pass Nil in vertexArray, the vertex coordinates array buffer will be freed but it
won’t be removed from OpenGL. You need to do this manually, e.g. by disabling the
vertex coordinates array or defining a new one.

In order to enable and disable a vertex array, call gl.EnableClientState() and
gl.DisableClientState() with the argument #GL_VERTEX_ARRAY. If enabled, the ver-
tex array is used when gl.DrawArrays(), gl.DrawElements(), or gl.ArrayElement()
is called.

The vertex array is initially disabled and isn’t accessed when gl.DrawArrays(),
gl.DrawElements(), or gl.ArrayElement() is called.

Execution of gl.VertexPointer() is not allowed between the execution of gl.Begin()
and the corresponding execution of gl.End(), but an error may or may not be generated.
If no error is generated, the operation is undefined.

gl.VertexPointer() is typically implemented on the client side.

Vertex array parameters are client-side state and are therefore not saved or restored
by gl.PushAttrib() and gl.PopAttrib(). Use gl.PushClientAttrib() and
gl.PopClientAttrib() instead.

Please consult an OpenGL reference manual for more information.

INPUTS

vertexArray

one- or two-dimensional table containing vertex coordinates or Nil (see
above)

size optional: vertex coordinates per array element; must be between 2 to 4 and
is only used with one-dimensional tables (see above)

ERRORS
#GL_INVALID_VALUE is generated if size is not 2, 3, or 4.

ASSOCIATED GETS
gl.IsEnabled() with argument #GL_VERTEX_ARRAY

gl.Get() with argument #GL_VERTEX_ARRAY_SIZE

gl.Get() with argument #GL_VERTEX_ARRAY_TYPE

gl.Get() with argument #GL_VERTEX_ARRAY_STRIDE

gl.GetPointer() with argument #GL_VERTEX_ARRAY_POINTER

6.148 gl.Viewport

NAME
gl.Viewport – set the viewport

209

SYNOPSIS
gl.Viewport(x, y, width, height)

FUNCTION
gl.Viewport() specifies the affine transformation of x and y from normalized device
coordinates to window coordinates. Let (xnd, ynd) be normalized device coordinates.
Then the window coordinates (xw, yw) are computed as follows:

xw = (xnd + 1) * (width / 2) + x

yw = (ynd + 1) * (height / 2) + y

Viewport width and height are silently clamped to a range that depends on the imple-
mentation. To query this range, call gl.Get() with argument #GL_MAX_VIEWPORT_DIMS.

When a GL context is first attached to a window, width and height are set to the
dimensions of that window.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the left corner of the viewport rectangle, in pixels; the initial value
is 0

y specify the lower corner of the viewport rectangle, in pixels; the initial value
is 0

width specify the width of the viewport

height specify the height of the viewport

ERRORS
#GL_INVALID_VALUE is generated if either width or height is negative.

#GL_INVALID_OPERATION is generated if gl.Viewport() is executed between the execu-
tion of gl.Begin() and the corresponding execution of gl.End().

ASSOCIATED GETS
gl.Get() with argument #GL_VIEWPORT

gl.Get() with argument #GL_MAX_VIEWPORT_DIMS

211

7 GLU reference

7.1 glu.BuildMipmaps

NAME
glu.BuildMipmaps – create 1D or 2D mipmaps

SYNOPSIS
error = glu.BuildMipmaps(internalformat, format, pixels)

FUNCTION
This function does the same as glu.Build1DMipmaps() and gl.Build2DMipmaps() ex-
cept that the pixel data is not passed in a raw memory buffer but as table containing one
subtable for each row of pixels. This is of course not as efficient as using raw memory
buffers because the table’s pixel data has to be copied to a raw memory buffer first.

Width and height of the texture will be automatically determined by the layout of the
table in pixels. If there is only one subtable within pixels, gl.BuildMipmaps() will
create 1D mipmaps. If there are multiple subtables within pixels, 2D mipmaps will be
created.

Note that #GL_UNSIGNED_BYTE is currently the only supported data type.
glu.BuildMipmaps() expects all elements in pixels to use the #GL_UNSIGNED_BYTE

data type.

See Section 7.3 [glu.Build2DMipmaps], page 213, for more details on the parameters
accepted by this function.

Please consult an OpenGL reference manual for more information.

INPUTS

internalFormat

specifies the internal format of the texture; must be one of the pixel format
constants (see above)

format specifies the format of the pixel data (see above)

pixels specifies a table containing the pixel data

RESULTS

error error code or 0 for success

7.2 glu.Build1DMipmaps

NAME
glu.Build1DMipmaps – create 1D mipmaps

SYNOPSIS
error = glu.Build1DMipmaps(internalformat, width, format, type, pixels)

FUNCTION
glu.Build1DMipmaps() builds a series of prefiltered 1D texture maps of decreasing res-
olution. Mipmaps can be used so that textures don’t appear aliased.

212 GL Galore manual

A return value of 0 indicates success. Otherwise a GLU error code is returned (See
Section 7.5 [glu.ErrorString], page 215, for details.).

glu.Build1DMipmaps() first checks whether the width of data is a power of 2. If not,
it scales a copy of pixels (up or down) to the nearest power of two. This copy is used
as the base for subsequent mipmapping operations. For example, if width is 57, a copy
of pixels scales up to 64 before mipmapping takes place. (If width is exactly between
powers of 2, the copy of pixels is scaled upward.)

If the GL version is 1.1 or greater, glu.Build1DMipmaps() uses proxy textures (See
Section 6.139 [gl.TexImage1D], page 192, for details.) to determine if the implementation
can store the requested texture in texture memory. If there isn’t enough room, width is
halved (and halved again) until it fits.

Next, glu.Build1DMipmaps() builds a series of mipmap levels; it halves a copy of pixels
(or a scaled version of pixels, if necessary) until size 1 is reached. At each level, each
texel in the halved image is an average of the corresponding two texels in the larger
image.

gl.TexImage1D() is called to load each of these images by level. If width is a power
of 2 which fits in the implementation, level 0 is a copy of pixels, and the highest level
is log2(width). For example, if width is 64 the following images are built: 64x1, 32x1,
16x1, 8x1, 4x1, 2x1 and 1x1. These correspond to levels 0 through 6, respectively.

internalformat specifies the internal format of the texture image. See Section 3.12
[Internal pixel formats], page 13, for details. This can also be one of the special values
1, 2, 3, or 4.

format must be one of #GL_COLOR_INDEX, #GL_RED, #GL_GREEN, #GL_BLUE, #GL_ALPHA,
#GL_RGB, #GL_RGBA, #GL_LUMINANCE, or #GL_LUMINANCE_ALPHA

type must be one of #GL_UNSIGNED_BYTE, #GL_BYTE, #GL_BITMAP, #GL_UNSIGNED_

SHORT, #GL_SHORT, #GL_UNSIGNED_INT, #GL_INT, or #GL_FLOAT.

Please note that this command operates directly with memory pointers. There is also a
version which works with tables instead of memory pointers, but this is slower of course.
See Section 7.1 [glu.BuildMipmaps], page 211, for details. See Section 3.7 [Working with
pointers], page 11, for details on how to use memory pointers with Hollywood.

Please consult an OpenGL reference manual for more information.

INPUTS

internalformat

specifies the internal format of the texture; must be one of the pixel format
constants (see above)

width specifies the width of the texture image

format specifies the format of the pixel data (see above)

type specifies the data type for pixels (see above)

pixels specifies a pointer to the image data in memory

RESULTS

error error code or 0 for success

Chapter 7: GLU reference 213

7.3 glu.Build2DMipmaps

NAME
glu.Build2DMipmaps – create 2D mipmaps

SYNOPSIS
error = glu.Build2DMipmaps(iformat, width, height, format, type, pixels)

FUNCTION
glu.Build2DMipmaps() builds a series of prefiltered 2D texture maps of decreasing res-
olution. Mipmaps can be used so that textures don’t appear aliased.

A return value of 0 indicates success. Otherwise a GLU error code is returned (See
Section 7.5 [glu.ErrorString], page 215, for details.).

glu.Build2DMipmaps() first check whether width and height of pixels are both powers
of 2. If not, glu.Build2DMipmaps() scales a copy of pixels up or down to the nearest
power of 2. This copy is then used as the base for subsequent mipmapping operations.
For example, if width is 57 and height is 23, then a copy of pixels scales up to 64 and
down to 16, respectively, before mipmapping takes place. (If width or height is exactly
between powers of 2, the copy of data is scaled upward.)

If the GL version is 1.1 or greater, glu.Build2DMipmaps() then uses proxy textures
(See Section 6.140 [gl.TexImage2D], page 196, for details.) to determine whether there’s
enough room for the requested texture in the implementation. If not, width is halved
(and halved again) until it fits.

glu.Build2DMipmaps() then uses proxy textures (See Section 6.140 [gl.TexImage2D],
page 196, for details.) to determine if the implementation can store the requested texture
in texture memory. If not, both dimensions are continually halved until it fits.

Next, glu.Build2DMipmaps() builds a series of images; it halves a copy of type (or a
scaled version of type, if necessary) along both dimensions until size 1x1 is reached. At
each level, each texel in the halved mipmap is an average of the corresponding four texels
in the larger mipmap. (In the case of rectangular images, halving the images repeatedly
eventually results in an n*1 or 1*n configuration. Here, two texels are averaged instead.)

gl.TexImage2D() is called to load each of these images by level. If width and height

are both powers of 2 which fit in the implementation, level 0 is a copy of pixels, and
the highest level is log2(max(width, height)). For example, if width is 64 and height is
16, the following mipmaps are built: 64x16, 32x8, 16x4, 8x2, 4x1, 2x1 and 1x1. These
correspond to levels 0 through 6, respectively.

iformat specifies the internal format of the texture image. See Section 3.12 [Internal
pixel formats], page 13, for details. This can also be one of the special values 1, 2, 3, or
4.

format must be one of #GL_COLOR_INDEX, #GL_RED, #GL_GREEN, #GL_BLUE, #GL_ALPHA,
#GL_RGB, #GL_RGBA, #GL_LUMINANCE, or #GL_LUMINANCE_ALPHA

type must be one of #GL_UNSIGNED_BYTE, #GL_BYTE, #GL_BITMAP, #GL_UNSIGNED_

SHORT, #GL_SHORT, #GL_UNSIGNED_INT, #GL_INT, or #GL_FLOAT.

Please note that this command operates directly with memory pointers. There is also a
version which works with tables instead of memory pointers, but this is slower of course.
See Section 7.1 [glu.BuildMipmaps], page 211, for details. See Section 3.7 [Working with
pointers], page 11, for details on how to use memory pointers with Hollywood.

214 GL Galore manual

Please consult an OpenGL reference manual for more information.

INPUTS

iformat specifies the internal format of the texture; must be one of the pixel format
constants (see above)

width specifies the width of the texture image

height specifies the height of the texture image

format specifies the format of the pixel data (see above)

type specifies the data type for pixels (see above)

pixels specifies a pointer to the image data in memory

RESULTS

error error code or 0 for success

7.4 glu.Build3DMipmaps

NAME
glu.Build3DMipmaps – create 3D mipmaps

SYNOPSIS
error = glu.Build3DMipmaps(ifmt, width, height, depth, fmt, type, data)

FUNCTION
glu.Build3DMipmaps() builds a series of prefiltered 3D texture maps of decreasing res-
olutions called a mipmap. This is used for the antialiasing of texture-mapped primitives.

A return value of zero indicates success, otherwise a GLU error code is returned (See
Section 7.5 [glu.ErrorString], page 215, for details.).

Initially, the width, height and depth of data are checked to see if they are a power
of 2. If not, a copy of data is made and scaled up or down to the nearest power of 2.
(If width, height, or depth is exactly between powers of 2, then the copy of data will
scale upwards.) This copy will be used for subsequent mipmapping operations described
below. For example, if width is 57, height is 23, and depth is 24, then a copy of data will
scale up to 64 in width, down to 16 in height, and up to 32 in depth before mipmapping
takes place.

Then, proxy textures (see gl.TexImage3D()) are used to determine if the implementation
can fit the requested texture. If not, all three dimensions are continually halved until it
fits.

Next, a series of mipmap levels is built by decimating a copy of data in half along all
three dimensions until size 1x1x1 is reached. At each level, each texel in the halved
mipmap level is an average of the corresponding eight texels in the larger mipmap level.
(If exactly one of the dimensions is 1, four texels are averaged. If exactly two of the
dimensions are 1, two texels are averaged.)

gl.TexImage3D() is called to load each of these mipmap levels. Level 0 is a copy of
data. The highest level is log2(max(width,height,depth)). For example, if width is 64,

Chapter 7: GLU reference 215

height is 16, and depth is 32, and the implementation can store a texture of this size,
the following mipmap levels are built: 64x16x32, 32x8x16, 16x4x8, 8x2x4, 4x1x2, 2x1x1
and 1x1x1. These correspond to levels 0 through 6, respectively.

ifmt specifies the internal format of the texture image. See Section 3.12 [Internal pixel
formats], page 13, for details. This can also be one of the special values 1, 2, 3, or 4.

fmtmust be one of #GL_COLOR_INDEX, #GL_RED, #GL_GREEN, #GL_BLUE, #GL_ALPHA, #GL_
RGB, #GL_RGBA, #GL_LUMINANCE, or #GL_LUMINANCE_ALPHA

type must be one of #GL_UNSIGNED_BYTE, #GL_BYTE, #GL_BITMAP, #GL_UNSIGNED_

SHORT, #GL_SHORT, #GL_UNSIGNED_INT, #GL_INT, or #GL_FLOAT.

Please note that this command operates directly with memory pointers. See Section 3.7
[Working with pointers], page 11, for details on how to use memory pointers with Hol-
lywood.

Please consult an OpenGL reference manual for more information.

INPUTS

ifmt specifies the internal format of the texture; must be one of the pixel format
constants (see above)

width specifies the width of the texture image

height specifies the height of the texture image

depth specifies the depth of the texture image

fmt specifies the format of the pixel data (see above)

type specifies the data type for pixels (see above)

data specifies a pointer to the image data in memory

RESULTS

error error code or 0 for success

7.5 glu.ErrorString

NAME
glu.ErrorString – produce an error string from a GL or GLU error code

SYNOPSIS
string = glu.ErrorString(errorCode)

FUNCTION
glu.ErrorString() produces an error string from a GL or GLU error code. The string
is in ISO Latin 1 format. For example, glu.ErrorString(#GL_OUT_OF_MEMORY) returns the
string "Out of memory".

The standard GLU error codes are #GLU_INVALID_ENUM, #GLU_INVALID_VALUE, and
#GLU_OUT_OF_MEMORY. Certain other GLU functions can return specialized error codes
through callbacks. See Section 6.60 [gl.GetError], page 97, for the list of GL error codes.

Please consult an OpenGL reference manual for more information.

216 GL Galore manual

INPUTS

errorCode

specifies a GL or GLU error code

RESULTS

string error string

7.6 glu.GetString

NAME
glu.GetString – return a string describing the GLU version or GLU extensions

SYNOPSIS
string = glu.GetString(name)

FUNCTION
glu.GetString() returns a string describing the GLU version or the GLU extensions
that are supported.

The version number is one of the following forms:

<major_number>.<minor_number>

<major_number>.<minor_number>.<release_number>

The version string is of the following form:

<version number><space><vendor-specific information>

Vendor-specific information is optional. Its format and contents depend on the imple-
mentation.

The standard GLU contains a basic set of features and capabilities. If a company or group
of companies wish to support other features, these may be included as extensions to the
GLU. If name is #GLU_EXTENSIONS, then glu.GetString() returns a space-separated list
of names of supported GLU extensions. (Extension names never contain spaces.)

Please note that glu.GetString() only returns information about GLU extensions. Call
gl.GetString() to get a list of GL extensions.

glu.GetString() is an initialization routine. Calling it after a gl.NewList() results in
undefined behavior.

Please consult an OpenGL reference manual for more information.

INPUTS

name specifies a symbolic constant, one of #GLU_VERSION, or #GLU_EXTENSIONS

RESULTS

string string describing the GLU version or the GLU extensions that are supported

Chapter 7: GLU reference 217

7.7 glu.LookAt

NAME
glu.LookAt – define a viewing transformation

SYNOPSIS
glu.LookAt(Ex, Ey, Ez, Lx, Ly, Lz, Ux, Uy, Uz)

FUNCTION
glu.LookAt() creates a viewing matrix derived from an eye point, a reference point
indicating the center of the scene, and an UP vector.

The matrix maps the reference point to the negative z axis and the eye point to the origin.
When a typical projection matrix is used, the center of the scene therefore maps to the
center of the viewport. Similarly, the direction described by the UP vector projected
onto the viewing plane is mapped to the positive y axis so that it points upward in the
viewport. The UP vector must not be parallel to the line of sight from the eye point to
the reference point.

Please consult an OpenGL reference manual for more information.

INPUTS

Ex specifies the x position of the eye point

Ey specifies the y position of the eye point

Ez specifies the z position of the eye point

Lx specifies the x position of the reference point

Ly specifies the y position of the reference point

Lz specifies the z position of the reference point

Ux specifies the x direction of the up vector

Uy specifies the y direction of the up vector

Uz specifies the z direction of the up vector

7.8 glu.NewNurbsRenderer

NAME
glu.NewNurbsRenderer – create a NURBS object

SYNOPSIS
nurb = glu.NewNurbsRenderer()

FUNCTION
glu.NewNurbsRenderer() creates and returns a pointer to a new NURBS object. This
object must be referred to when calling NURBS rendering and control functions.

NURBS objects are automatically deleted by Hollywood’s garbage collector when no
longer in use.

Please consult an OpenGL reference manual for more information.

218 GL Galore manual

INPUTS
none

RESULTS

nurb a new NURBS object

7.9 glu.NewQuadric

NAME
glu.NewQuadric – create a quadrics object

SYNOPSIS
quad = glu.NewQuadric()

FUNCTION
glu.NewQuadric() creates and returns a new quadrics object. This object must be
referred to when calling quadrics rendering and control functions.

Quadrics objects are automatically deleted by Hollywood’s garbage collector when no
longer in use.

Please consult an OpenGL reference manual for more information.

INPUTS
none

RESULTS

quad handle to a new quadrics object

7.10 glu.Ortho2D

NAME
glu.Ortho2D – define a 2D orthographic projection matrix

SYNOPSIS
glu.Ortho2D(left, right, bottom, top)

FUNCTION
glu.Ortho2D() sets up a two-dimensional orthographic viewing region. This is equiva-
lent to calling gl.Ortho() with near = -1 and far = 1.

Please consult an OpenGL reference manual for more information.

INPUTS

left specify the coordinate for the left vertical clipping planes

right specify the coordinate for the right vertical clipping planes

bottom specify the coordinates for the bottom horizontal clipping planes

top specify the coordinates for the top horizontal clipping planes

Chapter 7: GLU reference 219

7.11 glu.Perspective

NAME
glu.Perspective – set up a perspective projection matrix

SYNOPSIS
glu.Perspective(fovy, aspect, near, far)

FUNCTION
glu.Perspective() specifies a viewing frustum into the world coordinate system. In
general, the aspect ratio in glu.Perspective() should match the aspect ratio of the
associated viewport. For example, aspect = 2.0 means the viewer’s angle of view is twice
as wide in x as it is in y. If the viewport is twice as wide as it is tall, it displays the
image without distortion.

The matrix generated by glu.Perspective() is multipled by the current matrix, just
as if gl.MultMatrix() were called with the generated matrix. To load the perspective
matrix onto the current matrix stack instead, precede the call to glu.Perspective()

with a call to gl.LoadIdentity().

Please consult an OpenGL reference manual for more information.

INPUTS

fovy specifies the field of view angle, in degrees, in the y direction

aspect specifies the aspect ratio that determines the field of view in the x direction;
the aspect ratio is the ratio of x (width) to y (height)

near specifies the distance from the viewer to the near clipping plane (always
positive)

far specifies the distance from the viewer to the far clipping plane (always pos-
itive)

7.12 glu.PickMatrix

NAME
glu.PickMatrix – define a picking region

SYNOPSIS
glu.PickMatrix(x, y, deltax, deltay, viewportArray)

FUNCTION
glu.PickMatrix() creates a projection matrix that can be used to restrict drawing to
a small region of the viewport. This is typically useful to determine what objects are
being drawn near the cursor. Use glu.PickMatrix() to restrict drawing to a small region
around the cursor. Then, enter selection mode (with gl.RenderMode()) and rerender
the scene. All primitives that would have been drawn near the cursor are identified and
stored in the selection buffer.

The matrix created by glu.PickMatrix() is multiplied by the current matrix just as if
gl.MultMatrix() is called with the generated matrix. To effectively use the generated
pick matrix for picking, first call gl.LoadIdentity() to load an identity matrix onto

220 GL Galore manual

the perspective matrix stack. Then call glu.PickMatrix(), and finally, call a command
(such as glu.Perspective()) to multiply the perspective matrix by the pick matrix.

When using glu.PickMatrix() to pick NURBS, be careful to turn off the NURBS
property #GLU_AUTO_LOAD_MATRIX. If #GLU_AUTO_LOAD_MATRIX is not turned off, then
any NURBS surface rendered is subdivided differently with the pick matrix than the way
it was subdivided without the pick matrix.

The four window coordinates for viewportArray can easily be obtained by calling
gl.Get() with #GL_VIEWPORT. See Section 6.57 [gl.Get], page 81, for details.

Please consult an OpenGL reference manual for more information.

INPUTS

x specify the x center of a picking region in window coordinates

y specify the y center of a picking region in window coordinates

deltax specify the width of the picking region in window coordinates

deltay specify the height of the picking region in window coordinates

viewportArray

the four window coordinates of the viewport in a table

7.13 glu.Project

NAME
glu.Project – map object coordinates to window coordinates

SYNOPSIS
e,wx,wy,wz = glu.Project(objx, objy, objz, model, proj, view)

FUNCTION
glu.Project() transforms the specified object coordinates into window coordinates us-
ing model, proj, and view. The result is stored in wx, wy, and wz. A return value of
#GL_TRUE indicates success, a return value of #GL_FALSE indicates failure.

Please consult an OpenGL reference manual for more information.

INPUTS

objx specify the object x coordinate

objy specify the object y coordinate

objz specify the object z coordinate

model specifies the current modelview matrix as a table

proj specifies the current projection matrix as a table

view specifies the current viewport as a table

RESULTS

e error code

wx computed window x coordinate

Chapter 7: GLU reference 221

wy computed window y coordinate

wz computed window z coordinate

7.14 glu.ScaleImage

NAME
glu.ScaleImage – scale an image to an arbitrary size

SYNOPSIS
err, pixelsOut = glu.ScaleImage(format, widthIn, heightIn, pixelsIn,

widthOut, heightOut)

FUNCTION
This function does the same as glu.ScaleImageRaw() except that the pixel data
is not passed and returned as a raw memory buffer but as a table containing
width*height*depth number of elements describing a pixel each. This is of course not
as efficient as using raw memory buffers because the table’s pixel data has to be copied
to a raw memory buffer first and then has to be mapped to a table again.

See Section 7.15 [glu.ScaleImageRaw], page 221, for more details on the parameters
accepted by this function.

Note that glu.ScaleImage() expects data of type #GL_FLOAT inside the pixelsIn table.
#GL_FLOAT pixel data will also be written to the return table pixelsOut.

Please consult an OpenGL reference manual for more information.

INPUTS

format specifies the format of the pixel data (see above)

widthIn specifies the width of the source image that is scaled

heightIn specifies the height of the source image that is scaled

pixelsIn specifies a table containing the pixel data of the source image

widthOut specifies the width of the destination image

heightOut

specifies the height of the destination image

RESULTS

error error code or 0 for success

pixelsOut

table containing the scaled image data

7.15 glu.ScaleImageRaw

NAME
glu.ScaleImageRaw – scale an image to an arbitrary size

222 GL Galore manual

SYNOPSIS
error = glu.ScaleImageRaw(format, widthIn, heightIn, typeIn, pixelsIn,

widthOut, heightOut, typeOut, pixelsOut)

FUNCTION
glu.ScaleImageRaw() scales a pixel image using the appropriate pixel store modes to
unpack data from the source image and pack data into the destination image.

When shrinking an image, glu.ScaleImageRaw() uses a box filter to sample the source
image and create pixels for the destination image. When an image is magnified, the
pixels from the source image are linearly interpolated to create the destination image.

format must be one of #GL_COLOR_INDEX, #GL_STENCIL_INDEX, #GL_DEPTH_COMPONENT,
#GL_RED, #GL_GREEN, #GL_BLUE, #GL_ALPHA, #GL_RGB, #GL_RGBA, #GL_LUMINANCE, and
#GL_LUMINANCE_ALPHA.

typeIn and typeOut must be one of #GL_UNSIGNED_BYTE, #GL_BYTE, #GL_BITMAP, #GL_
UNSIGNED_SHORT, #GL_SHORT, #GL_UNSIGNED_INT, #GL_INT, or #GL_FLOAT.

A return value of 0 indicates success. Otherwise glu.ScaleImage() returns a GLU error
code that indicates what the problem is (See Section 7.5 [glu.ErrorString], page 215, for
details.).

Please note that this command operates directly with memory pointers. There is also a
version which works with tables instead of memory pointers, but this is slower of course.
See Section 7.14 [glu.ScaleImage], page 221, for details. See Section 3.7 [Working with
pointers], page 11, for details on how to use memory pointers with Hollywood.

Please consult an OpenGL reference manual for more information.

INPUTS

format specifies the format of the pixel data (see above)

widthIn specifies the width of the source image that is scaled

heightIn specifies the height of the source image that is scaled

typeIn specifies the data type for pixelsIn (see above)

pixelsIn specifies a pointer to the source image

widthOut specifies the width of the destination image

heightOut

specifies the height of the destination image

typeOut specifies the data type for pixelsOut (see above)

pixelsOut

specifies a pointer to the destination image

RESULTS

error error code or 0 for success

Chapter 7: GLU reference 223

7.16 glu.UnProject

NAME
glu.UnProject – map window coordinates to object coordinates

SYNOPSIS
e,objx,objy,objz = glu.UnProject(winx, winy, winz, model, proj, view)

FUNCTION
glu.UnProject() maps the specified window coordinates into object coordinates using
model, proj, and view. The result is stored in objx, objy, and objz. A return value of
#GL_TRUE indicates success; a return value of #GL_FALSE indicates failure.

Please consult an OpenGL reference manual for more information.

INPUTS

winx specify the window x coordinate

winy specify the window y coordinate

winz specify the window z coordinate

model specifies the current modelview matrix as a table

proj specifies the current projection matrix as a table

view specifies the current viewport as a table

RESULTS

e error code

objx computed object x coordinate

objy computed object y coordinate

objz computed object z coordinate

7.17 nurb:BeginCurve

NAME
nurb:BeginCurve – mark the beginning of a NURBS curve definition

SYNOPSIS
nurb:BeginCurve()

FUNCTION
Use nurb:BeginCurve() to mark the beginning of a NURBS curve definition. After calling
nurb:BeginCurve(), make one or more calls to nurb:Curve() to define the attributes
of the curve. Exactly one of the calls to nurb:Curve() must have a curve type of
#GLU_MAP1_VERTEX_3 or #GLU_MAP1_VERTEX_4. To mark the end of the NURBS curve
definition, call nurb:EndCurve().

GL evaluators are used to render the NURBS curve as a series of line segments. Eval-
uator state is preserved during rendering with gl.PushAttrib() (#GLU_EVAL_BIT) and
gl.PopAttrib(). See Section 6.116 [gl.PushAttrib], page 163, for details on exactly
what state these calls preserve.

Please consult an OpenGL reference manual for more information.

224 GL Galore manual

INPUTS
none

7.18 nurb:BeginSurface

NAME
nurb:BeginSurface – mark the beginning of a NURBS surface definition

SYNOPSIS
nurb:BeginSurface()

FUNCTION
Use nurb:BeginSurface() to mark the beginning of a NURBS surface definition. After
calling nurb:BeginSurface(), make one or more calls to nurb:Surface() to define the
attributes of the surface. Exactly one of these calls to nurb:Surface() must have a
surface type of #GLU_MAP2_VERTEX_3 or #GLU_MAP2_VERTEX_4. To mark the end of the
NURBS surface definition, call nurb:EndSurface().

Trimming of NURBS surfaces is supported with nurb:BeginTrim(), nurb:PwlCurve(),
nurb:Curve(), and nurb:EndTrim(). See Section 7.19 [nurb:BeginTrim], page 224, for
details.

GL evaluators are used to render the NURBS surface as a set of polygons. Evalua-
tor state is preserved during rendering with gl.PushAttrib() (#GLU_EVAL_BIT) and
gl.PopAttrib(). See Section 6.116 [gl.PushAttrib], page 163, for details on exactly
what state these calls preserve.

Please consult an OpenGL reference manual for more information.

INPUTS
none

7.19 nurb:BeginTrim

NAME
nurb:BeginTrim – mark the beginning of a NURBS trimming loop definition

SYNOPSIS
nurb:BeginTrim()

FUNCTION
Use nurb:BeginTrim() to mark the beginning of a trimming loop and nurb:EndTrim()

to mark the end of a trimming loop. A trimming loop is a set of oriented curve
segments (forming a closed curve) that define boundaries of a NURBS surface. You
include these trimming loops in the definition of a NURBS surface, between calls to
nurb:BeginSurface() and nurb:EndSurface().

The definition for a NURBS surface can contain many trimming loops. For example,
if you wrote a definition for a NURBS surface that resembled a rectangle with a hole
punched out, the definition would contain two trimming loops. One loop would define
the outer edge of the rectangle; the other would define the hole punched out of the

Chapter 7: GLU reference 225

rectangle. The definitions of each of these trimming loops would be bracketed by a
nurb:BeginTrim() / nurb:EndTrim() pair.

The definition of a single closed trimming loop can consist of multiple curve segments,
each described as a piecewise linear curve (See Section 7.27 [nurb:PwlCurve], page 230,
for details.) or as a single NURBS curve (See Section 7.21 [nurb:Curve], page 227,
for details.), or as a combination of both in any order. The only library calls that
can appear in a trimming loop definition (between the calls to nurb:BeginTrim() and
nurb:EndTrim()) are nurb:PwlCurve() and nurb:Curve().

The area of the NURBS surface that is displayed is the region in the domain to the left
of the trimming curve as the curve parameter increases. Thus, the retained region of
the NURBS surface is inside a counterclockwise trimming loop and outside a clockwise
trimming loop. For the rectangle mentioned earlier, the trimming loop for the outer edge
of the rectangle runs counter-clockwise, while the trimming loop for the punched-out hole
runs clockwise.

If you use more than one curve to define a single trimming loop, the curve segments
must form a closed loop (that is, the endpoint of each curve must be the starting point
of the next curve, and the endpoint of the final curve must be the starting point of the
first curve). If the endpoints of the curve are sufficiently close together but not exactly
coincident, they will be coerced to match. If the endpoints are not sufficiently close, an
error results (See Section 7.20 [nurb:Callback], page 225, for details.).

If a trimming loop definition contains multiple curves, the direction of the curves must
be consistent (that is, the inside must be to the left of all of the curves). Nested trimming
loops are legal as long as the curve orientations alternate correctly. If trimming curves
are self-intersecting, or intersect one another, an error results.

If no trimming information is given for a NURBS surface, the entire surface is drawn.

Please consult an OpenGL reference manual for more information.

INPUTS
none

7.20 nurb:Callback

NAME
nurb:Callback – define a callback for a NURBS object

SYNOPSIS
nurb:Callback(which, func)

FUNCTION
nurb:Callback() is used to define a callback to be used by a NURBS object. If the
specified callback is already defined, then it is replaced. If func is Nil, then this callback
will not get invoked and the related data, if any, will be lost.

Except the error callback, these callbacks are used by NURBS tessellator (when #GLU_

NURBS_MODE is set to be #GLU_NURBS_TESSELLATOR) to return back the OpenGL polygon
primitives resulting from the tessellation. The error callback function is effective no

226 GL Galore manual

matter which value that #GLU_NURBS_MODE is set to. All other callback functions are
effective only when #GLU_NURBS_MODE is set to #GLU_NURBS_TESSELLATOR.

All callbacks receive a handle to the NURBS object as their first parameter. The second
parameter depends on the callback type specified in which.

The legal callbacks are as follows:

#GLU_NURBS_BEGIN

The begin callback indicates the start of a primitive. The function re-
ceives an integer argument, which can be one of #GLU_LINES, #GLU_LINE_
STRIP, #GLU_TRIANGLE_FAN, #GLU_TRIANGLE_STRIP, #GLU_TRIANGLES, or
#GLU_QUAD_STRIP. The default begin callback function is Nil.

#GLU_NURBS_VERTEX

The vertex callback indicates a vertex of the primitive. The coordinates of
the vertex are passed in a table parameter as four floating-point values. All
the generated vertices have dimension 3; that is, homogeneous coordinates
have been transformed into affine coordinates. The default vertex callback
function is Nil.

#GLU_NURBS_NORMAL

The normal callback is invoked as the vertex normal is generated. The
components of the normal are passed in a table parameter as three floating-
point values. In the case of a NURBS curve, the callback function is effective
only when the user provides a normal map (#GLU_MAP1_NORMAL). In the case
of a NURBS surface, if a normal map (#GLU_MAP2_NORMAL) is provided, then
the generated normal is computed from the normal map. If a normal map is
not provided, then a surface normal is computed in a manner similar to that
described for evaluators when #GLU_AUTO_NORMAL is enabled. The default
normal callback function is Nil.

#GLU_NURBS_COLOR

The color callback is invoked as the color of a vertex is generated. The
components of the color are passed in a table parameter. This callback
is effective only when the user provides a color map (#GLU_MAP1_COLOR_4
or #GLU_MAP2_COLOR_4). The table passed to this callback contains four
floating-point components: R, G, B, A. The default color callback function
is Nil.

#GLU_NURBS_TEXTURE_COORD

The texture callback is invoked as the texture coordinates of a vertex are
generated. These coordinates are passed in a table parameter. The number
of texture coordinates can be 1, 2, 3, or 4 depending on which type of texture
map is specified (#GLU_MAP1_TEXTURE_COORD_1, #GLU_MAP1_TEXTURE_

COORD_2, #GLU_MAP1_TEXTURE_COORD_3, #GLU_MAP1_TEXTURE_COORD_4,
#GLU_MAP2_TEXTURE_COORD_1, #GLU_MAP2_TEXTURE_COORD_2, #GLU_MAP2_
TEXTURE_COORD_3, #GLU_MAP2_TEXTURE_COORD_4). If no texture map is
specified, this callback function will not be called. The default texture
callback function is Nil.

Chapter 7: GLU reference 227

#GLU_NURBS_END

The end callback is invoked at the end of a primitive. The default end
callback function is Nil. This callback doesn’t receive any parameters except
a handle to the NURBS object.

Please consult an OpenGL reference manual for more information.

INPUTS

which specifies the callback being defined (see above)

func specifies the function that the callback calls

7.21 nurb:Curve

NAME
nurb:Curve – define the shape of a NURBS curve

SYNOPSIS
nurb:Curve(knotsArray, controlArray, type)

FUNCTION
Use nurb:Curve() to describe a NURBS curve.

When nurb:Curve() appears between a nurb:BeginCurve() / nurb:EndCurve() pair, it
is used to describe a curve to be rendered. Positional, texture, and color coordinates are
associated by presenting each as a separate nurb:Curve() between a nurb:BeginCurve()
/ nurb:EndCurve() pair. No more than one call to nurb:Curve() for each of color,
position, and texture data can be made within a single nurb:BeginCurve() /
nurb:EndCurve() pair. Exactly one call must be made to describe the position of the
curve (a type of #GLU_MAP1_VERTEX_3 or #GLU_MAP1_VERTEX_4).

When nurb:Curve() appears between a nurb:BeginTrim() / nurb:EndTrim() pair, it is
used to describe a trimming curve on a NURBS surface. If type is #GLU_MAP1_TRIM_2,
then it describes a curve in two-dimensional (u and v) parameter space. If it is #GLU_
MAP1_TRIM_3, then it describes a curve in two-dimensional homogeneous (u, v, and w)
parameter space. See Section 7.19 [nurb:BeginTrim], page 224, for more discussion about
trimming curves.

Please consult an OpenGL reference manual for more information.

INPUTS

knotsArray

specifies an array of non-decreasing knot values

controlArray

specifies an array of control points; the coordinates must agree with type,
specified below

type specifies the type of the curve (see above)

228 GL Galore manual

7.22 nurb:EndCurve

NAME
nurb:EndCurve – mark the end of a NURBS curve definition

SYNOPSIS
nurb:EndCurve()

FUNCTION
nurb:EndCurve() marks the end of a NURBS curve definition. See Section 7.17
[nurb:BeginCurve], page 223, for details.

Please consult an OpenGL reference manual for more information.

INPUTS
none

7.23 nurb:EndSurface

NAME
nurb:EndSurface – mark the end of a NURBS surface definition

SYNOPSIS
nurb:EndSurface()

FUNCTION
nurb:EndSurface() marks the end of a NURBS surface definition. See Section 7.18
[nurb:BeginSurface], page 224, for details.

Please consult an OpenGL reference manual for more information.

INPUTS
none

7.24 nurb:EndTrim

NAME
nurb:EndTrim – mark the end of a trimming loop definition

SYNOPSIS
nurb:EndTrim()

FUNCTION
nurb:EndTrim() marks the end of a trimming loop definition. See Section 7.19
[nurb:BeginTrim], page 224, for details.

Please consult an OpenGL reference manual for more information.

INPUTS
none

Chapter 7: GLU reference 229

7.25 nurb:GetProperty

NAME
nurb:GetProperty – get a NURBS property

SYNOPSIS
value = nurb:GetProperty(property)

FUNCTION
nurb:GetProperty() can be used to get the state of a NURBS property. See Section 7.28
[nurb:SetProperty], page 230, for a list of accepted properties.

Please consult an OpenGL reference manual for more information.

INPUTS

property specifies the property to be set (see above)

RESULTS

value state of the specified property

7.26 nurb:LoadSamplingMatrices

NAME
nurb:LoadSamplingMatrices – load NURBS sampling and culling matrices

SYNOPSIS
nurb:LoadSamplingMatrices(modelArray, perspectiveArray, viewArray)

FUNCTION
nurb:LoadSamplingMatrices() uses modelArray, perspectiveArray, and viewArray to
recompute the sampling and culling matrices stored in nurb. The sampling matrix
determines how finely a NURBS curve or surface must be tessellated to satisfy the
sampling tolerance (as determined by the #GLU_SAMPLING_TOLERANCE property). The
culling matrix is used in deciding if a NURBS curve or surface should be culled before
rendering (when the #GLU_CULLING property is turned on).

nurb:LoadSamplingMatrices() is necessary only if the #GLU_AUTO_LOAD_MATRIX property
is turned off (See Section 7.28 [nurb:SetProperty], page 230, for details.). Although it
can be convenient to leave the #GLU_AUTO_LOAD_MATRIX property turned on, there can
be a performance penalty for doing so. (A round trip to the GL server is needed to fetch
the current values of the modelview matrix, projection matrix, and viewport.)

Please consult an OpenGL reference manual for more information.

INPUTS

modelArray

specifies a table containing a modelview matrix

perspectiveArray

specifies a table containing a projection matrix

viewArray

specifies a table containing viewport coordinates

230 GL Galore manual

7.27 nurb:PwlCurve

NAME
nurb:PwlCurve – describe a piecewise linear NURBS trimming curve

SYNOPSIS
nurb:PwlCurve(dataArray, type)

FUNCTION
nurb:PwlCurve() describes a piecewise linear trimming curve for a NURBS surface. A
piecewise linear curve consists of a list of coordinates of points in the parameter space
for the NURBS surface to be trimmed. These points are connected with line segments
to form a curve. If the curve is an approximation to a curve that is not piecewise linear,
the points should be close enough in parameter space that the resulting path appears
curved at the resolution used in the application.

If type is #GLU_MAP1_TRIM_2, then it describes a curve in two-dimensional (u
and v) parameter space. If it is #GLU_MAP1_TRIM_3, then it describes a curve in
two-dimensional homogeneous (u, v, and w) parameter space. See Section 7.19
[nurb:BeginTrim], page 224, for more information about trimming curves.

To describe a trim curve that closely follows the contours of a NURBS surface, call
nurb:Curve().

Please consult an OpenGL reference manual for more information.

INPUTS

dataArray

specifies an array containing the curve points

type specifies the type of curve; must be either #GLU_MAP1_TRIM_2 or #GLU_MAP1_
TRIM_3

7.28 nurb:SetProperty

NAME
nurb:SetProperty – set a NURBS property

SYNOPSIS
nurb:SetProperty(property, value)

FUNCTION
nurb:SetProperty() is used to control properties stored in a NURBS object. These prop-
erties affect the way that a NURBS curve is rendered. The accepted values for property
are as follows:

#GLU_NURBS_MODE

value should be set to be either #GLU_NURBS_RENDERER or #GLU_NURBS_

TESSELLATOR. When set to #GLU_NURBS_RENDERER, NURBS objects are
tessellated into OpenGL primitives and sent to the pipeline for rendering.
When set to #GLU_NURBS_TESSELLATOR, NURBS objects are tessellated into
OpenGL primitives but the vertices, normals, colors, and/or textures are re-
trieved back through a callback interface (See Section 7.20 [nurb:Callback],

Chapter 7: GLU reference 231

page 225, for details.). This allows the user to cache the tessellated results
for further processing. The initial value is #GLU_NURBS_RENDERER.

#GLU_SAMPLING_METHOD

Specifies how a NURBS surface should be tessellated. value may be one
of #GLU_PATH_LENGTH, #GLU_PARAMETRIC_ERROR, #GLU_DOMAIN_DISTANCE,
#GLU_OBJECT_PATH_LENGTH, or #GLU_OBJECT_PARAMETRIC_ERROR. When
set to #GLU_PATH_LENGTH, the surface is rendered so that the maximum
length, in pixels, of the edges of the tessellation polygons is no greater than
what is specified by #GLU_SAMPLING_TOLERANCE.

#GLU_PARAMETRIC_ERROR specifies that the surface is rendered in such a way
that the value specified by #GLU_PARAMETRIC_TOLERANCE describes the max-
imum distance, in pixels, between the tessellation polygons and the surfaces
they approximate.

#GLU_DOMAIN_DISTANCE allows users to specify, in parametric coordinates,
how many sample points per unit length are taken in u, v direction.

#GLU_OBJECT_PATH_LENGTH is similar to #GLU_PATH_LENGTH except that it
is view independent; that is, the surface is rendered so that the maximum
length, in object space, of edges of the tessellation polygons is no greater
than what is specified by #GLU_SAMPLING_TOLERANCE.

#GLU_OBJECT_PARAMETRIC_ERROR is similar to #GLU_PARAMETRIC_ERROR ex-
cept that it is view independent; that is, the surface is rendered in such a
way that the value specified by #GLU_PARAMETRIC_TOLERANCE describes the
maximum distance, in object space, between the tessellation polygons and
the surfaces they approximate.

The initial value of #GLU_SAMPLING_METHOD is #GLU_PATH_LENGTH.

#GLU_SAMPLING_TOLERANCE

Specifies the maximum length, in pixels or in object space length unit, to
use when the sampling method is set to #GLU_PATH_LENGTH or #GLU_OBJECT_
PATH_LENGTH. The NURBS code is conservative when rendering a curve or
surface, so the actual length can be somewhat shorter. The initial value is
50.0 pixels.

#GLU_PARAMETRIC_TOLERANCE

Specifies the maximum distance, in pixels or in object space length unit, to
use when the sampling method is #GLU_PARAMETRIC_ERROR or #GLU_OBJECT_
PARAMETRIC_ERROR. The initial value is 0.5.

#GLU_U_STEP

Specifies the number of sample points per unit length taken along the u axis
in parametric coordinates. It is needed when #GLU_SAMPLING_METHOD is set
to #GLU_DOMAIN_DISTANCE. The initial value is 100.

#GLU_V_STEP

Specifies the number of sample points per unit length taken along the v axis
in parametric coordinate. It is needed when #GLU_SAMPLING_METHOD is set
to #GLU_DOMAIN_DISTANCE. The initial value is 100.

232 GL Galore manual

#GLU_DISPLAY_MODE

value can be set to #GLU_OUTLINE_POLYGON, #GLU_FILL, or #GLU_OUTLINE_
PATCH. When #GLU_NURBS_MODE is set to be #GLU_NURBS_RENDERER, value
defines how a NURBS surface should be rendered. When value is set to
#GLU_FILL, the surface is rendered as a set of polygons. When value is set
to #GLU_OUTLINE_POLYGON, the NURBS library draws only the outlines of
the polygons created by tessellation. When value is set to #GLU_OUTLINE_

PATCH just the outlines of patches and trim curves defined by the user are
drawn.

When #GLU_NURBS_MODE is set to be #GLU_NURBS_TESSELLATOR, value de-
fines how a NURBS surface should be tessellated. When #GLU_DISPLAY_

MODE is set to# GLU FILL or #GLU_OUTLINE_POLYGON, the NURBS surface
is tessellated into OpenGL triangle primitives that can be retrieved back
through callback functions. If #GLU_DISPLAY_MODE is set to #GLU_OUTLINE_

PATCH, only the outlines of the patches and trim curves are generated as a
sequence of line strips that can be retrieved back through callback functions.

The initial value is #GLU_FILL.

#GLU_CULLING

value is a boolean value that, when set to #GLU_TRUE, indicates that a
NURBS curve should be discarded prior to tessellation if its control points
lie outside the current viewport. The initial value is #GLU_FALSE.

#GLU_AUTO_LOAD_MATRIX

value is a boolean value. When set to #GLU_TRUE, the NURBS code down-
loads the projection matrix, the modelview matrix, and the viewport from
the GL server to compute sampling and culling matrices for each NURBS
curve that is rendered. Sampling and culling matrices are required to de-
termine the tessellation of a NURBS surface into line segments or polygons
and to cull a NURBS surface if it lies outside the viewport.

If this mode is set to #GLU_FALSE, then the program needs to provide a
projection matrix, a modelview matrix, and a viewport for the NURBS
renderer to use to construct sampling and culling matrices. This can be done
with the nurb:LoadSamplingMatrices() function. This mode is initially set
to #GLU_TRUE. Changing it from #GLU_TRUE to #GLU_FALSE does not affect
the sampling and culling matrices until nurb:LoadSamplingMatrices() is
called.

If #GLU_AUTO_LOAD_MATRIX is true, sampling and culling may be executed incorrectly if
NURBS routines are compiled into a display list.

Please consult an OpenGL reference manual for more information.

INPUTS

property specifies the property to be set (see above)

value specifies the value of the indicated property (see above)

Chapter 7: GLU reference 233

7.29 nurb:Surface

NAME
nurb:Surface – define the shape of a NURBS surface

SYNOPSIS
nurb:Surface(sKnotsArray, tKnotsArray, controlArray, type)

FUNCTION
Use nurb:Surface() within a NURBS (Non-Uniform Rational B-Spline) surface definition
to describe the shape of a NURBS surface (before any trimming). To mark the beginning
of a NURBS surface definition, use the nurb:BeginSurface() command. To mark
the end of a NURBS surface definition, use the nurb:EndSurface() command. Call
nurb:Surface() within a NURBS surface definition only.

Positional, texture, and color coordinates are associated with a surface by presenting each
as a separate nurb:Surface() between a nurb:BeginSurface() / nurb:EndSurface()

pair. No more than one call to nurb:Surface() for each of color, position, and texture
data can be made within a single nurb:BeginSurface() / nurb:EndSurface() pair.
Exactly one call must be made to describe the position of the surface (a type of #GLU_
MAP2_VERTEX_3 or #GLU_MAP2_VERTEX_4).

A NURBS surface can be trimmed by using the commands nurb:Curve() and
nurb:PwlCurve() between calls to nurb:BeginTrim() and nurb:EndTrim().

Please consult an OpenGL reference manual for more information.

INPUTS

sKnotsArray

specifies an array of non-decreasing knot values in the parametric u direction

tKnotsArray

specifies an array of non-decreasing knot values in the parametric v direction

controlArray

specifies an array containing control points for the NURBS surface

type specifies type of the surface; can be any of the valid two-dimensional evalu-
ator types (such as #GLU_MAP2_VERTEX_3 or #GLU_MAP2_COLOR_4)

7.30 quad:Cylinder

NAME
quad:Cylinder – draw a cylinder

SYNOPSIS
quad:Cylinder(base, top, height, slices, stacks)

FUNCTION
quad:Cylinder() draws a cylinder oriented along the z axis. The base of the cylinder is
placed at z = 0 and the top at z = height. Like a sphere, a cylinder is subdivided around
the z axis into slices and along the z axis into stacks.

Note that if top is set to 0.0, this routine generates a cone.

234 GL Galore manual

If the orientation is set to #GLU_OUTSIDE (with quad:Orientation()), then any gener-
ated normals point away from the z axis. Otherwise, they point toward the z axis.

If texturing is turned on (with quad:Texture()), then texture coordinates are generated
so that t ranges linearly from 0.0 at z = 0 to 1.0 at z = height, and s ranges from 0.0 at
the +y axis, to 0.25 at the +x axis, to 0.5 at the -y axis, to 0.75 at the -x axis, and back
to 1.0 at the +y axis.

Please consult an OpenGL reference manual for more information.

INPUTS

base specifies the radius of the cylinder at z = 0

top specifies the radius of the cylinder at z = height

height specifies the height of the cylinder

slices specifies the number of subdivisions around the z axis

stacks specifies the number of subdivisions along the z axis

7.31 quad:Disk

NAME
quad:Disk – draw a disk

SYNOPSIS
quad:Disk(inner, outer, slices, loops)

FUNCTION
quad:Disk() renders a disk on the z = 0 plane. The disk has a radius of outer and
contains a concentric circular hole with a radius of inner. If inner is 0, then no hole
is generated. The disk is subdivided around the z axis into slices (like pizza slices) and
also about the z axis into rings (as specified by slices and loops, respectively).

With respect to orientation, the +z side of the disk is considered to be "outside" (See
Section 7.34 [quad:Orientation], page 236, for details.). This means that if the orientation
is set to #GLU_OUTSIDE, then any normals generated point along the +z axis. Otherwise,
they point along the -z axis.

If texturing has been turned on (with quad:Texture()), texture coordinates are gener-
ated linearly such that where r = outer , the value at (r, 0, 0) is (1, 0.5), at (0, r, 0) it
is (0.5, 1), at (-r, 0, 0) it is (0, 0.5), and at (0, -r, 0) it is (0.5, 0).

Please consult an OpenGL reference manual for more information.

INPUTS

inner specifies the inner radius of the disk (may be 0)

outer specifies the outer radius of the disk

slices specifies the number of subdivisions around the z axis

loops specifies the number of concentric rings about the origin into which the disk
is subdivided

Chapter 7: GLU reference 235

7.32 quad:DrawStyle

NAME
quad:DrawStyle – specify the draw style desired for quadrics

SYNOPSIS
quad:DrawStyle(draw)

FUNCTION
quad:DrawStyle() specifies the draw style for quadrics rendered with quad. The legal
values are as follows:

#GLU_FILL

Quadrics are rendered with polygon primitives. The polygons are drawn in
a counter-clockwise fashion with respect to their normals (as defined with
quad:Orientation()).

#GLU_LINE

Quadrics are rendered as a set of lines.

#GLU_SILHOUETTE

Quadrics are rendered as a set of lines, except that edges separating coplanar
faces will not be drawn.

#GLU_POINT

Quadrics are rendered as a set of points.

Please consult an OpenGL reference manual for more information.

INPUTS

draw specifies the desired draw style (see above)

7.33 quad:Normals

NAME
quad:Normals – specify what kind of normals are desired for quadrics

SYNOPSIS
quad:Normals(normal)

FUNCTION
quad:Normals() specifies what kind of normals are desired for quadrics rendered with
quad. The legal values are as follows:

#GLU_NONE

No normals are generated.

#GLU_FLAT

One normal is generated for every facet of a quadric.

#GLU_SMOOTH

One normal is generated for every vertex of a quadric. This is the initial
value.

236 GL Galore manual

Please consult an OpenGL reference manual for more information.

INPUTS

normal specifies the desired type of normals (see above)

7.34 quad:Orientation

NAME
quad:Orientation – specify inside/outside orientation for quadrics

SYNOPSIS
quad:Orientation(orientation)

FUNCTION
quad:Orientation() specifies what kind of orientation is desired for quadrics rendered
with quad. The orientation values are as follows:

#GLU_OUTSIDE

Quadrics are drawn with normals pointing outward (the initial value).

#GLU_INSIDE

Quadrics are drawn with normals pointing inward.

Note that the interpretation of outward and inward depends on the quadric being drawn.

Please consult an OpenGL reference manual for more information.

INPUTS

orientation

specifies the desired orientation (see above)

7.35 quad:PartialDisk

NAME
quad:PartialDisk – draw an arc of a disk

SYNOPSIS
quad:PartialDisk(inner, outer, slices, loops, start, sweep)

FUNCTION
quad:PartialDisk() renders a partial disk on the z = 0 plane. A partial disk is similar to
a full disk, except that only the subset of the disk from start through start + sweep is
included (where 0 degrees is along the +y axis, 90 degrees along the +x axis, 180 degrees
along the -y axis, and 270 degrees along the -x axis).

The partial disk has a radius of outer and contains a concentric circular hole with a
radius of inner. If inner is 0, then no hole is generated. The partial disk is subdivided
around the z axis into slices (like pizza slices) and also about the z axis into rings (as
specified by slices and loops, respectively).

With respect to orientation, the +z side of the partial disk is considered to be outside
(See Section 7.34 [quad:Orientation], page 236, for details.). This means that if the

Chapter 7: GLU reference 237

orientation is set to #GLU_OUTSIDE, then any normals generated point along the +z axis.
Otherwise, they point along the -z axis.

If texturing is turned on (with quad:Texture()), texture coordinates are generated
linearly such that where r = outer , the value at (r, 0, 0) is (1.0, 0.5), at (0, r, 0) it is
(0.5, 1.0), at (-r, 0, 0) it is (0.0, 0.5), and at (0, -r, 0) it is (0.5, 0.0).

Please consult an OpenGL reference manual for more information.

INPUTS

inner specifies the inner radius of the partial disk (can be 0)

outer specifies the outer radius of the partial disk

slices specifies the number of subdivisions around the z axis

loops specifies the number of concentric rings about the origin into which the
partial disk is subdivided

start specifies the starting angle, in degrees, of the disk portion

sweep specifies the sweep angle, in degrees, of the disk portion

7.36 quad:Texture

NAME
quad:Texture – specify if texturing is desired for quadrics

SYNOPSIS
quad:Texture(texture)

FUNCTION
quad:Texture() specifies if texture coordinates should be generated for quadrics rendered
with quad. If the value of texture is #GLU_TRUE, then texture coordinates are generated,
and if texture is #GLU_FALSE, they are not. The initial value is #GLU_FALSE.

The manner in which texture coordinates are generated depends upon the specific quadric
rendered.

Please consult an OpenGL reference manual for more information.

INPUTS

texture specifies a flag indicating if texture coordinates should be generated

7.37 quad:Sphere

NAME
quad:Sphere – draw a sphere

SYNOPSIS
quad:Sphere(radius, slices, stacks)

238 GL Galore manual

FUNCTION
quad:Sphere() draws a sphere of the given radius centered around the origin. The sphere
is subdivided around the z axis into slices and along the z axis into stacks (similar to
lines of longitude and latitude).

If the orientation is set to #GLU_OUTSIDE (with quad:Orientation()), then any normals
generated point away from the center of the sphere. Otherwise, they point toward the
center of the sphere.

If texturing is turned on (with quad:Texture()), then texture coordinates are generated
so that t ranges from 0.0 at z = -radius to 1.0 at z = radius (t increases linearly along
longitudinal lines), and s ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at
the -y axis, to 0.75 at the -x axis, and back to 1.0 at the +y axis.

Please consult an OpenGL reference manual for more information.

INPUTS

radius specifies the radius of the sphere

slices specifies the number of subdivisions around the z axis (similar to lines of
longitude)

stacks specifies the number of subdivisions along the z axis (similar to lines of
latitude)

239

8 GLFW reference

8.1 glfw.GetJoystickAxes

NAME
glfw.GetJoystickAxes – get states of all joystick axes (V1.1)

SYNOPSIS
t, count = glfw.GetJoystickAxes(port)

FUNCTION
This function returns the values of all axes of the specified joystick in a table. Each
element in the table is a value between -1.0 and 1.0. The port argument must be set to
a valid joystick identifier between #GLFW_JOYSTICK_1 and #GLFW_JOYSTICK_16.

INPUTS

port the joystick port to query

RESULTS

t table containing axes data

count number of entries in table

8.2 glfw.GetJoystickButtons

NAME
glfw.GetJoystickButtons – get states of all joystick buttons (V1.1)

SYNOPSIS
t, count = glfw.GetJoystickButtons(port)

FUNCTION
This function returns the states of all buttons of the specified joystick in a table. Each
element in the table is either True if the button is pressed or False if it isn’t pressed.
The port argument must be set to a valid joystick identifier between #GLFW_JOYSTICK_1

and #GLFW_JOYSTICK_16.

INPUTS

port the joystick port to query

RESULTS

t table containing button states

count number of entries in table

240 GL Galore manual

8.3 glfw.GetJoystickName

NAME
glfw.GetJoystickName – return joystick name (V1.1)

SYNOPSIS
name$ = glfw.GetJoystickName(port)

FUNCTION
This function returns the name of the specified joystick. The port argument must be
set to a valid joystick identifier between #GLFW_JOYSTICK_1 and #GLFW_JOYSTICK_16.

INPUTS

port the joystick port to query

RESULTS

name$ name of joystick

8.4 glfw.JoystickPresent

NAME
glfw.JoystickPresent – check if there is a joystick at the specified port (V1.1)

SYNOPSIS
bool = glfw.JoystickPresent(port)

FUNCTION
This function returns whether the specified joystick is present. The port argument must
be set to a valid joystick identifier between #GLFW_JOYSTICK_1 and #GLFW_JOYSTICK_16.

INPUTS

port the joystick port to query

RESULTS

bool True or False depending on whether there is a joystick at the specified port

241

9 Hollywood bridge

9.1 gl.BitmapFromBrush

NAME
gl.BitmapFromBrush – draw a bitmap from a brush’s mask

SYNOPSIS
gl.BitmapFromBrush(xorig, yorig, xmove, ymove, id)

FUNCTION
This function does the same as gl.Bitmap() except that the pixel data is fetched from
the mask of the Hollywood brush specified by id. If the brush specified in id doesn’t
have a mask, an error will be generated.

See Section 6.7 [gl.Bitmap], page 27, for details.

INPUTS

xorig specify the location of the x origin in the bitmap image. The origin is
measured from the lower left corner of the bitmap, with right and up being
the positive axes.

yorig specify the location of the y origin in the bitmap image. The origin is
measured from the lower left corner of the bitmap, with right and up being
the positive axes.

xmove specify the x offset to be added to the current raster position after the bitmap
is drawn

ymove specify the y offset to be added to the current raster position after the bitmap
is drawn

id identifier of a Hollywood brush that has a mask

9.2 gl.DrawPixelsFromBrush

NAME
gl.DrawPixelsFromBrush – draw a Hollywood brush to the frame buffer

SYNOPSIS
gl.DrawPixelsFromBrush(id)

FUNCTION
This function does the same as gl.DrawPixels() except that the pixel data is fetched
from the Hollywood brush specified by id.

See Section 6.36 [gl.DrawPixels], page 59, for details.

INPUTS

id identifier of a Hollywood brush

242 GL Galore manual

9.3 gl.GetCurrentContext

NAME
gl.GetCurrentContext – get current OpenGL context

SYNOPSIS
id = gl.GetCurrentContext()

FUNCTION
This function returns the identifier of the display whose OpenGL context is the current
one.

You can use gl.SetCurrentContext() to set the current GL context.

INPUTS
none

RESULTS

id identifier of the display whose OpenGL context is the current one

9.4 gl.GetTexImageToBrush

NAME
gl.GetTexImageToBrush – return a texture image as a brush

SYNOPSIS
[id] = gl.GetTexImageToBrush(target, level, id)

FUNCTION
This function does the same as gl.GetTexImage() except that the pixel data is con-
verted into the Hollywood brush specified by id. If there is already a brush that
uses the identifier id, it will be freed first. If you specify Nil in the id argument,
gl.GetTexImageToBrush() will automatically choose a vacant identifier for this brush
and return it to you.

See Section 6.71 [gl.GetTexImage], page 108, for details.

INPUTS

target specifies which texture is to be obtained (must be #GL_TEXTURE_1D or #GL_
TEXTURE_2D)

level specifies the level-of-detail number of the desired image; level 0 is the base
image level; level n is the nth mipmap reduction image

id id for the new brush or Nil for auto id selection

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 3 (see above)

Chapter 9: Hollywood bridge 243

9.5 gl.ReadPixelsToBrush

NAME
gl.ReadPixelsToBrush – read pixels from the frame buffer to a brush

SYNOPSIS
[id] = gl.ReadPixelsToBrush(x, y, width, height, id)

FUNCTION
This function does the same as gl.ReadPixels() except that the pixel data is con-
verted into the Hollywood brush specified by id. If there is already a brush that
uses the identifier id, it will be freed first. If you specify Nil in the id argument,
gl.ReadPixelsToBrush() will automatically choose a vacant identifier for this brush
and return it to you.

See Section 6.122 [gl.ReadPixels], page 173, for details.

INPUTS

x specify the left coordinate of a rectangular block of pixels

y specify the lower coordinate of a rectangular block of pixels

width width of the pixel rectangle

height height of the pixel rectangle

id id for the new brush or Nil for auto id selection

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 5 (see above)

9.6 gl.SetCurrentContext

NAME
gl.SetCurrentContext – set current OpenGL context

SYNOPSIS
gl.SetCurrentContext(id)

FUNCTION
This function makes the OpenGL context of the display specified by id current. With
GL Galore, every Hollywood display maintains its own GL context. You can use this
function to set the current GL context that all further calls to OpenGL should use.

You can use gl.GetCurrentContext() to get the current GL context.

INPUTS

id identifier of a Hollywood display whose GL context should be made current

244 GL Galore manual

9.7 gl.TexImageFromBrush

NAME
gl.TexImageFromBrush – specify a 1D or 2D texture image from brush

SYNOPSIS
gl.TexImageFromBrush(level, id)

FUNCTION
This command does the same as gl.TexImage() but fetches the pixel data from the
Hollywood brush specified by id. Two-dimensional texturing will be used automatically
if the brush has more than one row.

See Section 6.138 [gl.TexImage], page 192, for details.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level, level n is
the nth mipmap reduction image

id identifier of a Hollywood brush

9.8 gl.TexSubImageFromBrush

NAME
gl.TexSubImageFromBrush – specify a 1D or 2D texture subimage from brush

SYNOPSIS
gl.TexSubImageFromBrush(level, id, xoffset[, yoffset])

FUNCTION
This command does the same as gl.TexSubImage() but fetches the pixel data from the
Hollywood brush specified by id. Two-dimensional texturing will be used automatically
if the brush has more than one row.

See Section 6.142 [gl.TexSubImage], page 202, for details.

INPUTS

level specifies the level-of-detail number; level 0 is the base image level; level n is
the nth mipmap reduction image

id identifier of a Hollywood brush

xoffset specifies a texel offset in the x direction within the texture array

yoffset optional: specifies a texel offset in the y direction within the texture array;
only required for 2D textures

9.9 glu.BuildMipmapsFromBrush

NAME
glu.BuildMipmapsFromBrush – create 1D or 2D mipmaps from brush

Chapter 9: Hollywood bridge 245

SYNOPSIS
error = glu.BuildMipmapsFromBrush(id)

FUNCTION
This command does the same as glu.BuildMipmaps() but fetches the pixel data from
the Hollywood brush specified by id. Two-dimensional mipmaps will be created auto-
matically if the brush has more than one row.

See Section 7.1 [glu.BuildMipmaps], page 211, for details.

INPUTS

id identifier of a Hollywood brush

RESULTS

error error code or 0 for success

247

Appendix A Licenses

A.1 LuaGL license

LuaGL is licensed under the terms of the MIT license reproduced below. This means that
LuaGL is free software and can be used for both academic and commercial purposes at
absolutely no cost.

Copyright (C) 2003-2012 by Fabio Guerra and Cleyde Marlyse.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

A.2 GLFW license

Copyright (c) 2002-2006 Marcus Geelnard

Copyright (c) 2006-2010 Camilla Berglund <elmindreda@elmindreda.org>

This software is provided ’as-is’, without any express or implied warranty. In no event will
the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

A.3 SGI Free Software B license

SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)

Copyright (C) 1991-2006 Silicon Graphics, Inc. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without

248 GL Galore manual

restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice including the dates of first publication and either this permission
notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC. BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

Except as contained in this notice, the name of Silicon Graphics, Inc. shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software without
prior written authorization from Silicon Graphics, Inc.

A.4 LGPL license

GNU Lesser General Public License Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages–typically libraries–of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish); that you receive source code or
can get it if you want it; that you can change the software and use pieces of it in new free
programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,

Appendix A: Licenses 249

receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free
programs must be allowed to use the library. A more frequent case is that a free library
does the same job as widely used non-free libraries. In this case, there is little to gain by
limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the
GNU C Library in non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that

250 GL Galore manual

uses the library". The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called "this License"). Each
licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and data)
to form executables.

The "Library", below, refers to any such software library or work which has been dis-
tributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or
a portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on
the Library (independent of the use of the Library in a tool for writing it). Whether that is
true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when
the facility is invoked, then you must make a good faith effort to ensure that, in the event an

Appendix A: Licenses 251

application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that
any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if you
wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than

252 GL Galore manual

a "work that uses the library". The executable is therefore covered by this License. Section
6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is
not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifi-
cation of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library,
with the complete machine-readable "work that uses the Library", as object code and/or
source code, so that the user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood that the user who changes
the contents of definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will
operate properly with a modified version of the library, if the user installs one, as long as
the modified version is interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

Appendix A: Licenses 253

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and distribute
such a combined library, provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form of
the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the Library), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies

254 GL Galore manual

directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply, and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version number,
you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LI-
BRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

255

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

257

Index

G
gl.Accum . 19
gl.AlphaFunc . 20
gl.AreTexturesResident . 22
gl.ArrayElement . 22
gl.Begin . 23
gl.BindTexture . 25
gl.Bitmap . 26
gl.BitmapFromBrush . 241
gl.BlendFunc . 28
gl.CallList . 30
gl.CallLists . 31
gl.Clear . 31
gl.ClearAccum . 32
gl.ClearColor . 33
gl.ClearDepth . 34
gl.ClearIndex . 34
gl.ClearStencil . 35
gl.ClipPlane . 35
gl.Color . 36
gl.ColorMask . 37
gl.ColorMaterial . 38
gl.ColorPointer . 39
gl.CopyPixels . 40
gl.CopyTexImage . 43
gl.CopyTexSubImage . 44
gl.CullFace . 46
gl.DeleteLists . 46
gl.DeleteTextures . 47
gl.DepthFunc . 48
gl.DepthMask . 49
gl.DepthRange . 49
gl.Disable . 50
gl.DisableClientState . 55
gl.DrawArrays . 56
gl.DrawBuffer . 57
gl.DrawElements . 58
gl.DrawPixels . 59
gl.DrawPixelsFromBrush . 241
gl.DrawPixelsRaw . 60
gl.EdgeFlag . 65
gl.EdgeFlagPointer . 65
gl.Enable . 66
gl.EnableClientState . 66
gl.End . 67
gl.EndList . 67
gl.EvalCoord . 67
gl.EvalMesh . 69
gl.EvalPoint . 71
gl.FeedbackBuffer . 72
gl.Finish . 74
gl.Flush . 74
gl.Fog . 75
gl.FreeFeedbackBuffer . 77

gl.FreeSelectBuffer . 77
gl.FrontFace . 77
gl.Frustum . 78
gl.GenLists . 79
gl.GenTextures . 80
gl.Get . 80
gl.GetArray . 95
gl.GetClipPlane . 96
gl.GetCurrentContext . 241
gl.GetError . 96
gl.GetLight . 98
gl.GetMap . 100
gl.GetMaterial . 101
gl.GetPixelMap . 102
gl.GetPointer . 103
gl.GetPolygonStipple . 104
gl.GetSelectBuffer . 104
gl.GetString . 105
gl.GetTexEnv . 106
gl.GetTexGen . 107
gl.GetTexImage . 108
gl.GetTexImageRaw . 109
gl.GetTexImageToBrush . 242
gl.GetTexLevelParameter . 111
gl.GetTexParameter . 112
gl.Hint . 113
gl.Index . 115
gl.IndexMask . 115
gl.IndexPointer . 116
gl.InitNames . 117
gl.InterleavedArrays . 117
gl.IsEnabled . 119
gl.IsList . 122
gl.IsTexture . 122
gl.Light . 123
gl.LightModel . 125
gl.LineStipple . 127
gl.LineWidth . 128
gl.ListBase . 129
gl.LoadIdentity . 129
gl.LoadMatrix . 130
gl.LoadName . 131
gl.LogicOp . 131
gl.Map . 133
gl.MapGrid . 136
gl.Material . 138
gl.MatrixMode . 139
gl.MultMatrix . 140
gl.NewList . 141
gl.Normal . 142
gl.NormalPointer . 143
gl.Ortho . 144
gl.PassThrough . 145
gl.PixelMap . 146
gl.PixelStore . 148

258 GL Galore manual

gl.PixelTransfer . 152
gl.PixelZoom . 154
gl.PointSize . 155
gl.PolygonMode . 156
gl.PolygonOffset . 157
gl.PolygonStipple . 158
gl.PopAttrib . 159
gl.PopClientAttrib . 160
gl.PopMatrix . 160
gl.PopName . 161
gl.PrioritizeTextures . 162
gl.PushAttrib . 163
gl.PushClientAttrib . 168
gl.PushMatrix . 168
gl.PushName . 169
gl.RasterPos . 170
gl.ReadBuffer . 172
gl.ReadPixels . 172
gl.ReadPixelsRaw . 175
gl.ReadPixelsToBrush . 242
gl.Rect . 176
gl.RenderMode . 177
gl.Rotate . 178
gl.Scale . 179
gl.Scissor . 180
gl.SelectBuffer . 181
gl.SetCurrentContext . 243
gl.ShadeModel . 182
gl.StencilFunc . 183
gl.StencilMask . 185
gl.StencilOp . 185
gl.TexCoord . 187
gl.TexCoordPointer . 188
gl.TexEnv . 189
gl.TexGen . 190
gl.TexImage . 191
gl.TexImage1D . 192
gl.TexImage2D . 196
gl.TexImageFromBrush . 243
gl.TexParameter . 199
gl.TexSubImage . 202
gl.TexSubImage1D . 203
gl.TexSubImage2D . 204
gl.TexSubImageFromBrush . 244
gl.Translate . 206
gl.Vertex . 207
gl.VertexPointer . 207
gl.Viewport . 208
glfw.GetJoystickAxes . 239

glfw.GetJoystickButtons . 239
glfw.GetJoystickName . 239
glfw.JoystickPresent . 240
glu.Build1DMipmaps . 211
glu.Build2DMipmaps . 212
glu.Build3DMipmaps . 214
glu.BuildMipmaps . 211
glu.BuildMipmapsFromBrush 244
glu.ErrorString . 215
glu.GetString . 216
glu.LookAt . 216
glu.NewNurbsRenderer . 217
glu.NewQuadric . 218
glu.Ortho2D . 218
glu.Perspective . 218
glu.PickMatrix . 219
glu.Project . 220
glu.ScaleImage . 221
glu.ScaleImageRaw . 221
glu.UnProject . 222

N
nurb:BeginCurve . 223
nurb:BeginSurface . 224
nurb:BeginTrim . 224
nurb:Callback . 225
nurb:Curve . 227
nurb:EndCurve . 227
nurb:EndSurface . 228
nurb:EndTrim . 228
nurb:GetProperty . 228
nurb:LoadSamplingMatrices 229
nurb:PwlCurve . 229
nurb:SetProperty . 230
nurb:Surface . 232

Q

quad:Cylinder . 233
quad:Disk . 234
quad:DrawStyle . 234
quad:Normals . 235
quad:Orientation . 236
quad:PartialDisk . 236
quad:Sphere . 237
quad:Texture . 237

	General information
	Introduction
	Terms and conditions
	Requirements
	Installation

	About GL Galore
	Credits
	Frequently asked questions
	Known issues
	Future
	History

	Usage
	Activating GL Galore
	Accessing OpenGL from Hollywood
	Using a hardware double buffer
	Drawing graphics
	Using hardware brushes
	Multiple displays
	Working with pointers
	Hollywood bridge
	Increasing execution speed
	Handling mode switches
	GL Galore as a helper plugin
	Internal pixel formats

	Tutorial
	OpenGL tutorial

	Examples
	Examples

	GL reference
	gl.Accum
	gl.AlphaFunc
	gl.AreTexturesResident
	gl.ArrayElement
	gl.Begin
	gl.BindTexture
	gl.Bitmap
	gl.BlendFunc
	gl.CallList
	gl.CallLists
	gl.Clear
	gl.ClearAccum
	gl.ClearColor
	gl.ClearDepth
	gl.ClearIndex
	gl.ClearStencil
	gl.ClipPlane
	gl.Color
	gl.ColorMask
	gl.ColorMaterial
	gl.ColorPointer
	gl.CopyPixels
	gl.CopyTexImage
	gl.CopyTexSubImage
	gl.CullFace
	gl.DeleteLists
	gl.DeleteTextures
	gl.DepthFunc
	gl.DepthMask
	gl.DepthRange
	gl.Disable
	gl.DisableClientState
	gl.DrawArrays
	gl.DrawBuffer
	gl.DrawElements
	gl.DrawPixels
	gl.DrawPixelsRaw
	gl.EdgeFlag
	gl.EdgeFlagPointer
	gl.Enable
	gl.EnableClientState
	gl.End
	gl.EndList
	gl.EvalCoord
	gl.EvalMesh
	gl.EvalPoint
	gl.FeedbackBuffer
	gl.Finish
	gl.Flush
	gl.Fog
	gl.FreeFeedbackBuffer
	gl.FreeSelectBuffer
	gl.FrontFace
	gl.Frustum
	gl.GenLists
	gl.GenTextures
	gl.Get
	gl.GetArray
	gl.GetClipPlane
	gl.GetError
	gl.GetLight
	gl.GetMap
	gl.GetMaterial
	gl.GetPixelMap
	gl.GetPointer
	gl.GetPolygonStipple
	gl.GetSelectBuffer
	gl.GetString
	gl.GetTexEnv
	gl.GetTexGen
	gl.GetTexImage
	gl.GetTexImageRaw
	gl.GetTexLevelParameter
	gl.GetTexParameter
	gl.Hint
	gl.Index
	gl.IndexMask
	gl.IndexPointer
	gl.InitNames
	gl.InterleavedArrays
	gl.IsEnabled
	gl.IsList
	gl.IsTexture
	gl.Light
	gl.LightModel
	gl.LineStipple
	gl.LineWidth
	gl.ListBase
	gl.LoadIdentity
	gl.LoadMatrix
	gl.LoadName
	gl.LogicOp
	gl.Map
	gl.MapGrid
	gl.Material
	gl.MatrixMode
	gl.MultMatrix
	gl.NewList
	gl.Normal
	gl.NormalPointer
	gl.Ortho
	gl.PassThrough
	gl.PixelMap
	gl.PixelStore
	gl.PixelTransfer
	gl.PixelZoom
	gl.PointSize
	gl.PolygonMode
	gl.PolygonOffset
	gl.PolygonStipple
	gl.PopAttrib
	gl.PopClientAttrib
	gl.PopMatrix
	gl.PopName
	gl.PrioritizeTextures
	gl.PushAttrib
	gl.PushClientAttrib
	gl.PushMatrix
	gl.PushName
	gl.RasterPos
	gl.ReadBuffer
	gl.ReadPixels
	gl.ReadPixelsRaw
	gl.Rect
	gl.RenderMode
	gl.Rotate
	gl.Scale
	gl.Scissor
	gl.SelectBuffer
	gl.ShadeModel
	gl.StencilFunc
	gl.StencilMask
	gl.StencilOp
	gl.TexCoord
	gl.TexCoordPointer
	gl.TexEnv
	gl.TexGen
	gl.TexImage
	gl.TexImage1D
	gl.TexImage2D
	gl.TexParameter
	gl.TexSubImage
	gl.TexSubImage1D
	gl.TexSubImage2D
	gl.Translate
	gl.Vertex
	gl.VertexPointer
	gl.Viewport

	GLU reference
	glu.BuildMipmaps
	glu.Build1DMipmaps
	glu.Build2DMipmaps
	glu.Build3DMipmaps
	glu.ErrorString
	glu.GetString
	glu.LookAt
	glu.NewNurbsRenderer
	glu.NewQuadric
	glu.Ortho2D
	glu.Perspective
	glu.PickMatrix
	glu.Project
	glu.ScaleImage
	glu.ScaleImageRaw
	glu.UnProject
	nurb:BeginCurve
	nurb:BeginSurface
	nurb:BeginTrim
	nurb:Callback
	nurb:Curve
	nurb:EndCurve
	nurb:EndSurface
	nurb:EndTrim
	nurb:GetProperty
	nurb:LoadSamplingMatrices
	nurb:PwlCurve
	nurb:SetProperty
	nurb:Surface
	quad:Cylinder
	quad:Disk
	quad:DrawStyle
	quad:Normals
	quad:Orientation
	quad:PartialDisk
	quad:Texture
	quad:Sphere

	GLFW reference
	glfw.GetJoystickAxes
	glfw.GetJoystickButtons
	glfw.GetJoystickName
	glfw.JoystickPresent

	Hollywood bridge
	gl.BitmapFromBrush
	gl.DrawPixelsFromBrush
	gl.GetCurrentContext
	gl.GetTexImageToBrush
	gl.ReadPixelsToBrush
	gl.SetCurrentContext
	gl.TexImageFromBrush
	gl.TexSubImageFromBrush
	glu.BuildMipmapsFromBrush

	Licenses
	LuaGL license
	GLFW license
	SGI Free Software B license
	LGPL license

	Index

