
Hollywood 10.0
The Cross-Platform Multimedia Application Layer

Andreas Falkenhahn

i

Table of Contents

1 General information . 1
1.1 Introduction . 1
1.2 Philosophy . 4
1.3 Terms and conditions . 4
1.4 Requirements . 6
1.5 Credits . 7
1.6 Forum . 8
1.7 Contact . 9

2 Getting started . 11
2.1 Overview . 11
2.2 The GUI . 12
2.3 Windows IDE . 17
2.4 Mobile platforms . 24

3 Console usage . 31
3.1 Console mode . 31
3.2 Console arguments . 33
3.3 Console emulation . 54

4 Compiler and linker . 57
4.1 Compiling executables . 57
4.2 Compiling applets . 58
4.3 Linking data files . 58
4.4 Linking fonts . 60
4.5 Linking plugins . 61
4.6 Saving scripts as videos . 62

5 Plugins . 65
5.1 Plugins . 65
5.2 Installation . 65
5.3 Usage . 65
5.4 Obtaining plugins . 66
5.5 Writing your own plugins . 68

6 History and compatibility . 69
6.1 History . 69
6.2 Compatibility notes . 69
6.3 Future . 81

ii Hollywood manual

7 Language overview . 83
7.1 Your first Hollywood program . 83
7.2 Reserved identifiers . 84
7.3 Preprocessor commands . 85
7.4 String and number conversion . 87
7.5 Comments . 88
7.6 Includes . 88
7.7 Error handling . 90
7.8 Automatic ID selection . 91
7.9 Loaders and adapters . 92
7.10 User tags . 95
7.11 Styleguide suggestions . 96

8 Data types . 97
8.1 Overview . 97
8.2 Numbers . 97
8.3 Strings . 98
8.4 Tables . 100
8.5 Functions . 103
8.6 Nil . 104

9 Expressions and operators 105
9.1 Overview . 105
9.2 Arithmetic operators . 105
9.3 Relational operators . 106
9.4 Logical operators . 107
9.5 Bitwise operators . 108
9.6 String concatenation . 109
9.7 Operator priorities . 110
9.8 Metamethods . 110

9.8.1 Differing metatables with binary operators 113
9.8.2 Limitations of the relational metamethods 113
9.8.3 Advanced metamethods . 113

10 Variables and constants . 117
10.1 Variables and constants . 117
10.2 Global variables . 117
10.3 Global statement . 118
10.4 Local variables . 118
10.5 Local statement . 120
10.6 Garbage Collector . 121
10.7 Constants . 122
10.8 Const statement . 122
10.9 Inbuilt constants . 123
10.10 Character constants . 124

iii

11 Program flow . 125
11.1 Statements controlling the program flow . 125
11.2 If-EndIf statement . 125
11.3 While-Wend statement . 126
11.4 For-Next statement . 127
11.5 Repeat-Until statement . 130
11.6 Switch-Case statement . 130
11.7 Break statement . 132
11.8 Continue statement . 133
11.9 Return statement . 133
11.10 Block-EndBlock statement . 134
11.11 Dim and DimStr statements . 134

12 Functions . 137
12.1 Overview . 137
12.2 Functions are variables . 138
12.3 Callback functions . 139
12.4 Return values . 141
12.5 Recursive functions . 142
12.6 Variable number of arguments . 142
12.7 Functions as table members . 144
12.8 Local functions . 145
12.9 Methods . 145

13 Unicode support . 149
13.1 Overview . 149
13.2 Character encodings . 149

14 Troubleshooting . 151
14.1 Troubleshooting . 151
14.2 Frequently asked questions . 152

15 Tutorials . 157
15.1 Tutorial . 157
15.2 Animation techniques . 160
15.3 Script timing . 161

16 Amiga support library . 165
16.1 AmiDock information . 165
16.2 CloseAmigaGuide . 165
16.3 CreateRexxPort . 166
16.4 GetApplicationList . 167
16.5 GetFrontScreen . 168
16.6 GetPubScreens . 168
16.7 HideScreen . 169
16.8 OpenAmigaGuide . 170

iv Hollywood manual

16.9 RunRexxScript . 171
16.10 SendApplicationMessage . 171
16.11 SendRexxCommand . 172
16.12 SetScreenTitle . 173
16.13 ShowRinghioMessage . 173
16.14 ShowScreen . 174

17 Anim library . 177
17.1 Overview . 177
17.2 ANIM . 177
17.3 BeginAnimStream . 180
17.4 CloseAnim . 183
17.5 CopyAnim . 183
17.6 CreateAnim . 184
17.7 DisplayAnimFrame . 184
17.8 FinishAnimStream . 185
17.9 FreeAnim . 185
17.10 GetAnimFrame . 186
17.11 IsAnim . 186
17.12 IsAnimPlaying . 187
17.13 LoadAnim . 188
17.14 LoadAnimFrame . 191
17.15 ModifyAnimFrames . 192
17.16 MoveAnim . 193
17.17 OpenAnim . 194
17.18 PlayAnim . 196
17.19 PlayAnimDisk . 197
17.20 SaveAnim . 198
17.21 ScaleAnim . 201
17.22 SelectAnim . 201
17.23 SetAnimFrameDelay . 203
17.24 StopAnim . 203
17.25 Vector animations . 204
17.26 WaitAnimEnd . 204
17.27 WriteAnimFrame . 204

18 Application library . 207
18.1 APPAUTHOR . 207
18.2 APPCOPYRIGHT . 207
18.3 APPDESCRIPTION . 207
18.4 APPENTRY . 208
18.5 APPICON . 209
18.6 APPIDENTIFIER . 211
18.7 APPTITLE . 212
18.8 APPVERSION . 212
18.9 DeletePrefs . 213
18.10 GetApplicationInfo . 213

v

18.11 GetCommandLine . 214
18.12 GetFileArgument . 215
18.13 GetProgramInfo . 216
18.14 GetRawArguments . 216
18.15 LoadPrefs . 217
18.16 SavePrefs . 218

19 Asynchronous operation library 221
19.1 AsyncDrawFrame . 221
19.2 CancelAsyncDraw . 222
19.3 CancelAsyncOperation . 223
19.4 ContinueAsyncOperation . 224
19.5 FinishAsyncDraw . 224

20 BGPic library . 227
20.1 Overview . 227
20.2 BGPIC . 227
20.3 BrushToBGPic . 230
20.4 CopyBGPic . 230
20.5 CreateBGPic . 231
20.6 CreateGradientBGPic . 232
20.7 CreateTexturedBGPic . 234
20.8 DisplayBGPic . 235
20.9 DisplayBGPicPart . 235
20.10 DisplayBGPicPartFX . 236
20.11 DisplayTransitionFX . 238
20.12 FreeBGPic . 241
20.13 LoadBGPic . 242
20.14 ScaleBGPic . 245
20.15 SelectBGPic . 246
20.16 Vector BGPics . 248

21 Brush library . 249
21.1 Overview . 249
21.2 ArcDistortBrush . 249
21.3 BarrelDistortBrush . 250
21.4 BGPicToBrush . 251
21.5 BlurBrush . 251
21.6 BRUSH . 251
21.7 BrushToGray . 254
21.8 BrushToMonochrome . 255
21.9 BrushToPenArray . 255
21.10 BrushToRGBArray . 256
21.11 ChangeBrushTransparency . 257
21.12 CharcoalBrush . 258
21.13 ContrastBrush . 258
21.14 ConvertToBrush . 258

vi Hollywood manual

21.15 CopyBrush . 261
21.16 CreateBorderBrush . 262
21.17 CreateBrush . 263
21.18 CreateGradientBrush . 266
21.19 CreateShadowBrush . 268
21.20 CreateTexturedBrush . 269
21.21 CropBrush . 269
21.22 DeleteAlphaChannel . 270
21.23 DeleteMask . 270
21.24 DisplayBrush . 271
21.25 DisplayBrushFX . 271
21.26 DisplayBrushPart . 272
21.27 EdgeBrush . 273
21.28 EmbossBrush . 274
21.29 EndSelect . 274
21.30 ExtendBrush . 275
21.31 FlipBrush . 276
21.32 FloodFill . 276
21.33 FreeBrush . 277
21.34 GammaBrush . 278
21.35 GetBrushLink . 278
21.36 GetBrushPen . 279
21.37 Hardware brushes . 280
21.38 InvertAlphaChannel . 281
21.39 InvertBrush . 281
21.40 InvertMask . 282
21.41 IsBrushEmpty . 282
21.42 LoadBrush . 283
21.43 Mask and alpha channel . 285
21.44 MixBrush . 286
21.45 ModulateBrush . 286
21.46 MoveBrush . 287
21.47 OilPaintBrush . 288
21.48 PenArrayToBrush . 288
21.49 PerspectiveDistortBrush . 290
21.50 PixelateBrush . 291
21.51 PolarDistortBrush . 291
21.52 QuantizeBrush . 292
21.53 RasterizeBrush . 293
21.54 ReadBrushPixel . 293
21.55 ReduceAlphaChannel . 294
21.56 RemapBrush . 294
21.57 RemoveBrushPalette . 295
21.58 ReplaceColors . 295
21.59 RGBArrayToBrush . 296
21.60 RotateBrush . 297
21.61 SaveBrush . 298
21.62 ScaleBrush . 301

vii

21.63 SelectAlphaChannel . 301
21.64 SelectBrush . 303
21.65 SelectMask . 305
21.66 SepiaToneBrush . 306
21.67 SetAlphaIntensity . 307
21.68 SetBrushDepth . 308
21.69 SetBrushPalette . 308
21.70 SetBrushPen . 309
21.71 SetBrushTransparency . 310
21.72 SetBrushTransparentPen . 310
21.73 SetMaskMode . 311
21.74 SharpenBrush . 312
21.75 SolarizeBrush . 312
21.76 SwirlBrush . 313
21.77 TintBrush . 313
21.78 TransformBrush . 314
21.79 TrimBrush . 315
21.80 Vector brushes . 316
21.81 WaterRippleBrush . 316
21.82 WriteBrushPixel . 317

22 Clipboard library . 319
22.1 ClearClipboard . 319
22.2 GetClipboard . 319
22.3 PeekClipboard . 320
22.4 SetClipboard . 321

23 Console library . 323
23.1 AllocConsoleColor . 323
23.2 BeepConsole . 323
23.3 ClearConsole . 324
23.4 ClearConsoleStyle . 324
23.5 CloseConsole . 325
23.6 ConsolePrint . 325
23.7 ConsolePrintNR . 326
23.8 ConsolePrompt . 326
23.9 CopyConsoleWindow . 327
23.10 CreateConsoleWindow . 327
23.11 DecomposeConsoleChr . 329
23.12 DeleteConsoleChr . 329
23.13 DeleteConsoleLine . 330
23.14 DisableAdvancedConsole . 330
23.15 DrawConsoleBorder . 331
23.16 DrawConsoleBox . 332
23.17 DrawConsoleHLine . 332
23.18 DrawConsoleVLine . 333
23.19 EnableAdvancedConsole . 334

viii Hollywood manual

23.20 EraseConsole . 334
23.21 FlashConsole . 335
23.22 FormatConsoleLine . 335
23.23 FreeConsoleColor . 336
23.24 FreeConsoleWindow . 336
23.25 GetAllocConsoleColor . 337
23.26 GetConsoleBackground . 337
23.27 GetConsoleChr . 338
23.28 GetConsoleColor . 338
23.29 GetConsoleControlChr . 339
23.30 GetConsoleCursor . 340
23.31 GetConsoleOrigin . 340
23.32 GetConsoleSize . 341
23.33 GetConsoleStr . 341
23.34 GetConsoleStyle . 342
23.35 GetConsoleWindow . 342
23.36 HaveConsole . 343
23.37 HideConsoleCursor . 343
23.38 InitConsoleColor . 343
23.39 InsertConsoleChr . 344
23.40 InsertConsoleLine . 345
23.41 InsertConsoleStr . 346
23.42 MakeConsoleChr . 346
23.43 MoveConsoleWindow . 349
23.44 OpenConsole . 349
23.45 ReadConsoleKey . 350
23.46 ReadConsoleStr . 351
23.47 RefreshConsole . 352
23.48 ScrollConsole . 352
23.49 SelectConsoleWindow . 353
23.50 SetAllocConsoleColor . 354
23.51 SetConsoleBackground . 354
23.52 SetConsoleColor . 355
23.53 SetConsoleCursor . 356
23.54 SetConsoleOptions . 357
23.55 SetConsoleStyle . 358
23.56 SetConsoleTitle . 359
23.57 ShowConsoleCursor . 359
23.58 StartConsoleColorMode . 360
23.59 TouchConsoleWindow . 360

24 Debug library . 363
24.1 Assert . 363
24.2 CloseResourceMonitor . 363
24.3 DebugOutput . 364
24.4 DebugPrint . 364
24.5 DebugPrintNR . 365
24.6 DebugPrompt . 365

ix

24.7 OpenResourceMonitor . 366
24.8 WARNING . 367

25 Display library . 369
25.1 Overview . 369
25.2 ActivateDisplay . 370
25.3 BACKFILL . 370
25.4 ChangeDisplayMode . 372
25.5 ChangeDisplaySize . 374
25.6 CloseDisplay . 375
25.7 CreateDisplay . 375
25.8 DISPLAY . 380
25.9 FreeDisplay . 394
25.10 GetDisplayModes . 395
25.11 GetMonitors . 395
25.12 HideDisplay . 396
25.13 MoveDisplay . 397
25.14 Multi-monitor support . 397
25.15 OpenDisplay . 397
25.16 Palette displays . 400
25.17 RefreshDisplay . 401
25.18 Scaling engines . 401
25.19 SCREEN . 403
25.20 SelectDisplay . 405
25.21 SetDisplayAttributes . 406
25.22 SetSubtitle . 409
25.23 SetTitle . 409
25.24 ShowDisplay . 410

26 DOS library . 411
26.1 CanonizePath . 411
26.2 ChangeDirectory . 411
26.3 CloseDirectory . 412
26.4 CloseFile . 412
26.5 CompressFile . 413
26.6 CopyFile . 413
26.7 CountDirectoryEntries . 419
26.8 CRC32 . 420
26.9 DecompressFile . 420
26.10 DefineVirtualFile . 421
26.11 DefineVirtualFileFromString . 421
26.12 DeleteFile . 423
26.13 DIRECTORY . 427
26.14 DirectoryItems . 429
26.15 Eof . 430
26.16 Execute . 430
26.17 Exists . 433

x Hollywood manual

26.18 FILE . 433
26.19 FileAttributes . 434
26.20 FileLength . 436
26.21 FileLines . 436
26.22 FilePart . 437
26.23 FilePos . 437
26.24 FileSize . 438
26.25 FileToString . 438
26.26 FlushFile . 439
26.27 FullPath . 439
26.28 GetCurrentDirectory . 440
26.29 GetDirectoryEntry . 441
26.30 GetEnv . 441
26.31 GetFileAttributes . 442
26.32 GetProgramDirectory . 444
26.33 GetStartDirectory . 444
26.34 GetTempFileName . 444
26.35 GetVolumeInfo . 445
26.36 GetVolumeName . 446
26.37 HaveVolume . 446
26.38 IsAbsolutePath . 447
26.39 IsDirectory . 447
26.40 MakeDirectory . 448
26.41 MakeHostPath . 449
26.42 MatchPattern . 449
26.43 MD5 . 450
26.44 MonitorDirectory . 451
26.45 MoveFile . 452
26.46 NextDirectoryEntry . 456
26.47 OpenDirectory . 458
26.48 OpenFile . 459
26.49 PathPart . 460
26.50 Protection flags . 461
26.51 ReadByte . 462
26.52 ReadBytes . 462
26.53 ReadChr . 463
26.54 ReadDirectory . 464
26.55 ReadFloat . 465
26.56 ReadFunction . 465
26.57 ReadInt . 466
26.58 ReadLine . 467
26.59 ReadShort . 467
26.60 ReadString . 468
26.61 Rename . 469
26.62 RewindDirectory . 469
26.63 Run . 470
26.64 Seek . 473
26.65 SetEnv . 474

xi

26.66 SetFileAttributes . 474
26.67 SetFileEncoding . 475
26.68 SetIOMode . 476
26.69 StringToFile . 476
26.70 UndefineVirtualStringFile . 477
26.71 UnsetEnv . 478
26.72 UseCarriageReturn . 478
26.73 WriteByte . 478
26.74 WriteBytes . 479
26.75 WriteChr . 480
26.76 WriteFloat . 480
26.77 WriteFunction . 481
26.78 WriteInt . 482
26.79 WriteLine . 483
26.80 WriteShort . 483
26.81 WriteString . 484

27 Draw library . 487
27.1 Arc . 487
27.2 Box . 488
27.3 Circle . 489
27.4 Cls . 490
27.5 Directional constants . 491
27.6 Ellipse . 491
27.7 GetFillStyle . 492
27.8 GetFormStyle . 493
27.9 GetLineWidth . 494
27.10 Line . 494
27.11 Plot . 496
27.12 Polygon . 496
27.13 ReadPixel . 497
27.14 SetFillStyle . 498
27.15 SetFormStyle . 499
27.16 SetLineWidth . 501
27.17 Standard draw tags . 501

28 Error management library 507
28.1 ERROR . 507
28.2 Error . 507
28.3 Error codes . 507
28.4 ExitOnError . 544
28.5 GetErrorName . 544
28.6 GetLastError . 545
28.7 RaiseOnError . 546

xii Hollywood manual

29 Event library . 547
29.1 BreakEventHandler . 547
29.2 ChangeInterval . 547
29.3 CheckEvent . 547
29.4 CheckEvents . 548
29.5 ClearInterval . 549
29.6 ClearTimeout . 549
29.7 CtrlCQuit . 550
29.8 DeleteButton . 550
29.9 DisableButton . 550
29.10 EnableButton . 551
29.11 EscapeQuit . 551
29.12 InKeyStr . 551
29.13 InstallEventHandler . 553
29.14 IsKeyDown . 570
29.15 IsLeftMouse . 572
29.16 IsMidMouse . 573
29.17 IsRightMouse . 573
29.18 LeftMouseQuit . 574
29.19 MakeButton . 574
29.20 MouseX . 578
29.21 MouseY . 578
29.22 Raw keys . 579
29.23 ResetKeyStates . 580
29.24 RunCallback . 580
29.25 SetEventTimeout . 581
29.26 SetInterval . 582
29.27 SetTimeout . 583
29.28 WaitEvent . 585
29.29 WaitKeyDown . 586
29.30 WaitLeftMouse . 587
29.31 WaitMidMouse . 587
29.32 WaitRightMouse . 588

30 Graphics library . 589
30.1 ARGB . 589
30.2 ARGB colors . 589
30.3 BeginDoubleBuffer . 590
30.4 BeginRefresh . 591
30.5 Blue . 593
30.6 ClearScreen . 593
30.7 Collision . 594
30.8 CreateClipRegion . 596
30.9 DisablePrecalculation . 597
30.10 DisableVWait . 597
30.11 EnablePrecalculation . 597
30.12 EnableVWait . 598
30.13 EndDoubleBuffer . 598

xiii

30.14 EndRefresh . 598
30.15 Flip . 599
30.16 FreeClipRegion . 599
30.17 GetFPSLimit . 600
30.18 GetRandomColor . 600
30.19 GetRandomFX . 600
30.20 GetRealColor . 601
30.21 GrabDesktop . 602
30.22 Green . 603
30.23 Intersection . 603
30.24 IsPicture . 604
30.25 Matrix2D . 606
30.26 MixRGB . 607
30.27 Red . 607
30.28 RGB . 608
30.29 RGB colors . 608
30.30 SaveSnapshot . 609
30.31 SetClipRegion . 611
30.32 SetDrawTagsDefault . 612
30.33 SetFPSLimit . 613
30.34 TransformBox . 614
30.35 TransformPoint . 615
30.36 VWait . 615

31 Icon library . 617
31.1 AddIconImage . 617
31.2 ChangeApplicationIcon . 618
31.3 CreateIcon . 619
31.4 FreeIcon . 622
31.5 GetIconProperties . 622
31.6 ICON . 625
31.7 LoadIcon . 629
31.8 RemoveIconImage . 630
31.9 SaveIcon . 631
31.10 SetIconProperties . 632
31.11 SetStandardIconImage . 635
31.12 SetTrayIcon . 636
31.13 SetWBIcon . 637

32 IPC library . 639
32.1 CreatePort . 639
32.2 SendMessage . 640

xiv Hollywood manual

33 Joystick library . 641
33.1 ConfigureJoystick . 641
33.2 CountJoysticks . 641
33.3 JoyAxisX . 642
33.4 JoyAxisY . 642
33.5 JoyAxisZ . 643
33.6 JoyButton . 643
33.7 JoyDir . 644
33.8 JoyHat . 645

34 Layers library . 647
34.1 Overview . 647
34.2 AddMove . 649
34.3 ClearMove . 651
34.4 CopyLayer . 651
34.5 CreateLayer . 652
34.6 DisableLayers . 653
34.7 DoMove . 654
34.8 DumpLayers . 655
34.9 EnableLayers . 656
34.10 FreeLayers . 656
34.11 GetLayerAtPos . 657
34.12 GetLayerGroupMembers . 658
34.13 GetLayerGroups . 658
34.14 GetLayerPen . 659
34.15 GetLayerStyle . 659
34.16 GroupLayer . 660
34.17 HideLayer . 661
34.18 HideLayerFX . 662
34.19 InsertLayer . 663
34.20 LayerExists . 664
34.21 LayerGroupExists . 664
34.22 LayerToBack . 665
34.23 LayerToFront . 665
34.24 MergeLayers . 666
34.25 ModifyLayerFrames . 668
34.26 MoveLayer . 668
34.27 NextFrame . 669
34.28 PauseLayer . 670
34.29 PlayLayer . 671
34.30 RefreshLayer . 671
34.31 RemoveLayer . 671
34.32 RemoveLayerFX . 672
34.33 RemoveLayers . 673
34.34 RenderLayer . 674
34.35 ResumeLayer . 674
34.36 RotateLayer . 674
34.37 ScaleLayer . 675

xv

34.38 SeekLayer . 676
34.39 SelectLayer . 676
34.40 SetLayerAnchor . 678
34.41 SetLayerBorder . 679
34.42 SetLayerDepth . 680
34.43 SetLayerFilter . 681
34.44 SetLayerName . 685
34.45 SetLayerPalette . 686
34.46 SetLayerPen . 687
34.47 SetLayerShadow . 688
34.48 SetLayerStyle . 689
34.49 SetLayerTint . 701
34.50 SetLayerTransparency . 702
34.51 SetLayerTransparentPen . 703
34.52 SetLayerVolume . 703
34.53 SetLayerZPos . 704
34.54 ShowLayer . 704
34.55 ShowLayerFX . 705
34.56 StopLayer . 706
34.57 SwapLayers . 706
34.58 TransformLayer . 707
34.59 TranslateLayer . 708
34.60 Undo . 708
34.61 UndoFX . 710
34.62 UngroupLayer . 711

35 Legacy library . 713
35.1 ACTIVEWINDOW . 713
35.2 BreakWhileMouseOn . 713
35.3 ClearEvents . 714
35.4 CLOSEWINDOW . 715
35.5 CreateButton . 715
35.6 CreateKeyDown . 717
35.7 DisableEvent . 718
35.8 DisableEventHandler . 719
35.9 EnableEventHandler . 719
35.10 EnableEvent . 720
35.11 GetEventCode . 721
35.12 Gosub . 721
35.13 Goto . 722
35.14 INACTIVEWINDOW . 722
35.15 Label . 723
35.16 ModifyButton . 723
35.17 ModifyKeyDown . 724
35.18 MOVEWINDOW . 724
35.19 ONBUTTONCLICK . 725
35.20 ONBUTTONCLICKALL . 725
35.21 ONBUTTONOVER . 726

xvi Hollywood manual

35.22 ONBUTTONOVERALL . 727
35.23 ONBUTTONRIGHTCLICK . 728
35.24 ONBUTTONRIGHTCLICKALL . 728
35.25 ONJOYDOWN . 729
35.26 ONJOYDOWNLEFT . 729
35.27 ONJOYDOWNRIGHT . 729
35.28 ONJOYFIRE . 730
35.29 ONJOYLEFT . 730
35.30 ONJOYRIGHT . 730
35.31 ONJOYUP . 731
35.32 ONJOYUPLEFT . 732
35.33 ONJOYUPRIGHT . 732
35.34 ONKEYDOWN . 733
35.35 ONKEYDOWNALL . 733
35.36 RemoveButton . 734
35.37 RemoveKeyDown . 734
35.38 Return . 735
35.39 SIZEWINDOW . 735
35.40 WhileKeyDown . 735
35.41 WhileMouseDown . 736
35.42 WhileMouseOn . 736
35.43 WhileRightMouseDown . 737

36 Locale library . 739
36.1 Overview . 739
36.2 CATALOG . 740
36.3 CloseCatalog . 741
36.4 FormatDate . 741
36.5 GetCatalogString . 743
36.6 GetCountryInfo . 743
36.7 GetLanguageInfo . 744
36.8 GetLocaleInfo . 744
36.9 GetSystemCountry . 746
36.10 GetSystemLanguage . 751
36.11 OpenCatalog . 755

37 Math library . 759
37.1 Abs . 759
37.2 ACos . 759
37.3 Add . 759
37.4 ASin . 760
37.5 ATan . 760
37.6 ATan2 . 761
37.7 BitClear . 761
37.8 BitComplement . 761
37.9 BitSet . 762
37.10 BitTest . 762

xvii

37.11 BitXor . 763
37.12 Cast . 763
37.13 Ceil . 764
37.14 Cos . 764
37.15 Deg . 765
37.16 Div . 765
37.17 EndianSwap . 766
37.18 Exp . 766
37.19 Floor . 767
37.20 Frac . 767
37.21 FrExp . 767
37.22 Hypot . 768
37.23 Int . 768
37.24 IsFinite . 769
37.25 IsInf . 769
37.26 IsNan . 770
37.27 Ld . 770
37.28 LdExp . 771
37.29 Limit . 771
37.30 Ln . 772
37.31 Log . 772
37.32 Max . 773
37.33 Min . 773
37.34 Mod . 774
37.35 Mul . 774
37.36 NearlyEqual . 775
37.37 Pi . 775
37.38 Pow . 776
37.39 Rad . 776
37.40 RawDiv . 776
37.41 Rnd . 777
37.42 RndF . 777
37.43 RndStrong . 778
37.44 Rol . 779
37.45 Ror . 779
37.46 Round . 780
37.47 Rt . 781
37.48 Sar . 781
37.49 Sgn . 782
37.50 Shl . 782
37.51 Shr . 783
37.52 Sin . 783
37.53 Sqrt . 784
37.54 Sub . 784
37.55 Tan . 785
37.56 Wrap . 785

xviii Hollywood manual

38 Memory block library . 787
38.1 AllocMem . 787
38.2 AllocMemFromPointer . 787
38.3 AllocMemFromVirtualFile . 788
38.4 CopyMem . 789
38.5 DecreasePointer . 789
38.6 DumpMem . 790
38.7 FillMem . 790
38.8 FreeMem . 791
38.9 GetMemPointer . 791
38.10 GetMemString . 792
38.11 IncreasePointer . 792
38.12 MemToTable . 793
38.13 Peek . 794
38.14 Poke . 795
38.15 ReadMem . 796
38.16 TableToMem . 797
38.17 WriteMem . 797

39 Menu library . 799
39.1 CreateMenu . 799
39.2 DeselectMenuItem . 800
39.3 DisableMenuItem . 801
39.4 EnableMenuItem . 801
39.5 FreeMenu . 802
39.6 IsMenuItemDisabled . 802
39.7 IsMenuItemSelected . 803
39.8 MENU . 804
39.9 PopupMenu . 807
39.10 SelectMenuItem . 808

40 Mobile support library . 809
40.1 CallJavaMethod . 809
40.2 GetAsset . 811
40.3 HideKeyboard . 812
40.4 PerformSelector . 812
40.5 ShowKeyboard . 813
40.6 ShowToast . 814
40.7 Vibrate . 814

41 Mouse pointer library . 817
41.1 CreatePointer . 817
41.2 FreePointer . 818
41.3 HidePointer . 818
41.4 MovePointer . 819
41.5 SetPointer . 819
41.6 ShowPointer . 820

xix

42 Network library . 821
42.1 CloseConnection . 821
42.2 CloseServer . 821
42.3 CloseUDPObject . 821
42.4 CreateServer . 822
42.5 CreateUDPObject . 823
42.6 DownloadFile . 825
42.7 GetConnectionIP . 830
42.8 GetConnectionPort . 831
42.9 GetConnectionProtocol . 832
42.10 GetHostName . 833
42.11 GetLocalInterfaces . 833
42.12 GetLocalIP . 834
42.13 GetLocalPort . 835
42.14 GetLocalProtocol . 835
42.15 GetMACAddress . 836
42.16 IsOnline . 837
42.17 OpenConnection . 837
42.18 ReceiveData . 839
42.19 ReceiveUDPData . 841
42.20 ResolveHostName . 842
42.21 SendData . 843
42.22 SendUDPData . 844
42.23 SetNetworkProtocol . 845
42.24 SetNetworkTimeout . 845
42.25 ToHostName . 846
42.26 ToIP . 846
42.27 UploadFile . 847

43 Object library . 855
43.1 Overview . 855
43.2 ClearObjectData . 857
43.3 CopyObjectData . 857
43.4 GetAttribute . 858
43.5 GetObjectData . 884
43.6 GetObjects . 884
43.7 GetObjectType . 885
43.8 HaveObject . 885
43.9 HaveObjectData . 886
43.10 SetObjectData . 886

44 Palette library . 889
44.1 Overview . 889
44.2 ContrastPalette . 890
44.3 CopyPalette . 890
44.4 CopyPens . 891
44.5 CreatePalette . 892

xx Hollywood manual

44.6 CyclePalette . 894
44.7 ExtractPalette . 895
44.8 FreePalette . 896
44.9 GammaPalette . 896
44.10 GetBestPen . 897
44.11 GetFreePen . 897
44.12 GetPalettePen . 898
44.13 GetPen . 898
44.14 InvertPalette . 900
44.15 LoadPalette . 900
44.16 ModulatePalette . 901
44.17 PALETTE . 902
44.18 PaletteToGray . 903
44.19 ReadPen . 904
44.20 SavePalette . 905
44.21 SelectPalette . 906
44.22 SetBorderPen . 907
44.23 SetBulletPen . 907
44.24 SetCycleTable . 908
44.25 SetDepth . 909
44.26 SetDitherMode . 910
44.27 SetDrawPen . 911
44.28 SetGradientPalette . 912
44.29 SetPalette . 912
44.30 SetPaletteDepth . 914
44.31 SetPaletteMode . 914
44.32 SetPalettePen . 916
44.33 SetPaletteTransparentPen . 916
44.34 SetPen . 917
44.35 SetShadowPen . 918
44.36 SetStandardPalette . 918
44.37 SetTransparentPen . 920
44.38 SetTransparentThreshold . 921
44.39 SolarizePalette . 921
44.40 TintPalette . 922
44.41 WritePen . 922

45 Plugin library . 925
45.1 DisablePlugin . 925
45.2 EnablePlugin . 925
45.3 GetPlugins . 925
45.4 HavePlugin . 928
45.5 LoadPlugin . 929
45.6 REQUIRE . 930

xxi

46 Requester library . 933
46.1 ColorRequest . 933
46.2 FileRequest . 934
46.3 FontRequest . 936
46.4 ImageRequest . 938
46.5 ListRequest . 940
46.6 PathRequest . 941
46.7 PermissionRequest . 942
46.8 StringRequest . 943
46.9 SystemRequest . 945

47 Serial port library . 947
47.1 ClearSerialQueue . 947
47.2 CloseSerialPort . 947
47.3 FlushSerialPort . 947
47.4 GetBaudRate . 948
47.5 GetDataBits . 949
47.6 GetDTR . 949
47.7 GetFlowControl . 950
47.8 GetParity . 950
47.9 GetRTS . 951
47.10 GetStopBits . 951
47.11 OpenSerialPort . 952
47.12 PollSerialQueue . 954
47.13 ReadSerialData . 955
47.14 SetBaudRate . 956
47.15 SetDataBits . 957
47.16 SetDTR . 957
47.17 SetFlowControl . 958
47.18 SetParity . 958
47.19 SetRTS . 959
47.20 SetStopBits . 959
47.21 WriteSerialData . 960

48 Serializer library . 961
48.1 DeserializeTable . 961
48.2 GetSerializeMode . 962
48.3 ReadTable . 962
48.4 SerializeTable . 964
48.5 SetSerializeMode . 965
48.6 SetSerializeOptions . 968
48.7 WriteTable . 969

xxii Hollywood manual

49 Sound library . 973
49.1 Overview . 973
49.2 CloseAudio . 973
49.3 CloseMusic . 974
49.4 CopySample . 974
49.5 CreateMusic . 975
49.6 CreateSample . 976
49.7 FillMusicBuffer . 978
49.8 FlushMusicBuffer . 980
49.9 ForceSound . 980
49.10 FreeModule . 981
49.11 FreeSample . 981
49.12 GetChannels . 982
49.13 GetPatternPosition . 982
49.14 GetSampleData . 983
49.15 GetSongPosition . 983
49.16 HaveFreeChannel . 984
49.17 InsertSample . 984
49.18 IsChannelPlaying . 986
49.19 IsModule . 986
49.20 IsMusicPlaying . 987
49.21 IsMusic . 987
49.22 IsSamplePlaying . 988
49.23 IsSample . 988
49.24 IsSound . 989
49.25 LoadModule . 990
49.26 LoadSample . 990
49.27 MixSample . 992
49.28 MUSIC . 993
49.29 OpenAudio . 995
49.30 OpenMusic . 995
49.31 PauseModule . 997
49.32 PauseMusic . 997
49.33 PlayModule . 997
49.34 PlayMusic . 998
49.35 PlaySample . 999
49.36 PlaySubsong . 1000
49.37 ResumeModule . 1001
49.38 ResumeMusic . 1001
49.39 SAMPLE . 1001
49.40 SaveSample . 1003
49.41 SeekMusic . 1003
49.42 SetChannelVolume . 1004
49.43 SetMasterVolume . 1004
49.44 SetMusicVolume . 1005
49.45 SetPanning . 1005
49.46 SetPitch . 1006
49.47 SetVolume . 1006

xxiii

49.48 StopChannel . 1007
49.49 StopModule . 1007
49.50 StopMusic . 1007
49.51 StopSample . 1008
49.52 WaitMusicEnd . 1008
49.53 WaitPatternPosition . 1008
49.54 WaitSampleEnd . 1009
49.55 WaitSongPosition . 1009

50 Sprite library . 1011
50.1 Overview . 1011
50.2 CopySprite . 1012
50.3 CreateSprite . 1012
50.4 DisplaySprite . 1014
50.5 FlipSprite . 1014
50.6 FreeSprite . 1015
50.7 LoadSprite . 1015
50.8 MoveSprite . 1017
50.9 RemoveSprite . 1018
50.10 RemoveSprites . 1018
50.11 ScaleSprite . 1019
50.12 SetSpriteZPos . 1019
50.13 SPRITE . 1020

51 String library . 1023
51.1 AddStr . 1023
51.2 ArrayToStr . 1023
51.3 Asc . 1024
51.4 Base64Str . 1025
51.5 BinStr . 1025
51.6 ByteAsc . 1026
51.7 ByteChr . 1026
51.8 ByteLen . 1027
51.9 ByteOffset . 1027
51.10 ByteStrStr . 1028
51.11 ByteVal . 1029
51.12 CharOffset . 1030
51.13 CharWidth . 1030
51.14 Chr . 1031
51.15 CompareStr . 1032
51.16 ConvertStr . 1033
51.17 CountStr . 1033
51.18 CRC32Str . 1034
51.19 EmptyStr . 1034
51.20 EndsWith . 1035
51.21 Eval . 1035
51.22 FindStr . 1037

xxiv Hollywood manual

51.23 FormatNumber . 1038
51.24 FormatStr . 1039
51.25 HexStr . 1040
51.26 IgnoreCase . 1040
51.27 InsertStr . 1041
51.28 IsAlNum . 1042
51.29 IsAlpha . 1042
51.30 IsCntrl . 1043
51.31 IsDigit . 1043
51.32 IsGraph . 1044
51.33 IsLower . 1044
51.34 IsPrint . 1045
51.35 IsPunct . 1045
51.36 IsSpace . 1046
51.37 IsUpper . 1046
51.38 IsXDigit . 1047
51.39 LeftStr . 1047
51.40 LowerStr . 1048
51.41 MD5Str . 1048
51.42 MidStr . 1049
51.43 PadNum . 1050
51.44 PatternFindStr . 1050
51.45 PatternFindStrDirect . 1051
51.46 PatternFindStrShort . 1052
51.47 PatternReplaceStr . 1053
51.48 RepeatStr . 1056
51.49 ReplaceStr . 1056
51.50 ReverseFindStr . 1057
51.51 ReverseStr . 1058
51.52 RightStr . 1059
51.53 SplitStr . 1059
51.54 StartsWith . 1060
51.55 StripStr . 1061
51.56 StrLen . 1061
51.57 StrStr . 1062
51.58 StrToArray . 1062
51.59 ToNumber . 1063
51.60 ToString . 1064
51.61 ToUserData . 1064
51.62 TrimStr . 1065
51.63 UnleftStr . 1065
51.64 UnmidStr . 1066
51.65 UnrightStr . 1067
51.66 UpperStr . 1067
51.67 Val . 1068
51.68 ValidateStr . 1068

xxv

52 System library . 1071
52.1 Beep . 1071
52.2 CollectGarbage . 1071
52.3 DisableLineHook . 1072
52.4 ELSE . 1072
52.5 ELSEIF . 1073
52.6 EnableLineHook . 1073
52.7 End . 1074
52.8 ENDIF . 1074
52.9 GCInfo . 1075
52.10 GetConstant . 1075
52.11 GetDefaultAdapter . 1076
52.12 GetDefaultLoader . 1076
52.13 GetMemoryInfo . 1076
52.14 GetSystemInfo . 1077
52.15 GetType . 1079
52.16 GetVersion . 1079
52.17 IF . 1080
52.18 IIf . 1083
52.19 INCLUDE . 1084
52.20 IsNil . 1084
52.21 IsUnicode . 1085
52.22 LegacyControl . 1085
52.23 LINKER . 1086
52.24 OpenURL . 1087
52.25 OPTIONS . 1088
52.26 SetDefaultAdapter . 1091
52.27 SetDefaultLoader . 1092
52.28 SetVarType . 1093
52.29 ShowNotification . 1094
52.30 Sleep . 1095
52.31 VERSION . 1096
52.32 Wait . 1096

53 Table library . 1099
53.1 Concat . 1099
53.2 CopyTable . 1099
53.3 CreateList . 1100
53.4 ForEach . 1101
53.5 ForEachI . 1102
53.6 GetItem . 1103
53.7 GetMetaTable . 1103
53.8 HaveItem . 1103
53.9 InsertItem . 1104
53.10 IPairs . 1105
53.11 IsTableEmpty . 1105
53.12 ListItems . 1106
53.13 NextItem . 1107

xxvi Hollywood manual

53.14 Pack . 1108
53.15 Pairs . 1108
53.16 RawEqual . 1109
53.17 RawGet . 1110
53.18 RawSet . 1111
53.19 RemoveItem . 1111
53.20 SetListItems . 1112
53.21 SetMetaTable . 1112
53.22 Sort . 1113
53.23 TableItems . 1114
53.24 Unpack . 1114

54 Text library . 1117
54.1 Overview . 1117
54.2 AddFontPath . 1117
54.3 AddTab . 1118
54.4 CloseFont . 1118
54.5 CopyTextObject . 1119
54.6 CreateFont . 1119
54.7 CreateTextObject . 1121
54.8 DisplayTextObject . 1123
54.9 DisplayTextObjectFX . 1124
54.10 FONT . 1125
54.11 Font specification . 1126
54.12 FreeGlyphCache . 1127
54.13 FreeTextObject . 1128
54.14 GetAvailableFonts . 1128
54.15 GetBulletColor . 1129
54.16 GetCharMaps . 1130
54.17 GetDefaultEncoding . 1130
54.18 GetFontColor . 1131
54.19 GetFontStyle . 1131
54.20 GetKerningPair . 1132
54.21 Locate . 1133
54.22 MoveTextObject . 1133
54.23 NPrint . 1134
54.24 OpenFont . 1134
54.25 Print . 1135
54.26 ResetTabs . 1136
54.27 RotateTextObject . 1137
54.28 ScaleTextObject . 1137
54.29 SetBulletColor . 1138
54.30 SetDefaultEncoding . 1138
54.31 SetFont . 1139
54.32 SetFontColor . 1142
54.33 SetFontStyle . 1143
54.34 SetMargins . 1144
54.35 TransformTextObject . 1145

xxvii

54.36 Text format tags . 1146
54.37 TextExtent . 1148
54.38 TextHeight . 1149
54.39 TextOut . 1149
54.40 TextWidth . 1155
54.41 UseFont . 1156
54.42 Working with fonts . 1157

55 Time library . 1159
55.1 CompareDates . 1159
55.2 DateToTimestamp . 1159
55.3 DateToUTC . 1160
55.4 GetDate . 1161
55.5 GetDateNum . 1162
55.6 GetTime . 1163
55.7 GetTimer . 1163
55.8 GetTimestamp . 1163
55.9 GetTimeZone . 1164
55.10 GetWeekday . 1165
55.11 MakeDate . 1165
55.12 ParseDate . 1166
55.13 PauseTimer . 1167
55.14 ResetTimer . 1167
55.15 ResumeTimer . 1168
55.16 SetTimerElapse . 1168
55.17 StartTimer . 1168
55.18 StopTimer . 1169
55.19 TimerElapsed . 1170
55.20 TimestampToDate . 1170
55.21 UTCToDate . 1171
55.22 ValidateDate . 1171
55.23 WaitTimer . 1172

56 Vectorgraphics library . 1175
56.1 AddArcToPath . 1175
56.2 AddBoxToPath . 1176
56.3 AddCircleToPath . 1176
56.4 AddEllipseToPath . 1177
56.5 AddTextToPath . 1177
56.6 AppendPath . 1179
56.7 ClearPath . 1179
56.8 ClosePath . 1179
56.9 CopyPath . 1180
56.10 CurveTo . 1180
56.11 DrawPath . 1181
56.12 ForcePathUse . 1182
56.13 FreePath . 1183

xxviii Hollywood manual

56.14 GetCurrentPoint . 1183
56.15 GetDash . 1184
56.16 GetFillRule . 1184
56.17 GetLineCap . 1185
56.18 GetLineJoin . 1185
56.19 GetMiterLimit . 1186
56.20 GetPathExtents . 1186
56.21 IsPathEmpty . 1186
56.22 LineTo . 1187
56.23 MoveTo . 1187
56.24 NormalizePath . 1188
56.25 PathItems . 1188
56.26 PathToBrush . 1191
56.27 RelCurveTo . 1192
56.28 RelLineTo . 1193
56.29 RelMoveTo . 1193
56.30 SetDash . 1193
56.31 SetFillRule . 1194
56.32 SetLineCap . 1195
56.33 SetLineJoin . 1195
56.34 SetMiterLimit . 1196
56.35 SetVectorEngine . 1196
56.36 StartPath . 1197
56.37 StartSubPath . 1197
56.38 TranslatePath . 1198
56.39 Vectorgraphics plugin . 1198

57 Video library . 1201
57.1 Overview . 1201
57.2 CloseVideo . 1201
57.3 DisplayVideoFrame . 1202
57.4 ForceVideoDriver . 1202
57.5 GetVideoFrame . 1203
57.6 IsVideo . 1204
57.7 IsVideoPlaying . 1205
57.8 OpenVideo . 1206
57.9 PauseVideo . 1207
57.10 PlayVideo . 1207
57.11 ResumeVideo . 1209
57.12 SeekVideo . 1210
57.13 SetVideoPosition . 1210
57.14 SetVideoSize . 1211
57.15 SetVideoVolume . 1212
57.16 StopVideo . 1212
57.17 VIDEO . 1212

xxix

58 Windows support library 1215
58.1 CreateShortcut . 1215
58.2 GetShortcutPath . 1215
58.3 ReadRegistryKey . 1216
58.4 WriteRegistryKey . 1217

Appendix A Licenses . 1219
A.1 Lua license . 1219
A.2 OpenCV license . 1219
A.3 ImageMagick license . 1219
A.4 GD Graphics Library license . 1223
A.5 Bitstream Vera fonts license . 1223
A.6 Pixman license . 1224
A.7 LuaSocket license . 1225
A.8 librs232 license . 1225
A.9 UsbSerial license . 1226
A.10 SDL license . 1226
A.11 LGPL license . 1227

Index . 1231

1

1 General information

1.1 Introduction

Hollywood is a multimedia-oriented programming language that can be used to create ap-
plications and games very easily. Designed with the paradigm to make software creation
as easy as possible in mind, Hollywood is suited for beginners and advanced users alike.
Hollywood comes with an extensive function library (encompassing over 1000 commands)
that simplifies the creation of applications and games to a great extent. Having been in
development since 2002 it is a very mature and stable software package today.

One of the highlights of Hollywood is its inbuilt cross-compiler which can be used to deploy
software on many different platforms without having to change a single line of the code.
The cross-compiler can compile executables for all platforms from any platform Hollywood
is running on. For instance, you can compile macOS application bundles using the Windows
version of Hollywood and vice versa. On top of that, there are also extensions that allow
you to compile your Hollywood projects into native applications for iOS and Android.

Hollywood is a light-weight, but still powerful programming language whose core is just
about two megabytes in size and does not require any external components. Hence, it is ideal
for creating programs which run right out of the box. In fact, Hollywood programs will run
perfectly from a USB flash drive without any prior installation whatsoever. Furthermore,
Hollywood’s core functionality can be greatly enhanced through lots of freely available
plugins allowing you to access OpenGL and SDL through Hollywood, for instance.

The following platform architectures are currently supported by Hollywood:

− AmigaOS 3 (m68k)

− AmigaOS 4 (ppc)

− Android (arm)

− AROS (x86)

− iOS (arm)

− Linux (x86)

− Linux (x64)

− Linux (ppc)

− Linux (arm)

− macOS (arm)

− macOS (x86)

− macOS (x64)

− macOS (ppc)

− MorphOS (ppc)

− WarpOS (m68k/ppc)

− Windows (x86)

− Windows (x64)

2 Hollywood manual

Hollywood features

Graphics:

• Very flexible layer-based graphics engine

• Support for alpha channel graphics

• Sprites of any size can be used

• Extensive text support incl. on-the-fly formatting, wordwrapping, and rotation

• Platform independent TrueType text rendering

• Video playback fully supported

• Loads real vector image formats like SVG

• PDF import and export supported

• Many graphics primitives supported (ellipses, arcs, lines, rectangles, polygons...)

• Support for vector-based drawing (Bézier splines...)

• Optional antialiasing for text and graphics primitives

• Over 150 transition effects for graphics and text

• Tons of image processing functions

• Powerful off-screen rendering functions incl. rendering to masks and alpha channels

• Extensive clipping support (rectangular and custom shaped clipping regions)

• Support for hardware accelerated double-buffered displays

• Animation support

• Graphics can be exported as PNG, or even as AVI video streams

• Windows can use alpha channel transparency

• OpenGL 3D programming supported via plugin

• Video streaming supported via a dedicated plugin

Sound:

• Multichannel sound interface

• Support for samples and sound streams

• Protracker modules can be played

• Volume and pitch of samples can be changed during playback

• Multichannel mixer for manipulating samples

• Dynamically generated sound can be sent to the audio device

• Audio streaming supported via a dedicated plugin

GUI:

• Native GUI development supported via the RapaGUI plugin

• Create native GUIs for Windows, Linux (GTK), macOS and AmigaOS (MUI)

• GUIs are conveniently layouted using XML files

• Support for over 40 different widgets

• Full flexibility because Hollywood displays can be embedded in native GUIs

Chapter 1: General information 3

• Completely platform-independent GUI development - use the same code on every plat-
form!

Network:

• Full Internet and network support

• Create server and client connections

• Transfer data using a wide variety of protocols like HTTP, FTP and SCP

• Serial I/O support through RS/232 or USB adapters

• IPC support for communicating with other programs

• IPv4 and IPv6 interfaces supported

• Full SSL/TLS support

System:

• Powerful yet extremely easy to use programming language

• Cross-platform compiler that supports Amiga compatibles, Windows, macOS and
Linux

• Android and iOS support via the freely available Hollywood Player

• APKs can be generated via the optionally available APK Compiler

• Executables compiled by Hollywood do not require any additional libraries/DLLs (they
also run from USB sticks!)

• All data files (including fonts) can be embedded in a single executable

• Unicode fully supported

• Windowed and full screen mode supported

• Multi-monitor support

• Sandbox container: programs can never crash

• Creation of OS menus is supported

• Event-based programming model guarantees moderate CPU usage

• Low latency interval and timer functions

• Extensive DOS library to work with the file system

• Support for ZIP and other archivers

• Convenient access to clipboard

• Access to system dialogs (file chooser, string prompt, etc.)

• Drag’n’drop support

• Database management via SQL supported

• Comprehensive string and math library

• Mouse cursor can be easily replaced with a custom cursor

• Convenient data serialization to and from JSON and XML

• Date and time functions

• Easy internationalization of programs via catalog system

• Joystick support

4 Hollywood manual

Plugin:

• Extremely powerful, cross-platform plugin system

• Publicly available SDK with over 500 pages of documentation and example code

• Default display driver is completely retargetable through entirely different subsystems
(e.g. OpenGL)

• Default audio driver is completely retargetable through entirely different subsystems

• Plugins can add loaders and savers for additional image, animation, sound, font, and
video formats

• All file I/O can be rerouted through customized handlers

• Hollywood’s language command set can be extended via plugins

1.2 Philosophy

The philosophy behind Hollywood is to offer an easy yet powerful platform which can be
used to write stunning programs in a very short time. The language used to program
Hollywood is very easy for the beginner but also has enough features that the experienced
programmer will love. You can program Hollywood on a very simple BASIC-like level but
it is also possible to dive into a fully object oriented world with Hollywood. The extensive
command set with over 1000 inbuilt functions provides the programmer with all the tools
needed to create amazing software with Hollywood. There is almost nothing you can’t do
with Hollywood. On top of that, Hollywood is a cross-platform multimedia application
layer, which means that you can run your programs on many different platform without
changing a single line of code, and it is even possible to cross-compile executables for these
platforms. For example, you can cross-compile macOS applications from your AmigaOS 3.1
installation. All this makes Hollywood the ultimate tool for the multimedia programmer
and an experience in its own right!

1.3 Terms and conditions

Hollywood (in the following referred to as "the program") is c© Copyright 2002-2023 by
Andreas Falkenhahn (in the following referred to as "the author"). All rights reserved.

The program is provided "as-is" and the author cannot be made responsible of any possible
harm done by it. You are using this program absolutely at your own risk. No warranties
are implied or given by the author.

No changes may be made to the program without the permission of the author.

Trial version:

You are allowed to test the trial version of Hollywood for 30 days. If you want to continue
using Hollywood after your trial period of 30 days has expired, you need to buy the full
version. Otherwise you have to uninstall Hollywood after 30 days. It is not allowed to
continue using Hollywood after the trial period of 30 days has expired.

The trial version of Hollywood may be freely distributed as long as the following conditions
are met:

1. No modifications must be made to the trial version.

2. It is not allowed to sell the trial version.

Chapter 1: General information 5

3. Putting the trial version on a cover disc is only allowed with a written permission by
the author.

Full version:

The full version of Hollywood may be installed on multiple computers as long as it is only
used by the person who bought the license. All Hollywood licenses are single user licenses
so everybody who wants to use Hollywood needs to purchase an individual, personalized
license. Licensees may then install and use Hollywood on multiple computers but it must
only be used by the person who bought and owns the license. It is not allowed to share a
Hollywood license with other people. The name of the person who purchased the license,
and thus is the only one who is allowed to use the program, is shown in both the Hollywood
GUI and interpreter.

It is forbidden to spread the full version of Hollywood without a written permission by the
author.

What you may create with Hollywood:

There are no restrictions on what you may create with Hollywood except that it is forbid-
den to create programs with Hollywood which could be considered competing products to
Hollywood itself, specifically it is not allowed to create any kind of wrapper programs that
make Hollywood libraries, plugins, and/or commands available to other programming lan-
guages or the end-user. It is also not allowed to create any sort of middleware that enables
the user to access Hollywood libraries, plugins, and/or commands through the middleware.
It is also not allowed to create a programming language which builds upon Hollywood’s
libraries, plugins, and/or commands.

Disclaimer:

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDER AND/OR OTHER PARTIES PROVIDE THE PROGRAM
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

6 Hollywood manual

Acknowledgements:

This software uses Lua by Roberto Ierusalimschy, Waldemar Celes and Luiz Henrique de
Figueiredo. See Section A.1 [Lua license], page 1219, for details.

This software uses libjpeg by the Independent JPEG Group.

This software uses libpng by the PNG Development Group and zlib by Jean-loup Gailly
and Mark Adler.

This software uses PTPlay c© Copyright 2001, 2003, 2004 by Ronald Hof, Timm S. Mueller,
Per Johansson.

This software uses the OpenCV library by Intel Corporation. See Section A.2 [OpenCV
library license], page 1219, for details.

This software uses ImageMagick by ImageMagick Studio LLC. See Section A.3 [ImageMag-
ick license], page 1219, for details.

This software uses the GD Graphics Library by Thomas Boutell. See Section A.4 [GD
Graphics Library license], page 1223, for details.

This software uses the pixman library. See Section A.6 [Pixman license], page 1224, for
details.

Portions of this software are copyright c© 2010 The FreeType Project (http://www.
freetype.org). All rights reserved.

Hollywood uses the Bitstream Vera font family. See Section A.5 [Bitstream Vera fonts
license], page 1223, for details.

The Linux version of Hollywood uses gtk, glibc, and the Advanced Linux Sound Architecture
(ALSA) all of which are licensed under the LGPL license. See Section A.11 [LGPL license],
page 1227, for details.

The Android version of Hollywood uses the Simple DirectMedia Layer (SDL) by Sam
Lantinga. See Section A.10 [SDL license], page 1226, for details.

This software uses codesets.library by Alfonso Ranieri and the codesets.library Open Source
Team. See Section A.11 [LGPL license], page 1227, for details.

This software uses LuaSocket by Diego Nehab. See Section A.7 [LuaSocket license],
page 1225, for details.

This software uses librs232 by Petr Stetiar. See Section A.8 [librs232 license], page 1225,
for details.

This software uses UsbSerial by Felipe Herranz. See Section A.9 [UsbSerial license],
page 1226, for details.

All trademarks are the property of their respective owners.

1.4 Requirements

Windows version:

− requires at least Windows 2000

http://www.freetype.org
http://www.freetype.org

Chapter 1: General information 7

macOS version:

− arm64 version: requires at least macOS 11.0 (Big Sur)

− Intel version: requires at least macOS 10.6 (Snow Leopard)

− PowerPC version: requires at least macOS 10.4 (Tiger)

Linux version:

− requires an X11 server and glibc

− optional: ALSA library for sound output

− optional: GTK for dialog boxes support

− optional: XFree86 video mode extension library, Xfixes, Xrender, Xcursor, Xrandr, Xss
for some advanced functionality

AmigaOS/MorphOS/AROS versions:

− Kickstart 3.0 (V39)

− 68020+ or PowerPC

− CyberGraphX or Picasso96

− codesets.library on AmigaOS 3 and 4, WarpOS, and AROS

− charsets.library on MorphOS

− optional: AHI by Martin Blom for sound output

− optional: reqtools.library for the StringRequest() function (except on OS4) and
for the ColorRequest() function (also on OS4)

− optional: popupmenu.library for the PopupMenu() function (except on MorphOS)

iOS version:

− iOS 8 or better

Android version:

− Android 4.0 or better

− ARM CPU (32-bit or 64-bit)

1.5 Credits

Hollywood was written by Andreas Falkenhahn. But I would not have gotten so far without
the help of many persons whom I would like to thank here.

First, special thanks go to Timm S. Müller for his essential hints in the early phase of
conceptualizing Hollywood.

Secondly, big thanks to the team of Lua 5.0.2 for making this powerful light-weight language:
Roberto Ierusalimschy, Waldemar Celes and Luiz Henrique de Figueiredo.

Thanks go to Frank Wille for constantly improving the wonderful vbcc compiler which is
necessary for the 68k and WarpOS builds of Hollywood.

8 Hollywood manual

Special thanks must go to Dominic Widmer, Helmut Haake and Alexander Pfau for trans-
lating the huge documentation to German. Alexander Pfau was the first one to work on
a German translation. He maintained the German Hollywood manual until version 1.9.
His work has later been continued in a Swiss-German joint effort by Dominic Widmer and
Helmut Haake who maintain the German Hollywood translation until today.

Further thanks have to go out to Grzegorz Kraszewski, Martin Blom, Tomasz Wiszkowski,
Kimmo Pekkola, Olaf Barthel, Thomas Richter, Christoph Gutjahr, Jean-Yves Auger,
Ralph Schmidt, Detlef Würkner, Stephan Rupprecht, Frank Mariak, Jacek Piszczek, Torgeir
Vee, Christoph Poelzl, Fabio Falcucci, Michael Jurisch, Petteri Valli and to all beta testers
and to everyone that should be here but has been forgotten.

The Amiga version of Hollywood was developed under SAS/C 6.58 (68k version), VBCC
(WarpOS version), GCC 4.4.4 (MorphOS version) and GCC 4.0.2 (AmigaOS4 version).
Additionally the following programs were used: GoldED Studio AIX, Directory Opus 4,
PPaint 7, CyberGuard, CyberGraphX 4, MUI. Main development was done on a Pegasos
2 with a 1Ghz G4 CPU and MorphOS 1.4.5. Further development was done on an Amiga
1200 equipped with a Phase5 Blizzard PPC 603e 240mhz with SCSI, a 68060 CPU, a
Phase5 BVision PPC graphics board and 82 Megabyte RAM. Hollywood was widely tested
on CyberGraphX 3 and 4, Picasso96, MorphOS, AmigaOS4, AROS, DraCo, Amithlon and
WinUAE. Hollywood will in no way access the hardware directly. It respects all system
style guides and uses system-friendly functions only.

The macOS version was developed on a 1.5 Ghz Mac Mini using macOS 10.4 (Tiger) and
on an Intel iMac 2.4 Ghz using macOS 10.5 (Leopard). The code was written using Allan
Odgaard’s flexible text editor TextMate. Hollywood was compiled using the gcc that comes
with Apple’s macOS SDK.

The Windows version was developed on a 2.6 Ghz Pentium IV using Win XP Home Edition
with the latest service packs. The code was written using the famous UltraEdit by IDM
Comp. Hollywood was compiled using Microsoft’s Visual C.

The Linux version was developed using openSUSE 11.2 on a 2.6 Ghz Pentium IV.

1.6 Forum

The official Hollywood forums are online at http://www.hollywood-mal.com. Feel free to
stop by and talk to other Hollywood users. This is the perfect place to ask for help from
other users.

Besides the forum, we also have a newsletter that is used for announcements. If you want to
be notified about new releases, Hollywood plugins, updates, and everything else about the
Hollywood ecosystem don’t hesitate to sign up for the newsletter at the official Hollywood
portal at http://www.hollywood-mal.com.

Users from Germany might want to take a look at the "Hollywood User Page" maintained
by Helmut Haake. It offers lots of source codes and workshops and also has a forum where
you can ask your questions. Here is the link: https://forum.amiga-resistance.info/

viewforum.php?f=38

http://www.hollywood-mal.com
http://www.hollywood-mal.com
https://forum.amiga-resistance.info/viewforum.php?f=38
https://forum.amiga-resistance.info/viewforum.php?f=38

Chapter 1: General information 9

1.7 Contact

If you need to contact me, you can either send an e-mail to andreas@airsoftsoftwair.de

or use the contact form on http://www.hollywood-mal.com.

andreas@airsoftsoftwair.de
http://www.hollywood-mal.com

11

2 Getting started

2.1 Overview

Here’s an overview of the most important components you have to know when programming
with Hollywood:

Interpreter:

The Hollywood main executable is what we call "the interpreter". It can read your source
code files (the scripts) and translate them into custom Hollywood bytecode. It can also
compile your source codes into stand-alone executables or applets and link data files into
those executables or applets. Once you have compiled your source codes into executables
or applets, you can distribute them. If you distribute your projects as applets, your users
first have to install the freely available Hollywood Player before they can run your project.
If you choose to distribute your projects as stand-alone executables, no further components
are needed. The interpreter is a console program and doesn’t have any GUI. Hollywood’s
GUI and the Windows IDE will run simply start the interpreter when you choose to run a
script.

Player:

The Hollywood Player can only run applets (see below). It cannot run source codes. The
Hollywood Player isn’t part of Hollywood’s commercial distribution but is available for
free download from the official Hollywood portal at http://www.hollywood-mal.com. In
contrast to the interpreter, the Hollywood Player is freely distributable. If you choose to
distribute your projects as Hollywood applets, your users first have to download and install
the Hollywood Player before they can run your projects. If you choose to distribute your
projects as stand-alone executables, the Hollywood Player isn’t necessary because it has
already been linked into your executable. Note that the Hollywood Player for Android isn’t
available from the Hollywood portal but from Google Play: http://play.google.com/

store/apps/details?id=com.airsoftsoftwair.hollywood

GUI:

Since the Hollywood interpreter is just a console program, it is accompanied by a separate
GUI program which allows you to conveniently use the interpreter. On Windows, the
Hollywood GUI is a full-blown IDE whereas on all other systems (Amiga, Linux, macOS)
it is just a front-end which you can use to start and compile scripts but it doesn’t allow
you to edit scripts. Thus, on Amiga, Linux, and macOS you have to use your favourite text
editor for editing Hollywood scripts. But since the interpreter is a console program, it is
quite easy to integrate it with your favourite IDE.

Scripts:

Source codes in the Hollywood language are called Hollywood scripts. Hollywood scripts
are simply text files that contain a number of statements Hollywood can understand. Thus,
they have to follow certain syntactical rules which are explained in this documentation.
Hollywood scripts use the extension *.hws. It is recommended to use UTF-8 encoding for
all your scripts.

http://www.hollywood-mal.com
http://play.google.com/store/apps/details?id=com.airsoftsoftwair.hollywood
http://play.google.com/store/apps/details?id=com.airsoftsoftwair.hollywood

12 Hollywood manual

Applets:

Hollywood applets are binary files that contain the bytecode of a script as well as additional
data like images, sounds, fonts, etc. Applets can be run by the Hollywood Player or the
Hollywood interpreter. Hollywood applets use the extension *.hwa. Choosing to distribute
your project as an applet can save lots of disk space since applets are usually very small
because they do not contain the Hollywood Player. See Section 4.2 [Applets], page 58, for
details.

Plugins:

On all systems except on AmigaOS and compatibles, plugins must be stored in a direc-
tory named "Plugins" that is in the same directory as the main Hollywood program. On
AmigaOS and compatible systems, plugins must be installed to LIBS:Hollywood instead.
On macOS, the "Plugins" directory must be inside the "Resources" directory of the ap-
plication bundle, i.e. inside the HollywoodInterpreter.app/Contents/Resources direc-
tory. Note that HollywoodInterpreter.app is stored inside the Hollywood.app appli-
cation bundle itself, namely in Hollywood.app/Contents/Resources. When distributing
a compiled Hollywood program, plugins required by your program must simply be put
into the same directory as your program. When compiling application bundles for macOS,
plugins need to be put in the "Resources" directory of the application bundle, i.e. in
MyProject.app/Contents/Resources. Alternatively, you can also choose to link plugins
into your executables. Hollywood plugins use the extension *.hwp. See Section 5.1 [Plugins],
page 65, for details.

2.2 The GUI

Hollywood itself is a console program but for reasons of convenience there is also a front-end
that can be used to control Hollywood without having to resort to the console.

Chapter 2: Getting started 13

Here is a screenshot of Hollywood’s GUI for Amiga systems:

The Linux and macOS GUIs are completely identical to the Amiga one. As you can see the
GUI is divided into three parts: A listview containing all available Hollywood projects, an
info corner which displays information about the currently selected Hollywood project and
a screenshot of it (if available), and lastly a range of buttons that can be used to execute
most of Hollywood’s standard actions.

14 Hollywood manual

This is what the Hollywood GUI looks like on Linux:

Upon startup, Hollywood will automatically scan the Examples folder stored inside Holly-
wood’s installation directory and will add all scripts it can find into the different categories.
You can then use the choice widget to switch between the different categories. The last
category is always called "My projects." The scripts listed here must not be stored inside
the Examples folder but should be kept in a different place so that they do not get lost
when updating to a newer version.

Chapter 2: Getting started 15

Here is a screenshot of the Hollywood GUI on macOS:

The following functionality is available in the GUI:

Show sourcecode:
Press this button to show the sourcecode of the currently selected Hollywood
project. You can configure the viewer to use here in the preferences menu.

Clear selection:
Clear the currently selected project. This is necessary if you would like to run
a project that doesn’t appear in one of the two project listviews because in case
no project is selected, the Display button will pop up a file requester prompting
you to select a Hollywood script to run. So if you want this file requester to
appear, you first have to clear the selection using this button.

16 Hollywood manual

Add: This button will only be enabled if the My projects group has been selected in
the choice widget. In that case you can use this button to add a new project
to the list of projects that appear in the My projects section of the GUI.

Remove: This button will only be enabled if the My projects group has been selected
in the choice widget. In that case you can use this button to remove a project
from the list of projects that appear in the My projects section of the GUI.

Edit: This button will only be enabled if the My projects group has been selected in
the choice widget. In that case you can use this button to open the currently
selected project in your favourite text editor. You can configure the text editor
to use in the preferences menu. If you want to edit the properties of the currently
selected project, go to the project menu and select the properties menu.

Display: Click this button to run the currently selected project. If no project is selected
this button will pop up a file requester prompting you to select a project.

Compile: You can use this button to compile a Hollywood script into an executable or
Hollywood applet. You will be prompted to select a Hollywood script as well
as an output file and a target platform. The front-end will then invoke the
Hollywood compiler to build your executable or applet. See Section 4.1 [Using
the compiler & linker], page 57, for details.

Create video:
This button allows you to record a video of a Hollywood project. You will be
prompted to a select a Hollywood script as well as an output file and a video
format. The front-end will then invoke the Hollywood video recorder to create
a video of your script. See Section 4.6 [Using the video recorder], page 62, for
details.

Plugins: Press this button to open a dialog that shows all currently available Hollywood
plugins and some information about them.

Help: Click this button to open this documentation.

About: Displays copyright and licensing information as well as an overview of all avail-
able Hollywood commands.

Exit: Closes the GUI.

There are some more options in the right-hand side part of the GUI:

Display mode:
This choice widget allows you to choose the desired display mode for the project.
This can be either Windowed, Full screen or Full screen (scaled). If you choose
Full screen, the monitor will change its physical resolution to the script’s reso-
lution whereas Full screen (scaled) preserves the monitor’s physical resolution
and just scales the script to fit to your monitor’s current resolution.

Scale factor:
You can use this choice widget to enable Hollywood’s auto scaling engine. If
you choose a setting different than 100% here your script will automatically be
scaled by the specified factor. See Section 25.18 [Scaling engines], page 401, for
details.

Chapter 2: Getting started 17

Allow resizing:
If you tick this box Hollywood will open in resizeable mode. The user will then
be able to use the size box of Hollywood’s window to change the dimensions of
your script. Leave this box unticked if you do not want this.

Use antialiased scaling:
If scaling is enabled, you can use this checkbox to define whether or not an-
tialiased scaling should be used. Antialiased scaling looks better but is slower
than hard scaling.

2.3 Windows IDE

On the Windows platform Hollywood comes with a fully-featured integrated development
environment (IDE) which can be used to create Hollywood projects very easily. The IDE
features a multi-tabbed text editor with syntax highlighting, live help while typing, a func-
tion browser as well as a convenient overview of external data referenced by the preprocessor
commands used in your script. Here’s a screenshot of Hollywood’s Windows IDE:

As you can see the IDE is made up of six different parts:

1. On the upper left-hand side of the IDE there is the Project browser treeview. It
is divided into the trees "Examples" and "My projects". All "Examples" that are
delivered with Hollywood are listed in the first tree whereas your own projects appear
in the second tree. To add items to the "My projects" tree, simply press the "Add"

18 Hollywood manual

button that is located below the treeview. To remove items from the "My projects",
use the "Remove" button.

2. On the lower left-hand side of the IDE you can find the Info corner. This section dis-
plays some information about the currently active Hollywood project. This is currently
only implemented for the example projects that come with Hollywood. If you select
one of your own projects the info corner will display nothing.

3. The Editor constitutes the heart of the IDE and is located in the center of the IDE.
The editor will automatically display live help in the IDE’s status bar if it detects
you typing in a known Hollywood command. It will also highlight all keywords and
comments, and it will automatically add function names to the function browser (see
below). If you right-click your mouse on the editor area, a context menu will pop up
allowing you to jump to the definition of the function that is currently selected by the
cursor or opening the file that is currently selected by the cursor. You can also get
context sensitive help this way.

4. On the upper right-hand side of the IDE you can find the Function browser. This
listview contains the names of all functions that have been declared by the currently
active project. The list is updated on-the-fly as you edit your script. You can double-
click on a name in this list to jump to the function declaration automatically.

5. On the lower right-hand side of the IDE there is the Preprocessor command tool. In the
first tab you can configure several attributes of the @DISPLAY preprocessor command
which controls the appearance of your display. You can for example specify the initial
position of the display on the desktop screen, whether or not it should open in full
screen mode, or if the display should have a border and a size widget. You can also set
the title of the display (defaults to "Hollywood"). Of course, you can also configure
all these attributes directly in the editor by passing them to @DISPLAY preprocessor
command directly. In fact, when you edit these attributes using the preprocessor
command tool, it will immediately update the corresponding line that contains the
@DISPLAY specification in your script. If there is none, the preprocessor command
tool will add it your script. The other tabs in the preprocessor command tool contain
listviews that show all external files referenced by the currently active script. If you
click on one of the files, the IDE will jump to the point where this file has been declared
in the script. If you double-click on one of the files, the IDE will open Hollywood to
show the file.

6. On the bottom of the IDE you can find the Hollywood output window. Whenever
the IDE starts Hollywood, its output will be redirected to this window. You can also
print to this window from your Hollywood script by using the DebugPrint() command.
You can clear the contents of this window by opening the context menu with the right
mouse button and selecting "Clear" then.

Most of the IDE constituents presented above are implemented using dock windows. This
means that you can rearrange them according to your personal tastes: You can drag them
to a different place in the IDE window or you can even move them out of the IDE window.
In that case they will appear as toolbox windows. Finally, you can also hide them if you
do not need their functionality. To hide one of these windows, either use the "View" menu
or drag the docks out of the window and then close their toolbox window.

Chapter 2: Getting started 19

The IDE can be controlled either through the toolbar that appears in the top of the window
or using the menu. There are also keyboard shortcuts that you can use. Live help is
displayed in the status bar when the mouse is over a toolbar or menu item. You can use
the toolbar and the menu to run the current project, compile it, record a video of it, or
send it to your printer. Furthermore, several standard functions are accessible in toolbar
and menu like "Save", "Save as", "Find", "Find and replace", "Copy", "Cut", "Paste",
"Undo", "Redo", and so on.

The IDE can also be controlled using keyboard shortcuts. Here are some common shortcuts:

F1: Opens context sensitive help for the function/keyword that is at the current
cursor position.

F2: Jumps to the declaration of the function at the current cursor position.

F4: Opens the file whose name is at the current cursor position.

F5: Runs the current project in Hollywood.

Ctrl-F: Opens the find dialog to search for a string inside the current project.

Ctrl-G: Jumps to a specific line in the project.

Ctrl-S: Saves the current project.

Several IDE settings are user-configurable. Select the entry "IDE settings..." from the
"File" menu to open a dialog that allows you to adjust several settings to your personal
taste. The settings dialog consists of four pages: General, Editor, Hollywood, and Custom.
Here is a screenshot of the first page:

20 Hollywood manual

The following things can be configured on this page:

Syntax highlighting

Tick this box to enable syntax highlighting in the IDE’s script editor. Normally
this setting should be enabled because it makes your code much more readable.
On very slow systems or if you work with extremely large scripts it might be
necessary to turn it off for performance reasons.

Enable function and preprocessor command scanner

If you enable this option, the IDE will automatically add all function names
to the function browser and it will add all files referenced by preprocessor
commands to the preprocessor command tool. This is only worth disabling
on very slow systems or with very large scripts.

Enable display style configuration

If this option is enabled, you will be able to configure the parameters of the
@DISPLAY preprocessor command using the preprocessor command tool in the
lower right-hand side of the IDE. If you do not want that, leave this box
unchecked.

Auto spelling adaptation

This box allows you to configure whether or not the IDE should automatically
adapt the spelling of commands and keywords it knows. For instance, if you
type waitleftmouse and this option is enabled, the spelling will automatically
be corrected into WaitLeftMouse.

Auto indent

Check this box if you want the IDE to automatically indent the code after
statements that open a new code scope (for example If, While, Function

etc.). If you enable this option, the IDE will indent the next line by inserting a
tab character. This is very useful for code readability and should not be turned
off.

Always save before Run

If you tick this box, the IDE will always save your current project automatically
when you run it. Be careful with this option because you might lose some
important changes.

Always save before Compile

If you tick this box, the IDE will always save your current project automatically
when you compile it into an executable.

Remember open files

Tick this box to tell the IDE that it should remember all tabs that were open
in the previous session for the next session.

Show toolbar

You can use this option to configure whether or not you want the toolbar to be
shown.

Show info corner

You can use this option to configure whether or not you want the info corner
to be shown.

Chapter 2: Getting started 21

Convert spaces to tabs during loading

This option allows you to configure whether or not you want spaces to be
converted into tabs before loading. This is a useful option because it is much
easier to structure your code using tabs instead of spaces but be careful because
it might destroy the layout of your code if you use a differing tab settings
between the Hollywood IDE and other text editors. You can configure the tab
space on the "Editor" page.

Keep help window on top

If you activate this option, Hollywood’s help window will always appear on top
of all other windows that belong to the IDE.

Language This widget allows you to change the language used by the IDE. You will have
to restart the IDE for this change to take effect.

Save format

You can set the script’s output format here. Normally, this should always be
UTF-8, either with or without BOM. ISO 8859-1 shouldn’t be used any longer
since it can lead to compatibility problems on systems with a different locale.

Restore defaults

Use this button to reset all settings on this page to their default values.

The second page allows you to configure the appearance of the editor:

Colors You can use these buttons to adjust the colors used by the editor for syntax
highlighting to your personal tastes.

22 Hollywood manual

Font The font you specify here is used by the editor. You must use a fixed-width
font here. Otherwise the layout will get messed up.

Console font

The font you specify here is used by the console window. You can use a
monospace or proportional font here.

Tab size Here you can specify the tab width that should be used by the editor. You can
choose between a tab width of 2, 4, 6, and 8 space characters.

Restore defaults

Use this button to reset all settings on this page to their default values.

The third page allows you to configure the Hollywood interface:

Hollywood path

This field must be set to the path where Hollywood is located. Whenever the
IDE invokes Hollywood, it will look for it in the path specified here. Normally,
Hollywood resides in the same path as the IDE executable.

Options for running scripts

The template specified in this text box is used by the IDE to run a Hollywood
script. Normally, you do not have to change anything here. See below for tokens
that can be used here.

Options for compiling scripts

The template specified in this text box is used by the IDE to compile a Hol-
lywood script. Normally, you do not have to change anything here. See below
for tokens that can be used here.

Chapter 2: Getting started 23

Use Hollywood for media display

Check this box if you want the IDE to use Hollywood to show any external me-
dia files like images and animations. It is recommended to enable this option
because Hollywood supports several exotic formats like IFF ILBM and Pro-
tracker modules which are not supported by the standard media viewers that
come with Windows.

Restore defaults

Use this button to reset all settings on this page to their default values.

The following tokens can be specified in the template that is used to start Hollywood to
run or compile a script:

%HWPATH: This token will be replaced by the path to the Hollywood executable.

%SCRIPT: This token will be set to the Hollywood script that should be compiled.

%IDEWINDOW:

This token inserts the handle of the IDE window.

%OUTEXE: Points to a destination file that should be created by the compiler.

%EXEPLATFORM:

Points to one or more platforms that the compiler should target.

The fourth page allows you to add custom keywords that should be taken into account by
the editor:

If you want the editor to highlight other keywords than the predefined ones, you can add
those keywords here. Please note that keywords must always start with an alphabetic letter

24 Hollywood manual

or an underscore. They can contain numbers but not in initial position. The only special
characters allowed are the underscore, the dollar sign and the exclamation sign. Other
characters are not allowed. There must only be one keyword per line.

2.4 Mobile platforms

Hollywood is also available as a player-only version for Android and iOS which allows you
to run your Hollywood applets on smartphones and tablets. The Hollywood Player for
Android requires at least Android 4.0 and is freely available on Google Play at this URL:
http://play.google.com/store/apps/details?id=com.airsoftsoftwair.hollywood.
Unfortunately, the Hollywood Player for iOS is currently not available on the App Store
because its capabilities seem to conflict with Apple’s App Store rules.

Here are screenshots of the Hollywood Player for Android (left) and iOS (right):

If you want to run your Hollywood projects on your mobile device, you first need to com-
pile them as Hollywood applets, copy them to your device and then run them using the
Hollywood Player for your mobile platform.

Alternatively, there is also an add-on named Hollywood APK Compiler which can be used
to compile your Hollywood projects into stand-alone APK files for Android. Please visit

http://play.google.com/store/apps/details?id=com.airsoftsoftwair.hollywood

Chapter 2: Getting started 25

the Hollywood portal for more information on the Hollywood APK Compiler: http://www.
hollywood-mal.com

If you want to use the freely available Hollywood Player, read through this step-by-step
guide to get your Hollywood projects onto your mobile device:

1. Compile your Hollywood project as a Hollywood applet (*.hwa) in the Hollywood GUI
or in Designer or from the command line.

2. On Android systems: Copy the *.hwa file to the directory Hollywood on your Android’s
device SD card. The directory Hollywood is automatically created when you first
launch Hollywood on your Android device. If it is not there, create it on your own. It
has to be in the root directory of your SD card.

3. On iOS systems: Use iTunes to copy the *.hwa file to the documents directory of the
Hollywood Player app.

4. If your applet does not load any external files and has all files linked in, skip to item 7.

5. If your applet loads external files, create a directory for your applet inside the
Hollywood directory (on Android) or inside the Hollywood Player app’s documents
directory (on iOS). The directory name must be identical to the name of your applet
minus the file extension (*.hwa). For example: If your applet is called My cool

game.hwa, you have to create the directory My cool game for it inside the Hollywood
or documents directory.

6. Copy all data files required by your applet into the newly created directory.

7. Run the Hollywood Player on your device. A list of all applets that could be found
will be shown. Select your applet and then touch the play button in the control bar at
the bottom of the screen.

8. Now your applet should start!

On Android you can alternatively also copy the Hollywood applet to an arbitrary location
on your SD card and start it by simply running the *.hwa file directly from your favourite
file manager. In that case all external files referenced by the applet will be loaded from the
location relative to the folder where the *.hwa file is located. Hollywood will not change
the directory to a subdirectory named after the applet in the case that the applet has been
placed outside of the /sdcard/Hollywood folder.

http://www.hollywood-mal.com
http://www.hollywood-mal.com

26 Hollywood manual

You can configure some options by touching the "Options" button. The options screen
looks like this on Android (left) and iOS (right):

The following options are currently available:

Full screen (auto scale):

Runs the script in full screen mode using the auto scaling engine. This is the
recommended way to make sure that scripts designed for a different resolution
cover the whole screen of your mobile device. If your script uses layers and
vector graphics, however, you should use the layer scaling engine instead to get
perfectly crisp graphics in any resolution (see below).

Full screen (layer scale):

Runs the script in full screen mode using the layer scaling engine. This is
only supported for scripts which use layers. It is slower than the auto scaling
engine but can lead to perfectly crisp graphics in any resolution if your script
only uses vector graphics. For scripts that don’t use layers, you should use the
auto scaling engine (see above). Note that you can also use the auto scaling
engine for scripts which use layers but then the quality won’t be as good as
with the layer scaling engine if your script uses vector graphics. That’s why it
is recommended to use the layer scaling engine only for scripts which use layers

Chapter 2: Getting started 27

and vector graphics. For scripts which use layers and pixel graphics, you should
use the auto scaling engine because it is faster.

Interpolate:

Use anti-aliased interpolation when scaling. This is recommended to get
smoother graphics with less scaling artifacts.

Hide action bar

Hide the action bar on Android. This is recommended for scripts that don’t
need any user interaction through options in the Android action bar.

Hide status bar:

Hide the status bar on iOS if there is one. Enabling this option will result in a
full screen display.

Hide options menu:

Do not allow changes to the display configuration through the options menu
in the action bar. If you activate this, no options menu will be visible in the
action bar. This is only supported on Android. On iOS, Hollywood doesn’t
have support for changing options while it is running a script.

Keep screen on:

Force the mobile device to keep its screen on even if there is no user activity.
Normally, mobile devices will automatically switch into battery saver mode
after a certain amount of user inactivity time. Ticking this option will disable
this behaviour.

No sound: Activates this option to start Hollywood in mute mode.

See Section 3.2 [console arguments], page 33, for more detailed information on the options
listed above.

The mobile versions of Hollywood have some special features in comparison to the desktop
versions. Here is a list of special features in Hollywood for Android and iOS:

1. On Android and iOS Hollywood comes with native support for Ogg Vorbis and Ogg
Theora. You do not need any plugins to open these file formats. They will run out of
the box on Android and iOS.

2. You can show a virtual keyboard by using the ShowKeyboard() and HideKeyboard()

functions. You can also listen to the HideKeyboard event handler to find out when the
user closes the virtual keyboard. See Section 29.13 [InstallEventHandler], page 553, for
details.

3. You can listen to the OrientationChange event handler to find out when the user
rotates the device. See Section 29.13 [InstallEventHandler], page 553, for details.

4. You can also hard-code an orientation that your script shall use by specifying the
"Orientation" tag that is supported by the @DISPLAY preprocessor command. In that
case, Hollywood will not react to orientation changes when the user rotates the device.
Instead, it will keep the orientation mode that you specified in the "Orientation" tag.
See Section 25.8 [DISPLAY], page 380, for details.

5. On Android, you can also toggle between fullscreen and non-fullscreen mode by using
the options menu in the action bar.

28 Hollywood manual

Naturally, there are some limitations in the mobile versions of Hollywood. Most promi-
nently, in contrast to the desktop versions of Hollywood, the iOS version of Hollywood does
not support multiple displays but only a single one. Also on iOS, displays cannot use menus.
Furthermore, it is not possible to change the mouse pointer because there is typically none
on Android and iOS. It is also not possible to use transparent BGPics and the Desktop tag
in @DISPLAY is also unsupported.

Here is a list of commands which are currently not supported by the mobile version of
Hollywood:

- ActivateDisplay() (only unsupported on iOS)

- ChangeDisplayMode() (only unsupported on iOS)

- CloseDisplay() (only unsupported on iOS)

- CreatePointer()

- CreatePort()

- DebugPrompt()

- FontRequest()

- FreePointer()

- GetEnv()

- GetFileArgument()

- GetRawArguments()

- HideDisplay() (only unsupported on iOS)

- HidePointer()

- MovePointer()

- OpenDisplay() (only unsupported on iOS)

- SelectDisplay() (only unsupported on iOS)

- SendMessage()

- SetPointer()

- SetEnv()

- ShowDisplay() (only unsupported on iOS)

- ShowPointer()

- UnsetEnv()

There are also some functions that are exclusive to the mobile versions of Hollywood. Here
is a list of functions which are only available in the mobile versions of Hollywood:

- CallJavaMethod() (Android only)

- GetAsset() (Android only)

- HideKeyboard()

- ImageRequest() (Android only)

- PerformSelector() (iOS only)

- PermissionRequest() (Android only)

- ShowKeyboard()

- ShowToast()

- Vibrate() (Android only)

The Android version of Hollywood also supports Hollywood plugins. You have to copy them
to the directory Hollywood/Plugins on your SD card. Hollywood will scan this location
on every startup and load all plugins from there. The iOS version of Hollywood currently
doesn’t support plugins.

Chapter 2: Getting started 29

If your script runs extremely slow on a mobile platform, then you need to change your
drawing technique. Refreshing the screen can be quite expensive on a mobile device which
is why you should try to minimize the frequency of screen refreshes. The best way to do
this is to use double buffered drawing using BeginDoubleBuffer() and Flip(). Things
that will slow down the graphics engine on mobile devices are many drawing operations
that affect only small areas. Thus you should try to combine as many drawing operations
in just a single call. A double buffer is the best solution for this problem. If you cannot
use a double buffer for some reason (for example, because you are using sprites or layers),
encapsulate all drawing commands needed for drawing a frame within a BeginRefresh()

and EndRefresh() section. Then the performance should be much better on mobile devices.
See Section 30.4 [BeginRefresh], page 591, for details.

31

3 Console usage

3.1 Console mode

Hollywood can also be used from the console. Actually, the GUIs that ship with the
Amiga, Linux, and macOS versions as well as the IDE that ships with the Windows version
of Hollywood are just front-ends for the Hollywood interpreter which is a console program.
Thus, you can also use Hollywood from the console and of course you can also develop
console programs with Hollywood since Hollywood has an extensive console library. Here’s
an overview of where you can find the Hollywood interpreter that can be started from the
console:

− AmigaOS: On AmigaOS and compatibles the Hollywood interpreter is in-
stalled in Hollywood:System/Hollywood. Since the Hollywood installer adds
Hollywood:System to your path, you can start the Hollywood interpreter from the
console by just entering Hollywood.

− Linux: On Linux the Hollywood interpreter is simply called Interpreter and can be
found in the root directory of your Hollywood installation. There’s also a file named
Hollywood in that directory but that is just the GUI front-end for the Hollywood
interpreter. The Hollywood interpreter is simply known as Interpreter.

− macOS: On macOS you can find the Hollywood interpreter inside the
Contents/Resources directory of Hollywood.app. The Hollywood interpreter is
stored as its own app bundle which is named HollywoodInterpreter.app. To start
the Hollywood interpreter on macOS from the console, you’d have to do something
like this:

cd Hollywood.app/Contents/Resources

./HollywoodInterpreter.app/Contents/MacOS/Hollywood test.hws

− Windows: On Windows things are a little more complicated because Windows distin-
guishes between console programs and non-console programs. Thus, Hollywood is ac-
tually available in two flavours on Windows: In a version that is meant to be used from
the console and in a version that is meant to be used without a console. The console
version of Hollywood is named Hollywood_Console.exe and you can find it in the di-
rectory where you have installed Hollywood, typically C:/Program Files/Hollywood.
Additionally, there’s also a non-console version of Hollywood available for Windows.
This version is named Hollywood.exe and it can be found in the very same directory
as Hollywood_Console.exe.

The Hollywood IDE will always use the non-console version of Hollywood, i.e.
Hollywood.exe. If you want to have console output from Hollywood, however, you
need to use the console version of Hollywood, i.e. Hollywood_Interpreter.exe. You
can start that manually from a Windows console like this:

cd "C:/Program Files/Hollywood"

Hollywood_Console.exe test.hws

Knowing the difference between console and non-console programs on Windows is also
important when it comes to distributing your app: Since Windows distinguishes be-
tween console and non-console programs, Hollywood can also compile two different
kinds of Windows executables: Windows executables that are console programs and

32 Hollywood manual

Windows executables that are non-console programs. If you want to compile a console
program for Windows, you need to pass the -consolemode argument to the compiler.
See Section 3.2 [console arguments], page 33, for details. Note that this option cur-
rently isn’t available from the Hollywood IDE or the Hollywood GUI front-ends. If
you want to compile a Windows console program, you need to run Hollywood from the
console or manually add the -consolemode argument to the IDE or Hollywood GUI
configuration.

Also note that even non-console programs can open a console on Windows. This can be
done using the OpenConsole() function. See Section 23.44 [OpenConsole], page 349,
for details.

Once you know how to start Hollywood from the console, you could then ask it to print a
list of all available options by passing the -help argument to it. On Windows, this could
be done like this:

cd "C:/Program Files/Hollywood"

Hollywood_Console.exe -help

On Linux like this:

cd <Hollywood-installation-directory>

./Interpreter -help

On macOS like this:

cd /Applications/Hollywood.app/Contents/Resources

./HollywoodInterpreter.app/Contents/MacOS/Hollywood -help

And on AmigaOS like this:

Hollywood -help

Passing -help to Hollywood will print a comprehensive list of all available console argu-
ments. See Section 3.2 [Console arguments], page 33, for details. If you omit the -help

argument, Hollywood will open a file requester prompting you to select a Hollywood script
or applet to run.

If you want to start a Hollywood script from the console, you could use the following
commands on Windows:

cd "C:/Program Files/Hollywood"

Hollywood_Console.exe script.hws

The same is possible on the other platforms, see above.

It is important to know that all of Hollywood’s features are available from the console
as well. After all, the Windows, Amiga, Linux and macOS GUIs for Hollywood are just
front-ends for the console-based main program too. Thus, you can do everything from
the command line as well. For example, here is how you would ask Hollywood to compile
test.hws into an AmigaOS3 executable on Linux:

cd <Hollywood-installation-directory>

./Interpreter test.hws -compile ~/MyTest_AmigaOS3 -exetype classic

See Section 3.2 [Console arguments], page 33, for a detailed description of all command-line
parameters.

Note that on AmigaOS and compatible systems Hollywood is automatically added to your
path upon installation. Thus, you can simply type Hollywood in the console and Hollywood
will be started - no matter where you installed the program.

Chapter 3: Console usage 33

3.2 Console arguments

If you do not want to use the GUI for some reason, you can also start Hollywood from
the console. When you start Hollywood from the console without any arguments, a file
requester will be opened prompting you to select a script or applet to run. For a list of
supported arguments, start Hollywood using the -help argument. The template for using
Hollywood from the console is as follows:

Hollywood file.hws [-alldisplays] [-askdisplaymode] [-audiodevice name]

[-autofullscreen] [-autoscale] [-backfill type] [-borderless]

[-brush brush] [-brushfile file] [-compile file] [-compress]

[-consolemode] [-cxkey hotkey] [-debugoutput] [-depth depth]

[-disableblanker] [-dpiaware] [-encoding enc] [-endcolor color]

[-exetype type] [-exportcommands file] [-exportconstants file]

[-exporthelpstrings] [-exportplugins file] [-exportpreprocs file]

[-fakefullscreen] [-fixed] [-fitscale] [-forceflush] [-forcesound]

[-formaterror] [-fullscreen] [-fullscreenscale] [-globalplugins] [-help]

[-hideoptionsmenu] [-hidepointer] [-hidetitlebar] [-icon16x16 file]

[-icon24x24 file] [-icon32x32 file] [-icon48x48 file] [-icon64x64 file]

[-icon96x96 file] [-icon128x128 file] [-icon256x256 file]

[-icon512x512 file] [-icon1024x1024 file] [-keepproportions]

[-keepscreenon] [-layerfullscreen] [-layerscale] [-legacyaudio]

[-linkfiles file] [-linkfonts file] [-linkplugins list] [-locksettings]

[-mastervolume vol] [-maximized] [-moderequester] [-monitor num]

[-nativeunits] [-nobackfill] [-nochdir] [-nocommodity] [-nodebug]

[-nodocky] [-nohardwarescale] [-nohide] [-nokeepproportions]

[-nolegacyaudio] [-noliveresize] [-nomodeswitch] [-nomousehook]

[-noscaleengine] [-noscaleswitch] [-nosmoothscale] [-nosound]

[-nostyleoverride] [-numchannels chans] [-overrideplacement]

[-overwrite] [-pictrans transparency] [-picxpos x] [-picypos y]

[-printerror] [-pubscreen name] [-quiet] [-requireplugins list]

[-requiretags tags] [-resourcemonitor] [-scalefactor s] [-scalepicture]

[-scaleswitch] [-scalewidth width] [-scaleheight height]

[-scrwidth width] [-scrheight height] [-setconstants list] [-sizeable]

[-skipplugins mask] [-smoothscale] [-softtimer] [-softwarerenderer]

[-startcolor color] [-stayactive] [-systemscale] [-tempdir path]

[-usequartz] [-usewpa] [-videofps fps] [-videoout file] [-videopointer]

[-videoquality quality] [-videostrategy strategy] [-vsync] [-window]

[-winwidth width] [-winheight height] [-wpamode mode] [-xserver name]

Important information: The majority of these arguments are also supported by every pro-
gram compiled by Hollywood. If you do not want your compiled programs to support
command line arguments, you have to compile your scripts using the -locksettings argu-
ment (see below for a description).

Important information #2: Most of the arguments listed above can also be passed to
Hollywood programs without using a console. See Section 3.3 [Arguments without console],
page 54, for details.

Here are detailed descriptions for every command:

34 Hollywood manual

-alldisplays:

By default, command line arguments like -borderless or -sizeable will only
affect the first display. If you pass the parameter -alldisplays, all command
line arguments controlling the display style will be applied to all Hollywood
displays.

-askdisplaymode:

If you specify this command line argument, Hollywood will pop up a requester
asking the user to select whether the script should be shown in windowed or
full screen mode.

-audiodevice name:

This argument can be used to specify the ALSA sound device that Hollywood
should use for audio output. You only need to pass this argument if you want
to use a sound device that is different from the default ALSA sound device. So
normally, you do not have to pass this argument at all. [Linux only]

-autofullscreen:

This will put the display into full screen mode using the auto scaling engine
instead of changing the monitor’s resolution but only when running Hollywood
on systems that support GPU-accelerated scaling. On all other platforms a
normal full screen mode will be used, i.e. Hollywood will change the monitor’s
resolution to fit the current display dimensions. Currently, GPU-accelerated
scaling is supported on Windows, macOS, Android, and iOS which means that
on those platforms no monitor resolution change will occur because Hollywood
can simply scale the graphics to fit to the current monitor dimensions. On Ami-
gaOS compatibles and Linux, however, there will still be a monitor resolution
change with this mode because Hollywood doesn’t support GPU-accelerated
scaling on those platforms.

-autoscale:

If you specify this argument, the auto scaling engine will be activated. This
means that your script can be displayed in any resolution that you define and
it works completely automatically - you do not have to make any changes to
your code. If auto scaling is enabled, Hollywood will pretend to your script
that it is still running in its usual resolution but in reality it will get upscaled
or downscaled (depending on the chosen scaling resolution). You can specify
the initial auto scaling resolution by using the -scalewidth and -scaleheight

arguments, or the -scalefactor or the -systemscale argument. The scaling
resolution can be changed by the user at any time by resizing the Hollywood
window (don’t forget to make your window resizeable by using the @DISPLAY

preprocessor command or the -sizeable argument). If you do not specify
-scalewidth and -scaleheight or -scalefactor or -systemscale at startup,
the script will be started without auto scaling, but auto scaling will be activated
as soon as the user resizes the window. If you want anti-aliased auto scaling
(slower), specify the -smoothscale argument. Hollywood supports another
scaling engine which can be activated by specifying the -layerscale argument
(see below). See Section 25.18 [Scaling engines], page 401, for details.

Chapter 3: Console usage 35

-backfill type:

This argument allows you to specify a backfill type for Hollywood’s display. If
you specify this argument, Hollywood will fill the whole screen. type can be
one of the following keywords:

color Fill the background with the color specified in the -startcolor

argument

picture Display the brush specified in the -brush/-brushfile argument
as background picture (centered); if you specify the -startcolor

argument also, the background will be cleared with that color; if
you specify -endcolor too, the background will be cleared with a
gradient between -startcolor and -endcolor.

gradient Display a gradient as the background (with a fade from the color
specified in the -startcolor argument to the color specified in the
-endcolor argument).

texture Display the brush specified in the -brush/-brushfile argument
as a texture.

As you can see, all the backfill types require an additional argument as a pa-
rameter. You have to use the arguments -brush, -brushfile, -startcolor,
and -endcolor for this (as documented above).

-borderless:

If you specify this argument, Hollywood will open its window without borders.
This is especially useful for transparent windows.

-brush id:

Only required in connection with -backfill set to texture or picture. Spec-
ifies the identifier of the brush to use with the backfill mode. You can also use
-brushfile instead of this argument (if you want to use a brush for backfilling
that hasn’t been declared in the script).

-brushfile file:

Only required in connection with -backfill set to texture or picture. Spec-
ifies the file name of the brush to use with the backfill mode. You can also use
the -brush argument instead of this one.

-compile file:

If you specify this argument, Hollywood will compile your script to a stand-
alone executable. You will have to use this option if you want to publish your
script. Your script will not be executed. It will be compiled and saved to file.
Use the -exetype argument to specify the platform for which you want to save
your script.

-compress:

You can use this switch to enable compression of Hollywood projects. If this
argument is specified, Hollywood will compress applets and executables. This
argument can only be used in connection with -compile.

36 Hollywood manual

-consolemode:

If you specify this argument, Hollywood will compile an executable that runs
in console mode on Windows. On Windows, there is a distinction between
console and non-console programs so if you want to compile a program for the
console, you will explicitly have to tell Hollywood to do so. You can do that by
passing this argument. Note that this argument is obviously only handled when
-compile is specified as well. Note that -consolemode is also available in the
@OPTIONS preprocessor command. See Section 52.25 [OPTIONS], page 1088,
for details. See Section 3.1 [Console mode], page 31, for details.

-cxkey hotkey:

This argument can be used to install the specified key combination as a system-
wide hotkey for your application. Whenever the user presses the specified key
combination, your application will get a Hotkey event which you can listen to
through the InstallEventHandler() function. [Amiga OS only]

-debugoutput:

Specifying this argument enables debug output for this script. This console
argument has the same effect as calling DebugOutput() at the beginning of
your script.

-disableblanker:

This argument can be used to disable the screen blanker while Hollywood is
running.

-dpiaware:

This argument is only supported on Windows. If you pass this argument, Hol-
lywood will start in DPI-aware mode. This means that it will not ask the OS
to automatically scale Hollywood to fit to the monitor’s DPI. If -dpiaware is
not specified, Hollywood will automatically apply scaling on high-DPI monitors
so that its display doesn’t appear too small on them. For example, a display
of 640x480 pixels will appear really tiny on a high-DPI monitor. By automati-
cally adapting displays to the monitor’s DPI, Hollywood will try to avoid this.
However, that scaling can make displays appear blurry on high-DPI monitors.
So if you don’t want that, pass the -dpiaware argument. Note, however, that
you’ll need to take care of making sure that your display appears correctly
on high-DPI monitors then. You can do this by setting the SystemScale tag
in the @DISPLAY preprocessor command, for example. Note that -dpiaware

is also available in the @OPTIONS preprocessor command. See Section 52.25
[OPTIONS], page 1088, for details.

-encoding enc:

This argument can be used to set the script’s character encoding. Enc can be
one of the following:

utf8: Script’s character encoding is UTF-8 (with or without BOM). This
is also the default and should be used whenever and whereever
possible.

Chapter 3: Console usage 37

iso8859_1:

Script’s character encoding is ISO 8859-1. Note that due to histor-
ical reasons Hollywood will not use ISO 8859-1 character encoding
on AmigaOS and compatibles but whatever is the system’s default
character encoding. iso8859_1 will put Hollywood in legacy mode
and should make your script fully compatible with Hollywood ver-
sions older than 7.0. However, since ISO 8859-1 mode has several
drawbacks, it isn’t recommended to use this legacy mode perma-
nently. Instead, you should adapt your scripts to work correctly in
Unicode mode.

Note that it isn’t recommended to use iso8859_1 because Hollywood will only
run correctly on locales compatible with Western European languages then.
You should always use utf8 because this will put Hollywood in Unicode mode
and make sure that Hollywood runs correctly on all locales.

The encoding you specify here is automatically set as the default encoding for
both the text and string library using SetDefaultEncoding(). This means
that all functions of the string and text libraries will default to this encoding.

-endcolor color:

Only required in connection with -backfill set to gradient. color is a color
specified in RGB format (e.g. $FF0000 for red). Can also be specified with
-backfill set to picture. This will create a gradient behind the picture then.

-exetype type:

Only required in connection with -compile. This argument specifies the output
format of the executable that the Hollywood compiler shall create. Type can
be one of the following:

amigaos4 AmigaOS 4 executable (PowerPC)

android Hollywood applet which has the platform-specific constants for An-
droid set (see below).

aros AROS executable (x86)

classic AmigaOS 3.x executable (68020+)

classic881

AmigaOS 3.x executable (68020+) with math co-processor (68881/2
or 68040/68060)

ios Hollywood applet which has the platform-specific constants for iOS
set (see below).

linux Linux executable (x86)

linux64 Linux executable (x64)

linuxarm Linux executable (arm)

linuxppc Linux executable (PowerPC)

macos macOS application bundle (PowerPC)

38 Hollywood manual

macosarm64

macOS application bundle (arm64)

macos86 macOS application bundle (x86)

macos64 macOS application bundle (x64)

morphos MorphOS executable (PowerPC)

warpos WarpOS mixed-binary executable (68040/PowerPC)

win32 Windows executable (x86)

win64 Windows executable (x64)

applet Universal Hollywood applet which can be started on any system
with a Hollywood Player

This argument defaults to classic in the 68k version of Hollywood. In the
32-bit Windows version it defaults to win32 and so on.

Note that the targets applet, android, and ios will all compile platform-
independent applets that can be run with the Hollywood Player on any plat-
form. The difference between applet and android and ios is that when you
compile for android or ios, Hollywood will set the respective platform-specific
constants, i.e. #HW_ANDROID for Android and #HW_IOS for iOS. If you specify
applet as the target, however, none of the platform-specific constants will be
set. See Section 52.17 [IF], page 1080, for details. Of course, applets compiled
using applet will work on Android and iOS as well. The scripts just won’t know
that they are being compiled for Android or iOS. This can only be detected if
you specifically pass ios or android as the build target. Conversely, applets
compiled using android or ios will also run on non-Android and non-iOS de-
vices. The only difference between applet, android, and ios really is just
related to the platform-specific constants. See Section 52.17 [IF], page 1080, for
details.

You can also compile for multiple platforms at once. In that case, you have
to pass several platform names separated by a vertical bar character (|). For
example, to compile test.hws for AmigaOS 3 and MorphOS, use the following
call:

Hollywood test.hws -compile test -exetype classic|morphos

If you specify multiple target platforms, the output file name specified to
-compile is regarded as a template and will get platform specific extensions.
(i.e. the call above will generate a series of executables named test_OS3 and
test_MOS)

-exportcommands file:

This argument can be used to export a list of available commands into the
specified file. The list of available commands will be sorted by libraries. Inside
the library sections the lists will be unsorted. Only native Hollywood commands
are exported. Commands installed by plugins will not be listed here. You can
get these by using the -exportplugins argument. This option is probably not
of much use for normal users but it can be helpful for authors of IDEs who
would like to integrate Hollywood into their programming environment.

Chapter 3: Console usage 39

-exportconstants file:

This argument can be used to export a list of available constants into the
specified file. The list of available constants will be entirely unsorted. Only
native Hollywood constants are exported. Constants installed by plugins will
not be listed here. You can get these by using the -exportplugins argument.
This option is probably not of much use for normal users but it can be helpful for
authors of IDEs who would like to integrate Hollywood into their programming
environment.

-exporthelpstrings:

If this argument is used together with the -exportplugins argument, Holly-
wood will write three lines instead of one line for every plugin command to
the file specified in the -exportplugins argument. The first line will be the
command’s name, the second line will be its help text and the third line will be
the command’s help node in the accompanying documentation for the plugin.
This information is useful for IDEs which would like to provide help for plugin
commands. Note that both the second and the third line can be empty if the
plugin doesn’t export a help string or a help node for the command.

-exportplugins file:

This argument can be used to export a list of available plugins into the specified
file. If a plugin exports commands and/or constants, these will also be appended
to the export file. This option is probably of not much use for normal users but
it can be helpful for authors of IDEs who would like to integrate Hollywood into
their programming environment. If you also specify the -exporthelpstrings

argument (see above), Hollywood will export the help texts and nodes for all
plugin commands as well. See above for details.

-exportpreprocs file:

This argument can be used to export a list of all preprocessor commands sup-
ported by Hollywood into the specified file. The list will be entirely unsorted
and the individual preprocessor commands won’t contain the at prefix. This
option is probably not of much use for normal users but it can be helpful for
authors of IDEs who would like to integrate Hollywood into their programming
environment.

-fakefullscreen:

This argument allows you to put Hollywood into fake full screen mode. This
means that Hollywood will open on the desktop but the backfill window will be
configured to shield the desktop completely. Thus, the user gets the impression
as if Hollywood was running full screen, although it is running on the desktop.

-fitscale:

This argument is only handled when either -layerscale or -autoscale is
active. In that case, -fitscale will set the scaling resolution to the current
screen’s resolution so that the script will always fill out the whole screen. Using
-fitscale is basically the same as passing the current screen’s dimensions
in -scalewidth/-scaleheight. But you cannot know the screen resolution
on your user’s computers and that is why -fitscale is here to do this job.
Note that using -fitscale might distort the appearance of your script in case

40 Hollywood manual

the current screen resolution uses a different aspect-ratio than your script. To
prevent distortion, you have to use -keepproportions (see below) alongside
-fitscale.

-fixed: If you specify this argument, Hollywood’s display will be fixed on the screen
which means that you cannot move it. This is useful when Hollywood opens in
full screen mode.

-forceflush:

Specify this argument to force a buffer flush after every single line that Holly-
wood writes to the debug device. This is only useful when the debug device is
a file or a pipe because consoles always flush buffers after every line anyway.

-forcesound:

Normally, when a script tries to play a sound and the audio hardware cannot
be allocated, Hollywood will continue running normally, just without sound.
If you don’t want that, i.e. if you want Hollywood to fail in case the audio
hardware cannot be allocated, pass this argument. In that case Hollywood will
throw an error in case the audio hardware cannot be allocated.

-formaterror:

This argument tells Hollywood to format its error messages in a certain way so
that they can be easily distinguished from other console output. Note that this
argument is only handled when the -printerror option is active as well. In
that case, errors are logged to the console like this:

@_hwerror<line>:<file>*<message>

Note that <file> may be enclosed by double quotes and it may be empty if
the error is not related to a script file. In that case, <line> will be 0.

-fullscreen:

This argument will run Hollywood in full screen mode. It will scan your mon-
itor’s display modes to determine the best resolution for your script and will
then switch the monitor’s display mode into that resolution and run the script.
If you would like to run your script in full screen mode without switching the
monitor resolution, use the -fullscreenscale mode instead (see below).

-fullscreenscale:

This is a special full screen mode which won’t change your monitor’s reso-
lution. Instead, Hollywood’s display will be resized to fit your monitor’s di-
mensions. Additionally, this full screen mode will activate the auto scaling
engine so that your display is automatically scaled to fit your monitor’s di-
mensions. -fullscreenscale will use auto scaling by default. If you would
like it to use layer scaling, you have to pass the -layerscale option as well.
-fullscreenscale is especially useful on mobile devices whose display hard-
ware has a hard-coded resolution and doesn’t support resolution changes in the
same way as an external monitor connected to a desktop computer does. The
downside of -fullscreenscale is that it is slower because Hollywood has to
scale all rendering operations to the monitor’s dimensions.

Chapter 3: Console usage 41

-globalplugins:

On AmigaOS and compatibles, plugins can also be globally installed in
LIBS:Hollywood. Executables compiled by Hollywood, however, will only load
the plugins that are stored next to the executable in its directory. If you want
your executable to load all plugins in LIBS:Hollywood as well, you can specify
this argument. Alternatively, you can also set GlobalPlugins to True in the
@OPTIONS preprocessor command. [AmigaOS only]

-help: Print a list of supported console arguments.

-hideoptionsmenu:

When the user opens the options menu on Android devices, Hollywood will
allow the user to configure several display parameters like enabling or disabling
autoscaling or layerscaling. If you do not want to give the user this possibility to
change the display parameters via the app’s options menu, pass this argument
to Hollywood. [Android only]

-hidepointer:

If you specify this argument, the mouse pointer will automatically be hidden as
soon as Hollywood enters full screen or fake full screen mode. This argument
has the advantage over the HidePointer() command in that it only hides the
mouse pointer in full screen mode. If Hollywood opens in windowed mode, the
mouse pointer will remain visible because hiding the mouse pointer in windowed
mode usually causes confusion with the user.

-hidetitlebar:

This argument hides the title bar of the host screen. On desktop systems this
argument is only effective when Hollywood opens on its own screen or when you
use the -backfill option. On mobile devices this option will hide the status
bar (iOS) or action bar (Android). [Amiga OS, macOS, iOS and Android only]

-icon16x16 file:

This and all the other -iconXXX console arguments can be used to specify the
icons for your application. On Windows, macOS, and Linux these icons will
appear in the window’s border and they will also be used by certain elements
of the window manager like the task bar on Windows. The icons will also be
linked into any applets or executables you compile with Hollywood. By default,
Hollywood will always use the standard Hollywood icon (the clapperboard). If
you prefer to use your own icon instead, you can do so by specifying one or
more of these arguments. For the best results, you should use multiple icons
handcrafted for all individual sizes. Hollywood currently supports these icon
sizes: 16x16, 24x24, 32x32, 48x48, 64x64, 96x96, 128x128, 256x256, 512x512,
and 1024x1024. Not all sizes are currently supported on all platforms but you
should make sure to provide icons for all these sizes. If you leave a size out,
Hollywood might fall back to its default icon (clapperboard) for the size. So
if you intend to use your own icons, make sure that you always provide it in
all sizes. The image file that is required as a parameter by these arguments
should be a PNG image with alpha channel. Images without alpha channel
are supported as well, but this is not recommended because it doesn’t look too

42 Hollywood manual

good. Alternatively, you can also use the @APPICON preprocessor command to
specify custom icons for your project.

-icon24x24 file:

Same as -icon16x16 but embeds an icon of size 24x24.

-icon32x32 file:

Same as -icon16x16 but embeds an icon of size 32x32.

-icon48x48 file:

Same as -icon16x16 but embeds an icon of size 48x48.

-icon64x64 file:

Same as -icon16x16 but embeds an icon of size 64x64.

-icon96x96 file:

Same as -icon16x16 but embeds an icon of size 96x96.

-icon128x128 file:

Same as -icon16x16 but embeds an icon of size 128x128.

-icon256x256 file:

Same as -icon16x16 but embeds an icon of size 256x256.

-icon512x512 file:

Same as -icon16x16 but embeds an icon of size 512x512.

-icon1024x1024 file:

Same as -icon16x16 but embeds an icon of size 1024x1024.

-keepproportions:

This argument is only handled when either -layerscale or -autoscale is
active. In that case, -keepproportions will not distort the resolution of the
current script when the user resizes the window. Instead, black borders will
be used to pad the non-proportional window regions. The display itself will
always keep its aspect-ratio. This is very useful for scripts that should not be
distorted.

-keepscreenon:

If you specify this argument, battery saving mode will be disabled on mobile
devices. This means that the device’s screen will never be dimmed or turned
off to save energy. Useful for scripts that do not require user input. [Android
and iOS only]

-layerfullscreen:

This will put the display into full screen mode using the layer scaling engine
instead of changing the monitor’s resolution but only when running Hollywood
on systems that support GPU-accelerated scaling. On all other platforms a
normal full screen mode will be used, i.e. Hollywood will change the monitor’s
resolution to fit the current display dimensions. Currently, GPU-accelerated
scaling is supported on Windows, macOS, Android, and iOS which means that
on those platforms no monitor resolution change will occur because Hollywood
can simply scale the graphics to fit to the current monitor dimensions. On Ami-
gaOS compatibles and Linux, however, there will still be a monitor resolution

Chapter 3: Console usage 43

change with this mode because Hollywood doesn’t support GPU-accelerated
scaling on those platforms.

-layerscale:

If you specify this argument, the layer scaling engine will be activated. This
means that your script can be displayed in any resolution that you define and
everything is done completely automatically - you do not have to make any
changes to your code. However, as the very name implies, the layer scaling
engine will only work if layers are enabled. In layer scaling mode, all layers will
automatically be adapted to the new resolution and Hollywood will pretend to
your script that it is still running in its original resolution to make sure that
your script is executed in exactly the same way as without layer scaling. The
advantage of layer scaling is that vector layers (i.e. graphics primitives, true
type text, vector brushes, vector anims) will be scaled in vector mode so that
there won’t be any loss of quality even if you change the resolution of your script
from 320x240 to 1280x1024. You can specify the initial layer scaling resolution
by using the -scalewidth and -scaleheight arguments or the -scalefactor
or the -systemscale arguments (see below). The scaling resolution can be
changed by the user at any time by resizing the Hollywood window (don’t
forget to make your window resizeable by using the @DISPLAY preprocessor

command or the -sizeable argument). If you do not specify -scalewidth and
-scaleheight or -scalefactor or -systemscale at startup, the script will be
started without layer scaling, but layer scaling will be activated as soon as the
user resizes the window. If you want anti-aliased layer scaling (slower), specify
the -smoothscale argument. Hollywood supports another scaling engine which
can be activated by specifying the -autoscale argument (see above). See
Section 25.18 [Scaling engines], page 401, for details.

-legacyaudio:

Starting with Hollywood 6.0, the AmigaOS versions of Hollywood come with a
new audio driver. The old audio driver is still supported and can be enabled
by specifying this command line option. Please note that on Amiga OS 3.x
the old audio driver is enabled by default due to performance reasons. If you
would like to use the new audio driver on AmigaOS 3.x too, you have to pass
the -nolegacyaudio console argument. [AmigaOS only]

-linkfiles file:

This argument is only handled when -compile is also specified. You can use
this argument to link files into your applet or executable. Your script will
then automatically load these files from your applet or executable. This is an
alternative for using the preprocessor commands to link files into your applet or
executable. If you do not want to use preprocessor commands to link files into
your applet or executable, use -linkfiles for that. Alternatively, you can also
use the @LINKER preprocessor command to specifiy a list of files to be linked
into your applet or executable. See Section 4.3 [Linking data files], page 58, for
details.

44 Hollywood manual

-linkfonts file:

This argument is only handled when -compile is also specified. You can use
this argument to link fonts into your applet or executable. Your script will
then automatically load these fonts from your applet or executable when you call
SetFont(). Using -linkfonts is an alternative to using the @FONT preprocessor
command to link fonts into your applet or executable. Normally, using @FONT

should be much easier than using -linkfonts so you should use the latter only
with good reasons. Alternatively, you can also use the @LINKER preprocessor
command to specifiy a list of fonts to be linked into your applet or executable.
See Section 4.4 [Linking fonts], page 60, for details.

-linkplugins list:

This argument is only handled when -compile is also specified. You can use
this argument to link plugins into your executable. Your executable will then
automatically load these plugins on startup and you have everything in a single
file. It is no longer necessary to store or install plugins externally if you link
them to your executable. Note that plugins can only be linked to executables,
not to applets, since applets are platform-independent and plugins are not.
You have to pass a list of plugins that should be linked to your executable
to this argument. If you want to link more than one plugin, separate the
individual plugins by using a vertical bar character (|). For example, to link
your script against "plugin1.hwp" and "plugin2.hwp" you would have to specify
"plugin1|plugin2" here. Make sure to carefully read the licenses of all plugins
you link to your executable because licenses like LGPL affect your project if
you statically link against LGPL software. Note that before you can use the
-linkplugins argument, you first have to set up the infrastructure for the
plugin linker. See Section 4.5 [Linking plugins], page 61, for details.

-locksettings

This argument is only handled when -compile is also specified. You can use
this argument to fix your script’s display settings. Normally, when you compile
an executable with Hollywood, the user will be able to change the appearance
of it by passing arguments like -borderless or -fullscreen to the executable.
The user could also change the backfill settings of the executable by specify-
ing -backfill etc. By default, the user is given all flexibility to adjust your
program to his wishes. He could also enable a scaling engine or make your
program sizeable. If you do not want the user to be able to change your dis-
play settings, you will have to compile your executables using -locksettings.
If -locksettings is used, Hollywood will always use the settings specified in
your script’s @DISPLAY preprocessor command. For example, if you specify
Mode=FullScreen in your script’s @DISPLAY command, and you compile using
-locksettings, then the user will not be able to run your program in windowed
mode. Your program will always open in full screen mode. Think twice before
using -locksettings because it impedes the flexibility of your programs.

-mastervolume vol:

This argument allows you to specify the master volume Hollywood shall use.
Use this only if you experience distortion when Hollywood plays sounds. Nor-

Chapter 3: Console usage 45

mally, you do not have to use an other value here. Master volume can range
from 0 to 64. [AmigaOS only]

-maximized:

Open the display in maximized mode. This display has to be sizeable for this
parameter to take effect. [Windows only]

-moderequester:

If you specify this command line argument together with the -fullscreen

argument, Hollywood will pop up a requester prompting the user to select a
monitor resolution for the full screen mode. Hollywood will then show your
script in full screen mode using the display mode just chosen by the user.

-monitor num:

This argument allows you to specify the monitor your script’s display should
be opened on. Monitors are counted from 1 which is the primary monitor.

-nativeunits:

If this console argument is specified, Hollywood will use the host system’s native
coordinate space and units instead of pixels. This currently only has an effect
on macOS and iOS because both operating systems use custom units instead
of pixels when running on a Retina device. By default, Hollywood will enforce
the use of pixels on Retina Macs and iOS devices for cross-platform compati-
bility reasons but you may want to override this setting by using this console
argument.

-nobackfill:

By default, Hollywood will always install a backfill for your display if it is opened
in full screen mode. If you don’t want this, specify this option. Hollywood will
open in full screen mode then but it won’t shield the areas that are not covered
by the display itself. This is useful on Amiga systems if you’d like Hollywood
to open on a new screen without hiding the screen’s visuals like its title bar and
its background decoration from the user. If you use this argument, you might
also want to use the -nostyleoverride argument. [AmigaOS only]

-nochdir:

By default, Hollywood will always change the current directory to the directory
of the script or applet it is currently running. Pass this argument if you don’t
want this behaviour. In that case, Hollywood won’t change the current directory
when running a script.

-nocommodity:

On AmigaOS systems, if this argument is specified Hollywood will not add itself
to the system’s list of commodities. [AmigaOS only]

-nodebug:

If this argument is specified, the commands DebugPrint(), DebugPrintNR(),
Assert(), DebugOutput() and @WARNING will be skipped when running the
script or applet. This allows you to globally disable debugging functions with
just a single call.

46 Hollywood manual

-nodocky:

On AmigaOS 4 systems, if this argument is specified, Hollywood will not show
the application in AmiDock. This tag is useful if you would like to have an in-
visible application that can use all the application functionality like the message
mechanism and Ringhio but doesn’t appear in AmiDock. This tag is only rec-
ognized if RegisterApplication has been set to True in @OPTIONS. [AmigaOS
4 only]

-nohardwarescale:

For performance reasons Hollywood will try to use hardware accelerated scal-
ing when autoscaling is enabled on Android devices by default. Some devices,
however, do not implement hardware accelerated scaling properly so if you ex-
perience strange behaviour when using autoscale mode, try to disable hardware
accelerated scaling using this argument and see if it helps. This is obsolete since
Hollywood 8.0. Hollywood will always use hardware-accelerated scaling now.
[Android only]

-nohide: If you specify this argument, the user will not able to hide the Hollywood
display, i.e. the Hollywood window will not have any minimize button. This
argument does not affect the ShowDisplay() and HideDisplay() commands.
You can still hide and show the display using these commands.

-nokeepproportions:

When the user switches between windowed and full screen mode using the
CMD+RETURN hotkey (on Windows it is LALT+RETURN) and Hollywood chooses to
scale the display to the current monitor’s resolution, it will add padding borders
if necessary to keep the display’s proportions. If you don’t want that, pass this
argument.

-nolegacyaudio:

Starting with Hollywood 6.0, the AmigaOS versions of Hollywood come with a
new audio driver but this new driver is not enabled on AmigaOS 3.x by default
due to performance reasons. If you would like to use the new audio driver on
AmigaOS 3.x too, pass this console argument. [AmigaOS only]

-noliveresize:

On many platforms Hollywood will use live resizing when the user is resizing a
display. This means that the display’s contents will be scaled while the user is
resizing the display. If you don’t want this, you can set this console argument.

-nomodeswitch:

If you specify this argument it will not be possible to switch between windowed
and full screen mode by pressing the CMD+RETURN hotkey (on Windows it is
LALT+RETURN). If -nomodeswitch is specified, Hollywood will always remain in
its initial display mode and no switches between windowed and full screen will
be made.

-nomousehook:

If you specify this argument, Hollywood won’t install a hook that constantly
polls the mouse position. This is only useful on Linux if the connection to
the X Server is quite slow. If that is the case, using -nomousehook might give

Chapter 3: Console usage 47

you a performance boost. The downside of using this option is that you will no
longer be notified about OnMouseMove events if they occur outside the window’s
boundaries because this notification only works with a mouse hook. [Linux only]

-noscaleengine:

This console argument is only handled if you pass the -fullscreenscale ar-
gument as well. In that case Hollywood will not use any scaling engine but will
simply open your display in the same dimensions as the monitor’s resolution.
Your script then needs to manually adapt to the monitor’s resolution. This
allows you to write scripts which can dynamically adapt to different resolutions
without simply scaling their graphics.

-noscaleswitch:

When the user switches between windowed and full screen mode using the
CMD+RETURN hotkey (on Windows it is LALT+RETURN), Hollywood might choose
to scale the display to the monitor’s current resolution instead of switching the
monitor’s physical resolution. If you don’t want Hollywood to simulate full
screen mode by just scaling the display to the monitor’s current resolution,
pass this console argument. In that case, pressing the mode switch hotkey will
always change the monitor’s physical resolution.

-nosmoothscale:

When the user switches between windowed and full screen mode using the
CMD+RETURN hotkey (on Windows it is LALT+RETURN) and Hollywood chooses
to scale the display to the current monitor’s resolution, it will use anti-aliased
interpolation for smoother scale results by default. If you don’t want that, pass
this argument.

-nosound:

This argument disables all sound functions of Hollywood. Hollywood will start
in mute mode.

-nostyleoverride:

If Hollywood runs your script in full screen mode it will automatically modify
your display’s window decoration style and make the window fixed and border-
less. If you don’t want this, you can use this argument to force Hollywood to
leave window styles untouched. This argument is mostly used together with
the -nobackfill argument. [AmigaOS only]

-numchannels chans:

By default, Hollywood allocates 8 audio channels for sound playback. This
means that Hollywood will run out of channels in case your script tries to play
more than 8 different samples, music objects, or video streams at a time. If
your script needs more than 8 channels for some particular reasons, you can
use this argument to tell Hollywood how many channels it should allocate.

-overrideplacement:

If this argument is specified, Hollywood will ignore any saved position or size
information for displays that have the RememberPosition tag set to True. In-
stead, those displays will always use their default position and size.

48 Hollywood manual

-overwrite:

If you specify this argument, Hollywood will automatically overwrite existing
files when -compile is used. Normally, Hollywood will ask you to confirm
overwriting existing files in -compile mode. You can suppress the compulsory
confirmation by specifying this argument.

-pictrans transparency:

Only possible with -backfill set to picture. This argument allows you to
assign a transparency color to your picture. Defaults to #NOTRANSPARENCY.

-picxpos x:

Only possible with -backfill set to picture. You can use this argument to
specify the position where the backfill picture shall be displayed. Defaults to
#CENTER.

-picypos y:

Only possible with -backfill set to picture. You can use this argument to
specify the position where the backfill picture shall be displayed. Defaults to
#CENTER.

-printerror:

If this argument is specified, Hollywood won’t show script errors in a dialog box,
but will simply print them to the console. This can be useful when integrating
Hollywood into IDEs. If you need to parse Hollywood’s error messages, you
should also specify the -formaterror argument to force Hollywood to output
errors in a format that can be parsed, i.e. split into its individual constituents
like script file, line number, error message.

-pubscreen name:

If specified, Hollywood will open on the public screen specified by name instead
of the desktop screen. [AmigaOS only]

-quiet: If you specify this argument, Hollywood will not display any information during
its startup.

-requireplugins list:

This argument allows you to specify a list of plugins that your script explic-
itly requires. If you need to specify more than one plugin, separate the in-
dividual plugins by using a vertical bar character (|). For example, to make
your script require "plugin1.hwp" and "plugin2.hwp" you would have to specify
"plugin1|plugin2" here. Using this preprocessor command has the same effect
as using the @REQUIRE preprocessor command. See Section 45.6 [REQUIRE],
page 930, for details. If you need to pass additional arguments to the plugin’s
initialization routine, use the -requiretags console argument.

-requiretags tags:

This console argument allows you to pass additional arguments to the initializa-
tion routine of plugins. Additional arguments for plugin initialization are nor-
mally passed to the plugin by using the @REQUIRE preprocessor command but
you can also pass them from the command line using this argument. This is es-
pecially useful for testing purposes because you won’t have to modify your script

Chapter 3: Console usage 49

all the time if you pass additional initialization arguments via -requiretags.
You can pass additional arguments to more than one plugin. The format of the
string you pass to this argument must be like this:

name1[tag1=value1,...,tagN=valueN]name2[...]...nameN[...]

Here is an example:

-requiretags testplugin[User=’admin’,Pwd=’secret’,Len=64]

The command line above would pass three additional tags to the the initial-
ization routine of the plugin testplugin.hwp, namely User, Pwd, and Len.
User is set to "admin", Pwd to "secret", and Len is passed as an integer value
of 64. Please note that you also have to use -requireplugins if you use
-requiretags console argument. Otherwise, the plugins’ initialization code
won’t be executed at all.

-resourcemonitor:

Specifying this argument will open Hollywood’s resource monitor right at
the start of your script. The resource monitor is useful to keep track of your
resources while developing your script. Please read the documentation of
OpenResourceMonitor() for more information on this topic.

-scalefactor s:

This argument can be used in connection with either -autoscale or
-layerscale to apply a global scaling factor to your whole script. The scaling
factor must be specified as a fractional number indicating the desired scaling
coefficient, e.g. a value of 0.5 shrinks everything to half of its size whereas a
value of 2.0 scales everything to twice its size. Note that setting -scalefactor

will make the script behave slightly different than setting -scalewidth and
-scaleheight does. The latter will enforce a fixed display size for the script
which will never be changed unless the user manually uses the mouse to change
the display size. Setting -scalefactor, however, will apply the scale factor to
all new BGPics and display sizes so the display size may change if the BGPic
size changes or the script changes the display size. Thus, using -scalefactor

is perfect for scaling a script for a high dpi display because it makes sure that
the script behaves exactly the same but just appears larger (or smaller if you
want!). You can also use the -systemscale argument to automatically apply
the host system’s scaling factor to your display (see below). Please also read
the documentation of -autoscale/-layerscale for more information on the
Hollywood scaling engines. See Section 25.18 [Scaling engines], page 401, for
details.

-scalepicture:

Only possible if -backfill is set to picture. This argument tells Hollywood
to scale the specified backfill picture to the actual size of the backfill window
so that it fills it completely.

-scaleswitch:

When the user switches between windowed and full screen mode using the
CMD+RETURN hotkey (on Windows it is LALT+RETURN), Hollywood might not
change the monitor’s screen mode but just simulate full screen mode by scaling

50 Hollywood manual

the display to the monitor’s current resolution. This is only done if the system
Hollywood is running on supports hardware-accelerated scaling. On older sys-
tems or platforms that don’t support hardware-accelerated scaling Hollywood
will switch the monitor to the new resolution instead. If you want Hollywood
to always simulate full screen mode by just scaling the display to the monitor’s
current resolution instead of changing its physical mode, pass this argument.

-scalewidth width:

This argument can be used in connection with either -autoscale or
-layerscale to specify the initial scaling engine dimensions. You can specify
a numeric pixel value (e.g. -scalewidth 1280 -scaleheight 1024) or a
scaling percentage (e.g. -scalewidth 200% -scaleheight 200%). Please read
the documentation of -autoscale/-layerscale for more information on the
Hollywood scaling engines. See Section 25.18 [Scaling engines], page 401, for
details.

-scaleheight height:

Same as -scalewidth but specifies the scaling height.

-scrdepth d:

This argument can be specified to set the screen depth when you want Holly-
wood to open in full screen mode. This argument tells Hollywood which color
depth to choose for the full screen mode (valid depths are 15, 16, 24 and 32).
If you do not specify this argument, Hollywood will open in the same depth as
the desktop screen.

-scrwidth width:

This argument can be used in connection with -fullscreen to specify the
dimensions of the full screen that Hollywood shall open. If you do not specify
this argument, Hollywood will choose a full screen mode which fits best for your
display. If you specify 0 in -scrwidth and -scrheight, Hollywood will use the
dimensions of the desktop screen for the full screen mode.

-scrheight height:

Same as -scrwidth but specifies the screen height.

-setconstants list:

You can use this argument to declare one or more constants. Normally, con-
stants are declared using the Const statement. Sometimes, however, it can be
convenient to be able to declare constants from the command line as well. This
is especially useful when using the @IF preprocessor command. You have to pass
a string which contains one or more constants to be declared to this argument.
If you want to declare multiple constants, you have to separate the individual
constants by using the vertical bar character (|). You can use the equal sign
(=) to assign a value to a constant. If you leave out the equal sign, the constant
will automatically be given a value of 1. Note that the constant name must not
include the hash tag prefix but just the constant’s name. Here is an example
string: "MYCONSTANT|MYCONSTANT2=1000". If you pass this string to
-setconstants, #MYCONSTANT will be defined as 1 and #MYCONSTANT2 will be
defined as 1000. If you need to define a string constant, you need to enclose the

Chapter 3: Console usage 51

string in square brackets, e.g. "MYSTRINGCONSTANT=[Test123]". If you
need to store square brackets within a string constant, simply duplicate them
so that they cannot be confused with the string constant delimiters.

-sizeable:

If you specify this argument, Hollywood will open its window with a size widget
at the bottom right side of the window. This widgets will be invisible if your
window does not have borders but it will still be accessible.

-skipplugins mask:

This argument can be used to tell Hollywood which plugins it should not load on
startup. You can specify multiple plugins by separating them using a vertical
bar (|) as a separator. If you want Hollywood to load no plugins at all on
startup, specify an asterisk (*) here. You can load plugins later using the
@REQUIRE preprocessor command or the LoadPlugin() function.

-smoothscale:

If -autoscale or -layerscale is active and you specify -smoothscale,
all scaling operations are interpolated using anti-aliased pixel smoothing.
This looks better but is also slower. Please read the documentation of
-autoscale/-layerscale for more information on the Hollywood scaling
engines.

-softtimer:

If you specify this argument, Hollywood will use a low resolution software timer
instead of the high resolution hardware timer. This is sometimes necessary
because with certain older Windows XP hardware, the timer may occassionally
leap which can cause unexpected behaviour. On newer hardware and Windows
versions you should never have to use this. [Windows only]

-softwarerenderer:

Specify this argument to disable Hollywood’s GPU-accelerated Direct2D ren-
derer on Windows systems. If -softwarerenderer is set, Hollywood will use
its CPU-based renderer for maximum compatibility. [Windows only]

-startcolor color:

Only required in connection with -backfill set to gradient or color. color
is a color specified in RGB format (e.g. $00FF00 for green). You can also use
this argument together with -backfill set to picture; the color will fill the
picture background then.

-stayactive:

(removed in Hollywood 2.0)

-systemscale:

If you set this argument, the host system’s scaling factor will automatically be
applied to your display. This can be useful on systems with high-DPI moni-
tors. For example, if your display normally opens in 640x480 pixels and you
run it on a monitor that uses twice as many dots per inch (DPI), specifying the
-systemscale option will automatically scale your script to 1280x960 pixels
so that it doesn’t look tiny just because the system uses a high-DPI monitor.

52 Hollywood manual

By default, -systemscale will activate the auto scaling engine. If you want it
to use layer scaling instead, just pass the -layerscale argument. Note that
-systemscale uses the same scale mode as -scalefactor internally, so scripts
using -systemscale will behave as if -scalefactor was specified. It is even
possible to use the -scalefactor argument on top of -systemscale, in that
case the value specified in -scalefactor is multiplied by host system’s default
scaling factor. Please also read the documentation of -autoscale/-layerscale
for more information on the Hollywood scaling engines. See Section 25.18 [Scal-
ing engines], page 401, for details. Note that on Windows you must also set the
DPIAware tag to True in the @OPTIONS preprocessor command in order to use
-systemscale. See Section 52.25 [OPTIONS], page 1088, for details.

-tempdir path:

This argument can be used to specify the path where Hollywood should store
its temporary files. This is especially useful on AmigaOS and compatibles since
Hollywood will store temporary files in the RAM disk on these systems. This
can lead to problems on systems that are short on memory or when working
with very large projects. To specify the current directory as the location for
temporary files, pass "." here.

-usequartz:

Tells Hollywood to use Quartz 2D for all graphics output. By default, Hol-
lywood uses QuickDraw because that is much faster (though deprecated). If
you experience any graphics problems on macOS, you might want to try this
argument. Note that this argument is only supported by the PowerPC version
of Hollywood. The x86/x64 versions of Hollywood for macOS will always use
Quartz 2D. [macOS only]

-usewpa: Tells Hollywood to use device independent bitmaps instead of standard OS
bitmaps. Device independent bitmaps are normally slower than the standard
OS bitmaps with the exception of WinUAE and AROS which both can lock
OS bitmaps only pretty inefficiently. Thus, on WinUAE and AROS, -usewpa
is activated automatically to speed up Hollywood. If you want to turn this
off, specify -wpamode 0. Please note: -usewpa is a lowlevel argument which is
primarily here for testing purposes. Normally, you should not deal with this
directly. [Amiga OS only]

-videofps fps:

Only used together with -videoout. If -videoout is active, -videofps can
be used to tell Hollywood how many frames per second (FPS) the video to be
recorded shall have. If not specified, 50 frames per second will be used as a
default value. See Section 4.6 [Hollywood video recorder], page 62, for details.

-videoout file:

Enables Hollywood’s built-in video recording feature. If -videoout is specified
Hollywood will save your script as an AVI video file which you then could burn
on a DVD, for instance. See Section 4.6 [Hollywood video recorder], page 62,
for details.

Chapter 3: Console usage 53

-videopointer:

Only used together with -videoout. If you specify -videopointer the mouse
pointer will always be rendered into the video stream. By default, when in
video recording mode, no mouse pointer will appear in the video. If you need
to have a mouse pointer in the video (e.g. to demonstrate user interaction),
specify this argument. See Section 4.6 [Hollywood video recorder], page 62, for
details.

-videoquality quality:

Only used together with -videoout. If -videoout is active, -videoquality
can be used to specify the compression level for the video frames. Quality is
specified in percent so valid quality levels range from 0 to 100. The default
is 90 which results in a pretty high quality video file which needs quite some
disk space. If you want to have a smaller video file, you can try to use a lower
quality level. See Section 4.6 [Hollywood video recorder], page 62, for details.

-videostrategy strategy:

Only used together with -videoout. If the -videoout argument is active,
-videostrategy can be used to specify the strategy Hollywood shall use when
converting a Hollywood script into a video file. Currently, you can specify
wait and raw here. By default Hollywood uses wait strategy. See Section 4.6
[Hollywood video recorder], page 62, for details.

-vsync: On Windows systems, this argument can be used to force Hollywood’s renderer
to throttle refresh to the monitor’s refresh rate. This means that you’ll no
longer have to use functions like VWait() to throttle drawing. However, do
note that if you set this to True, you must make sure to draw in full frames
only otherwise drawing will become extremely slow. Full frame drawing can be
achieved e.g. by either using a double buffer or by using BeginRefresh() and
EndRefresh(). Also note that VSync is currently only supported on Windows
and only if Hollywood uses its Direct2D backend. Direct2D is not available
before Windows Vista SP2. [Windows only]

-window: If you specify this argument, Hollywood will open its window on the desktop
instead of full screen mode. This is the default setting.

-winwidth width:

This argument allows you to set the initial display width without activating one
of the scaling engines. This has the same effect as if the user resized your display
to the specified width. That’s why your script will also receive a "SizeWindow"
event right after Hollywood has been started if you pass this console argument.
Note that this doesn’t active any scaling engines, so your script needs to be
prepared to adapt to the new dimensions itself.

-winheight height:

Same as -winwidth but specifies the window height.

-wpamode mode:

If -usewpa is active, this argument can be used to define the device independent
bitmap mode. Passing 0 here turns off -usewpa, 1 activates 32-bit DIB mode,
and 2 activates Workbench compliant DIB mode. Defaults to 1 which should

54 Hollywood manual

give the best performance. Please note: -wpamode is a lowlevel argument which
is primarily here for testing purposes. Normally, you should not deal with this
directly. [Amiga OS only]

-xserver name:

This argument can be used to specify the X Server that Hollywood should try
to connect to. By default, Hollywood will use the X Server that is specified
in the DISPLAY environment variable. If you want Hollywood to connect to a
different X Server, use this argument. [Linux only]

3.3 Console emulation

Hollywood and programs compiled with Hollywood recognize many console arguments that
can be used to control various functions of the program. Most of the time, though, you
won’t start Hollywood or Hollywood-compiled programs from the console. So how can you
pass these arguments to Hollywood programs when you don’t have a console? This differs
from platform to platform. Below is an overview of how to pass console arguments to
Hollywood programs without using a console.

Note that by default, all programs compiled by Hollywood will handle console arguments
and arguments passed to them using the mechanisms described below. If you would like
to forbid this behaviour, you have to compile your programs using the -locksettings

argument. Otherwise, the user will be able to change the appearance of your compiled
program by passing arguments to it.

Here is how to specify console arguments to Hollywood programs without using the console:

1) AmigaOS:

Simply create an icon for your program and add the console arguments you want to use
as tooltypes to that icon. For example, to add a black-to-blue gradient your program
in RAM:MyCoolProg, create an icon named RAM:MyCoolProg.info and add the following
tooltypes to it:

BACKFILL=GRADIENT

STARTCOLOR=$000000

ENDCOLOR=$0000ff

BORDERLESS

FIXED

(FULLSCREEN)

Note that tooltypes enclosed in parentheses are ignored so in the above case, FULLSCREEN
is not handled.

2) Windows:

Under Windows, you can put the console arguments you want to use in an *.ini file accom-
panying your program. Let’s assume you have compiled a program named MyCoolProg.exe

with Hollywood. You have installed this program in

C:/Program Files/MyCoolProg/MyCoolProg.exe

You can now create an *.ini file which holds further options for this program. The *.ini
file must have the same name as your program. Otherwise your program will not be able
to detect that there is an *.ini file. Thus, you have to create the *.ini file as follows:

Chapter 3: Console usage 55

C:/Program Files/MyCoolProg/MyCoolProg.ini

You can then use your favorite text editor to add options to this *.ini file. For example,
to create a black to blue gradient backfill for your program, you can put the following tags
in MyCoolProg.ini:

Backfill=Gradient

StartColor=$000000

EndColor=$0000ff

Borderless=True

Fixed=True

See Section 3.2 [console arguments], page 33, for more information on which arguments can
be specified in the *.ini file.

3) macOS:

Under macOS, you can choose between two different ways of passing console arguments
without using a console:

1. Open the Info.plist inside the application bundle that was compiled by Holly-
wood with your favorite text editor. Now search for the dictionary entry named
CFBundleExecutableArgs. Here you can add all the console arguments you like now.
For example:

<key>CFBundleExecutableArgs</key>

<string>

-backfill gradient -startcolor $000000 -endcolor $0000ff

-borderless -fixed

</string>

With these console arguments specified, your program will open with a black-to-blue
gradient.

2. Alternatively, you can also create an *.ini file just as you can do under Windows. See
above for instructions on how to create such an *.ini file. The only difference under
macOS is that you have to put the *.ini file inside the Resources directory of your
application bundle. For instance, if your app bundle is located in this path:

/Programs/MyCoolProg.app

Your *.ini file has to go here then:

/Programs/MyCoolProg.app/Contents/Resources/MyCoolProg.ini

The rest is exactly the same as under Windows.

4) Linux:

On Linux you can also put all console arguments in an *.ini file. See above for detailed
instructions.

57

4 Compiler and linker

4.1 Compiling executables

Hollywood’s compiler can either be used from the GUI or by using the -compile argument
from the console.

Once invoked, the compiler will read the specified script file, compile it and link a special
player-only version of Hollywood to it. All external data that is declared using preprocessor
commands is linked, too (unless it is explicitly declared that a file should not be linked).
The output executable format can be defined by specifying the -exetype argument. This
argument can be set to the following executable types:

amigaos4 AmigaOS 4 executable (PowerPC)

aros AROS executable (x86)

classic AmigaOS 3.x executable (68020+)

classic881

AmigaOS 3.x executable (68020+) with math co-processor (68881/2 or
68040/68060)

linux Linux executable (x86)

linux64 Linux executable (x64)

linuxarm Linux executable (arm)

linuxppc Linux executable (PowerPC)

macos macOS application bundle (PowerPC)

macosarm64

macOS application bundle (arm64)

macos86 macOS application bundle (x86)

macos64 macOS application bundle (x64)

morphos MorphOS executable (PowerPC)

warpos WarpOS mixed-binary executable (68040/PowerPC)

win32 Windows executable (x86)

win64 Windows executable (x64)

applet Universal Hollywood applet which can be started on any system with a Holly-
wood player

In the 68k version of Hollywood, -exetype defaults to classic, in the AmigaOS4 version
-exetype defaults to amigaos4 and so on.

If your script uses a lot of external data, your executable might become very big because
Hollywood will link all the files declared with preprocessor commands to it. If you do not
want that, you can use the Link argument which all preprocessor commands support to

58 Hollywood manual

tell the linker not to link certain files. Alternatively, you could load the files using normal
Hollywood commands instead of preprocessor commands.

The generated executable will accept the same console arguments as the main Hollywood
program. Therefore you can start it for example with a borderless window by calling it with
the -borderless argument.

You can also link plugins to your executables using the -linkplugins argument but you
have to be very careful with the plugin license to see if static linking is allowed and the
effect it can have on your project’s license. See Section 3.2 [Console arguments], page 33,
for details.

4.2 Compiling applets

Apart from stand-alone executables, you can also compile your scripts to Hollywood applets.
These are much smaller because they do not contain the Hollywood Player. Hollywood
applets can be started with the interpreter or the freely available Hollywood Player. The
advantage of applets is that you save a lot of space. Imagine you want to compile your script
for all platforms which Hollywood supports (AmigaOS 3, AmigaOS 4, WarpOS, MorphOS,
AROS, Windows, macOS, Linux). The players for all that platforms alone take up more
than 50 megabytes so you would have to distribute a rather large archive. In this case it
is a much better idea to just compile your script to a Hollywood applet. Then, the user
can simply download the freely available Hollywood Player for his platform from http://

www.hollywood-mal.com/ and use it to run your applet. And you have to distribute your
applet only.

To compile applets with Hollywood, just pass APPLET in the -exetype argument or use the
GUI. Hollywood applets carry the suffix *.hwa.

4.3 Linking data files

By default, Hollywood’s linker will automatically link all external data files declared using
preprocessor commands to the output executable or applet. If your script looks like below,
for example, the file test.jpg will automatically be linked to your executable or applet:

@BGPIC 1, "test.jpg"

WaitLeftMouse

End

If you don’t want that, you can set the Link tag, which is accepted by all preprocessor
commands dealing with files, to False. In that case, the file referenced by the preprocessor
command will not be linked. The code looks like this then:

@BGPIC 1, "test.jpg", {Link = False}

WaitLeftMouse

End

Sometimes, you might also want to link files that are loaded by your script at runtime into
your executable or applet. Consider the following code for example:

LoadBGPic(1, "test.jpg")

LoadBrush(1, "title.png")

DisplayBGPic(1)

DisplayBrush(1, #CENTER, #CENTER)

http://www.hollywood-mal.com/
http://www.hollywood-mal.com/

Chapter 4: Compiler and linker 59

WaitLeftMouse

End

By default, test.jpg and title.png won’t be linked to your executable or applet because
they haven’t been declared in a preprocessor command but they are loaded at runtime using
LoadBGPic() and LoadBrush() instead. Still, it is possible to link test.jpg and title.png

to your executable or applet. This can be achieved by using either the -linkfiles compiler
option or the @LINKER preprocessor command.

When using the -linkfiles console argument, you need to pass a database file to it.
The database file is a simple UTF-8 text file which contains a list of files to be linked
into the applet or executable that will be compiled by Hollywood. You must only spec-
ify one file per line in the database file. The file specification must be identical to the
specification you use in your script. For example, if there is a command LoadBrush(1,

"data/menu.png") in your script and you want the file data/menu.png to be linked into
your applet or executable, you need to put it into the database you pass to -linkfiles.
But you must use the same specification, i.e. you need to use data/menu.png! Specifying
MyScripts/CoolGame/data/menu.png in the database will not work! The specification used
in the link files database and in the script must be the same because otherwise Hollywood
cannot know which file it must load.

So in order to link the files test.jpg and title.png to our executable or applet, the
database file we pass to -linkfiles needs to look like this:

test.jpg

title.png

That is all! The Hollywood linker will then link test.jpg and title.png to the output
executable or applet and the calls to LoadBGPic() and LoadBrush() in the script presented
above will load test.jpg and title.png, respectively, directly from the executable or
applet instead of from an external source.

The same can be achieved by using the @LINKER preprocessor command. The only difference
is that the files to be linked don’t have to be passed in an external database file to Hollywood,
but they must be stored directly in your script as part of the @LINKER preprocessor command
instead. All other rules are the same as with -linkfiles. So if you don’t want to use
-linkfiles like above, you could also just add the following line to your script and achieve
the same:

@LINKER {Files = {"test.jpg", "title.png"}}

You can add as many files as you want to have linked to your applet or executable to the
Files tag that is part of the @LINKER preprocessor command. Just make sure the path
specification of the files you pass to @LINKER is identical to the path specification used later
in the code so that Hollywood can correctly map the linked files to the individual files used
in the script.

If you need to link lots of files to your applet or executable, you can put all those files into
a directory and then tell Hollywood to link everything in that directory to the applet or
executable. This is done by using @DIRECTORY preprocessor command. For example, the
following line tells Hollywood to link all files inside the data directory to the applet or
executable:

@DIRECTORY 1, "data"

60 Hollywood manual

Once you have done that, you can then access the individual files in the data directory by
using the GetDirectoryEntry() function. For example, to load the files data/test.jpg

and data/title.png using LoadBGPic() and LoadBrush(), you would write the following
code:

LoadBGPic(1, GetDirectoryEntry(1, "data/test.jpg"))

LoadBrush(1, GetDirectoryEntry(1, "data/title.png"))

The @DIRECTORY preprocessor command is very flexible because it will archive the complete
directory tree inside an applet or executable which also makes it possible to iterate through
the directory (and all of its subdirectories!) as if it were a real one. See Section 26.13
[DIRECTORY], page 427, for details.

4.4 Linking fonts

By default, Hollywood’s linker will automatically link all fonts declared using the @FONT

preprocessor command to the output executable or applet. If your script looks like below,
for example, the font Arial will automatically be linked to your executable or applet:

@FONT 1, "Arial", 36

WaitLeftMouse

End

If you don’t want that, you can set the Link tag, which is accepted by the @FONT preprocessor
command, to False. In that case, the font specified in the preprocessor command will not
be linked. The code looks like this then:

@FONT 1, "Arial", 36, {Link = False}

WaitLeftMouse

End

Sometimes, you might also want to link fonts that are loaded by your script at runtime into
your executable or applet. Consider the following code for example:

SetFont("Arial", 36)

WaitLeftMouse

End

By default, font Arial won’t be linked to your executable or applet because it wasn’t
declared in a preprocessor command but it is loaded at runtime using SetFont() instead.
Still, it is possible to link Arial font to your executable or applet. This can be achieved by
using either the -linkfonts compiler option or the @LINKER preprocessor command.

If you choose to use the -linkfonts compiler option, you need to pass a database file to it.
The database file is a simple UTF-8 text file which contains a list of fonts to link into the
applet or executable that will be compiled by Hollywood. You must only specify one font
per line in the database file. The font can be either the name of a font or a path to a *.ttf
or *.otf file. Note that when passing paths to *.ttf or *.otf files directly, you must use the
inbuilt font engine because only that is able to load fonts from files. A font database could
look like the following:

Arial

"Times New Roman"

FuturaL

helvetica

Chapter 4: Compiler and linker 61

data/arial.ttf

Do not forget to use quotes when passing font names that have spaces in them!

The same can be achieved by using the @LINKER preprocessor command. The only difference
is that the fonts to be linked don’t have to be passed in an external database file to Holly-
wood, but they must be stored directly in your script as part of the @LINKER preprocessor
command instead. All other rules are the same as with -linkfonts. So if you don’t want
to use -linkfonts like above, you could also just add the following line to your script and
achieve the same:

@LINKER {Fonts = {"Arial", "Times New Roman", "FuturaL", "helvetica",

"data/arial.ttf"}}

You can add as many fonts as you want to have linked to your applet or executable to the
Fonts tag that is part of the @LINKER preprocessor command.

Important note: Please note that most fonts are copyrighted and it is not allowed to link
them into your programs without acquiring a licence. So make sure you check the licence of
the font you are going to link into your program! If you do not want to pay for font licences,
it is advised to use a free font such as DejaVu or Bitstream Vera or use one of the TrueType
fonts that are inbuilt into Hollywood (#SANS, #SERIF, #MONOSPACE, cf. SetFont())

4.5 Linking plugins

In contrast to data files and fonts, plugins aren’t automatically linked to your executable
when you require them in the preprocessor commands. The following code, for example,
will not force the linker to link "jpeg2000" into your executable:

@REQUIRE "jpeg2000"

If you want to have jpeg2000.hwp linked into your executable, you have to set the Link

tag to True. The code looks like this then:

@REQUIRE "jpeg2000", {Link = True}

In that case, jpeg2000.hwp will be linked to your executable and the user won’t need to
keep a copy of jpeg2000.hwp because it has already been linked into the executable.

Alternatively, you can also use the -linkplugins console argument to link plugins into
your executable. See Section 3.2 [Console arguments], page 33, for details.

Note that plugins can only be linked to executables, not to applets, since applets are
platform-independent and plugins are not.

Before you can use the plugin linker, you first have to copy the plugins you would like
to link into a directory named LinkerPlugins. On AmigaOS and compatibles, this di-
rectory needs to be created in Hollywood’s installation directory, i.e. you need to create
Hollywood:LinkerPlugins. On all other systems, you have to create the LinkerPlugins

directory in the directory where Hollywood has been installed, i.e. next to the Hollywood
executable. Keep in mind that on macOS this will be inside the application bundle, i.e.
in HollywoodInterpreter.app/Contents/Resources/LinkerPlugins. Furthermore, you
have to create the following architecture subdirectories inside the LinkerPlugins directory:

arm-android-v7a

arm64-android-v8a

arm-ios

62 Hollywood manual

arm-linux

m68k-amigaos

m881-amigaos

ppc-amigaos

ppc-linux

ppc-macos

ppc-morphos

ppc-warpup

x86-aros

x86-macos

x86-linux

x86-windows

x86-windows-console

x64-linux

x64-macos

x64-windows

x64-windows-console

After that, you have to copy the plugins you want to link to these subdirectories. You need
to copy plugins for all the architectures you want to compile executables for. If you don’t do
that, the linker won’t be able to find the plugins to link. Note that the linker will look for
plugins only inside the LinkerPlugins directory. It won’t look anywhere else, in particular
not in the standard plugins location.

Note that when creating executables for the m881-amigaos architecture, the linker will
also look for plugins in the m68k-amigaos directory because both architectures are com-
pletely compatible. The same is true for ppc-warpup which will also take both, the
m68k-amigaos and m881-amigaos architectures, into account. Also, x86-windows-console
and x86-windows are compatible as are x64-windows-console and x64-windows.

Important note: Make sure to carefully read the license of every plugin you link to your
executable because many licenses are very restrictive when it comes to static linking. For
example, if you link a plugin that is licensed under the LGPL license, then your complete
project automatically becomes LGPL as well and you must provide all sources and data
files. So make sure to study plugin licenses before you link them to your executables. You
have been warned.

4.6 Saving scripts as videos

Starting with Hollywood 4.0 it is possible to save Hollywood scripts as AVI video files. This
is useful for example if you want to create DVDs of your Hollywood scripts or just run them
on a platform that is currently not supported by Hollywood. Saving Hollywood scripts as
video files also allows you to import them into video editing software for further processing
or format conversion.

Hollywood’s video recorder was designed with the idea in mind to reproduce the exact
behaviour of the Hollywood script in a video file. Thus, you will most likely not notice
any difference between the video file and the actual Hollywood script. Hollywood’s video
recorder tries to time the script exactly as it would appear in real time mode. Hence, it
is no problem for the video recorder to deal with scripts that require exact timing - for

Chapter 4: Compiler and linker 63

example for synchronization with music. The video recorder pays special attention to this
and tries to time everything correctly.

To enable the video recorder mode you simply have to specify the -videoout argument
together with a filename for the video to be created. Hollywood will then start in recording
mode and graphics and sounds will now be redirected into the video stream. Thus, when in
recording mode, no sounds will be played because sound data is immediately rendered into
the video stream. Also, please note that certain options are disregarded when Hollywood
is in video recording mode. For example, in video recording mode Hollywood will always
open in windowed mode, never in full screen even if you specify so. Also the window will
not be sizeable etc.

The video file written by the video recorder will be an AVI 2.0 stream adhering to the
OpenDML standard so streams greater than 2 GB are possible. Hollywood currently uses
the Motion JPEG codec to compress the video frames. Audio data is written to the video
file without any compression. You can control the quality of the Motion JPEG by using
the -videoquality argument.

To achieve the best result you may need to adjust some parameters in the video recorder
with which we will deal now:

1. First, it is advised that you tell the video recorder how many frames per second shall
be recorded. You can do this by using the -videofps argument. The value that you
specify here should be identical to the frequency of your main loop. If your main loop
runs at 25 frames per second, e.g. using the following code:

SetInterval(1, p_MainLoop, 1000\25)

Then your video file should also run at 25 fps. So you would have to specify

-videofps 25

on the command line to tell the video recorder that you want your video to have 25
frames per second.

2. You may want to specify a scaling resolution for the video file. Remember that the video
resolution cannot change but must be static throughout the whole video. Hollywood
can change the resolution of its display at any time but for video files this is not possible
so if Hollywood’s display size changes while the program is in video recording mode,
graphics will be scaled to keep up the correct video resolution. By default, the video
resolution will be set to the resolution of the first background picture. If you want
a different resolution, however, you must specify the -scalewidth and -scaleheight

arguments.

3. Your Hollywood script needs to follow a certain pattern in order for the recorder to
save it as a video file. Particularly, the recorder needs to know when its frame buffer
shall be flushed into the video file. Normally, this is done whenever it encounters a
waiting command. For instance:

VWait()

Wait()

WaitEvent()

WaitTimer()

etc.

Thus, it is necessary that you use one of the commands above in your script! Your
script needs to employ a timing mechanism, otherwise it cannot be converted properly

64 Hollywood manual

into a video file. Suggested timing mechanisms are either using an interval function
which is called a certain number of times per second or using WaitTimer() or VWait().
See Section 15.3 [script timing mechanisms], page 161, for more information on the
importance of using a correct timing mechanism.

Flushing the frame buffer whenever a wait command occurs is called the "wait strategy"
which is also the default video strategy. Normally, the wait strategy should be suitable
for all purposes. With correctly timed scripts, the wait strategy delivers the best
results. In some very rare cases - or for debugging purposes - you might want to use
the raw strategy instead. When -videostrategy is set to raw, the video recorder will
render every frame to the stream no matter if waits are used or not. In most cases, of
course, this results in wrongly timed videos so you will most likely never want to use
the raw strategy.

4. Finally, you must decide whether or not the mouse pointer shall be rendered into the
video stream. By default, this is disabled because rendering the mouse pointer into the
video makes only sense in special situations, for instance if you are creating a demo
video where user input shall be visible. To turn on mouse pointer recording, specify
the -videopointer argument. All mouse pointer movements will then be recorded in
the video file.

65

5 Plugins

5.1 Plugins

Hollywood’s functionality can be greatly enhanced via plugins. Plugins can provide load
and save support for additional video, audio, image, and sample formats, they can extend
the command set of the Hollywood language as well as enable Hollywood to use real vector
graphics and it is even possible to write plugins which replace core parts of Hollywood like
its inbuilt display and audio driver with custom implementations provided by plugins. It
is also possible to write plugins which convert project files of other applications like Scala
or PowerPoint into Hollywood scripts so that Hollywood can run these project files directly
although they are not in the *.hws format.

5.2 Installation

Hollywood plugins use the suffix *.hwp. On all systems except on AmigaOS and
compatibles, plugins must be stored in a directory named "Plugins" that is in the same
directory as the main Hollywood program. On AmigaOS and compatible systems,
plugins must be installed to LIBS:Hollywood instead. On macOS, the "Plugins"
directory must be inside the "Resources" directory of the application bundle, i.e.
inside the HollywoodInterpreter.app/Contents/Resources directory. Note that
HollywoodInterpreter.app is stored inside the Hollywood.app application bundle itself,
namely in Hollywood.app/Contents/Resources.

When distributing a compiled Hollywood program, plugins required by your program must
simply be put into the same directory as your program. When compiling application bundles
for macOS, plugins need to be put in the "Resources" directory of the application bundle,
i.e. in MyProject.app/Contents/Resources. Alternatively, you can also choose to link
plugins into your executable.

The Android version of Hollywood also supports Hollywood plugins. You have to copy them
to the directory Hollywood/Plugins on your SD card. Hollywood will scan this location
on every startup and load all plugins from there.

5.3 Usage

Plugins will be loaded automatically by Hollywood on startup. If you do not want this, you
can disable automatic loading by renaming the plugin: Plugins whose filename starts with
an underscore character (’ ’) will not be loaded automatically by Hollywood on startup. As
an alternative, you can also use the -skipplugins console argument to tell Hollywood to
skip automatic loading of certain plugins. Plugins which have not been loaded at startup,
can be loaded later by using the @REQUIRE preprocessor command or the LoadPlugin()

function. See Section 45.6 [REQUIRE], page 930, for details.

Please note that although Hollywood loads all plugins automatically on startup, many
plugins require you to call @REQUIRE before they can be used. This is because these plugins
need custom initialization code which is only run if you explicitly call @REQUIRE on them.
For example, plugins which install a display adapter will not be activated unless you call
@REQUIRE on them. Plugins which just add a loader or saver for additional file formats,
however, will be automatically activated even if you don’t call @REQUIRE on them.

66 Hollywood manual

5.4 Obtaining plugins

Many plugins are available from the official Hollywood portal which is online at http://
www.hollywood-mal.com/ . Here is an overview of plugins currently available from the
official Hollywood portal:

AHX: Allows you to load and play AHX and HivelyTracker modules with Hollywood.

AIFF: Allows you to load and play AIFF samples with Hollywood.

APNG Anim:
Allows you to load and save APNG animations with Hollywood. This is useful
because the APNG format supports anims with alpha channel.

AVCodec: Adds loaders for many video and audio formats provided by FFMPEG. This
is very useful for playing modern video and audio formats but be careful that
many of those formats are patented and require you to pay royalties or licensing
fees if you use them in your products.

DigiBooster:
Load and play DigiBooster modules with Hollywood.

FLIC Anim:
Load FLI and FLC animations with Hollywood.

GL Galore:
OpenGL R© wrapper for Hollywood. This plugin allows you to program in
OpenGL using Hollywood. It also supports hardware-accelerated 2D drawing,
i.e. it supports hardware double buffers and hardware brushes. Thus, it is very
useful for hardware-accelerated on drawing on Windows, macOS, and Linux
because by default, Hollywood only supports hardware-accelerated drawing on
AmigaOS and compatibles.

HTTP Streamer:
This plugin allows you to load data from HTTP sources as normal files. This
means that once this plugin is installed you can just pass URLs to functions
like LoadBrush() and the files will be loaded from there. This plugin can also
be used for video and audio streaming from HTTP sources.

Iconic: Iconic is the ultimate icon loader and saver plugin for Hollywood. It can load
and save a large variety of different icon formats. Currently, the following icon
formats are supported by Iconic: AmigaOS 1.x style icons, AmigaOS 2.x/3.x
style icons, AmigaOS 3.5 icons (aka GlowIcons), AmigaOS 4.0 icons, macOS
icons (*.icns format), MagicWB icons, MorphOS/PowerIcons icons (PNG),
NewIcons, Windows icons (*.ico format).

hURL: hURL is a plugin for Hollywood that allows you to transfer data using many
different protocols. Based on curl, hURL supports an incredibly wide range
of transfer protocols, e.g. DICT, FILE, FTP, FTPS, Gopher, HTTP, HTTPS,
IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP,
SMB, SMBS, SMTP, SMTPS, Telnet and TFTP. Furthermore, hURL supports
SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based
upload, proxies, HTTP/2, cookies, user+password authentication (Basic, Plain,

http://www.hollywood-mal.com/
http://www.hollywood-mal.com/

Chapter 5: Plugins 67

Digest, CRAM-MD5, NTLM, Negotiate and Kerberos), file transfer resume,
proxy tunneling and more. It really is the ultimate data transfer engine for
Hollywood, leaving nothing to be desired.

JPEG2000:
Load and save images in the JPEG2000 format.

Malibu: This plugin allows you to run Scala scripts with Hollywood. Malibu supports
all Amiga versions of Scala until Scala MM400 and Scala InfoChannel 500.

Movie Setter:
Open and play animations that are in Gold Disk’s MovieSetter format.

MUI Royale:
Create MUI GUIs with Hollywood. This is a powerful plugin which wraps
almost the complete MUI API to Hollywood and allows you to conveniently
create MUI GUIs via XML.

Ogg Theora:
Load and play video streams in the Ogg Theora format.

Ogg Vorbis:
Load and play Ogg Vorbis streams with Hollywood.

PCX: Load PCX images with Hollywood.

Plananarama:
Use Hollywood on Amigas without a graphics board. If you need to run Holly-
wood on a palette-based screen, you can do this with this plugin.

Polybios: Polybios is a plugin for Hollywood that allows you to easily create PDF doc-
uments from Hollywood scripts. On top of that, Polybios can also open exist-
ing PDF documents and convert their pages into Hollywood brushes. In fact,
when converting PDF pages into Hollywood brushes, Polybios will create vector
brushes for you which can be scaled, rotated and transformed without any losses
in quality (unless bitmap graphics are embedded inside the PDF document of
course).

RapaGUI: Cross-platform GUI toolkit for Hollywood. This is a very powerful plugin which
turns Hollywood into a complete cross-platform GUI toolkit that allows you to
create GUI-based applications very conveniently by defining the GUI layout in
an XML file. On top of that, Hollywood displays can be embedded inside your
GUI as widgets which allows you to use all of Hollywood’s powerful graphics
features in your GUI application as well.

RebelSDL:
This is a Hollywood wrapper plugin for the popular SDL library. The great
benefit is that it supports hardware-accelerated 2D drawing, i.e. it supports
hardware double buffers and hardware brushes. Thus, it is very useful for
hardware-accelerated on drawing on Windows, macOS, and Linux because by
default, Hollywood only supports hardware-accelerated drawing on AmigaOS
and compatibles.

SID: This plugin allows you to load and play SID files.

68 Hollywood manual

SQLite3: Create and modify SQL databases with Hollywood.

SVG Image:
Load SVG vector images with Hollywood.

TIFF: Load and save TIFF images with Hollywood.

Vectorgraphics:
Draw real vector-based graphics with Hollywood.

XAD: This plugin allows you to unpack lots of different archiver formats like LhA,
LZX, RAR, ZIP, TAR, etc. Very useful.

XLSX: The XLSX plugin allows you to conveniently read and write XLSX documents
from Hollywood scripts. It offers a wide variety of functions to set and get cell
values, cell types, cell formulas, document/worksheet properties and several
other attributes. It also offers an iterator function for a high performance
iteration of a large number of cells.

XML: Plugin for convenient parsing of XML documents.

XMP: This plugin can play lots of different tracker formats.

YAFA: Load and play animations in the YAFA format (created by Wildfire).

ZIP: This plugin allows you read and write ZIP archives.

5.5 Writing your own plugins

In case you are missing a certain feature or functionality in Hollywood, you can write a
plugin which adds it to the language. Writing your own plugin can also be helpful in case
your script needs to do certain CPU-intensive calculations which are best implemented in
native code for an optimal performance.

Writing plugins is really easy. Hollywood’s plugin interface is public, fully documented and
all necessary files are available for free download from the official Hollywood portal. The
Hollywood SDK comes with over 300 pages of detailed documentation and several examples
that help you to get started with plugin development.

Please visit the official Hollywood portal at http://www.hollywood-mal.com/ to download
the latest Hollywood SDK. It contains all the developer materials you need for building your
own Hollywood plugins.

http://www.hollywood-mal.com/

69

6 History and compatibility

6.1 History

Please see the file history.txt for a complete change log of Hollywood.

6.2 Compatibility notes

Hollywood 9.0 API changes

There have been a few API changes in Hollywood 9.0. Most likely you won’t have to adapt
your scripts to work with 9.0. Just check the following notes to see if your script requires
any adaption.

− On AmigaOS and compatibles, plugins installed in LIBS:Hollywood will no longer be
loaded automatically by all executables compiled by Hollywood. Executables compiled
by Hollywood will only load the plugins now that are stored next to the executable
in its directory. If you want your executable to load all plugins in LIBS:Hollywood

as well, you have to set the GlobalPlugins tag to True in the @OPTIONS preprocessor
command or pass the -globalplugins console argument or tooltype to the program.

− On Windows, Hollywood’s graphics engine has been completely rewritten and uses
Direct2D now. This has many advantages and also makes it possible to use the GPU
when the auto scaling engine is active. In some rare cases, however, your script might
be slower with Direct2D than before, depending on how you do your drawing. If
your script runs slower with Hollywood 9.0, you can either force Hollywood to use its
old renderer, which is still supported for compatibility with Windows versions that
don’t support Direct2D (i.e. all Windows versions before Vista SP2) or adapt the way
your script draws its graphics. To activate Hollywood’s legacy renderer, just set the
SoftwareRenderer tag to True in @DISPLAY. Alternatively, you can also adapt the way
your script draws its graphics to improve performance with Direct2D. On Direct2D,
every drawing operation will always result in a full display refresh, even if just a single
pixel needs to be drawn! Thus, your script needs to draw its graphics in a way that
minimizes full display refreshes. This can be achieved by either using a double buffer
or by using BeginRefresh() and EndRefresh(). See Section 30.4 [BeginRefresh],
page 591, for details.

− On Windows, Hollywood will automatically scale your scripts to fit to the monitor’s
DPI on high-DPI monitors now. This guarantees that they will appear in the correct
size on high-DPI monitors as well. If you don’t want that, set the new DPIAware tag
to True in the OPTIONS preprocessor command. This is especially recommended for
GUI applications because they will look much better when the program is DPI-aware.

− Loaders and adapters are now handled in the order they appear in the string that
is passed to a Loader or Adapter table argument. For example, if you pass the
string digibooster|xmp to OpenMusic(), it will first try to open the music using
digibooster.hwp and only if that fails will xmp.hwp be asked to open the file. This
also allows you to prioritize generic loaders like Native, Inbuilt and Plugin, e.g. if
you want native and inbuilt loaders to be used before plugin ones, you could pass the

70 Hollywood manual

string native|inbuilt|plugin to achieve that. Note that although this is an API
change there are probably no scripts which really depend on the old behaviour because
the order was mostly random.

− When a non-existing path was passed to ChangeDirectory(), the function failed
silently and didn’t show an error. This has been changed now. ChangeDirectory()

will trigger an error now if a non-existing path is passed to it.

− When CopyFile() couldn’t copy a file because the file already existed and was write- or
delete-protected, CopyFile() silently skipped the file. This is no longer done. An error
will be thrown now if an existing file can’t be overwritten. If you really need the old
behaviour, use a callback function and return False whenever you get a #COPYFILE_

UNPROTECT message.

− The optional transcolor argument in SaveBrush() now defaults to #NOCOLOR instead
of #BLACK. Having #BLACK as a default didn’t really make much sense because you
wouldn’t want SaveBrush() to mess with the image data but just write it to disk.

− SaveAnim(), BeginAnimStream() and WriteAnimFrame() no longer support the
Transparency and UseAlpha tags because they just didn’t make sense. Transparency
and alpha settings are now determined solely by the format of the source data that is
passed to these functions.

− When KeepProportions is active for a display and DisplayBGPic() or
ChangeDisplaySize() is called, the scaling dimensions are now re-calculated to
fit the aspect-ratio of the new BGPic or display size. This change also affects
SetDisplayAttributes() when it is called with Width and Height parameters.

− If the Monitor tag isn’t set in the optional table argument, ChangeDisplayMode() will
now always automatically detect the monitor the display is on. So if it is on a second
monitor and you call ChangeDisplayMode(#DISPMODE_FULLSCREEN), that monitor will
be put into fullscreen mode. Previously, always the first monitor was used (except if
the Monitor tag was set for the display).

− Videos handled by the operating system’s native video renderer (i.e. DirectShow and
Media Foundation on Windows, AVFoundation and QuickTime on macOS) are now
automatically resized and repositioned when a display is resized by the user, even if no
scaling engine is active. This is done purely for aesthetic reasons because otherwise it
looks really ugly. You can forbid this behaviour by setting the NoLiveResize tag in
@DISPLAY. Note that videos managed by Hollywood’s inbuilt video renderer won’t be
resized and repositioned automatically, it’s only done for videos managed by the OS.

Hollywood 8.0 API changes

There have been no API changes for Hollywood 8.0.

Hollywood 7.1 API changes

There have been some small API changes in Hollywood 7.1. Most likely you won’t have
to adapt your scripts to work with 7.1. Just check the following notes to see if your script
requires adaption.

− There have been some minor changes to Hollywood’s platform-independent catalog
format. Lines that start with semicolon are now considered comments and are ignored.

Chapter 6: History and compatibility 71

If you need to define a catalog string that starts with a semicolon, you need to prefix
the semicolon with a backslash. Furthermore, empty lines are ignored now and strings
ending in a single backslash are considered multi-line strings. It might be necessary
to fix your catalogs to be compatible with the new format. See Section 36.1 [Using
catalogs], page 739, for details.

Hollywood 7.0 API changes

New plugin and keyfile location on Windows, macOS, Linux, and
Android

First of all, Windows, macOS, and Linux users should note that in Hollywood 7.0
plugins must now be stored in a Plugins subdirectory that must be in the same
directory as the Hollywood executable on Windows and Linux. On macOS, the
Plugins directory must be stored inside the application bundle, i.e. inside the
HollywoodInterpreter.app/Contents/Resources/Plugins directory. Note that
HollywoodInterpreter.app is stored inside the Hollywood.app application bundle,
namely in Hollywood.app/Contents/Resources. On Android, plugins must now be stored
inside the Hollywood/Plugins directory on your SD card (instead of Hollywood/_Plugins
as in earlier versions). On AmigaOS and compatibles, plugins must be copied to
LIBS:Hollywood as usual.

Note that executables compiled by Hollywood will still load plugins from the same directory
as the executable (except on macOS where they must be inside the app bundle’s Resources
directory). Hollywood itself, however, will now need the plugins inside a Plugins subdirec-
tory on Windows, macOS, and Linux as described above.

macOS users please do also note that the file Hollywood.key must now be copied to
HollywoodInterpreter.app/Contents/Resources as well. It must no longer be in the
HollywoodInterpreter.app/Contents/MacOS directory.

Important Unicode notes and other API changes

Since Hollywood 7.0 introduces Unicode support there might be some compatibility issues
with your old scripts. If you don’t want to adapt your scripts, you can simply run them in
non-Unicode mode by disabling Unicode like this:

@OPTIONS {Encoding = #ENCODING_ISO8859_1}

If you add this as the very first line of your script, Hollywood will run your script in legacy
mode and there shouldn’t be any compatibility issues. However, your script will run in
ISO 8899-1 mode then which means that it won’t run correctly on non-Western European
systems.

Thus, it is recommended that you don’t run your script in legacy mode but use Unicode
mode all the time. Most scripts will probably run just out of the box without any issues
and without any need for adapting anything. If your script shows compatibility issues with
Hollywood 7.0, please read the following list of API changes in Hollywood 7.0 to learn how
to fix your scripts.

− First of all, make sure to save all your scripts in UTF-8 encoding now. When running
your old scripts with Hollywood 7.0, Hollywood will first check if they contain only
valid UTF-8 characters. If they don’t, Hollywood will assume they are in ISO 8859-1

72 Hollywood manual

encoding (or the system’s default encoding on Amiga) and convert them to UTF-8
automatically. Since this automatic conversion might lead to problems with scripts
using a different encoding than ISO 8859-1 it is highly recommended to save all your
scripts in UTF-8 now.

− Since Hollywood 7.0 runs in Unicode mode by default now, the default string encoding
is set to #ENCODING_UTF8 now as well. This means that you’ll run into problems if your
script tries to use the string library functions to access the raw binary data of strings.
When the string encoding is set to #ENCODING_UTF8, the string library functions can
only deal with strings that contain valid UTF-8 text. In Hollywood, however, strings
can also contain binary data. For example, you could download a file into a string
using DownloadFile() and then find out its length using StrLen(). This won’t work
when Hollywood is in Unicode mode (i.e. when the default string encoding is set
to #ENCODING_UTF8) because StrLen() will expect valid UTF-8 data then. To work
around this problem, you have to pass #ENCODING_RAW to StrLen() to tell it that the
string you passed contains raw binary data instead of valid UTF-8 text. Likewise, most
other functions of the string library accept an additional encoding parameter now too
which you can use to set the character encoding of the string you pass. If your script
doesn’t use the string library functions to operate on raw binary data, you won’t have
to worry about anything and your script should work flawlessly in Unicode mode.

− The default text encoding is also set to #ENCODING_UTF8 automatically by Hollywood
7.0. This means that functions like TextOut() and Print() will expect UTF-8 encoded
text now. This isn’t a problem if you just convert your script to UTF-8 but it could
lead to problems if the text to be printed is read from a file (or other external source)
that doesn’t use UTF-8 encoding.

− ReadChr() and WriteChr() may now read and write up to 4 bytes instead of just a
single byte if Hollywood is in Unicode mode. That is because they’ll now really deal
with characters, just as their names imply, and in UTF-8 a character may need up to 4
bytes for storage. If you want to read and write single bytes, you have to use the new
ReadByte() and WriteByte() functions now.

− ReadString() and WriteString() can no longer be used for binary I/O because they
read and write strings, i.e. a number of characters (not bytes!), just as their names
imply. If you need to read and write raw binary data, use the new ReadBytes() and
WriteBytes() functions now.

− ReadChr(), WriteChr(), ReadString(), and WriteString() now read and write UTF-
8 characters by default. If you use them to read data from non-UTF-8 text files, there
can be problems with non-ASCII characters. In that case, you have to tell those
functions to read ISO 8859-1 characters instead by passing #ENCODING_ISO8859_1 in
the optional encoding argument.

− You are now discouraged from using the OnKeyDown and OnKeyUp event handlers
for non-English characters. Non-English characters should be handled by the new
VanillaKey event handler instead which has full Unicode support. OnKeyDown and
OnKeyUp will continue to work as before but using non-English characters with them
is generally unsafe. It might work on your system but not on systems with a different
locale. Only use VanillaKey to handle non-English characters please.

− The IsKeyDown() and WaitKeyDown() functions no longer support non-English keys.

Chapter 6: History and compatibility 73

If you need to get the state of a non-English key, use the VanillaKey event handler
instead.

− The platform-neutral format supported by OpenCatalog() now has to be in UTF-8
character encoding, with or without BOM. ISO 8859-1 files are no longer supported.

− Multi-byte character constants like ’ABCD’ are no longer supported because they con-
flict with UTF-8 character constants supported by Hollywood 7.0. If your script uses
multi-byte character constants, you have to rewrite your script to use the direct numeric
value of the character constant instead.

− Hollywood 7.0 introduces the FallThrough statement which allows code to fall through
to the next Case statement in a Switch-Case statement. This addition means that it
is no longer allowed to use variables or functions which are called FallThrough. This
will trigger an error because FallThrough is a reserved token now.

Hollywood 6.0 API changes

There have been some small API changes in Hollywood 6.0. Most likely you won’t have
to adapt your scripts to work with 6.0. Just check the following notes to see if your script
requires adaption.

− Since Hollywood 6.0 comes with built-in support for vector-based drawing, the vector-
graphics library no longer automatically uses the first vectorgraphics plugin it can find.
Instead, it will use Hollywood’s inbuilt vectorgraphics renderer by default now. If you
don’t want this, you will have to call SetVectorEngine() to tell the vectorgraphics
library which plugin to use when drawing vectorgraphics.

− The ChangeDisplayMode() command no longer puts all displays onto a single full
screen but only the active one is switched to full screen mode. This change was neces-
sary because Hollywood 6.0 introduces multi-monitor support which makes it possible
to have multiple displays in full screen mode on separate monitors.

− Hollywood’s display handler has been rewritten and does not support the display mode
OwnScreen any longer. OwnScreen was a special mode that could be used on AmigaOS
and compatibles to make Hollywood open in fullscreen mode but keep the traditional
Amiga screen look, i.e. Hollywood would not open a shielding window that covered the
Amiga screen decorations. If you want to achieve the look that the OwnScreen display
mode gave you with Hollywood 6.0, you have to use the console arguments -nobackfill
and -nostyleoverride together with -fullscreen. Then the appearance should be
exactly the same as the old OwnScreen display mode which is no longer supported by
Hollywood 6.0.

− Prior to Hollywood 6.0 display attributes specified in the @DISPLAY preprocessor com-
mand automatically overrode the display attributes that were specified on the command
line, i.e. if the Borderless attribute was set to False in @DISPLAY and the script was
started using -borderless, then the script would still appear with a bordered window
because the specifications in @DISPLAY were given priority over the command line speci-
fications. Starting with Hollywood 6.0 this behaviour has been turned around: Display
attributes set on the command line will now override display attributes specified in
preprocessor commands. If you do not want this behaviour, compile your script using
the -locksettings mode. Then command line arguments won’t be able to override
your preprocessor display settings.

74 Hollywood manual

− Prior to Hollywood 6.0, command line arguments that affected the display style were
applied to all displays defined in the preprocessor commands of your script. For ex-
ample, if you started a script that defined four displays in the preprocessor commands
with the -borderless argument, all four displays would be opened in borderless mode.
In Hollywood 6.0, command line arguments that modify the display style will only be
applied to display number 1 by default. If you want them to affect all displays, you
have to use the new -alldisplays argument.

− Some command line arguments have been renamed for purely cosmetic reasons:
-audiodev is now called -audiodevice and -depth is now called -scrdepth. Their
functionality hasn’t changed.

− Dropped support for mpega.library on AmigaOS and compatibles. mpega.library

caused quite some trouble because it usually recognized every file format as an MPEG
stream leading to several unwanted effects. If you need to play MP3s you can just use
a plugin like avcodec.hwp instead.

Hollywood 5.0 API changes

There have been some small API changes in Hollywood 5.0. Most likely you won’t have
to adapt your scripts to work with 5.0. Just check the following notes to see if your script
requires adaption.

− The plugin interface has been completely rewritten and is no longer compatible with
old plugins. On Amiga systems, plugins must always be installed into LIBS:Hollywood
now. The old plugin location Hollywood:Plugins is no longer supported by Hollywood
5.0. Alternatively, plugins can be installed into the program’s directory (especially
useful when you have to distribute plugins with executables compiled by Hollywood).

− Shadow and border effects on layers will look different (better!) in comparison to
previous versions because Hollywood now uses real alpha channel compositing for this.
The downside is that the new shadow and border effects are slower than in previous
versions.

− Shadow and border are now global settings for every layer. This means that you can no
longer have layers that have multiple shadow or border styles (e.g. a text layer where
only part of the text has a shadow or a border). That is no longer supported. Either
the layer has a shadow/border, or doesn’t have one. But it is no longer possible to
have a shadow/border for just a part of a layer.

− Layers with a border will be displayed differently now when they are shown or hidden
with a transition effect. Because the border is no longer part of the main layer in
Hollywood 5.0, the transition effect for the border cannot be combined with that of the
main layer any more. Thus, Hollywood will now simply fade in/out the border while
the main layer’s transition effect is being displayed. If you do not want this behaviour,
you can use the new NoBorderFade tag.

− For reasons of consistency, Hollywood no longer supports thick layers when the fill
style is set to #FILLNONE because the thick layer concept clashes with the new layer
border concept. Thus, instead of a thickness setting, layers will now get a border of
the specified ’thickness’ size to make them thicker. The main layer, though, will always
have a thickness of 1. If you want to increase this thickness, just enable the layer border
and set the desired thickness size in the BorderSize tag.

Chapter 6: History and compatibility 75

− As Hollywood 5.0 introduces support for vector images, CreateGradientBGPic() and
CreateTexturedBGPic() will now create a vector BGPic for you. This means that you
can no longer modify the graphics of these BGPics using the SelectBGPic() function.
Another difference is that when a textured BGPic gets scaled (e.g. when the user
resizes a window), Hollywood will not scale the textured BGPic but will remake it in
the new resolution. Prior to 5.0, the textured BGPic just got scaled. Starting with 5.0,
the BGPic will be completely remade.

− Prior to 5.0, the CopyFile() and DeleteFile() functions accepted wildcards in the
filename argument. This is no longer supported. If you want to copy/delete files
selectively, you have to use an optional argument now. See the documentation of these
two functions for more information.

− Prior to 5.0, Hollywood used AmigaOS style pattern matching functions in
MatchPattern(), CopyFile(), and DeleteFile(). Starting with version 5.0,
Hollywood uses platform-independent pattern matching functions that differ from
AmigaOS style patterns in some cases. See Section 26.42 [MatchPattern], page 449,
for details.

− Long strings [[...]] behave differently in Hollywood 5.0 if your script was saved using
carriage return plus linefeed encoding (CR+LF encoding is the text editor default on
Windows; Amiga and Unix systems just use LF characters for line breaks). Previ-
ously, carriage return characters (’\r’) were always included in the long string. This
is no longer the case. All line breaks will be converted to single linefeeds now (’\n’).
If a carriage return character is present, it will be dropped. This change has been
made to prevent that scripts behave differently when saved on Windows and on Ami-
gaOS/Unix/Mac.

Hollywood 4.5 API changes

There have been some small API changes in Hollywood 4.5. Most likely you won’t need
to adapt your scripts to work with 4.5. Just check the following notes to see if your script
requires adaption.

− RotateLayer() will behave differently in 4.5 than it did in 4.0. This break was nec-
essary because Hollywood 4.5 introduces anchor points for layers. In Hollywood 4.0,
RotateLayer() rotated the layer around its center, thus assuming a 0.5/0.5 anchor
point. In 4.5, however, all layers have a default anchor point of 0.0/0.0. Thus, if you
would like to replicate the 4.0 behaviour, you need to change the layer’s anchor point
to 0.5/0.5 by calling SetLayerAnchor().

− executables compiled for macOS will now look in the "Resources" folder of the appli-
cation bundle ONLY for data files. This change was made to comply with macOS UI
guidelines. All data files accompanying an application must be put into its app bundle

− when using CreateSprite() to create sprite links (i.e. source type #SPRITE), you
previously could also create links from sprite links. This is no longer possible. When
creating sprite links, you always have to specify a sprite that is not linked as the source
sprite

− when using #VANILLACOPY with SetAlphaIntensity(), Hollywood previously some-
times did not draw anything at all. e.g. if you tried to draw a brush with mask to an
alpha channel using SetAlphaIntensity() with #VANILLACOPY set. This behaviour

76 Hollywood manual

has changed now: Hollywood will draw the visible mask pixels as 255 alpha intensity
now and the invisible mask pixels as 0.

− SelectBGPic() had a secret feature that was never documented anywhere (and thus not
official): If you used SelectBGPic() with layers enabled on the current BGPic, all lay-
ers inserted before EndSelect() were inserted as hidden layers. This behaviour is gone
now. SelectBGPic() will now insert normal layers and draw them when EndSelect()

is called. If you want to have the previous behaviour, create your layers with Hidden

set to True.

Hollywood 4.0 API changes

There have been some small API changes in Hollywood 4.0. Most likely your won’t need
to adapt your scripts to work with 4.0. Just check the following notes to see if your script
requires adaption.

− SetPointer() syntax has completely changed. It does no longer accept a filename but
requires you to call CreatePointer() first.

− all of the transition effects library functions as well as PlayAnim(), the MoveXXX()
functions & DisplayBGPicPart() use a new syntax now. However, the old syntax is
still supported for compatibility reasons.

Hollywood 3.1 API changes

There have been some small API changes in Hollywood 3.1. Most likely your won’t need
to adapt your scripts to work with 3.1. Just check the following notes to see if your script
requires adaption.

− Colon is no longer supported as a command separator. In Hollywood 1.x the colon had
to be used to separate multiple commands on the same line, e.g.

; Hollywood 1.x code - NO LONGER SUPPORTED

x=100:y=200:width=50:height=50:Box(x, y, width, height, #RED)

The 1.x emulator inside of Hollywood emulated this behaviour up to Hollywood 3.0.
In Hollywood 3.1 it is now no longer supported because the colon is needed for object
oriented programming. So you need to update your scripts if you are still using colons
to separate multiple commands on a single line. Since Hollywood 2.0, you can put as
many commands on a single line as you desire, so the above code could now be written
as:

x=100 y=200 width=50 height=50 Box(x, y, width, height, #RED)

This does not look very nice so you should probably refrain from calling multiple
commands on the same line altogether. Of course, the choice is with you. Just keep in
mind that Hollywood 3.1 does not emulate the colon behaviour of 1.x any longer.

− The #TYPEWRITER transition effect is gone now. This was a special effect which could
only be used on text objects. However, it made the font interface unnecessarily complex
so it had to go. You can emulate the #TYPEWRITER behaviour by just using a series of
Print() calls.

Chapter 6: History and compatibility 77

Hollywood 3.0 API changes

There have been some small API changes in Hollywood 3.0. Most likely your won’t need
to adapt your scripts to work with 3.0. Just check the following notes to see if your script
requires adaption.

− If Hollywood 3 is started without any arguments, it will open in windowed mode. All
previous versions opened full screen in that case, but I think it is much wiser to have
Hollywood open in windowed mode because full screen mode might not work on every
system.

− Command line arguments are now handled differently. You must prefix them with a
dash character (-). In previous versions you would call Hollywood like this:

Hollywood script.hws WINDOW BORDERLESS

This will not work any longer! You now have to use dashes. The correct way to call
Hollywood now is:

Hollywood script.hws -window -borderless

This change was necessary because of the new GetCommandLine() function which allows
you to work with your own arguments.

− The second argument of FileRequest() has changed. Previously, it was a pattern in
the AmigaDOS pattern format. Now it is merely a filter string that specifies which
files shall be displayed by the requester. This change was necessary because of the new
cross-platform nature of Hollywood. Operating systems as Windows and macOS just
don’t have such elaborate filter pattern handlers as the AmigaOS offers.

− In previous version the optional third argument of the OpenFile() function fell back
to #MODE_READWRITE if it was not specified. This has been changed. Now the default
mode is #MODE_READ. This is a vanity API break. I just think it makes much more
sense to open files in read-only mode by default.

Hollywood 2.5 API changes

There have been some small API changes in Hollywood 2.5. Most likely your won’t need
to adapt your scripts to work with 2.5. Just check the following notes to see if your script
requires adaption.

− Support for ttengine.library has been removed. Of course Hollywood does still
support true type fonts. The only thing which you can do no longer is to use SetFont()
on *.ttf files directly, i.e.

SetFont("dh1:arial.ttf") ; this is Hollywood 2.0 code!

This does not work any longer. In Hollywood 2.5, you can only use true type fonts
which have been installed into your system using FTManager or a similar tool. You
open them as if they were normal fonts, i.e.

SetFont("Arial Narrow.font") ; OKAY in 2.5!

You have to do it this way because Hollywood 2.5 loads all true types through the bul-
let.library compatible ft2 (OS4) or freetype2 (MorphOS, AROS, AmigaOS3) interfaces
respectively.

− The CheckEvent() command has been removed. It did not fit into the concept any
longer. Please always use WaitEvent() instead.

78 Hollywood manual

− The Plot() command does only work with disabled layers now. Layers of type #PLOT
are no longer possible. It just does not make much sense to have 1x1 sized layers. If
you really need that, you can use the Box() command to draw a pixel.

− Due to the new text rendering engine, it is now mandatory to use two square brackets
in the strings you pass to Print(), TextOut() and CreateTextObject() when you
want to print a single square bracket. For instance, the following code

Print("[Hello World]") ; this is Hollywood 2.0 code!

would generate a syntax error in Hollywood 2.5 because the new text engine expects
a formatting command after a square brackets. Thus, you would have to write it as
follows:

Print("[[Hello World]]") ; OKAY in Hollywood 2.5!

Then it will work as you expect it.

− If the fill style is set to #FILLTEXTURE or #FILLGRADIENT and you draw using a ARGB
value, these fill styles will now also respect the alpha value. This was not the case in
Hollywood 2.0.

− If layers are enabled and you call a command from the draw library (e.g. Ellipse())
and specify an ARGB color (i.e. you want to draw with transparency), Hollywood 2.0
would create a transparent layer for you as if you called the SetLayerTransparency()
function with the A byte of the ARGB value as the transparency setting. This is no
longer done in that way. If you draw with an ARGB color, Hollywood 2.5 will not
give the layer a transparency setting, although the layer has of course a transparency
now, but with 2.5 the transparency is already rendered to graphics data (i.e. the alpha
channel) and is not kept dynamic as in the case of SetLayerTransparency().

− Up to Hollywood 2.0, RotateBrush() always returned a brush of the maximum size
that a rotation with the source brush could occupy, i.e. maxs = sqrt(width * width +

height * height). The new brush allocated by Hollywood would then be of width and
height ’maxs’. This is no longer done now. The brush is exactly as big as it needs to
be to contain all graphics.

− In Hollywood 2.0, WriteMem() and ReadMem() always used unbuffered IO while all
the other DOS functions used buffered IO. Now all functions have been unified and
they use all buffered IO by default. Furthermore, in Hollywood 2.0 WriteMem() always
automatically flushed buffers before starting the write operation. This is no longer done
in 2.5. So, if you used WriteMem()/ReadMem() in your scripts and you need it to have
unbuffered IO like in 2.0, you first have to call SetIOMode() to change the IO mode to
unbuffered. Then it will work as you are used to it but remember that it does not flush
the buffers as in Hollywood 2.0. And remember that once you call SetIOMode() all
other DOS functions will also use the IO mode set here! If you only want unbuffered
IO for WriteMem() or ReadMem() you have to use SetIOMode() again after your call.
You also have to call FlushFile() manually if you switch from buffered to unbuffered
IO on the same file. This all might sound a bit complicated, but it is really easy. In
fact, it gives you full control over the DOS functions which can come in pretty handy
at many times. Please see the documentation of SetIOMode() for more information.

− Up to Hollywood 2.0, TextOut() would automatically align the text if a special coor-
dinate constant like #CENTER or #RIGHT was specified as x. This is no longer done in
this way. There is a new argument which you can use to specify the desired alignment.

Chapter 6: History and compatibility 79

Hollywood 2.0 API changes

Although Hollywood 2.0 is a gigantic update, only little API changes were necessary. Here
is a list of things you have to change in your script:

− If you call functions that do not accept any arguments but return a value, you have to
use brackets. For example, the following code worked in 1.9 but does no longer work
in 2.0:

; wrong!

x = MouseX

y = MouseY

You have to write this as:

; correct!

x = MouseX()

y = MouseY()

The wrong version will not trigger a compiler error by the way. It is correct Hollywood
code but does something completely different: It assigns the function MouseX() to the
variable x which is not what you want.

− GetTimer() always returns the value in milliseconds now. In Hollywood 1.x the default
unit was seconds. This is a vanity API break. Of course, I could have kept the
old implementation but honestly, there’s noone who wants a return value in seconds
because it is just too unprecise. Thus, I decided to do programmers a favour and
make milliseconds the default, so you do not have to type the lengthy GetTimer(1,
#MILLISECONDS) every time but just GetTimer(1).

− The MoveBrush(), MoveTextObject(), MoveAnim()... functions can no longer "grab"
old objects. For example, the following code does not work correctly in 2.0:

MoveBrush(1, #LEFTOUT, #CENTER, #CENTER, #CENTER)

Wait(100)

MoveBrush(1, #CENTER, #CENTER, #RIGHTOUT, #CENTER)

In Hollywood 1.x, this code moved the brush 1 from the outer left to the center, waited
100 ticks, and moved the brush to the outer right. In Hollywood 2.0 it will do the
same, but the a copy of the brush will remain in the center of the display. This is due
to major changes in the refresh system. If you want to imitate the 1.x behaviour, use
MoveSprite() instead of MoveBrush().

− DisplayTransitionFX() can no longer be used to display transparent background
pictures; switching to transparent BGPics can only be done without an effect now.
This is because Hollywood 2.0 uses real transparent windows on MorphOS, OS4 and
AROS now. Those windows have a layer where no graphics can be drawn.

− In Hollywood 1.x, MixBrush() scaled the two brushes to the same size if they were of
different dimensions. This is no longer done. MixBrush() just mixes the parts that
match and drops the rest.

− RotateBrush() will now create a mask for the brush if it does not have one. You no
longer have to do this on your own.

− If layers are enabled and you use InKeyStr() only one layer of type #PRINT will be
installed by InKeyStr(). In Hollywood 1.x, InKeyStr() left a #PRINT layer for each
character.

80 Hollywood manual

Hollywood 1.9 API changes

There were some minor API changes in Hollywood 1.9, which are listed here:

− the commands EnableEventHandler() and DisableEventHandler() were removed.
They could cause much trouble because if you use them, you do not know when your
event procedures are called. Please use the new CheckEvent() function now!

− EnablePrecalculation() and DisablePrecalculation() were removed because ef-
fect precalculation is no longer supported by Hollywood. The PRECALCULATION
argument/tooltype is also gone now.

− WhileMouseOn() had some changes that you will most likely not notice but under
certain circumstances you might get a problem with it now: In earlier versions, Hol-
lywood would immediately jump back to your WaitEvent() loop after an ONBUT-
TONCLICK event occurred. This was a wrong behaviour! Now it will jump back
to your WhileMouseOn() command because the mouse is still over your button after
ONBUTTONCLICK occurred. If you want Hollywood 1.9 to behave like Hollywood
1.0 and 1.5 did, you need to use the new BreakWhileMouseOn() command

Hollywood 1.5 API changes

Unfortunately I had to make some API changes to the Hollywood language in the 1.5
update. If your script does not work correctly under Hollywood 1.5 but worked under 1.0,
please read the following information and adapt your script.

− the constant syntax has changed. In Hollywood 1.0 you just specified constants by their
name but now you will have to specify also a ’#’-prefix. So you have to specify e.g.
#CENTER instead of CENTER and #BOLD instead of BOLD. I’m sorry but this change
was absolutely necessarily.

− Undo() will not work until you have called EnableLayers(). If you are using Undo()

in your script, make sure you call EnableLayers() at the beginning.

− syntax of PlaySample() has changed. You can no longer specify a channel for playback.
Hollywood will do everything for you. Just specify the sample number and if it shall
be looped or not.

− syntax of PlayAnim() has changed. It runs now synchronously. This change was
necessary because the old PlayAnim() implementation did no longer fit in the con-
cept. If you need to play anims asynchronously, use brush links of frames and display
them with DisplayBrush(). Because PlayAnim() is synchronous now, the commands
IsAnimPlaying() and WaitAnimEnd() are no longer required and were removed.

− ClearScreen() was removed because it did no longer fit in the concept.

− LoadModule() does not load THX, P61 or MED modules any longer. Module support
now concentrates on the Protracker format. Other module formats cannot be played
back cleanly through AHI.

− Print() does no longer support anti alias for true type fonts. This change was currently
necessary to stay compatible with layers. Anti aliasing will be re-introduced for all
objects in Hollywood 2.0.

Chapter 6: History and compatibility 81

6.3 Future

Here are some ideas that are on my to do list:

− speed of all the transition fx functions should be passed in milliseconds instead of a
custom type; would help to time scripts correctly

− text transition effects

− API for creating video streams with Hollywood

− faster drawing using polygon clipping when possible

− more features

Please drop me a mail if you have some nice ideas what shall be implemented in Hollywood.

83

7 Language overview

7.1 Your first Hollywood program

Hollywood’s script language is easy to use but very powerful! The syntax is based mainly on
BASIC but Hollywood is much more powerful because it is a dynamically typed language!
We will figure out later what this means for the programmer. Hollywood incorporates the
best elements of (Blitz-) BASIC, C, AmigaE, Pascal and Lua into one powerful, flexible
language that allows you to do almost everything with little effort.

Hollywood scripts are just plain text files in UTF-8 encoding. So fire up your favorite text
editor now and start creating your first script!

This is how the famous ’Hello World’ program looks in Hollywood:

Print("Hello World!")

WaitLeftMouse()

End()

The little program above will open a 640x480 display. If you want Hollywood to open a
display with other dimensions, you will need to use the @DISPLAY or the @BGPIC preprocessor
command. 640x480 is the default display size that Hollywood uses when you do not specify
anything else. The display size is not the same as the screen size. It is just the size of
your display (your work area!). The screen size can be anything which is large enough to
hold the display. Your display will be centered on the screen (you can use the @DISPLAY

preprocessor command if you want a different initial display position). The window that is
opened and holds the display will be larger than your display size if it has borders. If you
specify the -borderless argument the window’s size will match your display size.

If you want to have a fancy background picture instead of a plain black background, just
place the @BGPIC preprocessor command at the beginning of your script:

@BGPIC 1, "FancyBackground.jpg"

Print("Hello World!")

WaitLeftMouse()

End()

You can also place multiple commands in one line, so the above code could also be written
like this:

Print("Hello World!") WaitLeftMouse() End()

However, it is advised to use line feeds to make your code better readable. To achieve this,
you can also use comments starting with a /* and ending with a */ or just a single line
comment starting with ;, e.g.:

/* this is a comment */

Print("Hello World!") ; this one too

WaitLeftMouse() ; Wait for left mouse

End() ; Exit

If a Hollywood function does neither accept nor return any arguments, you can leave out
the parentheses when you call the function. If you pass arguments to a function however
or if you want to store the return value of a function, you have to use parentheses. In our

84 Hollywood manual

example, we could leave out the parentheses for the WaitLeftMouse() and End() commands
because they do not take any arguments:

Print("Hello World!")

WaitLeftMouse

End

Of course, it is also possible to use variables instead of direct numbers or strings. You do
not need to declare variables, they will be initialized to zero or an empty string respectively
when you first use them. Variables have to start with a letter from A/a to Z/z or with an
underscore. After that, they can also contain the numbers from 0 to 9, the dollar sign ($)
and the exclamation mark (!). As a matter of style, variables that hold strings should have
a dollar sign as their last character and variables that hold floating point values should
have an exclamation mark as the last character. This makes your code better readable.
The length of a variable name must not exceed 64 characters.

mystring$ = "Hello World!"

Print(mystring$)

WaitLeftMouse

End

Besides normal commands, there are also preprocessor commands available in Hollywood.
These commands are processed before the script execution starts and they are always pre-
fixed with an @-character (at). One of those preprocessor commands is @VERSION. It allows
you to define the version of Hollywood that the script requires as a minimum. For example,
the following script will only work with Hollywood 2.0 and higher:

@VERSION 2,0

Print("Hello World!")

WaitLeftMouse

End

You should always use this preprocessor command as the first action of your script to make
sure the version is checked before anything else.

If you type the code above in your text editor and save it as MyScript.hws, you can then
start it from a console by typing:

Hollywood MyScript.hws [ARGUMENTS]

[ARGUMENTS] can be any combination of console arguments supported by Hollywood. See
Section 3.2 [Console arguments], page 33, for more information on supported arguments.

If you want to start your script through the GUI, start the GUI, click on "Display" and
choose your script.

Congratulations, you have just created your first Hollywood script!

7.2 Reserved identifiers

The following identifiers are reserved by Hollywood and cannot be used as variable or
function names:

And

Block

Break

Chapter 7: Language overview 85

Case

Const

Continue

Default

Dim

DimStr

Do

Else

ElseIf

EndBlock

EndFunction

EndIf

EndSwitch

FallThrough

False

For

Forever

Function

Global

Gosub

Goto

If

In

Label

Local

Next

Nil

Not

Or

Repeat

Return

Step

Switch

Then

To

True

Until

Wend

While

Xor

If you attempt to use one of those as a function or variable name, you will get an error from
Hollywood.

7.3 Preprocessor commands

A preprocessor command is a command that Hollywood processes before actually running
your script. In Hollywood they are mainly used to preload data before the script is started.

86 Hollywood manual

For example, if your script requires the files mainmenu.png, gamescreen.png and music.mod

in any case, you could simply preload them by using the following code:

@BGPIC 1, "mainmenu.png"

@BGPIC 2, "gamescreen.png"

@MUSIC 1, "music.mod"

Hollywood will then load all those files before actually running your script. All files loaded
via preprocessor commands are immediately ready for use when your script starts. Most
of the LoadXXX() commands have their preprocessor command equivalent in Hollywood.
For instance, the preprocessor equivalent of LoadBrush() is @BRUSH, the equivalent of
LoadBGPic() is @BGPIC and so on.

Preprocessor commands are always prefixed by an at character (@). You should also write
them in capital letters so that they can be distinguished better from normal commands.
Preprocessor commands can be placed anywhere in the script, but for readability reasons
it is suggested to put them at the beginning of your script.

An elementary preprocessor command is the @VERSION command. You should use it as
the first thing in each of your scripts! @VERSION checks if the Hollywood version used is
sufficient for running the script. Otherwise, Hollywood will abort.

Most preprocessor commands take several arguments which are separated by commas just
like with normal commands. You can also use expressions in the preprocessor commands.
For instance, the following declaration would be uncommon but perfectly valid:

@BRUSH 5+5, "MyBrush.png"

This would load MyBrush.png as brush number 10. What you cannot do, however, is using
variables in your expressions. When Hollywood parses the preprocessor commands, it does
not know anything about variable states because the script has not been started yet. Thus,
all expressions you use must be constant.

Another advantage of the preprocessor commands is that all files specified here will be
automatically linked into the executable when you compile your script. This behaviour can
be changed by using the Link tag that is accepted by all preprocessor commands that work
with files. This tag tells the Hollywood linker whether or not the file of that preprocessor
command should be linked into the executable or applet when you compile a script. The
Link tag always defaults to True which means that by default all files loaded through
preprocessor commands will be linked to your executable or applet. If you do not want
certain files to be linked, for example because they are too large, you have to specify this
explicitly in the corresponding preprocessor commands.

The following preprocessor commands are available:

@ANIM Preload an animation

@APPAUTHOR Declare application author

@APPCOPYRIGHT Declare application copyright

@APPDESCRIPTION Declare application description

@APPENTRY Declare application entry script

@APPICON Declare application icon

@APPIDENTIFIER Declare application identifier

@APPTITLE Declare application title

@APPVERSION Declare application version

@BACKFILL Choose a backfill for your script

Chapter 7: Language overview 87

@BGPIC Preload a background picture

@BRUSH Preload a brush

@CATALOG Preload a catalog

@DIRECTORY Link whole directory into applet or executable

@DISPLAY Configure display settings

@ELSE Block to enter if all conditions failed

@ELSEIF Test for another condition

@ENDIF Declare end of conditional block

@ERROR Abort compilation with an error message

@FILE Open a file

@FONT Preload a font

@ICON Preload an icon

@IF Test for condition

@INCLUDE Include code from another file

@LINKER Pass options to the linker

@MENU Create a menu strip

@MUSIC Preload a music file

@OPTIONS Configure miscellaneous options

@PALETTE Preload a palette

@REQUIRE Declare a plugin dependency

@SAMPLE Preload a sample

@SCREEN Configure screen mode for your script

@SPRITE Preload a sprite

@VERSION Define which Hollywood version your script requires

@VIDEO Preload a video

@WARNING Send warning message to debug device

7.4 String and number conversion

Hollywood supports automatic string to number and number to string conversion. That
means that if a function expects a string in an argument and you pass a number then
Hollywood will automatically convert this number into a string and pass it to the function
as a string.

For example: StrLen() returns the length of the specified string. Now if we call

a = StrLen(256)

Hollywood will automatically convert the number 256 to the string "256" and therefore the
variable a receives the value of 3 because the string "256" consists of three characters.

This works the same way vice versa. If you pass a string to a function that expects a
number then Hollywood will try to convert this string to a number. The difference to the
number to string conversion is now that the string to number conversion might fail. For
example: Hollywood cannot convert a string like "Hello" to a number. The string must
contain decimal or hexadecimal digits only. Mixed alphabetical and number strings cannot
be converted either, even if the digits come before the characters. Hexadecimal numbers
must be prefixed with a dollar sign ($) or 0x. An example:

LoadBrush("1", "Brush.iff")

88 Hollywood manual

LoadBrush() expects a number as the identifier. Thus, the string "1" will be automatically
converted to a number by Hollywood. This in contrast will not work:

LoadBrush("Test", "Brush.iff")

LoadBrush("1Test", "Brush.iff")

The strings "Test" or "1Test" cannot be converted to a number.

You can also use all of the operators with numbers and strings except the relational opera-
tors. They can only compare two values of the same data type. For example, the following
code works fine:

a = "5" * 10 + 100 / "10" + ("100" - 60) ; a is 100

But this code will give you an error because you use relational operators with values of
different types:

If "10" < 20 ---> Error!

If you want to do something like this, you have to use Val() or StrStr() to convert the
number manually to string or the string to number. E.g.

If Val("10") < 20 ---> Works!

7.5 Comments

Hollywood supports two types of comments: A newline terminated and a user terminated
comment. The newline terminated comment starts if Hollywood discovers a semicolon in
your code. Hollywood will ignore everything after that semicolon then and continue parsing
in the next line. For example:

DebugPrint("Hello") ; Hi I’m a newline terminated comment!

The second version needs to be terminated by the user. You start this comment with the
character sequence /* and end it with a */. Because this comment is user terminated, it
can run over several lines. But it can also be in the middle or at the beginning of a line.
Examples:

/*

Everything in here will be ignored by Hollywood!

*/

DebugPrint("Hello") /* Hello I’m a comment */ DebugPrint("World")

Please comment your code! You do not have to comment every little local variable but
giving functions a short description does not hurt and makes it easier for other people to
understand the program.

7.6 Includes

Includes can be used to import code from a separate file to the current Hollywood script.
You can import Hollywood source code (.hws files) as well as Hollywood applets (.hwa
files). The code that you import from these external files will be linked into your current
project so that these files are not required by compiled Hollywood projects. Importing code
is especially useful for bigger projects because it can easily get quite complex to overlook
if you have only one source code file with lots of code in it. The idea of include files is to
split your program into several pieces. For instance, a jump’n’run game could be split into
the pieces Intro, Menu, MapEngine, Level and Game. Now you create source code files for

Chapter 7: Language overview 89

every piece, e.g. Intro.hws, Menu.hws, MapEngine.hws, Level.hws and Game.hws. One of
the source code files must be the main source code, that is the source code that you start
with Hollywood.

Another use could be to create libraries for Hollywood in the form of Hollywood applets.
You could then publish these applets so that other programmers can benefit from them
by importing the applet into their own projects. The advantage of publishing your library
as a Hollywood applet is that you will not have to expose the source code of your library.
Hollywood applets contain only precompiled bytecode that is not human readable. So if
you want to protect your code but still want to share it with other users, then you can
simply publish it as a Hollywood applet.

Let us return to the example of a jump’n’run game now which spreads its code over several
files. We assume that Intro.hws will be our main source code because the intro is the first
thing, that the end-user will see. Our Intro.hws header will look like the following then:

@INCLUDE "Menu.hws"

@INCLUDE "MapEngine.hws"

@INCLUDE "Level.hws"

@INCLUDE "Game.hws"

ShowIntro()

ShowMenu() ; Function ShowMenu() declared in Menu.hws

RunGame() ; RunGame() declared in Game.hws

DrawMap() ; DrawMap() declared in MapEngine.hws

NextLevel() ; NextLevel() declared in Level.hws

You see that we use the @INCLUDE preprocessor command to include the other four source
files in our Intro.hws file. This allows us to call all functions that are declared in those
four files from our main source code, i.e. from Intro.hws.

Included files contain only functions, variable or constant declarations in most cases. If
there are immediate statements in your include files, e.g. DebugPrint("Hello"), they
will be executed before any code from the main source code because all include files are
inserted in the order they are declared into the main source code file. In our example from
above, Hollywood would first open Menu.hws and insert its code, then MapEngine.hws,
then Level.hws and finally Game.hws. So what Hollywood compiles would look like the
following:

@INCLUDE "Menu.hws"

@INCLUDE "MapEngine.hws"

@INCLUDE "Level.hws"

@INCLUDE "Game.hws"

<...contents of file Menu.hws...>

<...contents of file MapEngine.hws...>

<...contents of file Level.hws...>

<...contents of file Game.hws...>

ShowIntro()

ShowMenu()

...

90 Hollywood manual

You see that all include files are inserted before the code section of your main source code
file. Therefore all immediate statements will be executed before the code of the main source
code too.

If you want to include applets, simply pass an applet file to the @INCLUDE preprocessor
command:

@INCLUDE "Test.hwa" ; import functions from Test.hwa

LibFunc() ; call LibFunc() which was defined in Test.hwa

7.7 Error handling

There are several ways of dealing with errors in Hollywood. The easiest is to let Hollywood
do everything for you, which is the default behaviour. By default, Hollywood will always
terminate your script when an error occurs inside a Hollywood function. Consider the
following code:

LoadBrush(1, "xyz")

If the file xyz does not exist, Hollywood will terminate your script and show an error that
says: "Cannot read file xyz!"

If you do not like this behaviour, you can also tell Hollywood to call a function provided by
you whenever an error occurs. This is possible by calling the RaiseOnError() function and
providing a callback function that Hollywood should run whenever an error occurs. Here is
how you can replace Hollywood’s default error handler with a custom error handler:

Function p_ErrorFunc(code, msg$, cmd$, line)

DebugPrint(code, msg$, cmd$, line)

EndFunction

RaiseOnError(p_ErrorFunc)

LoadBrush(1, "xyz")

If you use the code above, calling LoadBrush() with a brush that doesn’t exist, won’t trigger
Hollywood’s default error handler but will instead call the user function p_ErrorFunc()

and pass further information about the error that has just occurred to it. See Section 28.7
[RaiseOnError], page 546, for details.

Sometimes, however, it can be useful to know if a single call succeeded or not. This can
be achieved by temporarily disabling Hollywood’s error handler and getting the error code
from the last function call, for example like this:

ExitOnError(False) ; disable default error handler

LoadBrush(1, "xyz")

error = GetLastError()

ExitOnError(True) ; enable default error handler again

The code above temporarily disables Hollywood’s default error handler just for the duration
of the LoadBrush() call. Right after the LoadBrush() call we use GetLastError() to find
out if the LoadBrush() call has succeeded or not. It is important to call GetLastError()
immediately after LoadBrush() because the internal error flag will be reset whenever
a Hollywood command is executed so if you call another function after LoadBrush()

GetLastError() will return the error state of this function instead of LoadBrush().

Chapter 7: Language overview 91

Since the code above requires lots of typing for a rather simple thing, there is also some
syntactic sugar which does the same as the code above while dramatically reducing the
amount of typing that is required. Instead of calling ExitOnError() and GetLastError()

manually like shown above, you can also have Hollywood do all that automatically for you
by simply prefixing function calls with a question mark. Thus, the code above could also
be written like this:

error = ?LoadBrush(1, "xyz")

In case a function returns other values and you use a question mark to obtain an error code
from a function call, all other return values are simply shifted down. The error code will
always be the first return value. For example, if we want to use automatic ID selection with
LoadBrush() and combine this with the question mark syntax, we have to write the code
like this:

error, id = ?LoadBrush(Nil, "xyz")

Normally, id would be the first return value but since we use the question mark syntax to
obtain an error code from LoadBrush(), the first return value is shifted down and becomes
the second return value now because the error code will always be in the first return value.

Finally, to check whether an error has occurred or not, you just have to compare the
error code error against #ERR_NONE, which is defined as 0 for convenience, i.e. whenever
error is not 0 you know that something went wrong. You could then use GetErrorName()
to convert the error code into a human-readable string or implement some custom error
handling depending on the error code that has been set. See Section 28.3 [Error codes],
page 507, for a list of all error codes.

Please note that there are some errors that cannot be caught. For example, if you pass the
wrong number of arguments to a function or you pass wrong variable types to a function,
Hollywood will always exit immediately with a fatal error and your script won’t be given a
chance to catch such errors. Even though they occur at runtime, Hollywood will consider
such errors syntax errors and will immediately exit. Here is an example where we pass
a string in the first argument of LoadBrush() which is forbidden because LoadBrush()

expects a number:

ExitOnError(False)

LoadBrush("Hello", "xyz")

ExitOnError(True)

Although we have disabled Hollywood’s error handler by passing False to ExitOnError(),
Hollywood will still immediately halt the script’s execution because passing "Hello" to
LoadBrush() is just plain wrong and Hollywood will consider this a major mistake and
won’t allow your script to intercept this error in any way.

7.8 Automatic ID selection

You can pass Nil to all functions that ask you to specify an identifier for the new Hollywood
object. In that case, Hollywood will automatically choose an identifier and return it to you.
This is especially useful for larger projects. If your project is small it is more convenient to
use hard-coded ids, e.g.

LoadBrush(1, "brush1.iff")

LoadBrush(2, "brush2.iff")

92 Hollywood manual

LoadSample(1, "sample.wav")

OpenFile(1, "file.txt")

However, when your project grows larger id management can get quite confusing and nobody
wants to mess around with a myriad of different ids. Thus, you can simply pass Nil instead
of an id and Hollywood will return an id for the new object that is guaranteed to be unique
because it uses the special variable type #LIGHTUSERDATA. That way, it is ensured that no
id conflicts will arise because if you pass Nil, Hollywood will not choose an id from the id
pool (i.e. integer numbers from 1 to n) but it will create unique ids. Thus, all normal ids
will still be available for use, e.g.

brush1 = LoadBrush(Nil, "brush1.iff")

brush2 = LoadBrush(Nil, "brush2.iff")

sample1 = LoadSample(Nil, "sample.wav")

file1 = OpenFile(Nil, "file.txt")

The variables brush1, brush2, sample1, and file1 will not receive any human readable
ids but special ids of type #LIGHTUSERDATA. Thus, all human readable ids from 1 to n will
still be available. Therefore, you do not have to worry about any id conflicts when passing
Nil to object creation function, because they cannot occur as Hollywood uses two separate
id dimensions: One human readable that is only used when you pass an id to the object
creation functions and one opaque id mechanism that is used when you pass Nil to the
object creation functions.

7.9 Loaders and adapters

Many Hollywood functions support loaders and adapters. The difference between a loader
and an adapter is the following: A loader adds support for additional image, sound, video,
icon, font, or animation formats while an adapter replaces certain parts of Hollywood with
an own implementation. For example, there are display adapters which can be used to
replace Hollywood’s inbuilt display handler with a custom one (e.g. displays managed by
SDL or OpenGL), there are network adapters which allow plugins to override Hollywood’s
inbuilt network implementation and of course there are file adapters.

File adapters can, for example, be used to add support for a new container formats. They
can be tied to loaders in a way that the adapter provides the raw data which is then
interpreted by a loader later in the process. For example, an adapter could provide support
for reading files compressed by gzip. The data thus extracted by an adapter could then be
handled by a loader. For example, there could be a BMP picture inside a file compressed by
gzip: Hollywood would then first ask the adapter to provide the uncompressed data of the
gzip file and then ask the loader to load the actual BMP picture. A file adapter could also
implement data streaming from a random source, e.g. from HTTP server or other sources.

Starting with Hollywood 6.0 almost all functions that deal with files allow you to specify a
loader and/or an adapter in their optional table argument. The idea behind this design is to
speed up loading of external data. If you do not specify a loader or an adapter, Hollywood
will ask all loaders and all adapters that are currently installed whether or not they want
to open this file. Depending on how many plugins you have installed, this can slow down
things quite considerably when many files need to be loaded. If you know the loader that
should load your external data or the adapter that should handle it, you can pass its name
to the loading function to speed up the loading process.

Chapter 7: Language overview 93

The string you pass to the Loader or Adapter tags accepted by the optional table argument
of almost all functions that deal with files needs to be composed of at least a single loader
or adapter name, or a reserved keyword describing a special loader or adapter. Multiple
names and keywords have to be separated by a vertical bar character (|). The following
reserved keywords are currently recognized:

Default: This is the default operation mode. This cannot be combined with any other
keywords or loader and adapter names. It must always be used independently
of the others. In default operation mode, Hollywood will first ask all the loaders
and adapters made available by plugins whether or not they want to handle a
file. If there is no plugin which wants to handle the file, Hollywood’s inbuilt
handlers will be asked to deal with it. If no inbuilt handlers recognize the file,
native loaders of the host OS loaders will be asked to load the file.

Inbuilt: If this keyword is specified, Hollywood’s inbuilt loaders will be asked whether or
not they want to load the file. Hollywood’s inbuilt loaders support the following
file formats:

Inbuilt image loaders:

IFF ILBM, JPEG, PNG, GIF, and BMP.

Inbuilt anim loaders:

IFF ANIM, GIF ANIM, and AVI MJPEG.

Inbuilt sound loaders:

IFF 8SVX, IFF 16SV, RIFF WAVE, and Protracker.

Inbuilt video loaders:

CDXL video.

Native: If this keyword is specified, Hollywood will ask the host OS to try to load the
file. This is only supported for certain types and operating systems. Here is an
overview:

AmigaOS: Passing Native as the loader will use datatypes to load images,
animations, and sounds. There is no native video loader.

Windows: There are native sound and video loaders based on DirectShow and
Media Foundation and native image and anim loaders based on the
Windows Imaging Component.

macOS: There are native sound, video, and image loaders based on macOS
technologies. There is no native anim loader.

Linux: There are no native loaders at all.

iOS: There are native sound, video, and image loaders based on iOS
technologies. There is no native anim loader.

Android: There are no native loaders at all.

Plugin: If this keyword is specified, Hollywood will ask all plugins whether they want to
handle the file. Plugins will be asked in the order they were loaded by Hollywood
which is rather random because it depends on the order they are returned to
Hollywood by the file system. If you want to make sure a certain plugin is asked

94 Hollywood manual

to handle a file before another plugin, you need to explicitly include the name
of this plugin in the string instead of using the generic Plugin keyword.

If you use a general keyword like Plugin and you need to find out which loader or adapter
was used to load a file, you can query the #ATTRLOADER or #ATTRADAPTER attributes using
GetAttribute() to find out which loader or adapter opted to handle the file. Loaders and
adapters may also provide a format name for the file they loaded. You can get this by
querying the #ATTRFORMAT attribute.

Here are some example specifications:

LoadBrush(1, "test.png", {Loader = "inbuilt"})

The code above will load the specified file using the inbuilt PNG image loader. Neither
image plugins nor host OS loaders will ever be asked whether they want to load this file.

LoadBrush(1, "test.png", {Loader = "myplugin"})

The code above will ask myplugin.hwp to load the file test.png. If myplugin.hwp fails to
load the file, LoadBrush() will fail as well. It will not fall back to the inbuilt image loader.
If you want LoadBrush() to fall back to the inbuilt image loader, you will have to add it
to the string you pass in the Loader tag, e.g.:

LoadBrush(1, "test.png", {Loader = "myplugin|inbuilt"})

In that case, LoadBrush() will use the inbuilt image loader in case the loader provided by
myplugin.hwp fails. The following code will work on AmigaOS, Windows and macOS but
will fail on all the other platforms since they do not have a native image loader (see above):

LoadBrush(1, "test.png", {Loader = "native"})

On AmigaOS, test.png will be loaded via datatypes, on Windows using the Windows
Imaging Component and on macOS and iOS it will be loaded via CoreGraphics. On Linux
and Android, however, it will fail because Hollywood does not have a native image loader
on these platforms.

You can also use the Adapter and Loader tags together, for example like this:

LoadBrush(1, "test.bmp.gz", {Adapter = "gzip", Loader = "inbuilt"})

The code above will first pass the file test.png.gz to gzip.hwp so that it can unzip it and
then the unzipped BMP picture will be loaded using the inbuilt image loader. Of course,
you could also just write the following code and it would work as well:

LoadBrush(1, "test.bmp.gz")

However, there is some overhead here because Hollywood will first ask all file adapters
whether they want to handle test.bmp.gz and after that Hollywood will ask all image
loader plugins whether they want to load the file or not. Depending on how many plugins
you have installed, this can take quite some time. So if you know which adapter and loader
you want to use, it will increase the loading speed if you specify loader and adapter names
directly.

Also note that if you pass multiple loaders or adapters to a Hollywood function and separate
them using a vertical bar character (|), the order of the individual loaders and adapters
will matter. For example, the following code will first ask the plugin digibooster.hwp to
open the file, and then it will ask the plugin xmp.hwp to open it:

OpenMusic(1, "shades.dbm", {Loader = "digibooster|xmp"})

Chapter 7: Language overview 95

This also allows you to prioritize certain generic loaders like Native, Inbuilt and Plugin.
As described above, by default Hollywood will first ask plugin loaders, then inbuilt loaders,
then native loaders to open a file. If you want native and inbuilt loaders to be asked
before ones provided by plugins, you could pass the string native|inbuilt|plugin to
achieve that. With such a loader string, native loaders would be asked first and plugin
loaders would be asked last. You could also change the default order globally by using the
SetDefaultLoader() and SetDefaultAdapter() functions, respectively. See Section 52.27
[SetDefaultLoader], page 1092, for details.

Another advantage of directly specifying a loader or an adapter is that it allows you to access
loaders and adapters which are hidden from general usage. Plugin authors can decide to
write loader or adapter plugins that are not automatically available once Hollywood has
loaded the plugin but can only be used either by explicitly calling @REQUIRE on the plugin
or by directly passing the plugin’s name to the Loader or Adapter tags. So these two tags
can also be used to address hidden plugins directly.

Starting with version 8.0, Hollywood also supports network adapters now. Those adapters
follow the same principle as file and directory adapters, i.e. they can be used to route
the functions of Hollywood’s network library through custom handlers implemented as
Hollywood plugins. Network adapters, for example, can enhance the functionality of
DownloadFile() and UploadFile() to support TLS/SSL connections as well. They could
also be used to implement support for completely different network types and protocols
because Hollywood’s network adapter interface is completely abstracted from any kind of
specific networking API, which makes it very flexible to adapt to new environments.

Starting with version 10.0, Hollywood also supports filesystem adapters. Filesystem
adapters can be used to replace core filesystem features like renaming files and directories,
creating directories, moving files and directories, etc. with customized ones. Several
Hollywood functions support filesystem adapters, e.g. CopyFile(), MakeDirectory(), or
DeleteFile().

7.10 User tags

User tags are a way of passing additional information from Hollywood scripts to plugins.
They can be used to pass an unlimited amount of additional data to plugins directly from
the Hollywood script. Most of the Hollywood commands that support plugins also allow
you to pass user tags that should be forwarded to plugins. Of course, this makes only sense
if the user data is actually recognized by the respective plugin.

For example, let’s suppose there’s a plugin that can load PDF pages as images. This makes
it possible to use Hollywood’s LoadBrush() command to create a brush from a PDF page.
However, functions like LoadBrush() don’t support specifying a page number or a password
because they’re not designed to load pages from PDF documents. A plugin could deal with
this limitation by simply defining two new user tags, e.g. Page and Password, and then
scripts could use these two tags to pass the information to the plugin.

From the Hollywood script’s point of view, user tags are simply passed in an optional
UserTags table accepted by many Hollywood functions, e.g. LoadBrush(). The UserTags

table can contain an unlimited amount of key-value pairs that define individual user tags.
Note that the key must always be a named table index like Page or Password. It’s not

96 Hollywood manual

possible to use numeric table indices as user tags. The value can be a string or a numeric
value. If it is a string, it can also contain binary data.

To come back to our example from above, to pass a page and a password to an image plugin
via user tags, a Hollywood script could simply do the following:

; load page 5 of test.pdf as a brush, passing "mypwd" as the password

LoadBrush(1, "test.pdf", {UserTags = {Page = 5, Password = "mypwd"}})

A plugin could then look for the tags Page and Password to find out the page number to
load and the password for the PDF (if any). This makes it possible to pass all kinds of
additional information to Hollywood plugins.

Furthermore, user tags are also supported by many preprocessor commands so you could
also do the following to load page 5 of test.pdf as a brush:

; load page 5 of test.pdf as a brush, passing "mypwd" as the password

@BRUSH 1, "test.pdf", {UserTags = {Page = 5, Password = "mypwd"}}

Note that user tags are supported by all kinds of plugins: They are supported by image
loaders, anim loaders, sound loaders, video loaders, icon loaders, font loaders, file adapters,
directory adapters, display adapters, network adapters, and serializers. Loaders typically
forward the user tags to adapters as well so that file adapters will be able to listen to user
tags passed through loaders.

7.11 Styleguide suggestions

Here are some suggestions to keep your code readable. As you have read before, Hollywood
does not distinguish between capitals and small letters but to keep your code readable, we
suggest the following styleguide rules:

− always write inbuilt commands like they appear in this documentation but at least
begin them with a capital

− write constants in capitals to distinguish them from variable names

− write all preprocessor commands in capitals to highlight them

− one command per line is usually enough!

− use the "$" character only in string variables to avoid confusion

− use the "!" character only in variables that carry floating point values to avoid confusion

− some comments won’t hurt either

− when using If blocks and loops, you should use tabs to structure the different levels

− you should prefix your own functions with a "p " to distinguish them from Hollywood
functions (there might also be Hollywood functions in future versions which have the
same name as your functions which could lead to unexpected results)

97

8 Data types

8.1 Overview

This chapter covers all data types that are available in Hollywood. The following five data
types are offered by Hollywood:

Number Numeric values like 1, 2, $FF, 3.5, 1.7e8, True, False, ’a’

String Sequences of characters; usually used for text e.g. "Hello"

Table Collections of data items of the same or different types

Function User-callable routines

Nil Means that a variable does not have any value

You can find out the data type of a variable by using the GetType() command. E.g.

GetType(1) ---> returns #NUMBER

GetType(2.5) ---> returns #NUMBER

GetType(True) ---> returns #NUMBER

GetType(’x’) ---> returns #NUMBER

GetType(#STRING) ---> returns #NUMBER

GetType("What am I?") ---> returns #STRING

GetType({1, 2, 3}) ---> returns #TABLE

GetType(DebugPrint) ---> returns #FUNCTION

GetType(Nil) ---> returns #NIL

8.2 Numbers

The number type can be used to store integer and real numbers. Internally, all numbers are
stored as 64-bit floating point values which means that it can represent very large integers
and very precise real numbers. The number type can store numbers ranging from 1.7*10^-
308 to 1.7*10^308. The integer range is from -9007199254740992 to 9007199254740992.

You can also specify hexadecimal numbers by using the prefix $ or 0x, e.g.:

a = $FF ; a = 255

Floating point numbers can also be specified by using the exponential notation, e.g.

a = 2.5e5 ; a = 2.5 * 10^5 => a = 250000

The 0 is optional for floating point values between -1 and 1. So the following code would
also work:

a = .25 * 2 ; a = 0.5

Although Hollywood does not have separate data types for integer and floating point num-
bers, there is still the style-guide suggestion to suffix variables that are expected to hold
floating point values with an exclamation mark. E.g.

a! = 3.14159265

This makes it easier to read your code because you know exactly which variables will get
integer values only and which variables will get floating point values. Of course, you can
use floating point values without the exclamation mark, but it is suggested that you use it.

98 Hollywood manual

8.3 Strings

The string type can be used to store a sequence of characters or binary data. By default,
text is stored in the UTF-8 character encoding in strings which means that up to 4 bytes
may be necessary to store one Unicode character. Strings are specified by enclosing them
in double quotes. As a matter of style, you should always suffix string variables with the $
dollar sign so that a reader of your source code can easily see which variables carry strings
and which carry numbers. For example:

a$ = "Hello World!"

This could also be written as:

a = "Hello World!"

But with the dollar sign at the end the code is more readable because we know that a is a
string.

You can concatenate strings by using the .. operator. The code above could also be written
as:

a$ = "Hello" .. " " .. "World!"

This will concatenate three strings into one string and write it to a$. See Section 9.6 [String
concatenation], page 109, for details.

If your string needs to contain a double quote, you can use escape code \" for that, e.g.:

; this will print Hello, "Mr. John Doe"!

DebugPrint("Hello, \"Mr. John Doe\"!")

Escape codes are always specified after one backslash character (\). If you need to put a
backslash into a string, use a backslash character as the escape code (\\). The following
escape sequences are supported by Hollywood:

\a Ring the system bell

\b Back space

\f Form feed

\n Newline character

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\" Double quote

\’ Single quote

\? Question mark

\[Square bracket open

\] Square bracket close

\xxx Code point

The last escape sequence allows you to insert characters directly by simply specifying their
code point value after the backslash. The code point value must be specified in decimal
notation only and may occupy up to three digits. Only Latin 1 code points in the range of
0 to 255 are allowed here. Every value greater than 255 will not be accepted. Using this
escape sequence, you could insert a zero character in a string:

a$ = "Hello\0World"

Chapter 8: Data types 99

In many programming languages a zero character defines the end of the string. Not so
in Hollywood. Hollywood allows you to use as many zero characters as you want in your
strings. All functions of the string library are zero character safe. For example, this code
would return 11:

DebugPrint(StrLen("Hello\0World"))

However, that does not apply to functions that output text. The following example will
print "Hello" because of the zero character:

; this will print "Hello" because a zero char terminates the string

DebugPrint("Hello\0World")

If a newline character follows a backslash, Hollywood will insert a newline character into the
string also and will continue parsing the string on the next line. For example, the following
two statements create the same string:

a$ = "Hello\nWorld!"

a$ = "Hello\

World!"

If you are using this feature, make sure the newline character is right behind the backslash.
There must be no spaces/tabs between the backslash and the newline!

Another way to specify strings is to use a pair of double square brackets. This is especially
useful if you have multiple lines of text that should be placed inside the string. An example:

a$ = [[

<HTML>

<HEAD>

<TITLE>My HTML Page</TITLE>

</HEAD>

<BODY>

http://www.airsoftsoftwair.de/

</BODY>

</HTML>

]]

The above string initialization is equal to this code:

a$ = "<HTML>\n<HEAD>\n<TITLE>My HTML Page</TITLE>\n</HEAD>\n" ..

"<BODY>\n<A HREF=\"http://www.airsoftsoftwair.de/\"" ..

" TARGET=\"_NEW\">http://www.airsoftsoftwair.de/\n" ..

"</BODY>\n</HTML>\n"

You see that the first version is much more readable. So if you want to use multiple line
strings, it is advised to use the [[...]] version. If a newline character follows after the
initial [[then this newline is ignored. Carriage return characters (’\r’) are never included
inside the long string. Every line break inside the long string will be converted to just a
linefeed character (’\n’). You can also freely use double quotes in a string delimited by
[[...]]. That is another advantage.

You can also store raw binary data in strings. For example, the DownloadFile() function
can be used to download a file directly into a string. When using binary data inside
strings, you have to be careful when calling functions of the string library. Functions of the

100 Hollywood manual

string library normally expect valid UTF-8 data within the strings that are passed to them.
Obviously, this won’t be the case when you use strings as containers for raw binary data.
To make strings containing raw binary data work with the functions of the string library
as well, you need to explicitly tell those functions not to interpret the string data as UTF-
8. This is done by passing the special character encoding constant #ENCODING_RAW in the
optional encoding parameter most of the string library functions accept. Then the string
library functions can also be used with strings containing raw binary data. See Section 13.2
[Character encodings], page 149, for details.

Finally, there is no string length limit. Strings can be as large as system memory permits
but when storing large amounts of data inside a string you should take some care and set
the string to Nil when you no longer need it so that the garbage collector knows that it
can free the memory allocated for this string. Consider the following example:

data$ = DownloadFile("http://www.airsoftsoftwair.de/images/" ..

"products/hollywood/47_shot1.jpg")

...do something with data$...

data$ = Nil

This will download the file at the specified URL and store the binary data in data$. Once
the binary data in data$ has been processed, data$ is set to Nil to tell the garbage collector
that it can release the memory occupied by data$. This is very important because otherwise
it could happen that your script constantly consumes more memory.

8.4 Tables

A table is a collection of many different data items which can be of any type. A table is
the universal data structure in Hollywood. It can be used in many different forms, e.g. as
an array, as a list or as a record. Tables are created by using the constructor {...}. For
example, the following code creates an empty table:

a = {}

An empty table is of no use because there is no data in it and Hollywood requires that all
fields of a table must be initialized before they are used. Thus, if you tried to access a field
of this empty table now by stating for instance

b = a[0]

you would get an error stating that this field 0 has not been initialized yet. You may
only access fields of the table, that you have initialized before. The correct version would
therefore be:

a[0] = 5 ; assign 5 to a[0]

b = a[0] ; assign 5 to b

Or you could also use the constructor to initialize the table:

a = {5} ; create a table with 5 as the element 0

b = a[0] ; assign 5 to b

You can also use the constructor to initialize the table with multiple items. The constructor
assigns the specified values to the table starting at index 0. For example:

a = {1, 2, 4, 8, 16, 32, 64, 128, 256} ; create table with 9 elements

b = a[7] ; assign 128 to b (128 is at index 7 in a)

Chapter 8: Data types 101

Additionally, you can use the Dim and DimStr statements to create and initialize a table
of a specified size.

One thing that is important to know when dealing with tables is that when you assign a
table to a new variable, the new variable receives only a reference to the table. It does not
receive an independent copy of the table. Consider the following code:

a = {1, 2, 3, 4, 5} ; create a table with 5 elements

b = a ; create a REFERENCE of a in b

b[0] = 2 ; change element 0 to 2

DebugPrint(a[0], b[0]) ; will print "2 2"

If you want to create an independent copy of a table, you can use the CopyTable() function
for this.

In Hollywood, indices cannot only be positive integers, but also negative integers, floating
point values and even strings. For example, you can also initialize negative elements of the
table:

a = {} ; create empty table

a[-5] = 3 ; assign 3 to index -5

a[1.5] = 2 ; assign 2 to index 1.5

If you want to do this custom initialization in the constructor, you will have to use square
brackets. The three lines above could also be written as:

a = {[-5] = 3, [1.5] = 2} ; initialize new table

If you want to use strings as indices, you can use the following statements:

a = {} ; create empty table

a["name"] = "John Doe" ; assign "John Doe" to index "name"

a["age"] = 20 ; assign "20" to index "age"

a["sex"] = "male" ; assign "male" to index "sex"

An easier way to use strings as indices is to use the ’.’ expression. The following code does
the same as the code above:

a = {} ; create empty table

a.name = "John Doe" ; assign "John Doe" to index "name"

a.age = 20 ; assign "20" to index "age"

a.sex = "male" ; assign "male" to index "sex"

Last but not least, you can also use the constructor to initialize a table with named indices.
The following code does the same as the two snippets above:

a = {["name"] = "John Doe", ["age"] = 20, ["sex"] = "male"}

Or the easier way:

a = {name = "John Doe", age = 20, sex = "male"}

You can access named elements of a table also in two ways:

b = a["name"]

b = a.name

Both lines will assign the same value to b. The most common way to access and initialize
named elements of a table is to use the dot method. Please note that Hollywood does
not distinguish between upper and lower case names, so you could also access the elements
above by using a.NAME or even a.nAmE.

102 Hollywood manual

There is, however, an exception: When using brackets to initialize or access table fields,
Hollywood distinguishes between upper and lower case string indices. Further details on
this topic can be found in the documentation of the RawGet() command. See Section 53.17
[RawGet], page 1110, for details.

You can add elements to a table by simply assigning a value to them. If you want to remove
elements, you have to set their value to Nil. That is another big advantage of Hollywood’s
programming language which is dynamically typed. Tables (arrays) are not limited to a
specific size: You can grow and shrink them as you like.

You can also use tables which combine named and numbered elements, for instance:

a = {x = 1, y = 2, 10, 11, 12, 13, z = 3, [6] = 16, 14, 15, obj="Cube"}

This creates a new table and initializes elements 0 to 6 with the numbers 10 to 16. Addi-
tionally, it creates four elements named x, y, z and obj and initializes them to 1, 2, 3, and
"Cube".

We are now going to have a look at some more complicated table constructions. You might
want to skip the following section if you are just starting out with Hollywood.

It is also possible to use tables within tables. Have a look at the following example:

buts = { {x1 = 0, y1 = 0, x2 = 100, y2 = 50},

{x1 = 100, y1 = 0, x2 = 80, y2 = 50},

{x1 = 180, y1 = 0, x2 = 100, y2 = 50} }

This code creates a new table called buts and initializes the first three elements with tables
which contain the start and end position of each button. We could now use the following
code to create those three buttons:

For k = 0 To 2

CreateButton(k + 1, buts[k].x1, buts[k].y1, buts[k].x2, buts[k].y2)

Next

Multi-dimensional tables are also no problem. The following code creates a matrix of size
50x100 and initializes it to zero:

N = 50

M = 100

mtx = {} ; create an empty table

For i = 0 To N - 1

mtx[i] = {} ; create a new row

For j = 0 To M - 1

mtx[i][j] = 0 ; initialize element

Next

Next

You can also use the Dim and DimStr statements to create multi-dimensional tables.

You do not have to use constants when initializing a table using a constructor. You can use
variables whereever you want. For example:

s$ = "test"

i = 5

a = {[s$] = "An element", [i * 5 + 1] = "Another element"}

Chapter 8: Data types 103

This code will create the element a.test (which is the same as a["test"]) and assign the
string "An element" to it. In addition, it creates the element a[26] and assigns the string
"Another element" to it.

Do not get confused when you see something like this:

x = 5

y = 4

a = {x = x, y = y} ; assign 5 to "x" and 4 to "y"

The table declaration above is no nonsense. It creates a table with two elements named x

and y. The element x gets the value of the variable x which is 5 and the element y gets
the value of the variable y which is 4. An other way to write the code above would be for
instance:

x = 5

y = 4

a = {} ; empty table

a.x = x ; assign 5 to a.x

a.y = y ; assign 4 to a.y

Both snippets do the very same.

Finally, you can place functions in your tables. Here is an example:

a = {Add = Function(v1, v2) Return(v1 + v2) EndFunction,

ShowBrush = DisplayBrush}

a.ShowBrush(1, #CENTER, #CENTER) ; calls DisplayBrush()

b = a.Add(15, 16) ; returns 31 to b

The code above creates a table with two functions. The first function is a custom function
which adds two values and the second function simply refers to the Hollywood function
DisplayBrush(). You could also write this code in the following way:

a = {["Add"] = Function(v1, v2) Return(v1 + v2) EndFunction,

["ShowBrush"] = DisplayBrush}

a["ShowBrush"](1, #CENTER, #CENTER) ; calls DisplayBrush()

b = a["Add"](15, 16) ; returns 31 to b

8.5 Functions

Yes, that is right: Functions are part of our data types chapter too. In Hollywood every
function is just a variable. That means that you can initialize them just like variables, you
can pass functions as parameters to other functions and functions can also be the return
values of other functions. For example, the following code

p_Print = Function(s) DebugPrint(s) EndFunction

is just another way for writing:

Function p_Print(s)

DebugPrint(s)

EndFunction

Because functions are variables you can also assign new values to them, for instance:

DebugPrint = Print

Now all calls to DebugPrint() will call the Print() command instead.

104 Hollywood manual

There is a lot more to know about the function data type. Therefore it has its own chapter
in this manual. See Section 12.1 [Functions], page 137, for details..

8.6 Nil

If you use a variable without assigning a value to it, the variable will have the type Nil

which practically means that the variable does not exist. Hollywood only keeps variables
which have a value. If you pass an uninitialized variable to a function or use it with an
operator, it will be automatically converted to zero or - if the function expects a string - to
an empty string ("").

If you do not need a variable any longer, you can also set it to Nil and it will be deleted in
the next cycle of the garbage collector then.

You can also delete an element of a table by setting it to Nil.

Be careful when checking variables against Nil because 0=Nil is actually True in Holly-
wood. Thus, IsNil() and GetType() are the only reliable way to find out if a variable is
really Nil. Simply checking against Nil will also result in True if the variable is 0.

105

9 Expressions and operators

9.1 Overview

An expression is a combination of operands and operators. If there is at least one operand
and one operator we speak of an expression. Hollywood needs to evaluate expressions before
it can pass their result to a function. An expression can be constant or variable, depending
on whether it contains variables or not. For example, 5 + 3 is an expression. The operands
are 5 and 3 and the operator is +. -1 is also an expression because we have one operand and
one operator. Usually operators are binary which means that they require two operands
but there are exceptions: For example, the negation operator (-) is unary and therefore
requires only one operand.

You can use parentheses in expressions to tell Hollywood what shall be evaluated first. In
the following line

a = (3 + 4) * 5

Hollywood will first add 3 and 4 and then multiply the result of the addition by 5. If you
did not include the parentheses in the code above, Hollywood would first evaluate 4 * 5
and then add 3 to it because the multiplication operator (*) has a higher priority than the
addition operator (+). See Section 9.7 [Operator priorities], page 110, for details.

9.2 Arithmetic operators

Hollywood supports the following arithmetic operators:

BINARY

Operator Description Example

+ Addition a + b

- Subtraction a – b

* Multiplication a * b

/ Real division a / b

\ Integer division a \ b

% Division remainder a % b

^ Power a ^ b

UNARY

Operator Description Example

- Negation -a

It should be pretty self-explaining how to use these operators so here is only a brief descrip-
tion of every operator:

Addition: a + b
Adds a and b, e.g. 5 + 3 = 8

106 Hollywood manual

Subtraction: a - b
Subtracts b from a, e.g. 10 - 5 = 5

Multiplication: a * b
Multiplies a by b, e.g. 10 * 8 = 80

Real division: a / b
Does an exact division. Result might be a floating point value, e.g. 5 / 2 = 2.5.
b must not be 0

Integer division: a \ b
Divides a by b. Decimal places will be deleted, e.g. 5 \ 2 = 2 b must not be 0

Division remainder: a % b
Returns the integer remainder of the division a \ b, e.g. 5 % 2 = 1 b must not
be 0

Power: a ^ b
Calculates a to the power of b, e.g. 2 ^ 8 = 256

Negation: -a
Negates a, e.g. –5 = 5

9.3 Relational operators

Hollywood supports the following relational operators:

BINARY

Operator Description Example

= Equal a = b

<> Not equal a <> b

< Less than a < b

> Greater than a > b

<= Less or equal to a <= b

>= Greater or equal to a >= b

Each of the operators compares the operands a and b and returns True if the condition
matches and False otherwise. Please note that you can only compare values of the same
type. The automatic number to string conversion does not apply here!

The equality operators can be used with all types, i.e. you can also compare functions and
tables with them. The order operators (< > <= >=) only work with numbers and strings. If
you compare strings with them Hollywood will do an alphabetical comparison. For example:

r = ("Hello" < "World") -> True because H is before W alphabetically

r = ("Commodore" < "Amiga") -> False because C is after A alphabetically

Note that for compatibility reasons, comparing strings with the relational operators is only
supported for ASCII characters. To compare strings with full Unicode collation, use the
CompareStr() function instead. See Section 51.15 [CompareStr], page 1032, for details.

Chapter 9: Expressions and operators 107

9.4 Logical operators

Hollywood supports the following logical operators:

BINARY

Operator Description Example

And Logical And a And b

Or Logical Or a Or b

UNARY

Operator Description Example

Not Logical Not Not a

The binary logical operators allow you to make decisions based on multiple conditions.
Each binary logical operator needs two operands which are used to evaluate the result of
the logical condition. All values that are not 0, Nil or the empty string ("") are considered
True.

The And and Or operators use short-cut evaluation. This means that if the first operand
already defines the result, the second operand is not evaluated at all. For example, if the
first operand of an And expression is False (zero), then the second operand does not need
to be evaluated because the whole expression cannot be True anyway. The same applies to
an Or expression if the first operand of it is True (non-zero). Then the whole expression
will always be True - no matter what value the second operand has.

Please note: And and Or do not return the constant True (1) if they are true. And returns
the second operand if it is true and Or returns the first operand if it is true. For example:

a = 5 And 4 ; a = 4

a = 5 And 0 ; a = 0

a = 0 And 4 ; a = 0

b = 5 Or 4 ; b = 5

b = 5 Or 0 ; b = 5

b = 0 Or 4 ; b = 4

The unary Not operator will negate its operand. The result will always be True (1) or
False (0). If used on a string it will result in True if the string is empty (""). For example:

a = Not True ; a = 0 (False)

a = Not False ; a = 1 (True)

a = Not 5 ; a = 0 (False)

a = Not Not True ; a = 1 (True)

a = Not "Hello" ; a = 0 (False)

a = Not "" ; a = 1 (True)

Please note: The Not operator has a high priority. You will need parentheses in most cases.
For example, this does not work:

If Not a = -1 ; wrong!

Hollywood will translate it to

If (Not a) = -1

108 Hollywood manual

because the Not operator has a higher priority than the equality operator! But obviously
this translation does not make any sense because the result of the expression in parentheses
(Not a) will always be 0 or 1 but never ever -1. Therefore, if you would like to check if a is
not -1, you will have to use parentheses around the expression with the lower priority:

If Not (a = -1) ; correct!

See Section 9.7 [Operator priorities], page 110, for details.

9.5 Bitwise operators

Hollywood supports the following bitwise operators:

BINARY

Operator Description Example

<< Left shift (logical) a << b

>> Right shift (logical) a >> b

& Bitwise And a & b

~ Bitwise Xor a ~ b

| Bitwise Or a | b

UNARY

Operator Description Example

~ Bitwise negation ~a

The bitwise operators allow you to work with expressions on bit level. Those operations
are all limited to 32-bit values. Here is a description of the bitwise operators:

The left shift operator (<<) shifts all bits of the operand a left b times. The bit holes on the
right side of the number created by this operation will be padded with zeros (logical shift).
b must not be negative. Shifting a x times left is equal to multiplying this number by 2^x.
But of course, shifting is much faster than multiplying. Examples:

7 << 1 = %111 << 1 = %1110 = 14 (7 * 2^1 = 14)

256 << 4 = %100000000 << 4 = %1000000000000 = 4096 (256*2^4=4096)

The right shift operator (>>) shifts all bits of the operand a right b times. The bit holes on
the left side of the number will be padded with zeros (logical shift). If you need an arithmetic
shift (bit holes will be padded with the most significant bit), please use the Sar() function
instead. b must not be negative. Shifting a right x times is equal to dividing this number
by 2^x. But of course shifting is much faster than dividing if an integer result is precise
enough for your purpose. Here are some examples:

65 >> 1 = %1000001 >> 1 = %100000 = 32 (65\2^1=32)

256 >> 4 = %100000000 >> 4 = %10000 = 16 (256\2^4=16)

The bitwise And, Xor and Or operators are basically the same as the logical And / Xor / Or

operator with the difference that &, ~ and | work on bit level, i.e. they compare all 32 bits
of operands a and b and set the bits in the result according to this comparison. The And

operator will set the bit in the return value if both bits in operands a and b are set on this
position. The Xor operator will set the bit in the return value if one of the two bits are 1

Chapter 9: Expressions and operators 109

but not if both are 1. The Or operator will set the bit in the return value if one or both of
the operands have the bit set on that position. A table:

Bit 1 Bit 2 Bit1 & Bit2 Bit1 ~ Bit2 Bit1 | Bit2

1 1 1 0 1

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

Examples:

%10011001 & %11101000 = %10001000 ; Bitwise And

%10011001 ~ %11101000 = %01110001 ; Bitwise Xor

%10011001 | %11101000 = %11111001 ; Bitwise Or

The unary negation operator (~) will do a bitwise inversion of the number it is used on. All
bits will be inverted. Please note that the value will always be converted to a 32-bit integer
before the inversion. Thus, you might get a lot of leading ones. For example:

~%00000000 = %11111111111111111111111111111111

~%10111001 = %11111111111111111111111101000110

To get rid of these 1s, simply use the bitwise And operator (&) on the resulting value. For
instance, if you only want to have 8 bits inverted like in the example above, use the bitwise
And with 255:

~%00000000 & %11111111 = %11111111

~%10111001 & %11111111 = %01000110

9.6 String concatenation

BINARY

Operator Description Example

.. Concatenation a .. b

The string concatenation operator can be used to concatenate two strings to a new one.
Because Hollywood offers automatic number to string conversion you can even concatenate
two numbers. The result will always be a string though. Examples:

DebugPrint("Hello" .. " World") ; prints "Hello World"

DebugPrint(5 .. " + " .. 5 .. " = " .. 10) ; prints "5 + 5 = 10"

This operator is also useful if you want to spread a string over multiple lines. For example:

DebugPrint("My Program v1.0\n" ..

"(c) by me 2005\n" ..

"Press RETURN to start!")

110 Hollywood manual

9.7 Operator priorities

Here is a complete list of all available operators and their priorities. You do not have to
know this by heart. When in doubt use parentheses. It does not hurt and makes your
program more readable because not everyone knows that the left shift operator has a higher
priority than the bitwise or operator.

Priority Operator Description

12 ^ Power

11 - Negation

11 ~ Bitwise Negation

11 Not Logical Not

10 * Multiplication

10 / Real division

10 \ Integer division

10 % Division remainder

9 + Addition

9 - Subtraction

8 << Left shift

8 >> Right shift

7 & Bitwise And

6 ~ Bitwise Xor

5 | Bitwise Or

4 .. Concatenate

3 = Equality

3 <> Inequality

3 < Less than

3 > Greater than

3 <= Less/equal to

3 >= Greater/equal to

2 And Logical And

1 Or Logical Or

9.8 Metamethods

Metamethods can be used to define how Hollywood’s operators shall behave when used with
tables. Normally, you cannot use any of Hollywood’s operators with tables as operands.
For example, the following is not possible:

table_A = {1, 2, 3, 4, 5}

table_B = {5, 4, 3, 2, 1}

result = table_A + table_B ; generates compiler error!

Chapter 9: Expressions and operators 111

The code above tries to add table_A to table_B but this does not work because tables may
contain any random data (functions, subtables, strings, etc.) so there is no generic way of
saying how the add operator should behave on a table. This is where metamethods come
into play. Metamethods allow you to define how an operator shall behave when it receives
a table operand. In other words, metamethods allow you to define a function that gets
executed whenever an operator is used with a table operand. This function then computes
the result and it is called a metamethod.

Metamethods are not a global setting but they are private to every table. When you create
a table it will not have any metamethods attached. Thus, trying to use an operator on
this table will fail because it does not have any metamethods. To assign metamethods to
a table you need to use the SetMetaTable() command. A metatable is a table containing
a set of metamethods. SetMetaTable() accepts two table argument: The first argument is
the table whose metamethods you would like to set, and the second argument is the actual
metatable, i.e. the table that contains the metamethods that you would like to set.

Let’s have a look at an example now. We will rewrite the code from above using metameth-
ods so that we can add the two tables.

mt = {} ; create our metatable

Function mt.__add(a, b)

Local sizeA = ListItems(a) ; number of elements in table A

Local sizeB = ListItems(b) ; number of elements in table B

Local result = {} ; create resulting table

For Local k = 0 To Min(sizeA, sizeB) - 1

result[k] = a[k] + b[k] ; add elements

Next

Return(result) ; return resulting table

EndFunction

table_A = {1, 2, 3, 4, 5}

table_B = {5, 4, 3, 2, 1}

SetMetaTable(table_A, mt) ; set "mt" as table_A’s metatable

result = table_A + table_B

The resulting table will have five elements that are all set to 6. Now what did we do in
the code above? We first create an empty table that serves as our metatable. Then we add
a function called __add (using two underscores) to that table. This function will be the
metamethod for the + operator. Note that we must use the name __add for this function
because Hollywood uses the function name to detect the operator that is served by the
metamethod. Using __add as name defines a metamethod for the add (+) operator. The
code in our metamethod simply calculates the length of the two tables, adds the table
elements, and stores them in a resulting table that it returns.

Note that the implementation of our __addmetamethod above requires that both arguments
are tables. And the tables must only contain numbers (or strings that can be converted

112 Hollywood manual

to numbers). E.g. the following expressions would not work using the above metamethod
implementation:

result = table_A + 10 ; --> error because "10" is not a table

result = table_A + "Hello" ; --> same error

Of course, it is possible to write metamethods which can handle these situations. You would
just have to check the types of the parameters that are passed to your metamethod and
then you can take custom actions depending on the variable types specified.

Now we have covered the metamethod for the add (+) operator only. Of course, you can set
a metamethod for every other Hollywood operator, too. You can also create metamethods
for all relational operators (= <> < > <= >=) so that you can compare tables directly. All
you need to know is the correct name for the metamethod of the operator so that you can
install it. Here is a list of all available metamethods and to their corresponding operators:

Metamethod Operator Description

__pow ^ Power

__unm - Negation

__not ~ Bitwise Negation

__mul * Multiplication

__div / Real division

__divint \ Integer division

__mod % Division remainder

__add + Addition

__sub - Subtraction

__lsh << Left shift

__rsh >> Right shift

__and & Bitwise And

__xor ~ Bitwise Xor

__or | Bitwise Or

__concat .. Concatenate

__eq = Equality

__lt < Less than

__le <= Less/equal to

__index [] Read value from table

__newindex []= Write value to table

__call () Call a table

 As you can see, there are no metamethods for the >, >=, and <> operators. This is because
Hollywood handles them by simply reformulating the condition in the following way:

a <> b is the same as Not (a = b)

a > b is the same as b < a

a >= b is the same as b <= a

Chapter 9: Expressions and operators 113

If you would like to compare two tables that both have associated metatables, but you
would like to compare them without invoking the __eq metamethod, you have to use the
RawEqual() function. This function will compare both tables just by reference without
invoking any metamethod.

9.8.1 Differing metatables with binary operators

As you have seen above every table has its own private metatable setting. When using
binary operators, however, it could happen that the two operands do not use the same
metatable but different ones. So how does Hollywood choose the metatable for the operator
now? This depends on several conditions:

a. If the operator is a relational operator (= <> < <= > >=), the metamethod will only be
called if the two tables that shall be compared use the same metatable. If they have
different metatables, the comparison will fail.

b. If the operator is an arithmetic operator, a bitwise operator, or the string concatenation
operator (..), Hollywood will first look in operand A. If operand A has a metatable then
this metatable will be used. If operand A does not have a metatable Hollywood will
look in operand B. If operand B has a metatable it will be used. If neither operand
has a metatable an error message will be raised.

9.8.2 Limitations of the relational metamethods

You have already read above that the relational metamethods will only be called if the
two operands use the same metatables. However, there is another limitation when using
relational metamethods: They will only be called if the two operands are tables. It is not
possible to compare a table with a number, or comparing a string with a table, etc. The
arithmetic and bitwise metamethods can be made to work with any variable type but the
relational metamethods are limited to comparisons of tables.

9.8.3 Advanced metamethods

So far we have only covered the relational, arithmetic, bitwise and concatenation metameth-
ods. There are, however, a few more metamethods that you can use, namely __index, __
newindex, __call and __tostring. Here is a detailed description of these metamethods:

__index: This metamethod is called whenever you try to read from a table index that
does not exist. This metamethod could be used to create a default value for
all uninitialized table fields. Normally, Hollywood will fail when you read from
uninitialized fields. This behaviour could be changed using this metamethod.
Here is a code snippet that sets the default value to 0:

mt = {}

Function mt.__index(t, idx)

Return(0)

EndFunction

t = {x = 10, y = 20}

SetMetaTable(t, mt)

NPrint(t.x, t.y, t.z) ; --> prints 10 20 0

114 Hollywood manual

Without our metatable, the call to NPrint() would fail because z has not been
initialized. By using the metatable, however, z will automatically fall back to
0 because it does not exist.

Sometimes it might become necessary to read from a table without invoking
any metamethod. You can do this using the RawGet() function. RawGet() will
never invoke any metamethod. If an index does not exist it will return Nil to
you.

__newindex:

This metamethod is called whenever you try to write a value to a table index
that does not yet exist in the table. You could use this metamethod for example
to create tables that are read-only. The following code will issue an error
whenever you try to write to a protected table:

mt = {}

Function mt.__newindex(t, idx, val)

NPrint("Blocked writing", val, "at index", idx)

EndFunction

t = {x = 10, y = 20}

SetMetaTable(t, mt)

t.z = 45 ; --> "Blocked writing 45 at index z"

The code above sets table t as write-protected. You will not be able to make
any modifications to the table.

Sometimes it might become necessary to write to a table without invoking any
metamethod. You can do this using the RawSet() function. RawSet() will
never invoke any metamethod. You could even write to write-protected tables
using the RawSet() function.

__call: This metamethod is called whenever you try to call a table. Normally, trying to
call a table will fail because tables are obviously just types of data storage and
not a function. However, there are cases where it can come handy if you could
also call a table. The following example demonstrates a metamethod that will
calculate the average of all table values:

mt = {}

Function mt.__call(t)

Local c = ListItems(t)

Local sum = 0

For Local k = 0 To c - 1 Do sum = sum + t[k]

Return(sum / c)

EndFunction

t = {10, 23, 45, 5, 107, 45, 18, 46}

SetMetaTable(t, mt)

NPrint(t()) ; --> 37.375

115

The code above will return 37.375 which is the average of the eight values stored
in table t.

__tostring:

This metamethod is used by commands like Print() or DebugPrint(). Nor-
mally, when you pass a table to Print() you will receive something as "Ta-
ble: 1acd432f" as the output. This is the handle Hollywood uses internally
to refer to the table and is obviously of not much use for you. Using the __

tostring metamethod, however, you can easily change this behaviour. Here is
a metamethod which creates a string representation of a table:

mt = {}

Function mt.__tostring(t)

Local r$

For Local k=0 To ListItems(t)-1 Do r$=r$..t[k].." "

Return(r$)

EndFunction

t = {"Jeff", "Andy", "Mike", "Dave"}

SetMetaTable(t, mt)

NPrint(t) ; --> Jeff Andy Mike Dave

The code above prints "Jeff Andy Mike Dave" because our __tostring

metamethod has simply concatenated all elements of the table.

117

10 Variables and constants

10.1 Variables and constants

A variable can be used to store a piece of data under a given name. In Hollywood variables do
not have to be declared. This means that you can simply assign a value to a variable without
having to define the type for the variable first. Hollywood will do this automatically. Your
variable name must start with a character from the English alphabet (a-z) or an underscore
(). After the first character, you may also use numbers, the exclamation mark (!) and the
dollar sign ($). It is suggested that you use the dollar sign only in variables of the type
string. As Hollywood is a case insensitive language, all variable names are case insensitive
too. This means that, for example, the names "MYVAR" and "myvar" refer to the same
variable. Hollywood is a dynamically typed language, which means that variables are also
dynamic. For instance, the following does work without problems:

myvar = 1.5

myvar = "Hallo"

myvar = {1, 2, 3}

myvar = Function(s) DebugPrint(s) EndFunction

You can change the type of a variable on-the-fly. But this is not good programming practice!

Constants are fixed values that are globally available from everywhere in your script. They
are prefixed with a hash character (#) so that you can distinguish them from variables and
functions.

10.2 Global variables

If you assign a value to a variable for the first time, then this variable will automatically
become global if you did not explicitly tell Hollywood that it shall be local by using the
Local statement. Global variables can be accessed from anywhere in your script. They are
globally available to all functions. However, if there is a local variable that has the same
name as a global variable, then Hollywood will always use this local variable first.

Global variables are slower than local variables and they cannot be easily collected by the
garbage collector unless you explicitly set them to Nil when you do not need them any
longer. Thus, you should only use globals when really necessary. In functions you should
try to work with local variables only.

Here is an example:

; bad code!

Function p_Add(a, b)

tmp = a + b

Return(tmp)

EndFunction

The variable tmp will be created as a global variable. This does not make much sense here
because you only need the variable tmp in this function. So you should better make it local
to this function, e.g.

; good code!

Function p_Add(a, b)

118 Hollywood manual

Local tmp = a + b

Return(tmp)

EndFunction

To improve the readability of your program, you can use the Global statement to clearly
mark certain variables as globals. This is of course optional, because all variables that are
not explicitly declared as local will become global automatically. But using the Global

statement makes your program more readable.

See Section 10.4 [Local variables], page 118, for details.

10.3 Global statement

Global <var1> [, <var2>, ...] [= <expr1> [, <expr2>, ...]]

The Global statement is used to tell Hollywood that the specified variable should be global.
Additionally, it can also initialize your variable. This statement is only included to improve
the readability of your program. You could also leave it out and the code would work the
same way. The Global statement works exactly like the Local statement.

If you use the Global statement, it is advised that you place all statements at the beginning
of your code. So everyone can clearly see which variables are globally available. Using
Global elsewhere in your code is generally not suggested and can be quite confusing to
read.

See Section 10.2 [Global variables], page 117, for details.

10.4 Local variables

You should use local variables whenever and wherever possible. They improve the memory
management of your program because the garbage collector knows automatically when it can
delete them. Additionally, access to local variables is much faster than to globals because
Hollywood does not need to traverse through the whole global enviroment and finally, they
increase the readability of your program.

Local variables have a limited lifetime. They will only be available in the block where you
have declared them. A block will usually be the body of a function but it can also be the
body a control structure. You can even declare blocks by using the Block and EndBlock

statements.

Important: Local variables have to be declared explicitly. If you do not do this, the variable
will be automatically global. For example, if you write

Function p_Add(a, b)

tmp = a + b

Return(tmp)

EndFunction

the variable tmp will automatically be created as a global variable. But this is just a waste
of resources because you only need the variable inside the function so you should better
write:

Function p_Add(a, b)

Local tmp = a + b

Return(tmp)

Chapter 10: Variables and constants 119

EndFunction

Now the variable tmp is explicitly declared local and will be deleted when the function
p_Add() exits.

As you have already seen now, local variables are declared by using the Local statement.
To declare a local variable, simply place the identifier Local before the declaration:

a = 10 ; global variable

Local b = 10 ; local variable

If you want to initialize multiple variables with one Local statement, simply uses commas
as you would do in a normal assignment:

a, b = 10, 5 ; global variables! a receives 10, b receives 5

Local x, y = 10, 5 ; local variables! x receives 10, y receives 5

Once you have declared a local variable, you do not need to use the Local statement any
longer:

; if x > 10, multiply it by 2, else divide it by 2

If x > 10

Local tmp = x ; declare local variable "tmp"

tmp = tmp * 2 ; multiply local variable "tmp" by 2

x = tmp ; assign value of local "tmp" to "x"

Else

Local tmp = x ; declare local variable "tmp"

tmp = tmp / 2 ; divide local variable "tmp" by 2

x = tmp ; assign value of local "tmp" to "x"

EndIf

Print(tmp) ; this will print 0 because "tmp" is gone

The code above creates the local variable tmp in the two blocks of the If statement. After
that it multiplies or divides it by 2. The identifier Local is no longer required there because
Hollywood already knows at this point that tmp is a local variable. tmp will be deleted at
the end of the block so it is not available in the line Print(tmp) any more. tmp becomes
Nil after the block ends.

If you do not assign a value to the variable, it will get the value Nil but Hollywood will
know that it is a local variable, e.g.:

If True ; block is always entered

Local x ; declare local variable x

Print(x) ; prints 0 because x is Nil

x = 5 ; assign 5 to local x

Print(x) ; prints 5 now

EndIf ; scope of x ends here

Print(x) ; prints 0 because x is Nil now again

You can also use the name of a global variable (or a local variable of the superior block) for
a new local variable. For instance:

a = 50

Block ; delimit the next two lines

120 Hollywood manual

Local a = 40 ; create local "a" and assign 40

NPrint(a) ; prints 40

EndBlock ; scope of "a" ends here

NPrint(a) ; prints 50

A more complex example which uses many variables with the same name follows:

x = 10 ; global x (x1 = 10)

Block ; open new block

Local x = x + 1 ; assign 11 to local x (x2 = x1 + 1)

Block ; open new block

Local x = x + 1 ; assign 12 to local x (x3 = x2 + 1)

Block ; open new block

Local x = x + 1 ; assign 13 to local x (x4 = x3 + 1)

NPrint(x) ; prints 13 (= x4)

EndBlock ; scope of x4 ends here

NPrint(x) ; prints 12 (= x3)

EndBlock ; scope of x3 ends here

NPrint(x) ; prints 11 (= x2)

EndBlock ; scope of x2 ends here

NPrint(x) ; prints 10 (= x1)

This code might look a bit confusing but it makes perfect sense. In every new block
Hollywood will look up the variable x starting from the current scope and traversing through
all superior blocks.

It should be noted that you cannot use local variables together with Gosub() because
Hollywood will jump out of the current block on a Gosub() and return to it later with
totally different data on the stack. Thus, the following code will not work:

; invalid code

Block

Local a = 50 ; create local "a"

Gosub(SUBROUTINE) ; jump out of the block; "a" will be trashed

Print(a) ; local "a" is some random stack value now

EndBlock

This shouldn’t be much of a problem because Gosub() is deprecated anyway and shouldn’t
be used in your code.

You can also use local functions. They work in almost the same way and are also preferable
to global functions although you will most likely do not use them as excessively as you
use local variables. But they can be handy from time to time. See Section 12.8 [Local
functions], page 145, for details.

10.5 Local statement

Local <var1> [, <var2>, ...] [= <expr1> [, <expr2>, ...]]

The Local statement is used to tell Hollywood that the specified variable should be local.
Additionally, it can also initialize your variable.

Local myvar ; tell Hollywood that myvar will be local

Chapter 10: Variables and constants 121

r = GetType(myvar) ; returns #NIL

DebugPrint(myvar) ; prints zero

<other code>

myvar = 5 ; now myvar is created as a local variable!

The code above simply tells Hollywood that myvar shall be local if a value is assigned to
it. The statement Local myvar will not initialize the variable. The variable will still be of
type Nil, i.e. it does not even exist. myvar is created when you set it to a specific value.
Normally, if the initial value is different from 0, you will do the initialization in the Local
statement, e.g.

Local myvar = 5 ; create local variable

You can create and initialize as many variables as you like. Just use a comma on each side
of the equal sign for that. Example:

Local myvar, myvar2, myvar3 = 5, 4, 3

The code above creates three new local variables and assigns the value 5 to myvar, 4 to
myvar2 and 3 to myvar3.

Please note that the Local statement does not have to be placed at the beginning of a
function/block as it is the case with variable declarations in other programming languages.
You can place it wherever you want and it is no bad programming style to use Local in the
middle of a function. For example, this code is fine:

Block

DebugPrint("Now calling TestFunc()")

Local r = TestFunc()

DebugPrint("Now calling TestFunc2()")

Local r2 = TestFunc2()

DebugPrint("Results:", r, r2)

EndBlock

This code uses Local in the middle of a new block which is no problem with Hollywood.

See Section 10.4 [Local variables], page 118, for details.

10.6 Garbage Collector

Hollywood will invoke its garbage collector from time to time while your script is running.
The garbage collector manages all resources allocated by your script and frees all memory
that is no longer needed. For example:

Print("Hello World")

After Hollywood has called the Print() command the memory allocated for the string
"Hello World" can be released because it is no longer needed. You can support the garbage
collector by setting variables to Nil when you do not need them any longer. This is especially
useful for long strings or extensive tables, e.g.

a = {}

For k = 1 To 1000

a[k] = {e1 = x, e2 = y}

x = x + 5

y = y + 5

122 Hollywood manual

Next

This code creates a pretty extensive table which occupies some memory of your system. If
you do not need this table any longer, simply set it to Nil, e.g.

a = Nil

The garbage collector will then free the memory occupied by this table.

It is also strongly suggested that you use local variables whenever and wherever it is possible
because the garbage collector can automatically release them when their scope ends (e.g.
at the end of a function). See Section 10.4 [Local variables], page 118, for details.

10.7 Constants

Constants, as the name implies, are values which cannot be changed after their first ini-
tialization. They can be accessed through a user-specified name but their values are fixed
during the script’s execution. Like all language elements, Hollywood does not distinguish
between lower and upper case constants, but they should be written in capitals for style
guide reasons. Constants also need to have a hash character (#) prefix to distinguish them
from variables. The constants True and False are exceptions here, they do not need to
have a hash character prefix because they are elementary parts of the Hollywood script
language. All other constants are just additions for commands and therefore need to be
prefixed.

Constants must be either numbers or strings. You can also declare your own constants by
using the Const statement, for example:

Const #MYCONSTANT = 5 * 5

If you use this statement, you should always use it at the beginning of your script because
it is a global declaration which cannot be changed during your script’s execution.

10.8 Const statement

Const #<name> = <expr>

The Const statement allows you to declare a new constant. The name you specify in name

must be prefixed with a hash character (#). expr must be a constant (!) expressions, i.e.
you must not use any variables here. For example:

Const #MYCONSTANT = (5 * 10) / 2 ; #MYCONSTANT = 25

Const #MYCONSTANT2 = #MYCONSTANT * 10 ; #MYCONSTANT2 = 250

Const #MYCONSTANT3 = b * 5 ; does not work!

The last example will not work because a variable is used and the expression must be
constant.

Alternatively, expr can also be a constant string expression. E.g.

Const #PRGVERSTRING = "$VER: MyProgram 1.0 (13.04.2005)"

Constants can also be declared from the command line by using the -setconstants console
argument. This is especially useful in connection with the @IF preprocessor command. See
Section 3.2 [Console arguments], page 33, for details.

Chapter 10: Variables and constants 123

10.9 Inbuilt constants

The inbuilt constants are used by many functions as descriptors for a special action. There-
fore, their function is different from constant to constant. If a function requires a special
constant as an argument (e.g. SetFontStyle() accepts the constants #BOLD, #ITALIC,
#NORMAL and #UNDERLINED), then those constants are described in the documentation for
that command.

Additionally there are some constants that can be specified everytime a Hollywood function
asks you for a x or y coordinate. These constants are the so-called "position constants".
They allow you to easily specify some often used positions. The following position constants
are inbuilt in Hollywood:

The following constants can be used as a x-coordinate:

#CENTER: Specifies the center of your display (= (displaywidth-objectwidth) / 2)

#LEFT: Specifies the left edge of your display (= 0)

#LEFTOUT:

Specifies the outer left of your display (= -objectwidth)

#RIGHT: Specifies the right edge of your display (= displaywidth-objectwidth)

#RIGHTOUT:

Specifies the outer right of your display (= displaywidth+objectwidth)

#USELAYERPOSITION:

Specifies the current x-position of the layer.

The following constants can be used as a y-coordinate:

#CENTER: Specifies the center of your display (= (displayheight-objectheight)/2)

#TOP: Specifies the top edge of your display (= 0)

#TOPOUT: Specifies the outer top of your display (= -objectheight)

#BOTTOM: Specifies the bottom edge of your display (= displayheight-objectheight)

#BOTTOMOUT:

Specifies the outer bottom of your display (= displayheight+objectheight)

#USELAYERPOSITION:

Specifies the current x-position of the layer.

These constants make it very easy for you to position your objects. For example if you
want to display brush 1 in the center of the display, just call DisplayBrush() with the
arguments 1, #CENTER, #CENTER et voila!

You can even fine-tune the positions by subtracting and adding values to these constants!
For example, DisplayBrush(1, #CENTER, #CENTER + 25) displays brush one 25 pixels be-
low the vertical center of the display.

124 Hollywood manual

There are also some constants that allow you to easy access some basic colors. The following
color constants are currently declared by default: #BLACK, #MAROON, #GREEN, #OLIVE, #NAVY,
#PURPLE, #TEAL, #GRAY, #SILVER, #RED, #LIME, #YELLOW, #BLUE, #FUCHSIA, #AQUA, #WHITE.

#BLACK $000000

#MAROON $800000

#GREEN $008000

#OLIVE $808000

#NAVY $000080

#PURPLE $800080

#TEAL $008080

#GRAY $808080

#SILVER $C0C0C0

#RED $FF0000

#LIME $00FF00

#YELLOW $FFFF00

#BLUE $0000FF

#FUCHSIA $FF00FF

#AQUA $00FFFF

#WHITE $FFFFFF

Finally, Hollywood defines some platform-specific constants depending on the platform it is
currently running on or compiling for. You can use the @IF preprocessor command to test
for those constants and take desired action. You can find these platform-specific constants
in the section on the @IF preprocessor command in this documentation. See Section 52.17
[IF], page 1080, for details.

10.10 Character constants

Character constants are usually used to get the code point value of a character in an easy
way. If you embed a character in single quotes (”), Hollywood will replace this specification
with the code point value of the character. Thus, character constants are always of the data
type Number. Here is an example:

DebugPrint(’A’) ; prints 65

You can also put escape sequences into a character constant. For example:

DebugPrint(’\n’) ; prints 10

See Section 8.3 [String data type], page 98, for more information on which escape sequences
Hollywood supports.

125

11 Program flow

11.1 Statements controlling the program flow

This chapter describes all statements offered by Hollywood, which are used to control the
program flow. It is very important that you know these control structures because they
can make your program much more readable. We can categorize the Hollywood control
structures into two groups:

1) Conditional blocks: They are used to check if a specific expression is true (non-zero) or
false (zero). This is very important because your program needs to make decisions all the
time. The following kinds of conditional blocks are available:

If-Else-ElseIf-EndIf

Switch-Case-Default-EndSwitch

2) Loops: They are used to repeat certain portions of your code. Imagine you want to
print the numbers from 1 to 100. You could type in the Print() command a hundred times
for that, but you could also use a simple For loop that calls Print() a hundred times. The
following loop structures are available:

While-Wend

For-Next

Repeat-Until

11.2 If-EndIf statement

There are two versions of the If statement: A long and a short version.

1) Long version If statement:

If <expr> <block> [ElseIf <expr> <block> ...] [Else <block>] EndIf

The If statement checks if the given expression is true (non-zero). If this is the case, the
commands following the statement are executed. If the given expression is false (zero), If
jumps to the next ElseIf statement (if there is any) and checks if the expression given there
is true. This is repeated until the Else statement is reached. If none of the expressions
before was true, the code following Else will be executed.

The statements If and EndIf are obligatory. ElseIf and Else statements are optional.
You can use as many ElseIf’s as you like but there must be only one Else in your If

statement. Furthermore, the Else statement must be the last condition before EndIf. Here
is an example:

If a > 5 ; check if a is greater than 5

DebugPrint("a > 5")

ElseIf a < 5 ; check if a is less than 5

DebugPrint("a < 5")

Else ; else a must be 5

DebugPrint("a = 5")

EndIf

You can also use more complex expressions as the condition:

If country$ = "USA" And age < 21

126 Hollywood manual

DebugPrint("No alcohol permitted under 21 in the USA!")

EndIf

2) Short version If statement:

If <expr> Then <true-stat> [ElseIf <expr> <true-stat> ...] [Else <stat>]

The short version of the If statement works in the same way as the long version but has
the advantage that you do not need to include an EndIf. The short If statement has the
restriction, that all of its parts have to be placed on a single line. Another restriction is,
that only one statement must follow the Then / ElseIf / Else identifiers. If you want to
execute multiple statements you have to use the long version.

Using the short If statement we could write the example from above in the following way:

If a>5 Then Print("a>5") ElseIf a<5 Print("a<5") Else Print("a=5")

You can see that the result is not very readable, so in the case of the example from above,
it is not recommended to use the short version. The short If statement does better fit if
you just have one condition, e.g.

If a = True Then b = 5

This is better readable than

If a = True

b = 5

EndIf

Another version of the If statement is the so called immediate-if statement IIf(). This
version is implemented as a command in Hollywood and it is part of the system library. See
Section 52.18 [IIf], page 1083, for details.

11.3 While-Wend statement

There are two versions of the While statement: A long and a short version.

1) Long version While statement:

While <expr> <loop-block> Wend

The While statement enters the loop if the given expression is true (non-zero). If the
expression is false (zero) the loop will not be entered at all and execution will continue after
the Wend statement. If While entered the loop it will repeat the loop as long as the given
expression is true.

i = 0

While i < 100

i = i + 1

Wend

DebugPrint(i) ; prints 100

The loop above will be repeated until the expression i < 100 becomes false. This is the case
when i is equal or greater to 100. Because we start from 0 and add 1 to i after each loop
cycle, i has the value of 100 when the loop exits.

You may also want to have a look at the documentation of the Break and Continue state-
ments. These can be used to exit from a loop or to jump to the end of it.

2) Short version While statement:

While <expr> Do <stat>

Chapter 11: Program flow 127

The short version behaves exactly like the long version but you do not have to include the
Wend statement. The short While statement has the restriction that the loop block must
only consist of one statement. If you need to execute multiple statements in the loop block,
you have to use the long version. The identifier Do signals Hollywood that you want to use
the short version.

The example from above could be written in the following way using the short While

statement:

While i < 100 Do i = i + 1

11.4 For-Next statement

There are three versions of the For statement: A long version, a short version, and a generic
version. The generic version of the For statement is also available in long and short versions
so that there are actually four different versions of the For statement. For reasons of clarity,
however, we stick with just the three different versions in this documentation.

1) Long version For statement:

For [Local] <var> = <expr1> To <expr2> [Step <expr3>] <loop-block> Next

The first thing the For statement does, is to set the variable specified by var to the ex-
pression specified by expr1. Now the value of the Step statement passed in expr3 defines
how to continue. This value is optional. If you do not specify the Step statement, expr3
defaults to the value 1.

If expr3 is positive, the For statement will check if the value of the variable var is less or
equal to expr2. If this is the case, the loop will be entered and repeated until the value
of var is greater than expr2. At the end of each loop, expr3 is added to the value of the
variable <var>

If expr3 is negative, the For statement will check if the value of the variable var is greater
or equal to expr2. If this is the case, the loop will be entered and repeated until the value of
var is less than expr2. At the end of each loop, expr3 is added to the value of the variable
var.

In case expr3 is zero, the loop will be repeated forever. Please do also note that the
expressions specified in expr2 and expr3 are only evaluated once, namely at the start of
the loop. Thus, the loop limit and step are constant while the loop is active and cannot be
modified.

An example:

For i = 1 To 100

DebugPrint(i)

Next

This code prints the numbers from 1 to 100. DebugPrint() is executed a hundred times.
When the loop exits, the variable i has the value 101. You see that we did not specify a
Step statement. This means that 1 is added each time the loop is repeated. If we would
like to progress with factor 2, we could use the following code:

For i = 1 To 100 Step 2

DebugPrint(i)

Next

128 Hollywood manual

This will print "1 3 5 7 9 ... 95 97 99". The variable i will have a value of 101 when the
loop exits.

If we wanted to count down from 100 to 0, we would have to use a negative step value just
as in the following example:

For i = 100 To 0 Step -1

DebugPrint(i)

Next

This calls DebugPrint() a hundred and one times. After the loop exits, the variable i has
the value -1.

If you add the Local identifier before the variable initialization, the For statement will create
the iterator variable locally to the loop block. This means, that it cannot be accessed from
outside the loop block. An example:

For Local i = 1 To 50

DebugPrint(i) ; prints 1, 2, 3 ... 49, 50

Next

DebugPrint(i) ; prints 0 (i is only available inside the loop)

The advantage of For loops that use a local iterator variable is that they run faster than
loops that use a global variable. If you do not need to access the variable of the For

statement from outside the loop, you should always use the Local identifier. A limitation
of For loops with the Local identifier is that you must not assign a new value to the local
iterator value. If you need to exit the loop, use Break. Modifying the iterator variable
during the loop’s execution works only without the Local identifier.

You may also want to have a look at the documentation of the Break and Continue state-
ments. These can be used to exit from a loop or to jump to the end of it.

2) Short version For statement:

For [Local] <var> = <expr1> To <expr2> [Step <expr3>] Do <stat>

The short version behaves exactly like the long version but you do not have to include the
Next statement. The short For statement has the restriction that the loop block must only
consist of one statement. If you need to execute multiple statements in the loop block, you
have to use the long version. The identifier Do signals Hollywood that you want to use the
short version.

The first example from above could be written in the following way using the short For

statement:

For i = 1 To 100 Do DebugPrint(i)

3) Generic version For statement:

For <var1> [, <var2>, ...] In <expr> [Do <stat>] or [<loop-block> Next]

The generic version of the For statement is different from the other two versions through the
fact that it calls a user-defined function to retrieve the values for each iteration. This fact
makes the generic For statement suitable for a wide variety of purposes. You can write your
own iterator functions but for most cases you will likely use the inbuilt iterator functions
that are provided by functions such as Pairs(), IPairs(), or PatternFindStr().

The expression specified in expr is evaluated only once. It has to return three values: An
iterator function, a state value, and an initial value for var1. The iterator function and the

Chapter 11: Program flow 129

state value are private values and they are neither visible nor accessible as variables during
the For loop’s runtime. Once the generic For loop has retrieved these three values, it will
start calling the iterator function with the state value and current value of var1 as the two
arguments. The loop will be terminated as soon as var1 becomes Nil.

Most iterator functions return multiple values for each iteration. That is why you can
also specify multiple variables in the generic For statement. The ability to have multi-
ple variables initialized to different iteration states makes the generic For statement very
flexible.

Let’s have a look at an example now. Consider the following table:

months = {"January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November", "December"}

We now want to be able to find out the index of a month (1 to 12) by using its name as
a reference. Of course, we could iterate over the table, compare the name of the month to
the one we are looking for, and thus find out the appropriate index. But when dealing with
larger amounts of data, it is often faster to create a reverse table to find out the desired
information. In our case, we want a table that uses the name of the months as indices so that
table["January"] returns 1, table["February"] returns 2, and so on. We can easily create
this reverse table using the generic For loop together with the iterator function provided by
IPairs(). The IPairs() function will return an iterator function that returns two values:
the index value as well as the key value for each table element that is passed to it. We can
use this iterator function to reverse the table very easily:

revmonths = {}

For i,v In IPairs(months)

revmonths[v] = i + 1

Next

Alternatively, we could also use the short version of the generic For statement for this code
because there is only one statement in the For loop. Using the short version of the generic
For statement the code would look like this:

revmonths = {}

For i,v In IPairs(months) Do revmonths[v] = i + 1

The IPairs() function will only iterate over all integer indices in a table. If you want to
traverse all fields of a table, you can use the Pairs() function instead.

Another command that is often used in conjunction with the generic For statement is the
PatternFindStr() function. It will return an iterator function that can be used to parse
a string. For example, the following code will iterate over all words in a string:

s$ = "Hello World This is a test"

For w$ In PatternFindStr(s, "%a+") Do Print(w$)

Of course, it is also possible to write own iterator functions. This, however, can get quite
complicated. That is why it is not explained here. Please consult the book "Programming
in Lua (second edition)" by Roberto Ierusalimschy for more information on how to write
own iterator functions.

130 Hollywood manual

11.5 Repeat-Until statement

There are two versions of the Repeat statement: A conditional version and an endless
version.

1) Conditional version of the Repeat statement:

Repeat <loop-block> Until <expr>

The conditional Repeat statement will repeat the specified loop block until the given ex-
pression becomes true (non-zero). In other words: The block will be looped while expr is
false (zero). This is just the other way round as the While statement behaves: While loops
the code while the expression is true and Repeat loops the code while the expression is
false.

Here is an example:

i = 1

Repeat

i = i + 1

Until i = 100

This code counts from 1 to 100. When the loop exits, the variable i will have the value
100.

You may also want to have a look at the documentation of the Break and Continue state-
ments. These can be used to exit from a loop or to jump to the end of it.

2) Endless version of the Repeat statement:

Repeat <loop-block> Forever

The endless version can be used to repeat a specific portion of code forever. You can still
jump out of the loop by using the Break statement though. The endless version is mostly
used in the main loop of a script that calls WaitEvent(), e.g.

Repeat

WaitEvent

Forever

11.6 Switch-Case statement

Switch <ex1> Case <ex2>[:] <blk> [...] [Default[:] <blk>] EndSwitch

The Switch statement can be used to compare the expression specified in ex1 with all other
expressions specified after the Case identifiers. You can use as many Case statements as
you want but there must be at least one Case identifier in your Switch statement. If the
expression after a Case matches ex1, the code after that Case statement is executed. After
the execution, Hollywood continues with your program after the EndSwitch statement. If
none of the Case expressions match ex1, the code following the Default statement will be
executed. Note that using the Default statement is optional. If you do not need it, you do
not have to use it. If you do use it, however, it always needs to be the last statement of the
Switch statement. It isn’t allowed to have additional Case statements after the Default

statement. The colon after the Case and Default statements is optional too.

Please note that the expression following the Case statement must always be constant. You
cannot use variables or function return values here. Also you must not mix variable types

Chapter 11: Program flow 131

in this statement: If ex1 is a string, all other expressions must be strings too. If ex1 is a
number, all other expressions must be numbers as well.

Here is an example:

Switch x

Case 1:

DebugPrint("x = 1")

Case 2:

DebugPrint("x = 2")

Default:

DebugPrint("x <> 1 And x <> 2")

EndSwitch

The above code looks at the variable x and enters the first Case statement if x is one. The
second Case statement is entered if x is 2. Otherwise the Default statement is entered.

Every Switch-Case statement can also be written as a normal If statement. The example
from above would look like the following then:

If x = 1

DebugPrint("x = 1")

ElseIf x = 2

DebugPrint("x = 2")

Else

DebugPrint("x <> 1 And x <> 2")

EndIf

C and Java programmers should note that Hollywood’s Switch statement does not auto-
matically fall through to the next Case block after reaching the end of the previous Case
block. Instead, Hollywood will automatically jump to the end of the statement after a Case

block has been executed. Thus, you do not have to use Break at the end of a Case block
either. But you can use it earlier to exit from the Switch statement.

It is, however, possible to manually force a fall through using the FallThrough statement.
Whenever Hollywood encounters this statement inside a Case block, it will fall through
to the next Case block (or the Default block), i.e. it will jump directly into this block.
Therefore, FallThrough may only be used if there is a Case or Default block following.
Otherwise an error will be generated. Since the Default block must always be the last
block of a Switch statement, it is not allowed to use FallThrough in the Default block
because there is no subsequent block to fall through to.

Here is an example:

Switch msg.action

Case "OnKeyDown":

FallThrough

Case "OnKeyUp":

DebugPrint("Key event:", msg.key)

Default:

DebugPrint("Other event")

EndSwitch

132 Hollywood manual

The code above will print the key that has been pressed in case msg.action is OnKeyDown
or OnKeyUp. If msg.action is OnKeyDown, the FallThrough statement is used to jump into
the OnKeyUp block.

Alternatively, the FallThrough statement can also be placed directly after the expression
after the Switch statement. In that case, each Case block will automatically fall through
to the next one, unless there is a Break statement forbidding falling through.

Here is an example:

Switch msg.action FallThrough

Case "OnKeyDown":

Case "OnKeyUp":

DebugPrint("Key event:", msg.key)

Break

Case "OnMouseDown":

Case "OnMouseUp":

DebugPrint("Left mouse event")

Break

Case "OnRightMouseDown":

Case "OnRightMouseUp":

DebugPrint("Right mouse event")

Break

Default:

DebugPrint("Other event")

EndSwitch

The code above uses FallThrough globally to use the same code for OnKeyDown and OnKeyUp,
and for OnMouseDown and OnMouseUp, and for OnRightMouseDown and OnRightMouseUp.
The Break statements are necessary because otherwise Hollywood would fall through all
the way to the very last line of code in the Default block.

11.7 Break statement

Break [(<level>)]

The Break statement can be used to exit from a loop or from the Switch statement. If you
call Break inside a loop or a Switch statement, then Hollywood will exit from this control
structure. An example:

For k = 1 To 100

DebugPrint(k)

If IsKeyDown("ESC") = True Then Break

Next

The above loop counts from 1 to 100 but can be aborted at any time by pressing the escape
key.

Using the optional argument level, you can also finish higher loops. If you do not specify
level Hollywood will assume 1 for it. This means that the nearest loop will be finished. If
you use higher values for level Hollywood will traverse the loops upwards. An example:

For x = 1 To 100

For y = 1 To 100

Chapter 11: Program flow 133

DebugPrint(x, y)

If IsKeyDown("ESC") Then Break(2)

Next

Next

This code uses two nested For loops and checks in the second loop if the escape key was
pressed. To finish both loops, we have to use a Break(2) statement now because the normal
Break would only finish the inner loop which would be started right again because there is
still the outer loop.

Please note: If you specify the optional argument level it is obligatory to put parentheses
around it.

11.8 Continue statement

Continue [(<level>)]

The Continue statement can be used to jump to the end of a loop structure. An example:

While i < 100

i = i + 1

If i > 50 Then Continue

j = j + 1

Wend

The code above counts i from 0 to 100. The variable j is also incremented each loop but
only while i is less than or equal to 50. If i is greater than 50 j will not be incremented
any more. At the end of the loop i has the value of 100 and j has the value of 50.

Using the optional argument level you can also jump to the end of higher loops. If you do
not specify level Hollywood will assume 1 for it which means that it will jump to the end
of the nearest loop. If you use higher values for level Hollywood will traverse the loops
upwards.

Please note: If you specify the optional argument level it is obligatory to put parentheses
around it.

11.9 Return statement

Return [(<retval1>, <retval2>, ...)]

The Return statement is used to exit from a user defined function. The program control
will return to the position in the script from where the function was called.

Optionally, Return can return as many values as you like back to the caller. If you return
values from a function, it is obligatory to put these values into parentheses. For example:

; wrong!

Function p_Min(a, b)

If a < b Then Return a

Return b

EndFunction

; right!

Function p_Min(a, b)

134 Hollywood manual

If a < b Then Return(a)

Return(b)

EndFunction

See Section 12.1 [Functions], page 137, for details.

Compatibility note: Return can also be used after a Label statement so that this label code
can be called by Gosub. This feature is only included for compatibility with Hollywood 1.x
scripts. Please do not use it any longer.

11.10 Block-EndBlock statement

Block <block-code> EndBlock

The Block statement simply executes the following code in a separate scope. This function
is of rare use. Normally you will not need this. Here is an example:

For k = 1 To 100

Block

Local k

For k = 1 To 2

DebugPrint(k)

Next

EndBlock ; local "k" will be deleted now

Next

The code above uses two variables with the name k in two nested loops. This is only possible
because we put the inner loop in its own block and created a new local variable k in that
block. This local variable is only accessible in this block. After the EndBlock statement
the local variable k will be deleted and the global k will be used again.

11.11 Dim and DimStr statements

Dim <varname>[<dim1-size>] ([<dim2-size>], ...), ...

DimStr <varname>[<dim1-size>] ([<dim2-size>], ...), ...

The Dim and DimStr statements can be used to create a n-dimensional table with the
specified sizes and initialize all its elements to 0 (Dim) or "" (DimStr).

As you already know from the documentation of the table data type, table fields need to
be initialized before they can be used. Even if a field shall only carry a zero or an empty
string, you have to initialize it with that value before you can access it. The Dim statement
can help you here. It will create the table specified by varname with the size specified in
size. The size parameter must be a constant value, not a variable. Please note, that size
specifies really the table’s size and not the last element that is to be initialized. Thus, if
you use 50 as size, Hollywood will initialize table fields 0 to 49. Table field 50 will not be
initialized.

Here is an example:

Dim mytable[100]

This statement translates to the following Hollywood code:

Local mytable = {}

For k = 0 To 99 Do mytable[k] = 0

135

The Dim statement comes really handy if you want to create multi-dimensional tables. You
can use as many of the square brackets after the varname specification as you like. Each
new square bracket will create a new table dimension of the specified size. For example:

Dim vector[10][10][10]

The statement above creates a three dimensional vector table and initializes it with all zeros.
This statement translates to the following, quite a bit more complex, Hollywood code:

Local vector = {}

For i = 0 To 9

vector[i] = {}

For j = 0 To 9

vector[i][j] = {}

For k = 0 To 9

vector[i][j][k] = 0

Next

Next

Next

You can also create and initialize more than one table with this statement. Just use a
comma after the last dimension specification and you can repeat the whole procedure as
many times as you like. Example:

Dim table1[50], table2[50], table3[50]

The DimStr statement works in the same way than Dim but initializes all fields with empty
strings ("").

Please note that Dim / DimStr will always create local tables if you are not in the main
block of your script. So if you want a table to be global, be sure to use the Dim / DimStr

statement in the script’s main block.

Keep also in mind that Dim / DimStr do not limit the table to the specified size. The table
can still grow because Hollywood is a dynamically typed language! To grow a table, simply
initialize the fields you need and Hollywood will automatically grow it. For example:

Dim table[50]

...

For k = 50 To 59 Do table[k] = 0 ; grow table by 10 fields

The code above creates a table with space for 50 fields and grows it to 60 fields then. If
you want to shrink a table, set the corresponding fields to Nil. For instance:

Dim table[50]

...

For k = 40 To 49 Do table[k] = Nil ; shrink table by 10 fields

The code above shrinks the table from 50 initialized fields to 40 initialized fields. Hollywood
is a dynamically typed language in which tables do not have a fixed size. You simply grow
and shrink your tables as you need it.

137

12 Functions

12.1 Overview

Functions can be used to break down your program into several smaller code sections which
increases the readability and structure of your code. A function can be regarded as a little
program of its own. It can use variables that are local to the function, which means that
they will only be available inside the function and cannot be accessed from the outside.
Of course, you can also access global variables from a function. Synonyms for the term
"function" are the terms "procedure", "subroutine" or "statement". Functions can return
nothing or any number of values of any type.

You can declare your own functions by using the identifiers Function and EndFunction:

Function p_Add(a, b)

Return(a + b)

EndFunction

c = p_Add(5, 2) ; c receives the value 7

You should always use the prefix p_ in your own function names. This helps to distinguish
between your own functions and built-in Hollywood functions. Also, in future versions of
Hollywood there might be functions that have the same name as functions in your code.
This could lead to unexpected results. So you should always use p_ in your function names
so that there will not be any confusion. The p_ stands for "private function".

Functions have to be declared before they are called, so the following code will give you an
error:

c = p_Add(5, 2)

Function p_Add(a, b)

Return(a + b)

EndFunction

Hollywood will try to call the function p_Add() but will not find it because it has not been
declared yet. The two variables a and b will be local to the function’s scope which means
that you can only access them inside the p_Add() function. If you pass more arguments to
the function than it expects, for instance

c = p_Add(5, 2, 4) ; c receives the value 7

then all superfluous arguments will be discarded. In this case the argument number 3 will
be thrown away. If you pass less arguments to the function than it expects, for instance

c = p_Add(5) ; c receives the value 5 because 5 + Nil = 5

then Hollywood will pass the special value Nil for all arguments, which the function expects
but which were not specified.

Functions can return values by using the Return() statement. It is obligatory that the
return values are enclosed by parentheses. If you need to return multiple values, simply
separate them by using commas. For example:

Function p_SomeValues()

Return(5, 6, 7, 8, 9, 10)

EndFunction

138 Hollywood manual

When you call functions which return multiple arguments and you do not specify enough
variables to hold all the return values, all return values you did not specify variables for
will be discarded, e.g.:

a, b, c = p_SomeValues()

The line above assigns 5 to a, 6 to b and 7 to c. The return values 8, 9 and 10 will
be discarded. If you specify more variables than there are return values, the superfluous
variables will get the special value Nil:

a, b, c, d, e, f, g, h = p_SomeValues() ; "g" and "h" will be Nil

This line has two superfluous variables g and h. They will be assigned the value Nil because
the p_SomeValues() function returns only six values.

Of course, you can also define functions which do not return any value. These functions are
also called statements. For example:

Function p_WaitSecs(s)

Wait(s, #SECONDS)

EndFunction

If you try to get a return value from statements, you will just receive Nil as shown in the
following line:

a = p_WaitSecs(5)

The variable a will be set to Nil because p_WaitSecs() does not return any value.

12.2 Functions are variables

In Hollywood functions are just variables of the type function. Therefore, you can easily
assign them to other variables, e.g.:

myfunc = DisplayBrush ; assign DisplayBrush to "myfunc"

myfunc(1, #CENTER, #CENTER) ; calls DisplayBrush(1, #CENTER, #CENTER)

You can even write the definition of a function as an assignment:

p_Add = Function(a, b) Return(a + b) EndFunction

c = p_Add(5, 2) ; c receives 7

The definition of p_Add() in the first line is the same as if you wrote:

Function p_Add(a, b)

Return(a + b)

EndFunction

You could also replace Hollywood functions with your own ones, e.g. if you want all Print()
calls to use DebugPrint() instead, the following code could do this:

Function p_Print(...)

DebugPrint(Unpack(arg)) ; redirect arguments to DebugPrint()

EndFunction

Print = p_Print ; all calls to Print() will call p_Print() now

Print("Hello World!") ; Print() refers to p_Print() now

Or an even simpler solution:

Print = DebugPrint ; redirect all calls to Print() to DebugPrint()

Print("Hello World!") ; calls DebugPrint() directly

Chapter 12: Functions 139

12.3 Callback functions

Several Hollywood commands allow you to specify callback functions. Callback functions
are normal Hollywood functions with the difference that they are not called by the script but
by Hollywood commands. They are an integral part of Hollywood and make your program
much more flexible. The whole button and event handler system in Hollywood relies heavily
on callback functions. For example, if the user presses your button, then Hollywood will run
the callback function you provided for that specific event. Callback functions are simply
passed as normal arguments to the corresponding Hollywood commands.

An example of a Hollywood command that uses callback functions is the MakeButton() com-
mand. This command expects a table in the seventh parameter, which defines callback func-
tions for the different events that can occur. Possible events for a button are OnMouseOver,
OnMouseOut, OnMouseDown, OnMouseUp, OnRightMouseDown and OnRightMouseUp. If you
simply want to react on a button press, use the OnMouseUp event. This event will be trig-
gered when the user releases the left mouse button while the mouse pointer is still over the
button. Here is an example:

MakeButton(1, #SIMPLEBUTTON, 0, 0, 100, 100, {OnMouseUp = p_MyFunc})

This command creates a new button with the identifier 1 and defines that the function
p_MyFunc() shall be called, when the user presses this button. In this case, p_MyFunc() is
a callback function. It will not be called by you but by Hollywood when the user presses
the button. This works automatically. More precisely, the callback functions are actually
called by the Hollywood command WaitEvent() which you should use in every script. The
callback function itself could look like this now:

Function p_MyFunc()

DebugPrint("Button 1 pressed!")

EndFunction

You could also place this function directly in the argument list of MakeButton(). This
would look like this then:

MakeButton(1, #SIMPLEBUTTON, 0, 0, 100, 100, {OnMouseUp =

Function() DebugPrint("Button 1 pressed!") EndFunction})

You see that Hollywood is very flexible. Remember that if you declare functions within an
argument list of a call, you must not provide a function name because those functions are
anonymous. So the following code would be invalid:

; invalid code!

MakeButton(1, #SIMPLEBUTTON, 0, 0, 100, 100, {OnMouseUp =

Function p_MyFunc() DebugPrint("Button 1 pressed!") EndFunction})

Callback functions usually receive a message table in parameter 1. In the above example
we did not fetch this message because we declared the function without any arguments. For
the above code this is fine but imagine the following example:

MakeButton(1, #SIMPLEBUTTON, 0, 0, 100, 100, {OnMouseUp = p_MyFunc})

MakeButton(2, #SIMPLEBUTTON, 200, 0, 100, 100, {OnMouseUp = p_MyFunc})

Now we have declared two buttons but they both call the same function when the user
presses them. The function p_MyFunc() needs to know now which button was pressed
when it gets called. p_MyFunc() can find this out by looking at the message it receives in
argument 1:

140 Hollywood manual

Function p_MyFunc(msg)

If msg.id = 1

DebugPrint("Button 1 pressed!")

ElseIf msg.id = 2

DebugPrint("Button 2 pressed!")

EndIf

EndFunction

You see that p_MyFunc() checks the id-field of the message it got in argument 1 and so it
can distinguish between button 1 and 2. Of course, you could extend that to any number
of buttons. But there is more to look at. Consider the following situation:

evttable = {OnMouseUp = p_MyFunc, OnRightMouseUp = p_MyFunc}

MakeButton(1, #SIMPLEBUTTON, 0, 0, 100, 100, evttable)

MakeButton(2, #SIMPLEBUTTON, 200, 0, 100, 100, evttable)

MakeButton(3, #SIMPLEBUTTON, 400, 0, 100, 100, evttable)

Now we have declared three buttons and they all use the same event table. Thus Hollywood
will call the same function for all of them. Furthermore, these buttons react on another
event, namely OnRightMouseUp. Now p_MyFunc() needs to be able to distinguish not only
between several buttons but also between different events. But that is no problem at all
because the message passed to p_MyFunc() has another field from which you can read the
event which caused the function call. Our p_MyFunc() function would look like this now:

Function p_MyFunc(msg)

Switch msg.action

Case "OnMouseUp":

DebugPrint("Left mouse button pressed:", msg.id)

Case "OnRightMouseUp":

DebugPrint("Right mouse button pressed:", msg.id)

EndSwitch

EndFunction

So you see that it is no problem to handle multiple buttons and events with the very same
callback function. This increases the readability of your program a lot! There is much more
to be discovered, so make sure you read the documentation about MakeButton() too.

If you want to be notified when the user closes or moves the window, you can install a
callback function for that using InstallEventHandler(). The function you pass to this
Hollywood command will then be called every time the user presses the window’s close box
or moves the window. But InstallEventHandler() supports more event types: You can
also install a callback function that will be invoked if the user presses or releases a key and
much more.

The Hollywood command SetInterval() also uses callback functions. The function passed
to SetInterval() will be called again and again at the specified interval. This is useful if
you want to make sure that your script runs at the same speed on every system. To realise
this, simply use SetInterval() to tell Hollywood that it should run your callback function
25 times a second. So you can make sure that it does not run faster on faster machines.
See Section 29.26 [SetInterval()], page 582, for a good overview of the interval technique.

SetTimeout() is another example of a Hollywood command that works with callback func-
tion. You pass a function as well as a timeout value to SetTimeout(). Your callback

Chapter 12: Functions 141

function will then be called exactly after the specified time has elapsed. This is very useful
for correct timing of your script, e.g. timing of your script with the music.

Last but not least, the Hollywood command CopyFile() accepts a function in the fourth
parameter. This function will be called from time to time while CopyFile() is copy-
ing files. This is a difference to the callback functions of MakeButton(), SetInterval(),
SetTimeout() etc. These are always called by WaitEvent() and not by the Hollywood
command itself. CopyFile(), however, will call the specified function while it is running.
So you could delete your callback function after CopyFile() is done (you can delete function
by setting them to Nil). This is not possible with MakeButton() or SetInterval() because
those functions just install the callbacks but they do not invoke them. This task is left to
WaitEvent(). The callback function of CopyFile() is usually used to update a progress
bar or abort the copy operation at any time. See Section 26.6 [CopyFile()], page 413, for
details.

12.4 Return values

If your function returns one or more values it is required to specify these values in paren-
theses. These are required because otherwise the parser would treat them as separate
statements. Consider the following code:

; wrong code!

Function p_Max(a, b)

If a > b Then Return a

Return b

EndFunction

The Hollywood parser would interpret this code in the following way:

Function p_Max(a, b)

If a > b Then Return ; if a > b, then return no value !!

a ; execute function a() !!

Return ; return no value !!

b ; execute function b() !!

EndFunction

You see that this does not make much sense. The parentheses are obligatory because
Hollywood allows you to type as many commands as you wish in one line without any
delimiters. And Hollywood allows you to call functions that do not accept arguments
without specifying parentheses. Therefore a statement like Return a is converted into two
statements, namely Return and a(). If you want to return the variable a you have to write
Return(a). The correct version of our p_Max() function thus has to look like this:

Function p_Max(a, b)

If a > b Then Return(a)

Return(b)

EndFunction

By using the parentheses you signal to Hollywood that the variables a and b belong to the
Return() calls and are not separate functions.

If a function returns more than one value but you want to have only the first return value,
you need to put a pair of parentheses around the function call. This will cast the result of
this function to one single value. For example, the following function returns three values:

142 Hollywood manual

Function p_ThreeVals()

Return(1, 2, 3)

EndFunction

If you pass this function now to a function that accepts a multiple number of arguments,
e.g. DebugPrint() all three return values will be passed to DebugPrint() as well:

DebugPrint(p_ThreeVals()) ; prints "1 2 3"

If you want DebugPrint() to receive only the first return value of p_ThreeVals() you need
to put parentheses around the p_ThreeVals() call so that it looks like this:

DebugPrint((p_ThreeVals())) ; prints "1"

Functions cannot only return numbers, but also strings, tables and even other functions.
For example, the following code is completely legal:

Function p_Return_a_Table()

Return({1, 2, 3, 4, 5})

EndFunction

a = p_Return_a_Table()

DebugPrint(a[3]) ; prints 4

In practice, you will probably not use this feature very much but you should know that it is
at least possible to have functions that return tables or other functions. Another example:

Function p_Return_Func()

Return(Function(s) DebugPrint(s) EndFunction)

EndFunction

myfunc = p_Return_Func()

myfunc("Hello World!") ; calls DebugPrint("Hello World!")

12.5 Recursive functions

Hollywood supports recursive functions, i.e. you can write functions which call themselves.
For example, here is a function which calculates the faculty of n:

Function p_Fac(n)

If n = 0 Then Return(1) ; 0! = 1

Return(n * p_Fac(n - 1)) ; multiply n with n - 1 until n = 0

EndFunction

As you can see above, the p_Fac() function calls itself again and again until the n counter
is zero. This is what we call a recursive function.

12.6 Variable number of arguments

You can also write functions which accept any number of arguments. To do this you have
to use the ... identifier as the last parameter. Your function will then get a local table
called arg which contains all parameters that were passed to your function including an
element called n which carries the number of parameters that were passed to the function.
Please also note that the arguments will be stored in the arg table starting at index 0. For
example, here is a function that calculates the average of all parameters that are passed to
it:

Function p_Average(...)

Chapter 12: Functions 143

Local pars = arg.n ; how many parameters were passed

Local avg, k ; temporary locals

For k = 1 To pars

avg = avg + arg[k-1] ; sum up all parameters

Next

Return(avg / pars) ; and divide the sum by their quantity

EndFunction

a = p_Average(10, 20, 30, 40, 50) ; (10 + 20 + 30 + 40 + 50) / 5 = 30

b = p_Average(34, 16, 27, 39) ; (34 + 16 + 27 + 39) / 4 = 29

c = p_Average(10, 10) ; (10 + 10) / 2 = 10

Print(a, b, c) ; prints "30 29 10"

It is important to note that the ... identifier must be specified as the last entry of your
parameter list. You cannot do things like:

; invalid code

Function p_Test(a, b, ..., c)

...

EndFunction

This will obviously not work because Hollywood could never know which parameter belongs
to c. Using parameters before the ... identifier works fine though:

Function p_MinMax(ismin, ...)

Local pars = arg.n ; number of parameters passed

Local k

If ismin = True ; find out smallest element?

Local min = arg[0] ; store the smallest element here

For k = 2 To pars ; iterate over all elements

If arg[k-1] < min Then min = arg[k-1] ; smaller ?

Next

Return(min) ; and return the smallest

Else

Local max = arg[0] ; store the greatest element here

For k = 2 To pars ; iterate over all elements

If arg[k-1] > max Then max = arg[k-1] ; greater ?

Next

Return(max) ; and return the greatest element

EndIf

EndFunction

a = p_MinMax(True, 4, 8, 2, 3, 10, 1, 7, 9, 5, 6) ; returns 1

144 Hollywood manual

b = p_MinMax(False, 4, 8, 2, 3, 10, 1, 7, 9, 5, 6) ; returns 10

This function will return the smallest number of the specified parameters if the first argu-
ment is True or the greatest number if the first argument is set to False.

If you need to pass all arguments over to another function, the Unpack() function can
become handy. It will return all elements of a table. For example, if you want to write your
own Print() function:

Function p_Print(...)

Print(Unpack(arg))

EndFunction

All arguments passed to p_Print() will be passed over to Print() using the Unpack()

function.

12.7 Functions as table members

As we have already learnt before functions in Hollywood are just variables of the type
"function". Therefore, you can use them everywhere where you can use variables. This
includes tables. You can store functions just like normal strings or values inside a table and
call them from there. Let us look at an example:

mathlib = {} ; create an empty table

Function mathlib.add(a, b)

Return(a + b)

EndFunction

Function mathlib.sub(a, b)

Return(a - b)

EndFunction

Function mathlib.mul(a, b)

Return(a * b)

EndFunction

Function mathlib.div(a, b)

Return(a / b)

EndFunction

a = mathlib.mul(5, 10) ; a receives the value 50

The table mathlib contains four functions now that can be called from it. Of course, we
could also declare the functions during the initialization of the table. This would look like
the following:

mathlib = {add = Function(a, b) Return(a + b) EndFunction,

sub = Function(a, b) Return(a - b) EndFunction,

mul = Function(a, b) Return(a * b) EndFunction,

div = Function(a, b) Return(a / b) EndFunction}

a = mathlib.mul(5, 10) ; a receives the value 50

Chapter 12: Functions 145

This code does the very same as the code above but is more compact. Functions inside
a table are also often refered to as "methods". This is a term from the object-oriented
programming world.

12.8 Local functions

Because functions in Hollywood are just variables of type "function", you can also use local
functions which have a limited lifetime. They work pretty much the same way than local
variables and have the same advantages too. Here is an example of a local function:

Block

Local p_Add = Function(a, b) Return(a + b) EndFunction

Print(p_Add(5, 6)) ; prints 11

EndBlock

In the above code, the function p_Add() will be local to the block it has been declared in.
Thus, any attempts to call p_Add() after the EndBlock statement will lead to an error.

You could also use the more common function definition to create local functions. This
code does the same as the code above but uses the common way of declaring functions:

Block

Local Function p_Add(a, b) Return(a + b) EndFunction

Print(p_Add(5, 6)) ; prints 11

EndBlock

Using local functions can also become handy if you want to temporarily replace a Hollywood
function. For example, the following code replaces the DebugPrint() function with the
Print() function but only for the lifetime of the block where it has been defined (and in
subordinate blocks):

If error = True

Local Function DebugPrint(...) Print(Unpack(arg)) EndFunction

DebugPrint("An error occurred!") ; redirects to Print()

EndIf

DebugPrint("Hello") ; points to DebugPrint() again

The string "An error occurred!" will be rendered to your display in the code above because
we have defined a local function called DebugPrint() which calls the Hollywood function
Print(). This local DebugPrint() will be killed when the block is left. The following call
to DebugPrint() will then call the real Hollywood DebugPrint() function.

12.9 Methods

It is also possible to use Hollywood for object-oriented programming. Hollywood does
not have the concept of class but you can easily emulate the behaviour using tables and
metatables. One thing that is important for object-oriented programming is that object
functions usually receive a handle to themselve as the first parameter. This parameter is
usually called self or this. Of course, you can emulate this behaviour by simply declaring
a self or this parameter in your function and passing to it the object whenever you call
the function, but you can also use a special syntax for object-oriented programming that
Hollywood offers.

146 Hollywood manual

If you declare your functions using the colon operator Hollywood will automatically initialize
a hidden self parameter for you. You do not have to declare it explicitly. If you use the
colon syntax, it is always there. Functions that are declared using the colon syntax are
called methods because they are dependent on a root object.

Here is a simple example of a methods in Hollywood:

cart = {items = {}, numitems = 0}

Function cart:AddItem(n$, p)

self.items[self.numitems] = {name = n$, price = p}

self.numitems = self.numitems + 1

EndFunction

Function cart:RemoveItem(n$)

For Local k = 0 To self.numitems - 1

If self.items[k].name = n$

RemoveItem(self.items, k)

self.numitems = self.numitems - 1

Return

EndIf

Next

EndFunction

Function cart:CheckOut()

Local total = 0

For Local k = 0 To self.numitems - 1

NPrint(self.items[k].name, self.items[k].price)

total = total + self.items[k].price

Next

NPrint("Your total is", total)

EndFunction

cart:AddItem("DVD", 10)

cart:AddItem("Blizzard PPC", 1000)

cart:AddItem("AAA Chipset", 100000)

cart:AddItem("68070", 500)

cart:CheckOut()

cart:RemoveItem("Blizzard PPC")

cart:CheckOut()

The code above creates a simple class that represents a cart. The class has three methods:
Add item, remove item, and check out. Furthermore, it has two properties: A table con-
taining a list of all elements in the cart, and a count value that contains how many elements
are currently in the cart. You can see that each of the three methods works with a self

variable which has not been declared. This is because all methods have been declared using

147

the colon operator and thus Hollywood will always pass a the self parameter to them
automatically.

Of course there is more much more to object-oriented programming than covered in this
brief excursion. Going into the depths of OOP (inheritance, multiple inheritance, privacy,
etc.) would be too much for this guide, but it is all possible with Hollywood tables and
metatables. If you are interested in learning more about this topic, you should consult
a book about the Lua programming language because Hollywood uses a Lua kernel. For
example, the book "Programming in Lua (second edition)" by Roberto Ierusalimschy has an
extensive chapter about OOP in Lua, which you usually can adapt straight into Hollywood
code.

149

13 Unicode support

13.1 Overview

Hollywood 7.0 finally introduces full Unicode support. Before Hollywood 7.0 the program
was limited to ISO 8859-1 on Windows, Linux, and macOS, and to the system’s default
charset on AmigaOS and compatible systems. Hollywood 7.0 now comes with full Unicode
support which is implemented using the UTF-8 character encoding. Thus, starting with
Hollywood 7.0, all your scripts should be saved in the UTF-8 character encoding, either
with or without BOM.

All text stored inside strings will now be stored as UTF-8 and all the functions in the string
and text libraries will now expect UTF-8 formatted text by default. It is possible to put
Hollywood in legacy mode, i.e. to force it to use ISO 8859-1 or the system’s default charset
on AmigaOS, by using the -encoding console argument or its counterpart in the @OPTIONS
preprocessor command, but this is not recommended because in legacy mode, your script
isn’t guaranteed to run flawlessly on different locales.

All string and text library functions that need to operate on characters within strings accept
an optional encoding parameter which allows you to set the character encoding the string
uses. Normally, it is not necessary to use this optional encoding parameter because it is
highly recommended to always use UTF-8. In some cases, however, it might be handy to
be able to have string and text functions operate on encodings different from UTF-8. This
is especially so if you need to operate on raw binary data stored in a string. In that case,
you can just pass the #ENCODING_RAW constant to the respective functions to tell them that
you wish to operate on the raw binary data inside the string instead of characters stored
in UTF-8 encoding. The string functions won’t perform any integrity checks on the string
that is passed to them and will just operate on the raw binary data stored inside the string.

To change the default character encoding for the string and text libraries, you can use the
SetDefaultEncoding() function. See Section 54.30 [SetDefaultEncoding], page 1138, for
details. However, this is normally not needed and you should just keep #ENCODING_UTF8 as
the default encoding.

If you need to listen to non-English keys, you have to use the new VanillaKey event
handler with InstallEventHandler(). VanillaKey supports the complete Unicode range
of characters whereas OnKeyDown and OnKeyUp only support control keys and standard
English keys. See Section 29.13 [InstallEventHandler], page 553, for details.

In the course of the transition to Unicode in Hollywood 7.0 there might be some compatibil-
ity issues with older scripts. All potential issues are discussed in the compatibility section.
See Section 6.2 [Compatibility], page 69, for details.

Finally, please note that Hollywood’s text renderer currently only supports traditional text,
i.e. text that is laid out from left to right on horizontal lines. The text renderer currently
doesn’t support text that runs from right to left or vertical text.

13.2 Character encodings

Most of the string and text library functions accept an optional parameter specifying the
character encoding to use. This parameter tells the function how the strings you pass to it
are internally formatted, i.e. which character encoding they use.

150 Hollywood manual

Normally, you shouldn’t have to use this parameter at all because starting with Hollywood
7.0 all text should be stored as UTF-8. Under certain circumstances, however, it might
be necessary to use the optional character encoding parameter. For example, Hollywood
strings can also contain raw binary data. This data of course isn’t valid UTF-8 and thus
the string functions will reject it. The only way to operate on this data then is to tell
the respective functions that this isn’t UTF-8 encoded data but just a raw sequence of
bytes. This can be done by passing the #ENCODING_RAW constant in the character encoding
parameter.

Here is an overview of the different encodings available in Hollywood:

#ENCODING_UTF8:

This is the default encoding since Hollywood 7.0 and should be used whenever
you work with text.

#ENCODING_ISO8859_1:

This was the default encoding before Hollywood 7.0. It is still supported for
compatibility reasons but it isn’t recommended to use it.

#ENCODING_RAW:

This is a synonym for #ENCODING_ISO8859_1. It can be used to tell the string
library functions to treat the string as raw binary data instead of text.

#ENCODING_AMIGA:

This specifies the system’s default character set on AmigaOS and compati-
ble systems. This constant is only supported by ConvertStr() and only on
AmigaOS and compatible systems, obviously. #ENCODING_AMIGA allows you to
convert between AmigaOS’ default character set and UTF-8 (both ways).

You can use the SetDefaultEncoding() function to change the default character encoding
for the string and text libraries. See Section 54.30 [SetDefaultEncoding], page 1138, for
details.

151

14 Troubleshooting

14.1 Troubleshooting

This section covers some common problems and presents their solutions.

1. Table initialization: Be careful when trying to create a table field by assigning a variable
to it that has not been used before, i.e. is Nil. If you do that, the table field will not
be created. For example, the following will not work:

t = {} ; create a table

t.x = y ; assign ’y’ to field x; note that y is Nil

DebugPrint(t.x) ; ---> Error! Field ’x’ not initialized!

The solution is to initialize y first, e.g.:

t = {} ; create a table

y = 0 ; set y to 0

t.x = y ; assign ’y’ to field x

DebugPrint(t.x) ; Works! Prints ’0’

2. Checking a variable against Nil: Be careful when checking a variable against Nil!
GetType() is the only reliable way to find out if a variable is Nil or not. Checking the
variable against the Nil identifier is not a good idea because that would also result in
True if the variable was zero instead of Nil. Example:

a = 0

b = Nil

DebugPrint(GetType(a) = #NIL, a = Nil) ; prints "0 1"

DebugPrint(GetType(b) = #NIL, b = Nil) ; prints "1 1"

You see that "a = Nil" returns True although a is zero. That is because Nil is always
regarded as zero when used in expressions. Thus, if you want to find out whether a
variable really is Nil, use GetType() and compare the result against #NIL. Starting
with Hollywood 6.0 you can also use the dedicated IsNil() function to check a variable
against Nil. See Section 52.20 [IsNil], page 1084, for details.

3. Wrong variable initialization: In Hollywood initializing multiple variables is a bit dif-
ferent than in most other languages because Hollywood expects only one equal sign.
For example, this might look correct but it is wrong:

; bad code!

Local a = 5, b = 6, c = 7

Unfortunately, this bad code would not even trigger an error but it would be interpreted
in a wrong way. The code above would make Hollywood assign 5 to a and simply drop
the rest because there is only one variable on the left side of the equal sign. So you
have to be careful with multiple variable initialization. Accordingly, the correct version
would be the following code:

; good code!

Local a, b, c = 5, 6, 7

This code will assign 5 to a, 6 to b, and 7 to c.

152 Hollywood manual

4. Returning values: Be careful with functions that return something. The return value
has to be enclosed in parentheses. Code like this is wrong and does not trigger an error:

Function p_Add(a, b)

Local r = a + b

Return r ; OUCH!!!

EndFunction

This code would be interpreted as "Return, and then call the function r()". Of course,
the call to r() will never be reached but the function as written above will return Nil,
i.e. nothing, in every case. The correct version is this:

Function p_Add(a, b)

Local r = a + b

Return(r)

EndFunction

14.2 Frequently asked questions

This section covers some frequently asked questions. Please read them first before asking
on the forum because your problem might have been covered here.

Q: Is it possible to compile *.apk Android packages directly with Hollywood so that I can
publish them on Google Play?

A: Yes, that’s possible with the Hollywood APK Compiler which is available as a Hollywood
add-on. Please visit the official Hollywood portal at http://www.hollywood-mal.com for
more information. Alternatively, you can also use to freely available Hollywood Player for
Android if you want to run your Hollywood projects on Android. See Section 2.4 [Mobile
platforms], page 24, for details.

Q: Is it possible to create GUIs in Hollywood which use the native widgets of the operating
system?

A: Yes, this is now possible with the RapaGUI plugin. RapaGUI allows you to create native
GUIs for AmigaOS and compatibles, Windows, macOS, and Linux. GUI layouts can be
conveniently defined in XML. RapaGUI is available for free and can be downloaded from
http://www.hollywood-mal.com. If you only target AmigaOS and compatibles, you can
also use the MUI Royale plugin. This allows you to use almost the complete MUI API
from Hollywood and creating GUIs with MUI Royale is also very convenient because GUI
layouts can be defined in XML.

Q: I have compiled my project for macOS but macOS refuses to start it. What can I do?

A: macOS is very strict when it comes to executing apps that haven’t been signed by a
registered Apple developer. Typically, unsigned apps end up in "quarantine" which means
that you can’t open them. You can, however, clear the quarantine flag of an app by executing
the following line on the terminal:

xattr -dr com.apple.quarantine /path/to/your/App.app

Then you should be able to open your app without problems.

http://www.hollywood-mal.com
http://www.hollywood-mal.com

Chapter 14: Troubleshooting 153

Q: 2D drawing is too slow. What can I do to make this faster?

A: On some platforms Hollywood does all of its drawing using the CPU. This ensures max-
imum compatibility with a wide range of hardware. Using hardware-accelerated drawing
increases the risk of glitches with buggy graphics drivers of the host OS. Nevertheless, Hol-
lywood supports hardware-accelerated drawing. To do that, you need to set up a hardware
double buffer and create your brushes as hardware brushes. Then 2D drawing will be done
using the GPU and this will be extremely quick. Note that the Windows, macOS, and Linux
versions don’t have inbuilt support for hardware double buffers and hardware brushes at
the moment. You need to use a plugin like GL Galore or RebelSDL in order to be able
to use hardware double buffers are hardware brushes on those systems. See Section 21.37
[Hardware brushes], page 280, for details.

Q: I’m using the auto scaling engine (or the "FullScreenScale" display mode) to scale my
script to a higher resolution. The performance is very poor. Can’t Hollywood use the
GPU for scaling?

A: Hollywood doesn’t support hardware-accelerated scaling on all platforms by default. On
Windows, this is only available on Windows 7 and better. On macOS, it is only available on
10.10 and better. If you’re running Hollywood on a system where the auto scaling engine
shows a poor performance, you might be able to get massive speed improvements by using
a plugin which supports hardware-accelerated scaling, e.g. the GL Galore or RebelSDL
plugins. Plugins which support hardware-accelerated scaling can apply auto scaling in
almost no time. So if Hollywood’s inbuilt auto scaling performance is too poor for your
requirements, you might want to use a plugin which supports hardware-accelerated scaling.
See Section 5.4 [Obtaining plugins], page 66, for details.

Q: The Windows version of Hollywood comes with a nice IDE. Why is there no such IDE
on the Amiga platform?

A: It would be too much work to create such an IDE for Amiga compatibles. There are
already several other programs that you can use on the Amiga to create scripts for Holly-
wood. Check out Dietmar Eilert’s Cubic IDE (Link: http://www.softwareandcircuits.
com/) or Simon Archer’s Codebench (Link: http://codebench.co.uk). Both programs
support Hollywood through plugins.

Q: How can I link images, sounds, fonts, etc. into my compiled executable?

A: If you are using the preprocessor commands like @BRUSH, @BGPIC, @MUSIC, @FONT, etc.
then Hollywood will link all external data declared using these commands to your exe-
cutable automatically. If you are loading your external data manually using LoadBrush(),
OpenMusic(), SetFont() etc., then you have to use the -linkfiles console argument to
specify which files should be linked to your executable.

Q: How do I switch between windowed and full screen mode?

A: There is a hotkey that can switch your scripts between windowed and full screen mode:
Just press CMD+RETURN on AmigaOS and macOS, or LALT+RETURN on Windows. If you need
to switch modes from your script, use the ChangeDisplayMode() command.

http://www.softwareandcircuits.com/
http://www.softwareandcircuits.com/
http://codebench.co.uk

154 Hollywood manual

Q: How can I change the icon in executables compiled using Hollywood?

A: Use the @APPICON preprocessor command for that.

Q: When using TrueType fonts, I noticed that the text looks slightly different between
AmigaOS and Windows, or Windows and macOS, or AmigaOS and macOS. How can I fix
that?

A: If you want TrueType text to look exactly the same on every platform, you have to
use Hollywood’s inbuilt font engine. You can enable the inbuilt font engine by passing
#FONTENGINE_INBUILT to the SetFont(), OpenFont() or @FONT commands. By default,
Hollywood will use the host operating system’s native font engine (#FONTENGINE_NATIVE)
and this leads to a slightly different look on each platform. If you don’t want that, use
#FONTENGINE_INBUILT.

Q: How can I increase the raw performance of my script?

A: You might want to disable the line hook for brief periods of time to increase the raw per-
formance of Hollywood’s virtual machine. See Section 52.3 [DisableLineHook], page 1072,
for details.

Q: I have compiled my script for macOS but when I start it under macOS, I get an error
indicating that the data files for my program could not be found!

A: Make sure that you put all data files required by your program inside the
Resources folder of the application bundle compiled by Hollywood. For example, if
Hollywood compiled a bundle called MyCoolProgram.app, then you need to put all
data files that are required by MyCoolProgram.app inside the following bundle folder:
MyCoolProgram.app/Contents/Resources. Then it will work.

Q: I have compiled my script for macOS/Linux but it won’t start. What’s wrong there?

A: Make sure that the main program inside the application bundle has the executable
flag set. When cross-compiling programs for macOS/Linux on Windows or AmigaOS, the
executable flag often is not set correctly because macOS and Linux use a different file
system. So you sometimes need to set this flag manually.

Q: Is there visual designer for Hollywood scripts or do I have to edit every script using a
text editor?

A: Yes, there is a program called Hollywood Designer which has a powerful WYSIWYG
interface to create your Hollywood projects. Have a look at http://www.hollywood-mal.
com for more information about this great program. Please note that Hollywood Designer
is currently only available for Amiga compatible systems.

Q: Is there a Hollywood forum where I can get in touch with other users?

http://www.hollywood-mal.com
http://www.hollywood-mal.com

Chapter 14: Troubleshooting 155

A: Yes, please check out the "Community" section of the official Hollywood Portal online
at http://www.hollywood-mal.com.

Q: When I compile my script for Windows/macOS, I’m getting an error message that
Hollywood can’t open the fonts I’m using! What am I doing wrong?

A: See Section 54.42 [Working with fonts], page 1157, for a detailed explanation of how to
deal with fonts in multi-platform scripts.

Q: I see that programs compiled by Hollywood support many different console arguments.
But I never start my programs compiled by Hollywood from the console! Can I still pass
console arguments to them somehow?

A: Yes, that’s possible. See Section 3.3 [Passing console arguments without a console],
page 54, for details.

Q: When trying to load an animation, I’m always getting an "Out of memory!" error
although I have 512 MB RAM.

A: Make sure that you enable disk-buffered playback. This can be done by using the
FromDisk tag in LoadAnim() or @ANIM. If you don’t specify FromDisk, Hollywood will
buffer the entire anim in memory and because Hollywood always uses 32-bit graphics, 512
MB are used up pretty soon.

Q: When I’m trying to access a non-existing field in my table, Hollywood immediately exits
with an error message! Can I somehow check if a table field exists before accessing it?

A: That is possible using the HaveItem() function. It will return False if the specified
table field does not exist.

Q: The sound Hollywood outputs is distorted under AmigaOS. What is wrong there?

A: Check your AHI settings. You will have to set the master volume in your AHI advanced
settings to "With Clipping". If this does not help, try to reduce the master volume in
Hollywood, by specifying the -mastervolume argument. You can also reduce the master
volume in the GUI preferences. You should also turn off the echo and surround modes if
there are any sound problems. Also make sure that you have set the frequency for your
sound driver correctly. It should be at least 22050 Hz.

Q: I would like to add my own commands to Hollywood using a plugin. Is there a SDK
available?

A: Yes, the Hollywood SDK is available for download from the official Hollywood portal at
http://www.hollywood-mal.com. It comes with many examples and extensive documen-
tation that should get you started.

Q: How do I interrupt scripts that run in a window that has no close box?

http://www.hollywood-mal.com
http://www.hollywood-mal.com

156 Hollywood manual

A: Just press CTRL+C. This will always work except when CTRL+C has been disabled
using CtrlCQuit().

Q: Where can I ask for help?

A: The best place to ask for help is the official Hollywood forum http: / / forums .

hollywood-mal.com. There is also a newsletter which is used for announcements. So if
you want to stay up to date about the latest Hollywood releases, new plugins, updates,
and everything else about Hollywood visit http://www.hollywood-mal.com and sign up
for the newsletter.

Q: I have found a bug.

A: Please post about it in the "Bugs" section of the forum.

http://forums.hollywood-mal.com
http://forums.hollywood-mal.com
http://www.hollywood-mal.com

157

15 Tutorials

15.1 Tutorial

This little tutorial shows you how to create your own slide show in ten easy steps. Try
to understand every step that is taken here and you will soon be able to create your own
scripts.

The following things are required for this tutorial:

1. Background picture called BG.png with two arrows. Rectangle embracing arrow 1 is X:
4, Y: 430, W: 35, H: 19. Rectangle embracing arrow 2 is X: 591, Y: 430, W: 35, H: 19.
The area where the pictures are displayed is at coordinates X: 29, Y: 41.

2. 11 pictures named 0.jpg, 1.jpg, 2.jpg ... 10.jpg of size 571x377 pixels

3. Protracker module named MyMusic.mod

Of course I have prepared all these things for this tutorial. They are in your Hollywood
directory under Help/Tutorial. Please copy those files to the directory where you will create
your script. Then follow these steps:

1. Start up your favorite text editor

2. The background for your slideshow is a picture that you have created with your favorite
paint program. In our example, I have already prepared a background.

3. Now we need to tell Hollywood that it shall use the file BG.png as the first background
picture. This is done by specifying the preprocessor command @BGPIC together with
BG.png. So you have to write the following code now in your script file:

@BGPIC 1, "BG.png"

This command tells Hollywood to use BG.png as the initial background picture. The
initial background picture must always have the identifier 1. If there is no background
picture with the identifier 1, Hollywood will create a blank display.

4. Our slideshow also shall have some background music. This music is a Protracker
module with the name MyMusic.mod. So we add the following line to our script:

@MUSIC 1, "MyMusic.mod"

5. Now we have to define areas in our background picture that shall be accessible as
buttons. As you can see, there are two arrows in the background picture. As all
buttons need to be defined as a rectangle, we need to find out the coordinates as well
as the width and height of each arrow. You can use a paint program like PPaint to
find out the coordinates. For our background picture, the left arrow is in a rectangle
with the coordinates 4:430 (top left corner) and the width/height of 35/19. So we can
add the left arrow now as button 1 to our script by writing the following code in the
script file:

MakeButton(1, #SIMPLEBUTTON, 4, 430, 35, 19,

{OnMouseUp = p_Back})

We can do the same now with the right arrow which is in a rectangle starting at 591:430
with the same dimensions as arrow 1. So we write the following keyword in our script:

MakeButton(2, #SIMPLEBUTTON, 591, 430, 35, 19,

{OnMouseUp = p_Forward})

158 Hollywood manual

Now we have defined two buttons that can be clicked. If button 1 gets clicked Hollywood
will call the function p_Back(), and if button 2 gets clicked Hollywood will call the
function p_Forward().

6. Now we can start adding a bunch of commands that tell Hollywood what to do. At first,
we want that the background music starts to play. As we have declared MyMusic.mod

as the music object with number 1, we now call PlayMusic() with argument 1. Add
the following line to your script and Hollywood will play your Protracker module:

PlayMusic(1)

We also need to define which picture shall be the last one. In our example we will have
11 pictures ranging from 0.jpg to 10.jpg, so the last picture is number 10. Therefore
we add the following line to our script:

lastpic = 10

We also add the following line because our first pic is 0.jpg:

pic = 0

7. The next command shall load the next picture and display it. As there is no command
which does all this, we need to write a little function. This routine will be called p_

NextPic(). You will see in point 10 how to write this routine. Let us pretend that
it was already there and therefore we will now say that Hollywood shall execute this
routine:

p_NextPic()

8. Now we add the main loop to our script. The popular format of this loop is the
following:

Repeat

WaitEvent

Forever

The command WaitEvent() holds the script execution until an event occurs, e.g. a
button is pressed. If an event occurs WaitEvent() will jump to the function that
handles this event, e.g. if button 1 is clicked, WaitEvent() will jump to the function
p_Back(). When the function has finished its action, it jumps back in our main loop
and WaitEvent() gets called again. This is repeated until the user closes the window.

9. Now the structure of our script is complete. What we still need to do now is adding the
functions p_Back() which is called by WaitEvent() when button 1 (backward button)
was pressed and p_Forward() which is called by WaitEvent() when button 2 (forward
button) was pressed. It is important that you define the functions before you reference
them. Thus, you need to add the following code before the calls to MakeButton()

which you added in step 5. So let’s add the functions for the buttons now:

Function p_Back()

If pic =0

pic = lastpic

Else

pic = pic - 1

EndIf

p_NextPic()

EndFunction

Chapter 15: Tutorials 159

Function p_Forward()

If pic = lastpic

pic = 0

Else

pic = pic + 1

EndIf

p_NextPic()

EndFunction

As you can see in the above code, the variable pic contains the actual picture number.
If the user clicks the forward button, pic is increased by one, if the backward button
is clicked it is decreased by one. The variable is also checked against 0 and lastpic so
that it always stays in the range of our pictures.

10. Now the only thing left to do is our function p_NextPic() which shall load and display
the picture with the number that is stored in the variable pic. Here is the code.
Remember to insert this code before the calls to MakeButton().

Function p_NextPic()

LoadBrush(1, pic .. ".jpg")

DisplayBrush(1, 29, 41)

EndFunction

So what does the routine p_NextPic() do? It simply adds the ".jpg" extension to the
variable pic and after that it loads the file and displays the brush at coordinates 29:41.
So the pictures must be named like this 0.jpg (first pic), 1.jpg (second pic), 2.jpg
(third pic) and so on.

Altogether our script looks now like this:

@BGPIC 1, "BG.png"

@MUSIC 1, "MyMusic.mod"

Function p_NextPic()

LoadBrush(1, pic .. ".jpg")

DisplayBrush(1, 29, 41)

EndFunction

Function p_Back()

If pic =0

pic = lastpic

Else

pic = pic - 1

EndIf

p_NextPic()

EndFunction

Function p_Forward()

If pic = lastpic

pic = 0

160 Hollywood manual

Else

pic = pic + 1

EndIf

p_NextPic()

EndFunction

MakeButton(1, #SIMPLEBUTTON, 4, 430, 35, 19,

{OnMouseUp = p_Back})

MakeButton(2, #SIMPLEBUTTON, 591, 430, 35, 19,

{OnMouseUp = p_Forward})

PlayMusic(1)

lastpic = 10

pic = 0

p_NextPic()

Repeat

WaitEvent

Forever

Now you can save your script and start it through the Hollywood GUI or from the console.
Congratulations, you have just created your first Hollywood script! Wasn’t that easy? Only
35 lines of code!

Now you can go and extend it if you want. For example, if you want that the picture gets
displayed with a transition effect just replace the line

DisplayBrush(1, 29, 41)

with the line

DisplayBrushFX(1, 29, 41, #RANDOMEFFECT)

and your picture will appear with a nice transition effect from Hollywood’s wide palette of
transition effects.

15.2 Animation techniques

When it comes to animation, you have to choose between three techniques: Sprites, double
buffering, and layers. This section is designed to give you an overview of the three techniques
so that the decision is easier for you.

1. Sprites: Sprites are especially useful when there are not much graphics to be drawn.
For example, if you only need to move some blocks or player and enemy sprites around.
In this case, it is better to use sprites because Hollywood can refresh the display pretty
fast because not much changes. See Section 50.1 [Sprite introduction], page 1011, for
details.

2. Double buffering: Using a double buffer Hollywood always needs to refresh the whole
display. Although hardware acceleration is used here when possible this can still be
quite expensive when you have a 640x480 display which needs to be refreshed 25 times

Chapter 15: Tutorials 161

a second. Thus, a double buffer is only recommended when a lot of custom graphics
have to be drawn. For instance, the Hollywood examples that draw a real sine scroller
use a double buffer because they need to draw a lot of different tiles. Such things would
not be possible with sprites because the drawing operations are heavily customized and
change every frame. See Section 30.3 [BeginDoubleBuffer()], page 590, for details.

3. Layers: Hollywood comes with a powerful layers system which allows you to access
every graphics item on the display as its own layer and modify its position, size, and
looks on the fly. The layer system is extremely flexible and powerful at the cost of
speed so if you need to draw a lot of graphics it might be faster to use double buffering
instead.

Here is a recommendation of animation techniques that are suitable for common types of
applications:

Board/card games:
Sprites or layers because fast graphics aren’t required.

Tetris: Sprites or layers because there’s not much action and screen updates do not
have to be very fast.

PacMan: Sprites or layers. The only thing that moves are the enemies and the player.

2D shooter:
Double buffering because the background is scrolling. Hence, the whole screen
has to be updated every frame.

Jump’n’Run:
Double buffer if there is a scrolling background. If the game doesn’t scroll then
sprites or layers.

Scene demo:
Double buffer by any means. A lot of custom graphics have to be drawn. This
is a classical double buffer case.

If you use sprites or layers you should also encapsulate all commands required to draw a
single frame of your project within a BeginRefresh() and EndRefresh() section. This will
allow Hollywood to use optimized drawing on systems that do not support partial screen
refresh like Android. As a welcome side effect using BeginRefresh() and EndRefresh()

will also improve drawing speed when autoscaling is active. See Section 30.4 [BeginRefresh],
page 591, for details.

15.3 Script timing

Correct timing is a crucial issue for every good script that should be able to run on many
different systems. As Hollywood is available for a multitude of platforms you have to think
about script timing if you plan to give your script to others. The basic problem is that if
you do not add speed limiters to your script, it will run as fast as possible. That might not
be a problem on old 200 Mhz systems but on a gigahertz machine it surely is a problem.
Imagine you have a game and use the following loop:

/* Bad code */

While quit = False

162 Hollywood manual

dir = p_QueryInput()

If dir = "Left" Then p_MoveSpriteLeft()

If dir = "Right" Then p_MoveSpriteRight()

....

p_RedrawDisplay()

Wend

This loop has two serious problems:

1. There is no timing in this loop. The loop will always run as fast as the CPU of the
host system allows. This is really bad. It means that the timing will only be correct
on your system and nowhere else.

2. This loop will eat 100% of your CPU power because there is no limit that says "Execute
this loop 25 times a second and that’s enough!". Consuming 100% of the CPU power
might not be a problem on very slow systems but when running the script on a newer
system the OS could noticeably slow down and the CPU fan might start up because
of the heat generated by the CPU. Additionally, remember that Hollywood runs in a
multitasking environment. In such an environment you have to be a good citizen and
only take as much CPU time as you really need. If you take all the CPU time without
really needing it, all other processes will get less CPU time.

The solution to the problem is pretty simple: We just need to tell Hollywood to execute this
loop only a certain amount of times per second. For most games, it is completely sufficient
to query for input and draw graphics 25 times per second. There are two methods how you
can implement such a throttle:

1. Using WaitTimer(). This function accepts a timer and a timeout value. It pauses the
script until the specified time has passed. Then the timer is reset and you can use it
again. Our loop from above would look like the following using WaitTimer():

/* Good code */

StartTimer(1) ; start timer #1

While quit = False

dir = p_QueryInput()

If dir = "Left" Then p_MoveSpriteLeft()

If dir = "Right" Then p_MoveSpriteRight()

....

p_RedrawDisplay()

WaitTimer(1, 40) ; do not run faster than 40 milliseconds

Wend

Now our loop will never run faster than 40 milliseconds. Thus, it will never be executed
more than 25 times per second because 25 * 40 = 1000. Hence, a game using this loop
will run at the same speed on every system - no matter if the CPU has 50mhz or 1ghz.

2. The second method is SetInterval(). This function allows you to install an interval
function that Hollywood will call at the frequency you specify. Thus, you can tell
Hollywood to call your game loop 25 times a second. The code to do this looks like
this:

/* Good code */

Function p_MainLoop()

163

; this does the same code as our While-Wend loop above

dir = QueryInput()

If dir = "Left" Then MoveSpriteLeft()

If dir = "Right" Then MoveSpriteRight()

....

RedrawDisplay()

EndFunction

; call MainLoop() 25 times a second -> 40 * 25 = 1000 milliseconds

SetInterval(1, p_MainLoop, 40)

While quit = False

WaitEvent

Wend

This code does the same as the code above using WaitTimer(). The only difference
is that you have to use WaitEvent() with SetInterval() because interval functions
trigger Hollywood events.

Both of the methods discussed above are easy to use and efficient. It is up to you to decide
which one you prefer.

165

16 Amiga support library

16.1 AmiDock information

Hollywood has native support for AmigaOS 4’s AmiDock system. You can make your script
appear in AmiDock by setting the RegisterApplication tag in the @OPTIONS preprocessor
command to True. See Section 52.25 [OPTIONS], page 1088, for details.

By default, Hollywood will show the icon obtained from the script’s or application’s *.info
file in AmiDock. If you want Hollywood to show a custom icon in AmiDock, you can do so
by specifying a number of icons using the @APPICON preprocessor command and then you
have to tell Hollywood which icon to show by setting the DefaultIcon tag. See Section 18.5
[APPICON], page 209, for details. Alternatively, you can use the DockyBrush tag with the
@OPTIONS preprocessor command.

There are two different types of dockies that Hollywood supports:

1. Standard docky: This is the default docky type. Your application will appear in
AmiDock as an icon that has two different states. The icon’s second state will be
shown every time the user clicks on it. Standard dockies have the disadvantage that
they cannot have a context menu associated with them and it also takes a lot of time to
change the standard docky icon at runtime using ChangeApplicationIcon(). There
will be a clearly noticeable relayout if you change the icon of a standard docky. If you
do not need a context menu and you never need to update your docky icon, however,
standard dockies are the best choice.

2. App docky: App dockies are more flexible than standard dockies as they can have a
context menu associated with them and it is also possible to change their icons really
quickly using ChangeApplicationIcon(). This makes it possible to show animations
in AmiDock, for example. The downside of app dockies is that app docky icons can
only have a single state, i.e. it is impossible to associate a second icon that is to be
shown whenever the user clicks on the docky with app dockies.

By default, Hollywood will create a standard docky for you. App dockies are only created
if you attach a context menu to your docky by specifying the DockyContextMenu tag in
@OPTIONS or if you call ChangeApplicationIcon() and pass only one instead of two images
to the function. An alternative way to make your application start up as an app docky is
to use the DockyBrush tag with the @OPTIONS preprocessor command.

If you want to have your script registered as an OS4 application without an icon in AmiDock,
you will have to set the NoDocky tag to True with the @OPTIONS preprocessor command.

16.2 CloseAmigaGuide

NAME
CloseAmigaGuide – close current AmigaGuide window (V6.1)

SYNOPSIS
CloseAmigaGuide()

PLATFORMS
AmigaOS and compatibles only

166 Hollywood manual

FUNCTION
This function closes an AmigaGuide window that has been opened using
OpenAmigaGuide(). When Hollywood shuts down, this function is called automatically.

INPUTS
none

16.3 CreateRexxPort

NAME
CreateRexxPort – create a Rexx port for your script (V2.5)

SYNOPSIS
CreateRexxPort(name$)

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This function will create a rexx port for your script and assign the specified name to it.
In order to receive ARexx messages, your script needs to have an ARexx port. Other
applications can then communicate with your script by sending messages to this port.
All messages that arrive at your Rexx port will be forwarded to the callback function
which you need to install using the InstallEventHandler() function (use the OnARexx
event handler). If you do not install this event handler, you will not get any notifications
on incoming messages.

Please remember that Rexx port names are always given in case sensitive notation.
Thus, "MYPORT" and "myport" denote two different Rexx ports. For style reasons it
is suggested that you use only upper case characters for your port name. Furthermore,
each Rexx port must be unique in the system. If you specify a port name which is
already in use, this function will fail. Thus, make sure that you use a unique name.

Please note that every Hollywood script can only have one ARexx port. Hence, this
function can only be called once in your script. You cannot delete the port created by
this function. It will be automatically destroyed when Hollywood exits.

An example how to catch ARexx messages is provided below. See Section 29.13 [Instal-
lEventHandler], page 553, for more information on how the user callback function will
be called.

INPUTS

name$ desired name for your Rexx port

EXAMPLE
Function p_EventFunc(msg)

Switch msg.action

Case "OnARexx"

Switch msg.command

Case "RealFunc"

Return(100)

Chapter 16: Amiga support library 167

Default

Local t = SplitStr(msg.args, "\0")

DebugPrint(msg.command, "called with", msg.argc, "argument(s)")

For Local k = 1 To msg.argc

DebugPrint("Argument", k .. ":", t[k - 1])

Next

EndSwitch

EndSwitch

EndFunction

CreateRexxPort("MY_COOL_REXX_PORT_123")

InstallEventHandler({OnARexx = p_EventFunc})

Repeat

WaitEvent

Forever

Save the code above as a Hollywood script and run it with Hollywood. Then save the
following code as a Rexx script and execute it from a Shell with "RX test.rx":

/* remember the first line of every Rexx script must be a comment */

OPTIONS RESULTS

/* the port of our Hollywood script is now the host */

ADDRESS MY_COOL_REXX_PORT_123

/* send commands from Rexx to Hollywood and watch the debug output */

DummyFunc_1 ’"Dummy Arg 1"’

DummyFunc_2 1 2 3

DummyFunc_3 ’"First arg"’ ’"Second arg"’ ’"Third arg"’

DummyFunc_4 /* no args */

DummyFunc_5 "These will be handled as separate arguments"

DummyFunc_6 ’"This is a single argument (use double quotes!)"’

’RealFunc’

SAY RESULT /* this will print 100; it is the result from RealFunc */

16.4 GetApplicationList

NAME
GetApplicationList – get a list of all registered applications (V6.0)

SYNOPSIS
t = GetApplicationList()

PLATFORMS
AmigaOS 4 only

FUNCTION
This function returns a table containing a list of all applications that have been registered
through application.library.

168 Hollywood manual

INPUTS
none

RESULTS

t table containing a list of strings describing all registered applications

EXAMPLE
t = GetApplicationList()

For Local k = 0 To ListItems(t) - 1 Do DebugPrint(t[k])

The code above prints all registered applications.

16.5 GetFrontScreen

NAME
GetFrontScreen – get name of frontmost screen (V8.0)

SYNOPSIS
n$ = GetFrontScreen()

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This function can be used to get the name of the screen that is currently up front. In
case the screen isn’t a public screen, an empty string is returned.

Note that in a multitasking environment like AmigaOS, all screens that aren’t owned by
your application can disappear at any time and their stack order can change as well, so
you need to be prepared that at the time this function returns the screen is no longer
front or even doesn’t exist any more.

INPUTS
none

RESULTS

n$ the screen that is currently front (see warning above concerning the reliability
of this information)

EXAMPLE
ShowScreen("WORKBENCH")

Print(GetFrontScreen())

This is not guaranteed to return "WORKBENCH", although it will normally do so. See
warning above.

16.6 GetPubScreens

NAME
GetPubScreens – return a list of all available public screens (V5.2)

Chapter 16: Amiga support library 169

SYNOPSIS
t, info = GetPubScreens()

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This function can be used to query the system for a list of all available public screens.
It will return a table that contains one string element for each public screen that is
currently open.

Starting with Hollywood 5.3 this function will return a second table containing informa-
tion about the screen dimensions and color depth. This second return table will contain
as many elements as the first return table and there will be one subtable for each public
screen that is currently open. Each subtable will contain the following fields:

Width: Initialized to the width of the public screen.

Height: Initialized to the height of the public screen.

Depth: Initialized to the depth of the public screen.

You can use ShowScreen() to switch to a public screen. If you want to move your display
to a specific public screen, use SetDisplayAttributes().

Note that in a multitasking environment like AmigaOS, all screens that aren’t owned by
your application can disappear at any time so you need to be prepared that this function
returns screens that don’t exist any longer because they have been closed already.

INPUTS
none

RESULTS

t table containing a number of strings describing all open public screens

info additional table containing information about the screen dimensions and
depth (V5.3)

EXAMPLE
t = GetPubScreens()

For Local k = 0 To ListItems(t) - 1 Do DebugPrint(t[k])

This code lists all public screens.

16.7 HideScreen

NAME
HideScreen – hide public screen (V7.1)

SYNOPSIS
HideScreen([s$])

PLATFORMS
AmigaOS and compatibles only

170 Hollywood manual

FUNCTION
This function can be used to move the public screen specified in s$ to the back. If the
s$ argument is omitted, the screen that is currently at the front will be moved to the
back.

Note that in a multitasking environment like AmigaOS, all screens that aren’t owned by
your application can disappear at any time so you need to be prepared that this function
fails because the screen doesn’t exist any longer.

INPUTS

s$ optional: name of public screen to move to back (defaults to an empty string
which means move the current screen to the back)

EXAMPLE
HideScreen()

This code moves the currently active screen to the back.

16.8 OpenAmigaGuide

NAME
OpenAmigaGuide – open AmigaGuide document in new window (V6.1)

SYNOPSIS
OpenAmigaGuide(file$[, node$])

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This command will open the AmigaGuide file specified by file$ and display it in its own
window. If the optional argument node$ is specified, Hollywood will show this particular
node of the AmigaGuide file, otherwise the table of contents is shown.

You can close the AmigaGuide file by calling the CloseAmigaGuide() command. Open
AmigaGuide files will also be closed automatically when Hollywood quits.

Note that there can be only one open AmigaGuide file at a time. If you call this function
and an AmigaGuide file is already visible, Hollywood will close that old AmigaGuide file
first.

INPUTS

file$ AmigaGuide file to show

node$ optional: node to show (defaults to "" which means show the table of con-
tents)

EXAMPLE
OpenAmigaGuide("Hollywood:Help/Hollywood.guide", "OpenAmigaGuide")

The code above shows this page.

Chapter 16: Amiga support library 171

16.9 RunRexxScript

NAME
RunRexxScript – run an ARexx script from file or memory (V2.5)

SYNOPSIS
res$ = RunRexxScript(script$[, nofile])

PLATFORMS
AmigaOS and compatibles only

FUNCTION
You can use this function to run the ARexx script specified in script$. Additionally,
you can also run ARexx code directly by setting the optional nofile argument to True.
In that case, script$ must not be a path to an ARexx script but must contain the
ARexx code to execute. The function will return the result from the ARexx script. The
return value will always be a string - even if it contains just a number. If ARexx does
not return anything, you will receive an empty string.

You have to start RexxMast prior to using this function. It is, however, not necessary to
create a Rexx port in order to use this function. This function works also if your script
does not have a Rexx port. The script will always be started with "REXX" being the
host port. Thus, if you want to address an other port, you have to use the "ADDRESS"
command of ARexx first.

If you use this function to start external ARexx scripts, make sure that the first line
of your ARexx script is a comment. Otherwise you will receive a "program not found"
error. As a matter of syntax, the first line of all ARexx scripts must be a comment.

INPUTS

script$ path to an external ARexx script or ARexx code directly; in the latter case,
nofile must be True

nofile optional: False is script$ contains a path to an ARexx script and True if
script$ is ARexx code (defaults to False)

RESULTS

res$ return value from ARexx; this is always a string

EXAMPLE
RunRexxScript("dh0:MyScript.rx")

The above code runs the script "dh0:MyScript.rx".

r$ = RunRexxScript("SAY ’Hello’\nRETURN 5\n", True)

The above code prints "Hello" to the console and returns 5 to Hollywood. The variable
r$ thus will contain "5" after the call.

16.10 SendApplicationMessage

NAME
SendApplicationMessage – send message to another application (V6.0)

172 Hollywood manual

SYNOPSIS
SendApplicationMessage(app$, msg$)

PLATFORMS
AmigaOS 4 only

FUNCTION
This function can be used to send a message to a registered AmigaOS 4 application.
The name of the receiving application has to be passed in app$ and the message itself is
passed in msg$.

Please note that this function can only be used if you have set the RegisterApplication
tag in @OPTIONS to True. See Section 52.25 [OPTIONS], page 1088, for details.

INPUTS

app$ name of the application that should receive the message

msg$ the message to send

16.11 SendRexxCommand

NAME
SendRexxCommand – send command to Rexx port (V2.5)

SYNOPSIS
res$ = SendRexxCommand(port$, cmd$)

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This function sends the command specified in cmd$ to the Rexx port specified in port$.
The function will then return the result from the command. The return value will always
be a string - even if it contains just a number. If the command does not return any-
thing, you will receive an empty string. You can also send multiple commands with this
function. Just separate the statements with ";" or you can also use new line characters
("\n") for separation.

If you do not want to address a specific Rexx port, simply pass "REXX" in port$.
In that case, the system’s standard ARexx port will be your host port. Please also
remember that port names are case sensitive, i.e. "MYPORT" and "myport" denote
two different Rexx ports. For style guide reasons, port names are usually in upper case
only.

You have to start RexxMast prior to using this function. It is, however, not necessary to
create a Rexx port in order to use this function. This function works also if your script
does not have a Rexx port.

INPUTS

port$ name of the port you want to address

cmd$ the command(s) you want to send to that port

Chapter 16: Amiga support library 173

RESULTS

res$ return value from ARexx; this is always a string

EXAMPLE
SendRexxCommand("WORKBENCH", "WINDOW ’Sys:’ OPEN")

The above code will open the SYS: drawer on your Workbench. Please note that the
ARexx interface of the Workbench is a feature introduced in OS3.5. Thus, you will
require OS3.5 or better. MorphOS does probably not support the Workbench ARexx
interface because it is only rarely used. See the OS3.9 NDK for documentation on the
available commands.

16.12 SetScreenTitle

NAME
SetScreenTitle – change the screen title of the current display (V6.0)

SYNOPSIS
SetScreenTitle(title$)

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This function can be used to change the text that should be shown in the screen’s title
bar whenever the current display is active. By default, "Workbench screen" will be
shown.

INPUTS

title$ new screen title

EXAMPLE
SetScreenTitle("My cool program")

The above code changes the screen title to "My cool program".

16.13 ShowRinghioMessage

NAME
ShowRinghioMessage – show a Ringhio notification (V6.0)

SYNOPSIS
ShowRinghioMessage(title$, text$[, table])

PLATFORMS
AmigaOS 4 only

FUNCTION
This function can be used to show a notification through AmigaOS 4’s Ringhio system.
You need to pass a title for the notification in the first argument and the actual text in
the second argument.

174 Hollywood manual

The optional table argument can be used to specify additional parameters for the way
the Ringhio notification should be handled. The following tags are accepted here:

PubScreen:

This tag can be used to specify the name of the public screen the notification
should appear on.

ImageFile:

This tag can be used to specify the path to an image file that should be
displayed inside the Ringhio notification. For the best results, you should
use only PNG images with alpha channel here.

DoubleClickClose:

If you set this tag to True, the Ringhio notification window can be closed
by double-clicking on it. In that case a message will be sent to your applica-
tion containing the string you specify in the DoubleClickMessage tag (see
below).

DoubleClickMessage:

If the user double-clicks the Ringhio notification window in order to close
it, the string you specify here will be sent to your application using the
OnApplicationMessage event handler. This tag is only supported if you
have also set the DoubleClickClose tag to True (see above). If the string
specified here has the following format "URL:http://www.example.com/"
the Ringhio server will not send a message back to your application but it
will automatically show the specified URL in the default browser if the user
double-clicks on the notification window.

Please note that this function can only be used if you have set the RegisterApplication
tag in @OPTIONS to True. See Section 52.25 [OPTIONS], page 1088, for details.

INPUTS

title$ title for the Ringhio notification

text$ text to show in the Ringhio notification

table optional: table containing further parameters (see above)

16.14 ShowScreen

NAME
ShowScreen – switch to specified public screen (V5.2)

SYNOPSIS
ShowScreen(s$)

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This function can be used to bring the public screen specified in s$ to the front. If you
want to move your display to a specific public screen, use SetDisplayAttributes()

with the PubScreen tag.

175

Note that in a multitasking environment like AmigaOS, all screens that aren’t owned by
your application can disappear at any time so you need to be prepared that this function
fails because the screen doesn’t exist any longer.

INPUTS

s$ name of public screen to bring to front

EXAMPLE
ShowScreen("WORKBENCH")

This code brings Workbench screen back to the front.

177

17 Anim library

17.1 Overview

Animations are Hollywood objects that contain several frames of image data. They can be
streamed from disk or they can be buffered entirely in memory. To stream an animation from
disk, you can use the OpenAnim() command to open the animation file or, alternatively, set
the FromDisk tag to True in LoadAnim() or the @ANIM preprocessor command to True. To
load an animation entirely into memory, use the LoadAnim() command. It is recommended,
though, to always stream larger animations because buffering all frames will require lots of
memory.

Here is how you can open an animation for streaming from disk using the @ANIM preprocessor
command (of course, you could also use the OpenAnim() command instead):

@ANIM 1, "test.anim", {FromDisk = True}

By default, Hollywood can open the animation formats IFF ANIM and GIF ANIM. There
are, however, several plugins which extend the number of animation formats you can open
with Hollywood. For example, you can download plugins for the APNG and FLI/FLC
formats from the official Hollywood portal.

Animations can be played using the PlayAnim() command. PlayAnim() will block the
script execution, but you set the Async tag to True to get an asynchronous draw object
from PlayAnim() which you can then use to play the animation asynchronously using
AsyncDrawFrame(). See Section 17.18 [PlayAnim], page 196, for details.

Alternatively, you can also draw individual anim frames by using the DisplayAnimFrame()
command. If layers are enabled, it’s very easy to show the next frame by just using the
NextFrame() command after you have created an anim layer by using DisplayAnimFrame().
See Section 17.7 [DisplayAnimFrame], page 184, for details.

Normally, animations contain raster pixel data, but Hollywood also supports special vector
animations which consist of vector path data instead and can thus be freely transformed.
See Section 17.25 [Vector anim information], page 204, for details.

17.2 ANIM

NAME
ANIM – preload an animation for later use (V2.0)

SYNOPSIS
@ANIM id, filename$[, table]

FUNCTION
This preprocessor command preloads the animation specified in filename$ and assigns
the identifier id to it.

Anim formats that are supported on all platforms are IFF ANIM, GIF ANIM, AVI
(uncompressed or using Motion JPEG compression), and formats you have a plugin
for. Depending on the platform Hollywood is running on, more anim formats might be
supported. For example, on Amiga compatible systems Hollywood will be able to open

178 Hollywood manual

all anim formats you have datatypes for as well. On Windows, @ANIM can also load anim
formats supported by the Windows Imaging Component.

Starting with Hollywood 4.5, @ANIM can also automatically create animations from an
image file. If you want to use an image file with @ANIM, you need to specify the optional
Frames argument. See below for more information.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Transparency:

This field can be used to specify a color in RGB notation that shall be made
transparent in the animation.

Link: Set this field to False if you do not want to have this animation linked to your
executable/applet when you compile your script. This field defaults to True

which means that the animation is linked to your to your executable/applet
when Hollywood is in compile mode.

FromDisk:

If you set this field to True, Hollywood will not load the whole animation into
memory but it will load the single frames directly from disk when needed.
This is slower but requires much less memory. For the functions of the
anim library it does not matter whether the animation is completely in
memory or loaded dynamically from disk. You can use all anim functions
like ScaleAnim() also with anims that are loaded from disk. Anim layers
are also correctly handled with disk anims. (V3.0)

LoadAlpha:

Set this field to True if the alpha channel of the anim shall be loaded, too.
Please note that most anim formats do not support alpha channels. Thus,
it is advised that you create the anim manually from a PNG picture using
CreateAnim() if you need to have an alpha channel in your animation. This
field defaults to False. (V4.5)

X, Y, Width, Height, Frames, FPR:

This group of fields is only used when you specify an image file source. In
that case, you have to use these arguments to tell @ANIM how it shall create
the animation from the image. Width and Height define the dimensions for
the animation and Frames specifies how many frames @ANIM shall read from
the source image. If the frames are aligned in multiple rows in the source
image, you will also have to pass the argument FPR (abbreviation for frames
per row) to tell @ANIM how many frames there are in each row. Finally, you
can tell @ANIM where in the image file it should start scanning by specifying
the fields X and Y (they both default to 0). @ANIM will then start off at
position X and Y and read Frames number of images with the dimensions of
Width by Height from the picture specified by filename$. After it has read
FPR number of images, it will advance to the next row. (V4.5)

SkipLoopFrames:

If you set this to True, Hollywood will automatically skip the last two frames
of the anim. This is only required for IFF ANIMs that have two loop frames

Chapter 17: Anim library 179

at the end of the anim. Auto detection of loop frames is not possible because
it would require Hollywood to decode the whole anim first. That is why you
have to tell Hollywood manually whether the anim has loop frames or not.
(V5.3)

Deinterlace:

This tag allows you to specify how Hollywood should deinterlace interlaced
anims. This can be set to either #DEINTERLACE_DEFAULT or #DEINTERLACE_
DOUBLE. If set to #DEINTERLACE_DEFAULT (which is as the name implies also
the default), Hollywood will combine two half-frames into one full frame.
This mostly results in the best quality but can lead to visual artefacts when
there is a lot of movement in the anim. If you use #DEINTERLACE_DOUBLE

instead, Hollywood will double the lines of a half-frame to get a full frame.
This leads to some quality loss but can make the anim look more smooth.
The best deinterlace mode to use always depends on the anim. Note that
mostly you should not have to care about this tag at all because deinterlacing
is actually only required for some obscure IFF ANIM formats which store
interlaced frames like ANIM16i and ANIM32i. (V5.3)

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this anim. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

LoadTransparency:

If this tag is set to True, the monochrome transparency of the anim will be
loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based anim. If
you want to load the alphachannel of an anim, set the LoadAlpha tag to
True. This tag defaults to False. (V6.0)

LoadPalette:

If this tag is set to True, Hollywood will load the anim as a palette anim.
This means that you can get and modify the anim’s palette which is useful
for certain effects like color cycling. You can also make pens transparent
using the TransparentPen tag (see below) or the LoadTransparency tag
(see above). Palette animations also have the advantage of requiring less
memory because 1 pixel just needs 1 byte of memory instead of 4 bytes for
32-bit images. This tag defaults to False. (V9.0)

TransparentPen:

If the LoadPalette tag has been set to True (see above), the
TransparentPen tag can be used to define a pen that should be made

180 Hollywood manual

transparent. Pens are counted from 0. Alternatively, you can also set the
LoadTransparency tag to True to force Hollywood to use the transparent
pen that is stored in the anim file (if the anim format supports the storage
of transparent pens). This tag defaults to #NOPEN. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. An animation cannot have a mask and an alpha channel!

Starting with Hollywood 9.0, this preprocessor command can also load vector anim
formats if you have an appropriate plugin installed. Keep in mind, though, that if you
load vector anim formats using @ANIM, the anim may not support all features of normal
anims. See Section 17.25 [Vector animations], page 204, for more information on vector
anims.

If you want to load anims manually, please use the LoadAnim() command.

INPUTS

id a value that is used to identify this animation later in the code

filename$

the animation file you want to load

table optional: a table that can contain a combination of the fields discussed above

EXAMPLE
@ANIM 1, "MyAnim.gif"

Load "MyAnim.gif" as animation number 1.

@ANIM 1, "MyAnim.gif", {Transparency = $FF0000}

Does the same like above but the animation is now transparent (transparency color is
red=$FF0000).

@ANIM 1, "Huge_Animation.iff", {Link = False}

The code above loads the specified animation and tells Hollywood that it should never
link this anim because it is so big.

17.3 BeginAnimStream

NAME
BeginAnimStream – begin sequential anim creation (V4.5)

SYNOPSIS
[id] = BeginAnimStream(id, file$, width, height[, format, table])

Chapter 17: Anim library 181

FUNCTION
This function allows you to create an empty animation object on disk that you can
then subsequently append frames to using WriteAnimFrame(). The advantage of
BeginAnimStream() over SaveAnim() is that SaveAnim() requires you to provide
an animation object as the source. If you use BeginAnimStream(), you can append
frames to your animation from individual brush objects. This gives you the utmost
flexibility. Because of its sequential design, BeginAnimStream() can be used to create
new animations of virtually unlimited size and length. You could easily create a 2 hour
AVI video with this function.

The first argument to BeginAnimStream() must be an id for the new write animation
object. Alternatively, you can specify Nil and BeginAnimStream() will return a handle
to the object to you. The second argument specifies a path to a file that shall be created
for this anim. Arguments three and four specify the desired dimensions of the animation.
The fifth argument specifies the format of the animation. This can either be one of the
following animation types or an anim saver provided by a plugin:

#ANMFMT_GIF:

GIF format. Because GIF anims are always palette-based, RGB graph-
ics have to be quantized before they can be exported as GIF. When call-
ing WriteAnimFrame() you can use the Colors and Dither tags to spec-
ify the number of palette entries to allocate for the frame and whether or
not dithering shall be applied. When using #ANMFMT_GIF with a palette
frame, no quantizing will be done. #ANMFMT_GIF also supports palette an-
ims with a transparent pen. #ANMFMT_GIF is the default format used by
BeginAnimStream().

#ANMFMT_MJPEG:

AVI with Motion JPEG compression. This is a lossy anim format so you
can set the Quality tag (see below) to control the level of compression that
should be used.

#ANMFMT_IFF:

IFF anim. Hollywood will use mode 5 compression (the most common com-
pression mode) for IFF anims. Because IFF anims are always palette-based,
RGB graphics have to be quantized before they can be exported as IFF.
When calling WriteAnimFrame() you can use the Colors and Dither tags
to specify the number of palette entries to allocate for the frame and whether
or not dithering shall be applied. When using #ANMFMT_IFF with a palette
frame, no quantizing will be done. #ANMFMT_IFF also supports palette anims
with a transparent pen. (V9.0)

The optional table argument allows you to configure further parameters:

Quality: Here you can specify a value between 0 and 100 indicating the compression
quality for lossy compression formats. A value of 100 means best quality, 0
means worst quality. This is only available for anim formats that support
lossy compression. Defaults to 90 which means pretty good quality.

FPS: Video formats like AVI do not support an individual delay value for each
frame but require a global value indicating how many frames per second

182 Hollywood manual

shall be displayed. This field allows you to set the FPS. This is only handled
for video file formats. Defaults to 25 frames per second.

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to save the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Here is a table that shows an overview which table elements can be used with the different
animation formats:

 GIF IFF MJPEG AVI

Quality No No Yes

FPS No No Yes

When you have successfully obtained a handle to a new animation object, you can then
sequentially append frames to it using WriteAnimFrame(). When you are done adding
frames, you have to call FinishAnimStream() to finalize the animation file on disk and
make it ready for use.

INPUTS

id id for the animation object or Nil for auto id selection

file$ destination file

width desired width for the animation

height desired height for the animation

format optional: which anim format to use (defaults to #ANMFMT_GIF)

table optional: further arguments for save operation; see above

RESULTS

id optional: identifier of the animation; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
CreateBrush(1, 320, 240)

SelectBrush(1)

SetFillStyle(#FILLCOLOR)

BeginAnimStream(1, "test.gif", 320, 240)

For Local k = 1 To 100

Circle(#CENTER, #CENTER, k * 2, #RED)

WriteAnimFrame(1, 1)

Next

Chapter 17: Anim library 183

FinishAnimStream(1)

EndSelect

The code above creates a new GIF animation with 100 frames. The animation will show
a red circle zooming into the screen.

17.4 CloseAnim

NAME
CloseAnim – close an animation (V9.0)

SYNOPSIS
CloseAnim(id)

FUNCTION
This function closes the animation specified by id. The animation must have been
previously opened using OpenAnim(). See Section 17.17 [OpenAnim], page 194, for
details.

INPUTS

id identifier of the animation

17.5 CopyAnim

NAME
CopyAnim – clone an animation (V2.0)

SYNOPSIS
[id] = CopyAnim(src, dst)

FUNCTION
This function clones the animation specified by src and creates a copy of it in the new
animation with id dst. If you specify Nil in the dst argument, this function will choose
an identifier for the cloned animation automatically and return it to you. The new
animation is fully independent from the old one so you could free up the source anim
after it has been cloned.

INPUTS

src source animation

dst destination animation id or Nil

RESULTS

id optional: identifier of the cloned anim; will only be returned when you pass
Nil as argument 2 (see above)

184 Hollywood manual

17.6 CreateAnim

NAME
CreateAnim – create animation from a brush (V2.0)

SYNOPSIS
[id] = CreateAnim(id, brush, width, height, frames, fpr[, sx, sy])

FUNCTION
This function can be used to create a new animation from a brush source. If you specify
Nil in the id argument, this function will choose an identifier for this animation auto-
matically and return it to you. The single frames will be read from the specified brush
and will be put together in a new animation. You need to specify the width and height
of the frames as well as the number of frames to read from the brush and how many
frames are in one row. Optionally, you can define a position from where in the brush the
conversion shall start.

If the source brush is transparent, the new animation will also have transparent areas.
If the source brush uses an alpha channel, the animation will get an alpha channel, too.

INPUTS

id identifier for the new animation

brush source brush

width width of each anim frame

height height of each anim frames

frames how many frames should the animation have

fpr how many frames are in one row; if this is the same than frames, then all
frames must be in the same row

sx optional: x-offset in the source brush (defaults to 0)

sy optional: y-offset in the source brush (defaults to 0)

RESULTS

id optional: identifier of the new anim; will only be returned when you pass
Nil as argument 1 (see above)

17.7 DisplayAnimFrame

NAME
DisplayAnimFrame – display a single frame of an animation (V4.0)

SYNOPSIS
DisplayAnimFrame(id, x, y, frame[, table])

FUNCTION
This function displays a single frame of an animation at the specified coordinates.

If layers are enabled, this command will add a new layer of the type #ANIM to the layer
stack.

Chapter 17: Anim library 185

DisplayAnimFrame() also recognizes an optional table argument which allows you to
specify one or more of the standard tags for all drawing commands. See Section 27.17
[Standard drawing tags], page 501, for more information about the standard tags that
nearly all Hollywood drawing commands support.

INPUTS

id identifier of the animation to use

x destination x coordinate

y destination y coordinate

frame animation frame to display (1 = first frame)

table optional: table specifying further options

EXAMPLE
DisplayAnimFrame(1, #CENTER, #CENTER, 5)

The code above display frame 5 of animation 1 on the center of the screen.

17.8 FinishAnimStream

NAME
FinishAnimStream – finalize sequential anim object (V4.5)

SYNOPSIS
FinishAnimStream(id)

FUNCTION
This function must be used to finalize a sequential anim object when you are done
appending frames to it. When FinishAnimStream() returns, the new animation will be
ready to use on your hard disk.

See Section 17.3 [BeginAnimStream], page 180, for more information on sequential anim
objects.

INPUTS

id identifier of the animation object to finalize; must have been obtained using
BeginAnimStream()

EXAMPLE
See Section 17.3 [BeginAnimStream], page 180.

17.9 FreeAnim

NAME
FreeAnim – free an animation

SYNOPSIS
FreeAnim(id)

186 Hollywood manual

FUNCTION
This function frees the memory of the animation specified by id. To reduce memory
consumption, you should free animations when you do not need them any longer.

Note that this command should be used with animations allocated by LoadAnim(),
CreateAnim() or @ANIM. Animations allocated by OpenAnim() should be freed using
CloseAnim().

INPUTS

id identifier of the animation

17.10 GetAnimFrame

NAME
GetAnimFrame – copy animation frame to brush (V3.0)

SYNOPSIS
GetAnimFrame(id, frame, animid)

FUNCTION
This function can be used to convert a single frame of an animation to a brush. The
animation must have been loaded using LoadAnim() or the @ANIM preprocessor command.
If you want to load a frame directly from an animation file, use LoadAnimFrame() instead.
GetAnimFrame() is preferred, however, because it is faster. In the first argument, pass
an identifier for the brush you want this function to create. In the second argument you
have to specify which frame of the animation should be loaded, and the third argument
finally specifies the identifier of the animation to use as the source.

INPUTS

id identifier of brush to be created by this function

frame frame to load (ranges from 1 to number of frames); specify -1 if you want to
load the last frame

animid identifier of the animation to use as source

EXAMPLE
LoadAnim(1, "TestAnim.anim")

GetAnimFrame(1, 15, 1)

The code above converts frame 15 of animation 1 into brush 1.

17.11 IsAnim

NAME
IsAnim – determine if an animation is in a supported format

SYNOPSIS
ret = IsAnim(file$[, table])

Chapter 17: Anim library 187

FUNCTION
This function will check if the file specified file$ is in a supported animation format. If
it is, this function will return True, otherwise False. If this function returns True, you
can load the animation by calling LoadAnim().

Starting with Hollywood 6.0 this function accepts an optional table argument which
allows you to configure further options:

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this anim. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

See Section 17.13 [LoadAnim], page 188, for a list of supported anim formats.

INPUTS

file$ file to check

table optional: table configuring further options (V6.0)

RESULTS

ret True if the animation is in a supported format, False otherwise

17.12 IsAnimPlaying

NAME
IsAnimPlaying – check if an animation is playing (V1.0 only)

SYNOPSIS
playing = IsAnimPlaying(id)

FUNCTION
Attention: This command was removed in Hollywood 1.5.

This function checks if the animation specified by id is currently playing and returns
True if it is, False otherwise.

INPUTS

id identifier of an animation

188 Hollywood manual

RESULTS

playing True if the animation specified by id is playing, False otherwise

EXAMPLE
LoadAnim(1, "Gfx/Anims/CoolAnim.anm")

PlayAnim(1, #PLAYONCE)

playing = IsAnimPlaying(1)

While playing = TRUE

playing = IsAnimPlaying(1)

Wend

FreeAnim(1)

The above code loads the animation "Gfx/Anims/CoolAnim.anm", plays it and then
waits for it to finish. After that, the animation is freed. If you just want to do something
like above, it is easier for you to use the WaitAnimEnd() command. But if you want to
do some things during the animation is playing, you will have to do it this way (using
IsAnimPlaying() and a loop).

17.13 LoadAnim

NAME
LoadAnim – load an animation

SYNOPSIS
[id] = LoadAnim(id, filename$[, table])

FUNCTION
This function loads the animation specified by filename$ into memory and assigns the
identifier id to it. If you pass Nil in id, LoadAnim() will automatically choose an
identifier and return it.

Note that by default, this command will load all anim frames into memory which may
take a while and significant amounts of memory. If you want to create an animation
that dynamically loads frames as needed and only keeps the current frame in memory,
use the OpenAnim() command instead or set the FromDisk tag to True (see below). See
Section 17.17 [OpenAnim], page 194, for details.

Anim formats that are supported on all platforms are IFF ANIM, GIF ANIM, AVI
(uncompressed or using Motion JPEG compression), and formats you have a plugin
for. Depending on the platform Hollywood is running on, more anim formats might be
supported. For example, on Amiga compatible systems Hollywood will be able to open
all anim formats you have datatypes for as well. On Windows, LoadAnim() can also load
anim formats supported by the Windows Imaging Component.

Starting with Hollywood 4.5, LoadAnim() can also automatically create animations from
an image file. If you want to load an image file with LoadAnim(), you need to specify
the optional Frames argument. See below for more information.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Chapter 17: Anim library 189

Transparency:

This field can be used to specify a color in RGB notation that shall be made
transparent in the animation.

FromDisk:

If you set this field to True, Hollywood will not load the whole animation into
memory but it will load the single frames directly from disk when needed.
This is slower but requires much less memory. For the functions of the
anim library it does not matter whether the animation is completely in
memory or loaded dynamically from disk. You can use all anim functions
like ScaleAnim() also with anims that are loaded from disk. Anim layers
are also correctly handled with disk anims.

LoadAlpha:

Set this field to True if the alpha channel of the anim shall be loaded, too.
Please note that most anim formats do not support alpha channels. Thus,
it is advised that you create the anim manually from a PNG picture using
CreateAnim() if you need to have an alpha channel in your animation. This
field defaults to False. (V4.5)

X, Y, Width, Height, Frames, FPR:

This group of fields is only used when you specify an image file source. In that
case, you have to use these arguments to tell LoadAnim() how it shall create
the animation from the image. Width and Height define the dimensions for
the animation and Frames specifies how many frames LoadAnim() shall read
from the source image. If the frames are aligned in multiple rows in the
source image, you will also have to pass the argument FPR (abbreviation for
frames per row) to tell LoadAnim() how many frames there are in each row.
Finally, you can tell LoadAnim() where in the image it should start scanning
by specifying the fields X and Y (they both default to 0). LoadAnim() will
then start off at position X and Y and read Frames number of images with
the dimensions of Width by Height from the picture specified by filename$.
After it has read FPR number of images, it will advance to the next row.
(V4.5)

SkipLoopFrames:

If you set this to True, Hollywood will automatically skip the last two frames
of the anim. This is only required for IFF ANIMs that have two loop frames
at the end of the anim. Auto detection of loop frames is not possible because
it would require Hollywood to decode the whole anim first. That is why you
have to tell Hollywood manually whether the anim has loop frames or not.
(V5.3)

Deinterlace:

This tag allows you to specify how Hollywood should deinterlace interlaced
anims. This can be set to either #DEINTERLACE_DEFAULT or #DEINTERLACE_
DOUBLE. If set to #DEINTERLACE_DEFAULT (which is as the name implies also
the default), Hollywood will combine two half-frames into one full frame.
This mostly results in the best quality but can lead to visual artefacts when
there is a lot of movement in the anim. If you use #DEINTERLACE_DOUBLE

190 Hollywood manual

instead, Hollywood will double the lines of a half-frame to get a full frame.
This leads to some quality loss but can make the anim look more smooth.
The best deinterlace mode to use always depends on the anim. Note that
mostly you should not have to care about this tag at all because deinterlacing
is actually only required for some obscure IFF ANIM formats which store
interlaced frames like ANIM16i and ANIM32i. (V5.3)

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this anim. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

LoadTransparency:

If this tag is set to True, the monochrome transparency of the anim will be
loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based anim. If
you want to load the alphachannel of an anim, set the LoadAlpha tag to
True. This tag defaults to False. (V6.0)

LoadPalette:

If this tag is set to True, Hollywood will load the anim as a palette anim.
This means that you can get and modify the anim’s palette which is useful
for certain effects like color cycling. You can also make pens transparent
using the TransparentPen tag (see below) or the LoadTransparency tag
(see above). Palette animations also have the advantage of requiring less
memory because 1 pixel just needs 1 byte of memory instead of 4 bytes for
32-bit images. This tag defaults to False. (V9.0)

TransparentPen:

If the LoadPalette tag has been set to True (see above), the
TransparentPen tag can be used to define a pen that should be made
transparent. Pens are counted from 0. Alternatively, you can also set the
LoadTransparency tag to True to force Hollywood to use the transparent
pen that is stored in the anim file (if the anim format supports the storage
of transparent pens). This tag defaults to #NOPEN. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. An animation cannot have a mask and an alpha channel!

Chapter 17: Anim library 191

Starting with Hollywood 9.0, this function can also load vector anim formats if you have
an appropriate plugin installed. Keep in mind, though, that if you load vector anim
formats using LoadAnim(), the anim may not support all features of normal anims. See
Section 17.25 [Vector animations], page 204, for more information on vector anims.

This command is also available from the preprocessor: Use @ANIM to preload animations!

INPUTS

id identifier for the animation or Nil for auto id selection

filename$

file to load

table optional: further options (see above) (V2.5)

RESULTS

id optional: identifier of the animation; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
LoadAnim(2, "MyAnim.gif", {Transparency = #RED})

This loads "MyAnim.gif" as anim 2 with the color red being transparent.

17.14 LoadAnimFrame

NAME
LoadAnimFrame – load a single animation frame (V1.5)

SYNOPSIS
LoadAnimFrame(id, frame, anim$[, table])

FUNCTION
This function loads a single anim frame into the brush specified by id. The animation
file is specified by the string anim$. The frame argument specifies which frame to load.
If you want to load the last frame, set frame to -1.

The fourth argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Transparency:

This field can be used to specify a color in RGB notation that shall be made
transparent in the brush.

LoadAlpha:

Set this field to True if the alpha channel of the anim frame shall be loaded,
too. Please note that not all animations have an alpha channel and that
not all animation formats are capable of storing alpha channel information.
This field defaults to False.

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this anim. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using

192 Hollywood manual

SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

LoadTransparency:

If this tag is set to True, the monochrome transparency of the anim frame will
be loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based anim. If
you want to load the alphachannel of an anim, set the LoadAlpha tag to
True. This tag defaults to False. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. An anim frame can only have one transparency setting!

See Section 17.13 [LoadAnim], page 188, for details on supported anim formats.

INPUTS

id brush which shall contain the anim frame

frame frame to load (ranges from 1 to number of frames); specify -1 if you want to
load the last frame

anim$ animation file

table optional: further options (see above) (V5.1)

EXAMPLE
LoadAnimFrame(1, 5, "Animations/HugeAnim.gif")

DisplayBrushFX(1, #CENTER, #CENTER, #CROSSFADE)

The above code loads frame 5 of the animation "Animations/HugeAnim.gif" into brush
1 and crossfades brush 1 onto the display.

17.15 ModifyAnimFrames

NAME
ModifyAnimFrames – add or remove animation frames (V4.5)

SYNOPSIS
ModifyAnimFrames(id, frames[, pos])

Chapter 17: Anim library 193

FUNCTION
This function can be used to extend or shrink an existing animation. If you specify
a positive value in frames, then the animation is extended by this number of frames.
If you specify a negative value, the number of frames specified are removed from the
animation.

The optional argument pos can be used to specify where the new frames shall be inserted
or from where the frames shall be removed, respectively. If you do not specify the optional
argument or set it to 0, frames are added at the end of the animation or removed from
the end of the animation, respectively.

This command works only with animations buffered entirely in memory. You cannot use
it for animations that are played directly from disk.

INPUTS

id identifier of the animation to modify

frames number of frames to insert (if value is positive) or number of frames to
remove (if value is negative)

pos optional: where to insert or remove frames (defaults to 0 which means insert
at/remove from the end)

EXAMPLE
ModifyAnimFrames(1, -5, 1)

The code above removes the first five frames from animation number 1.

17.16 MoveAnim

NAME
MoveAnim – move an animation from a to b

SYNOPSIS
MoveAnim(id, xa, ya, xb, yb[, table])

FUNCTION
This function moves (scrolls) the animation specified by id softly from the location
specified by xa,ya to the location specified by xb,yb.

Further configuration options are possible using the optional argument table. You can
specify the move speed, special effect, and whether or not the move shall be asynchronous.
See Section 21.46 [MoveBrush], page 287, for more information on the optional table
argument.

Besides the table elements mentioned in the MoveBrush() documentation, MoveAnim()
accepts one additional table element named AnimSpeed: The anim speed value defines
after how many draws the frame number should be increased; therefore a higher number
means a lower playback speed of the animation.

It should also be mentioned that starting with Hollywood 4.5, you can specify the new
#DEFAULTSPEED constant in the Speed table argument. (see MoveBrush()). If you use
#DEFAULTSPEED, Hollywood will use the playback speed as defined in the animation file.

194 Hollywood manual

Note that not all animations define such a speed but if they do, it should be respected
because otherwise the playback looks wrong.

INPUTS

id identifier of the animation to use as source

xa source x position

ya source y position

xb destination x position

yb destination y position

table optional: further configuration for this move

EXAMPLE
MoveAnim(1, 100, 50, 0, 50, {Speed = 5, AnimSpeed = 4})

Moves the animation 1 from 100:50 to 0:50 with move speed 5 and anim playback speed
4.

17.17 OpenAnim

NAME
OpenAnim – open an animation (V9.0)

SYNOPSIS
[id] = OpenAnim(id, filename$[, table])

FUNCTION
This function opens the animation specified by filename$ and assigns the identifier id
to it. If you pass Nil in id, OpenAnim() will automatically choose an identifier and
return it.

In contrast to LoadAnim(), OpenAnim() won’t load any frames into memory. Thus, it
will return control to the script quickly and won’t use much memory. Using OpenAnim()

is basically the same as calling LoadAnim() with the FromDisk table argument set to
True.

Anim formats that are supported on all platforms are IFF ANIM, GIF ANIM, AVI
(uncompressed or using Motion JPEG compression), and formats you have a plugin
for. Depending on the platform Hollywood is running on, more anim formats might be
supported. For example, on Amiga compatible systems Hollywood will be able to open
all anim formats you have datatypes for as well. On Windows, OpenAnim() can also load
anim formats supported by the Windows Imaging Component.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Transparency:

This field can be used to specify a color in RGB notation that shall be made
transparent in the animation.

Chapter 17: Anim library 195

LoadAlpha:

Set this field to True if the alpha channel of the anim shall be loaded, too.
This field defaults to False.

SkipLoopFrames:

If you set this to True, Hollywood will automatically skip the last two frames
of the anim. This is only required for IFF ANIMs that have two loop frames
at the end of the anim. Auto detection of loop frames is not possible because
it would require Hollywood to decode the whole anim first. That is why you
have to tell Hollywood manually whether the anim has loop frames or not.

Deinterlace:

This tag allows you to specify how Hollywood should deinterlace interlaced
anims. This can be set to either #DEINTERLACE_DEFAULT or #DEINTERLACE_
DOUBLE. If set to #DEINTERLACE_DEFAULT (which is as the name implies also
the default), Hollywood will combine two half-frames into one full frame.
This mostly results in the best quality but can lead to visual artefacts when
there is a lot of movement in the anim. If you use #DEINTERLACE_DOUBLE

instead, Hollywood will double the lines of a half-frame to get a full frame.
This leads to some quality loss but can make the anim look smoother. The
best deinterlace mode to use always depends on the anim. Note that mostly
you should not have to care about this tag at all because deinterlacing is
actually only required for some obscure IFF ANIM formats which store in-
terlaced frames like ANIM16i and ANIM32i.

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this anim. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details.

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details.

LoadTransparency:

If this tag is set to True, the monochrome transparency of the anim will be
loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based anim. If
you want to load the alphachannel of an anim, set the LoadAlpha tag to
True. This tag defaults to False.

LoadPalette:

If this tag is set to True, Hollywood will load the anim as a palette anim.
This means that you can get and modify the anim’s palette which is useful
for certain effects like color cycling. You can also make pens transparent
using the TransparentPen tag (see below) or the LoadTransparency tag
(see above). Palette animations also have the advantage of requiring less

196 Hollywood manual

memory because 1 pixel just needs 1 byte of memory instead of 4 bytes for
32-bit images. This tag defaults to False.

TransparentPen:

If the LoadPalette tag has been set to True (see above), the
TransparentPen tag can be used to define a pen that should be made
transparent. Pens are counted from 0. Alternatively, you can also set the
LoadTransparency tag to True to force Hollywood to use the transparent
pen that is stored in the anim file (if the anim format supports the storage
of transparent pens). This tag defaults to #NOPEN.

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. An animation cannot have a mask and an alpha channel!

This command is also available from the preprocessor: Use @ANIM to preload animations
from the preprocessor but note that you have to set FromDisk to True in that case to
get the same behaviour as OpenAnim(). If you don’t set FromDisk to True, @ANIM will
load the entire animation into memory!

Starting with Hollywood 9.0, this function can also open vector anim formats if you have
an appropriate plugin installed. Keep in mind, though, that if you open vector anim
formats using OpenAnim(), the anim may not support all features of normal anims. See
Section 17.25 [Vector animations], page 204, for more information on vector anims.

To free an animation allocated by OpenAnim(), use the CloseAnim() command. See
Section 17.4 [CloseAnim], page 183, for details.

INPUTS

id identifier for the animation or Nil for auto id selection

filename$

file to load

table optional: further options (see above)

RESULTS

id optional: identifier of the animation; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
OpenAnim(2, "MyAnim.gif", {Transparency = #RED})

This opens "MyAnim.gif" as anim 2 with the color red being transparent.

17.18 PlayAnim

NAME
PlayAnim – play an animation

Chapter 17: Anim library 197

SYNOPSIS
[handle] = PlayAnim(id[, x, y, table])

FUNCTION
This function starts playing a preloaded animation specified by id. Optionally you can
specify the x and y coordinates on the screen where the animation should be displayed.

If layers are enabled, this command will add a new layer of the type #ANIM to the layer
stack.

As of Hollywood 4.0, PlayAnim() accepts an additional optional table argument which
can be used to configure several further playback options:

Speed: Defines the playback speed for the animation. The higher the number, the
slower the playback speed. You can also specify a constant for the speed
argument (#SLOWSPEED, #NORMALSPEED or #FASTSPEED). New in Hollywood
4.5: You can specify the new #DEFAULTSPEED constant here. If you use
#DEFAULTSPEED, Hollywood will use the speed as defined in the animation
file. Note that not all animations define such a speed but if they do, it should
be respected because otherwise the playback looks wrong.

Times: Specifies how many times the animation shall be played (defaults to 1 which
means play anim just once). If you want the animation to loop infinitely,
specify 0 here.

Async: You can use this field to create an asynchronous draw object for this play-
back. If you pass True here PlayAnim() will exit immediately, returning
a handle to an asynchronous draw object which you can then draw using
AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221, for more
information on asynchronous draw objects.

INPUTS

id identifier of the animation to play

x optional: x playback position (defaults to 0)

y optional: y playback position (defaults to 0)

table optional: further configuration for the anim playback

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
PlayAnim(1)

Play the animation 1.

17.19 PlayAnimDisk

NAME
PlayAnimDisk – play an animation directly from disk (V1.5)

198 Hollywood manual

SYNOPSIS
PlayAnimDisk(anim$[, x, y, frameskip, speed, transcolor, times])

FUNCTION
This function plays the animation specified by anim$ directly from disk. This is useful if
you want to display large animations which do not fit into your memory. Of course, this
function is a lot of slower than PlayAnim() which plays an animation from memory.

New in Hollywood 1.9 is the optional times argument which allows you to specify how
many times the animation shall be played. This defaults to 1 which means that the
animation is only played once. If you want to loop the animation indefinitely, specify 0.

Important note: Since Hollywood 2.5 it is better to use LoadAnim() with FromDisk set
to True for disk anims. This gives you more flexibility because you can also use the other
commands from the anim library (like ScaleAnim() etc.) and you can also access the
anims as layers using NextFrame() - all of which is not possible with PlayAnimDisk().

See Section 17.13 [LoadAnim], page 188, for supported animation formats.

INPUTS

anim$ animation file to play

x optional: x-position for the animation on the display (defaults to 0)

y optional: y-position for the animation on the display (defaults to 0)

frameskip

optional: frame skip (defaults to 0)

speed optional: delay after each frame in ticks (defaults to 0)

transcolor

optional: transparent color for the animation (defaults to #NOTRANSPARENCY)

times optional: specifies how many times the animation should be played (defaults
to 1) (V1.9)

EXAMPLE
PlayAnimDisk("Animations/LargeAnim.gif", 0, 0, 3)

The above code plays the animation "Animations/LargeAnim.gif" and skips 3 frames
per run.

17.20 SaveAnim

NAME
SaveAnim – save animation to disk (V4.5)

SYNOPSIS
SaveAnim(id, file$[, format, table])

FUNCTION
This function saves the animation specified by id to the file specified by file$ in ani-
mation format specified by format. This can either be one of the following constants or
an anim saver provided by a plugin:

Chapter 17: Anim library 199

#ANMFMT_GIF:

GIF format. Because GIF anims are always palette-based, RGB graphics
have to be quantized before they can be exported as GIF. You can use
the Colors and Dither tags (see below) to specify the number of palette
entries to allocate for the anim and whether or not dithering shall be applied.
When using #ANMFMT_GIF with a palette anim, no quantizing will be done.
#ANMFMT_GIF also supports palette anims with a transparent pen. #ANMFMT_
GIF is the default format used by SaveAnim().

#ANMFMT_MJPEG:

AVI with Motion JPEG compression. This is a lossy anim format so you
can set the Quality tag (see below) to control the level of compression that
should be used.

#ANMFMT_IFF:

IFF anim. Hollywood will use mode 5 compression (the most common com-
pression mode) for IFF anims. Because IFF anims are always palette-based,
RGB graphics have to be quantized before they can be exported as IFF. You
can use the Colors and Dither tags (see below) to specify the number of
palette entries to allocate for the anim and whether or not dithering shall be
applied. When using #ANMFMT_IFF with a palette anim, no quantizing will
be done. #ANMFMT_IFF also supports palette anims with a transparent pen.
(V9.0)

The optional table argument allows you to configure further parameters:

Dither: Set to True to enable dithering. This field is only handled when the desti-
nation format is palette-based and the source data is RGB. GIF anims and
IFF anims always use a color palette. Defaults to False which means no
dithering.

Depth: Specifies the desired anim depth. This is only handled when the format
is palette-based and the source data is in RGB format. Valid values are
between 1 (= 2 colors) and 8 (= 256 colors). Defaults to 8. (V9.0)

Colors: This is an alternative to the Depth tag. Instead of a bit depth, you can pass
how many colors the anim shall use here. Again, this is only handled when
the format is palette-based and the source data is in RGB format. Valid
values are between 1 and 256. Defaults to 256.

Optimize:

Specifies whether or not Hollywood shall try to optimize the animation.
Optimized saving is slower but usually leads to smaller animations. Defaults
to True.

Quality: Here you can specify a value between 0 and 100 indicating the compression
quality for lossy compression formats. A value of 100 means best quality, 0
means worst quality. This is only available for anim formats that support
lossy compression. Defaults to 90 which means pretty good quality.

FPS: Video formats like AVI do not support an individual delay value for each
frame but require a global value indicating how many frames per second

200 Hollywood manual

shall be displayed. This field allows you to set the FPS. This is only handled
for video file formats. Defaults to 25 frames per second.

FillColor:

When saving an RGB anim that has transparent pixels, you can specify an
RGB color that should be written to all those transparent pixels here. This
is probably of not much practical use. Defaults to #NOCOLOR which means
that transparent pixels will be left as they are. (V9.0)

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to save the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Here is a table that shows an overview which table elements can be used with the different
animation formats:

 GIF IFF MJPEG AVI

Dither Yes Yes No

Colors Yes Yes No

Optimize Yes No No

Depth Yes Yes No

FillColor Yes Yes Yes

Quality No No Yes

FPS No No Yes

SaveAnim() can be used both with animations buffered completely in memory or with
disk-based animations.

If you want to save an animation from individual frames (e.g. a series of brushes), you
can do so by using BeginAnimStream(), WriteAnimFrame() and FinishAnimStream().

INPUTS

id animation which shall be saved

file$ destination file

format optional: which anim format to use (defaults to #ANMFMT_GIF)

table optional: further arguments for save operation; see above

EXAMPLE
SaveAnim(1, "my_anim.gif", #ANMFMT_GIF, {Colors = 64, Dither = True})

The code above saves anim 1 as "my anim.gif" in 64 colors with dithering enabled.

Chapter 17: Anim library 201

17.21 ScaleAnim

NAME
ScaleAnim – scale an animation

SYNOPSIS
ScaleAnim(id, width, height[, smooth])

FUNCTION
This function scales the animation specified by id to the desired width and height.
Please note that scaling an animation on a 68k processor can take quite some time.
Optionally, you can choose to have the scaled graphics interpolated by passing True in
the smooth argument. The graphics will then be scaled using anti-alias.

New in V2.0: You can pass #KEEPASPRAT as either width or height. Hollywood will
calculate the size then automatically by taking the aspect-ratio of the anim into account.

Starting with Hollywood 2.0, width and height can also be a string containing a percent
specification, e.g. "50%".

INPUTS

id identifier of the animation scale

width desired new width for the animation

height desired new height for the animation

smooth optional: whether or not anti-aliased scaling shall be used (V2.5)

EXAMPLE
ScaleAnim(1, 320, 240)

The above code scales animation 1 to a format of 320x240.

17.22 SelectAnim

NAME
SelectAnim – select animation frame as output device (V4.5)

SYNOPSIS
SelectAnim(id, frame[, mode, combomode])

FUNCTION
This function selects the specified animation frame as the current output device. This
means that all graphics data that is rendered by Hollywood will be written to this
animation frame. You have to specify an animation identifier as well as the single frame
that shall be used as output device.

The optional mode argument defaults to #SELMODE_NORMAL which means that only the
color channels of the anim will be altered when you draw to it. The transparency channel
of the anim (can be either a mask or an alpha channel) will never be altered. You can
change this behaviour by using #SELMODE_COMBO in the optional mode argument. If you
use this mode, every Hollywood graphics command that is called after SelectAnim()

202 Hollywood manual

will draw into the color and transparency channel of the anim. If the anim does not have
a transparency channel, #SELMODE_COMBO behaves the same as #SELMODE_NORMAL.

Starting with Hollywood 5.0 you can use the optional combomode argument to specify
how #SELMODE_COMBO should behave. If combomode is set to 0, the color and transparency
information of all pixels in the source image are copied to the destination image in any
case - even if the pixels are invisible. This is the default behaviour. If combomode is set
to 1, only the visible pixels are copied to the destination image. This means that if the
alpha value of a pixel in the source image is 0, i.e. invisible, it will not be copied to the
destination image. Hollywood 6.0 introduces the new combomode 2. If you pass 2 in
combomode, Hollywood will blend color channels and alpha channel of the source image
into the destination image’s color and alpha channels. When you draw the destination
image later, it will look as if the two images had been drawn on top of each other
consecutively. Please note that the combomode argument is only supported together with
#SELMODE_COMBO. It doesn’t have any effect when used with the other modes. Please
note that the combomode argument is only supported together with #SELMODE_COMBO. It
doesn’t have any effect when used with the other modes.

An alternative way to draw into the transparency channels of an anim is to do this sepa-
rately using SelectMask() or SelectAlphaChannel(). These two commands, however,
will write data to the transparency channel only. They will not touch the color channel.
So if you want both channels, color and transparency, to be affected, you need to use
SelectAnim() with mode set to #SELMODE_COMBO.

When you are finished with rendering to your animation and want to use your display
as output device again, just call EndSelect().

Note that you must not call any commands which modify your animation while it is
selected as the output device. Specifically, you must not call ScaleAnim(), FreeAnim(),
or ModifyAnimFrames().

Only commands that output graphics directly can be used after SelectAnim(). You may
not call animated functions like MoveAnim() or DisplayBrushFX() while SelectAnim()
is active.

This command works only with animations buffered entirely in memory. You cannot use
it for animations that are played directly from disk.

INPUTS

id animation which shall be used as output device

frame frame of the animation that graphics shall be drawn to

mode optional: rendering mode to use (see above); this can be either #SELMODE_
NORMAL or #SELMODE_COMBO; defaults to #SELMODE_NORMAL

combomode

optional: mode to use when #SELMODE_COMBO is active (see above); defaults
to 0 (V5.0)

EXAMPLE
SelectAnim(1, 5)

SetFillStyle(#FILLCOLOR)

Box(0, 0, 320, 256, #RED)

Chapter 17: Anim library 203

EndSelect()

The code above draws a 320x256 rectangle to frame number 5 of animation 1.

17.23 SetAnimFrameDelay

NAME
SetAnimFrameDelay – set delay after anim frame (V4.5)

SYNOPSIS
SetAnimFrameDelay(id, frame, delay)

FUNCTION
This function can be used to set the delay of a frame of an existing animation. Pass the
identifier of the animation as well as the frame you want to modify. The delay time has
to be passed in milliseconds.

INPUTS

id identifier of the animation to use

frame frame you want to delay

delay new delay time in milliseconds

EXAMPLE
SetAnimFrameDelay(1, 5, 1500)

Sets the delay of frame 5 of animation 1 to 1.5 seconds.

17.24 StopAnim

NAME
StopAnim – stop a playing animation (V1.0 only)

SYNOPSIS
StopAnim(id)

FUNCTION
This function was removed in Hollywood 1.5. It can no longer be used.

This function stops the animation specified by id. If the animation specified by id

is played back multiple times, the animation that was last started will be stopped by
Hollywood.

INPUTS

id identifier of the animation to stop

204 Hollywood manual

17.25 Vector animations

Hollywood’s anim library also supports a special type of anim: a vector anim. To find out
if OpenAnim(), LoadAnim(), or @ANIM have loaded a vector anim, you need to query the
#ATTRTYPE attribute for the anim using GetAttribute().

The advantage of a vector anim in contrast to traditional raster anim formats like GIF
ANIM and IFF ANIM is that you can scale and/or transform it without any quality losses.
For example, the ScaleAnim() command will produce high-quality anim frames when used
with vector anims. Also, when layers and the layer scaling engine are enabled, vector anim
layers will be automatically scaled and transformed without any quality losses. Therefore,
if you only use vector anims and TrueType text in your script, it can be scaled to any
resolution and will still appear perfectly crisp.

The disadvantage of vector anims is that they are not supported by all Hollywood functions.
For example, you can’t draw to them using SelectAnim().

17.26 WaitAnimEnd

NAME
WaitAnimEnd – halt until animation has finished playing (V1.0 only)

SYNOPSIS
WaitAnimEnd(id)

FUNCTION
Attention: This command was removed in Hollywood 1.5.

This function halts the program flow until the animation specified by id has finished
playing. After that, the execution of your script is continued. If you need to do something
while your animation is playing, use the IsAnimPlaying() command in connection with
a loop.

INPUTS

id identifier of an animation that is currently playing

EXAMPLE
PlayAnim(1,#PLAYONCE)

WaitAnimEnd(1)

The above code plays animation 1 and waits for it to finish.

17.27 WriteAnimFrame

NAME
WriteAnimFrame – append frame to sequential anim (V4.5)

SYNOPSIS
WriteAnimFrame(id, brush_id[, table])

FUNCTION
This function can be used to append a single new frame to a sequential animation object
created with BeginAnimStream(). The frame that shall be appended to the animation

Chapter 17: Anim library 205

must be provided as a brush. Ideally, the brush’s size should match the dimensions
specified in BeginAnimStream() but this function will do automatic padding if the sizes
do not match.

The optional table argument allows you to configure further parameters:

X, Y: These two allow you to configure the position at which the brush shall be
copied in the frame. This is useful when adding a frame that is smaller than
the anim bounding box. You could for example center this frame in the anim
then. Defaults to 0,0 which means top left corner.

Delay: Set this field if you want to attach a time delay to this frame. The time must
be specified in milliseconds. Not all anim formats support frame delays. See
the table below. Defaults to 0 which means no delay.

Dither: Set to True to enable dithering. This field is only handled when the format
is palette-based and the source data is in RGB format. GIF and IFF anims
always use a color palette. Defaults to False which means no dithering.

Depth: Specifies the desired frame depth. This is only handled when the format
is palette-based and the source data is in RGB format. Valid values are
between 1 (= 2 colors) and 8 (= 256 colors). Defaults to 8. (V9.0)

Colors: This is an alternative to the Depth tag. Instead of a bit depth, you can pass
how many colors the frame shall use here. Again, this is only handled when
the format is palette-based and the source data is in RGB format. Valid
values are between 1 and 256. Defaults to 256.

Optimize:

Specifies whether or not Hollywood shall try to optimize this frame. Opti-
mized saving is slower but usually leads to smaller animations. Defaults to
True.

FillColor:

When saving an RGB frame that has transparent pixels, you can specify an
RGB color that should be written to all those transparent pixels here. This
is probably of not much practical use. Defaults to #NOCOLOR which means
that transparent pixels will be left as they are. (V9.0)

Here is a table that shows an overview which table elements can be used with the different
animation formats:

 GIF IFF MJPEG AVI

X, Y Yes Yes Yes

Delay Yes Yes No

Dither Yes Yes No

Colors Yes Yes No

Optimize Yes No No

Depth Yes Yes No

FillColor Yes Yes Yes

206 Hollywood manual

INPUTS

id identifier of the animation object to append to; must be obtained using
BeginAnimStream()

brush_id identifier of brush to append to animation

table optional: further arguments for save operation; see above

EXAMPLE
See Section 17.3 [BeginAnimStream], page 180.

207

18 Application library

18.1 APPAUTHOR

NAME
APPAUTHOR – declare application author (V2.0)

SYNOPSIS
@APPAUTHOR author$

FUNCTION
This preprocessor command simply allows you to include a string containing the script’s
author into the application. This command does not have any actual function. It just
takes the specified string and saves it in the applet/executable.

INPUTS

author$ script author

EXAMPLE
See Section 18.8 [APPVERSION], page 212.

18.2 APPCOPYRIGHT

NAME
APPCOPYRIGHT – declare application copyright (V2.0)

SYNOPSIS
@APPCOPYRIGHT copyright$

FUNCTION
This preprocessor command simply allows you to include a string containing the script’s
copyright into the application. This command does not have any actual function. It just
takes the specified string and saves it in the applet/executable.

INPUTS

copyright$

script copyright

EXAMPLE
See Section 18.8 [APPVERSION], page 212.

18.3 APPDESCRIPTION

NAME
APPDESCRIPTION – declare application description (V2.0)

SYNOPSIS
@APPDESCRIPTION desc$

208 Hollywood manual

FUNCTION
This preprocessor command simply allows you to include a string containing the script’s
description into the application. This command does not have any actual function. It
just takes the specified string and saves it in the applet/executable.

Under AmigaOS, the description specified here is used as the description of the com-
modity that is added to Exchange.

INPUTS

desc$ script description

EXAMPLE
See Section 18.8 [APPVERSION], page 212.

18.4 APPENTRY

NAME
APPENTRY – declare application entry script (V10.0)

SYNOPSIS
@APPENTRY file$

FUNCTION
This preprocessor command allows you to define the entry script for a project. This is
only useful if you have a project that consists of multiple scripts. In such a project you
typically have a main script which uses @INCLUDE to include several other helper scripts.
By adding @APPENTRY to your helper scripts you can tell Hollywood the name of the
main script. Whenever you run one of the helper scripts and Hollywood encounters the
@APPENTRY definition, it will run the main script instead of the helper script.

For example, let’s suppose your project consists of the following three scripts:

main.hws

engine.hws

utils.hws

You could then place the following line at the top of the helper scripts, i.e. at the top of
engine.hws and utils.hws:

@APPENTRY "main.hws"

With that definition Hollywood will run main.hws whenever you start engine.hws or
utils.hws because main.hws has been set as the entry script. This can be very conve-
nient, e.g. when editing helper scripts in the Hollywood IDE. If you use @APPENTRY you
can just click on "Run" and the IDE will run the main script instead.

INPUTS

file$ entry script file

Chapter 18: Application library 209

18.5 APPICON

NAME
APPICON – declare application icon (V4.7)

SYNOPSIS
@APPICON table

@APPICON f$ (V8.0)

FUNCTION
This preprocessor command can be used to specify an icon for your application. On
Windows, macOS, and Linux this icon will appear in the window’s border and in several
elements of the window manager like the task bar. On AmigaOS 4, the icon will appear in
AmiDock if your script runs as a registered AmigaOS 4 application. The icon you specify
here will also be linked into the applets and executables you compile with Hollywood.
By default, executables compiled by Hollywood will always use the standard Hollywood
icon (the clapperboard). If you prefer to use your own icon instead, use this preprocessor
command.

Starting with Hollywood 8.0 there are two different ways of using this preprocessor
command: You can either specify individual images for the different icon sizes in a table
(see below) or you can simply pass a Hollywood icon that has been created using the
SaveIcon() function to this preprocessor command. In that case, the icon has to be
passed in the f$ parameter. Specifying a single icon instead of a whole table results
in code that is more readable but of course it requires you to generate the icon using
Hollywood’s SaveIcon() command first.

If you want to pass individual images for the different icon sizes, you have to pass a
table in the table argument to this preprocessor command. The table can contain one
or more of the following tags:

Ic16x16: Custom icon in the resolution of 16x16 pixels.

Ic16x16s:

Selected state icon for size 16x16. (V6.0)

Ic24x24: Custom icon in the resolution of 24x24 pixels.

Ic24x24s:

Selected state icon for size 24x24. (V6.0)

Ic32x32: Custom icon in the resolution of 32x32 pixels.

Ic32x32s:

Selected state icon for size 32x32. (V6.0)

Ic48x48: Custom icon in the resolution of 48x48 pixels.

Ic48x48s:

Selected state icon for size 48x48. (V6.0)

Ic64x64: Custom icon in the resolution of 64x64 pixels.

Ic64x64s:

Selected state icon for size 64x64. (V6.0)

210 Hollywood manual

Ic96x96: Custom icon in the resolution of 96x96 pixels.

Ic96x96s:

Selected state icon for size 96x96. (V6.0)

Ic128x128:

Custom icon in the resolution of 128x128 pixels.

Ic128x128s:

Selected state icon for size 128x128. (V6.0)

Ic256x256:

Custom icon in the resolution of 256x256 pixels.

Ic256x256s:

Selected state icon for size 256x256. (V6.0)

Ic512x512:

Custom icon in the resolution of 512x512 pixels.

Ic512x512s:

Selected state icon for size 512x512. (V6.0)

Ic1024x1024:

Custom icon in the resolution of 1024x1024 pixels. (V7.0)

Ic1024x1024s:

Selected state icon for size 1024x1024. (V7.0)

DefaultIcon:

This tag lets you specify which icon should be the default icon. You need
to pass a string here that describes an icon size from the sizes listed above,
e.g. "64x64" designates the icon specified in the Ic64x64 tag as the default
icon. The default icon is the icon that Hollywood will show in AmiDock
on AmigaOS4 if the RegisterApplication tag in @OPTIONS has been set to
True. Thus, currently, the DefaultIcon tag only has an effect on AmigaOS
4. (V6.0)

The reason why this preprocessor command does not simply accept just a single 512x512
icon and then scales it down to all other resolutions is that very small icons like 16x16
or 24x24 do not really look very good when scaled down from a larger icon. They look
much better when they are handcrafted for each size. That is why this preprocessor
command accepts so many different tags.

Please note that not all sizes are currently supported on all platforms but you should
make sure to provide icons for all these sizes. If you leave a size out, Hollywood might
fall back to its default icon (clapperboard) for the size. So if you intend to use your own
icons, make sure that you always provide it in all sizes listed above.

The image file that is required as a parameter by the tags listed above should be a PNG
image with alpha channel. Images without alpha channel are supported as well, but this
is not recommended because it doesn’t look too good.

Please note that it is mandatory to use the DefaultIcon tag on AmigaOS 4 to indi-
cate which icon size should be shown in AmiDock. If you do not pass the DefaultIcon

Chapter 18: Application library 211

tag, Hollywood will display its default icon in AmiDock (the clapperboard). If you
want to show an icon in AmiDock that uses a custom size not listed above, you can
use the DockyBrush tag that is supported by the @OPTIONS preprocessor command. See
Section 52.25 [OPTIONS], page 1088, for details. Please note that Hollywood sup-
ports two different docky types on AmigaOS 4: Standard dockies and app dockies. See
Section 16.1 [AmiDock information], page 165, for more information on the difference
between the two.

Starting with Hollywood 6.0 you can specify two images for every icon size because on
AmigaOS and compatibles icons usually contain two different states whereas on all other
platforms icons are just single static images. If you only target non-Amiga systems, you
do not have to provide icons for the selected state because they won’t be used anyway.

Alternatively, you can also use one of the -iconXXX console arguments instead of
@APPICON.

Note that this preprocessor command currently does not have any effect on Amiga sys-
tems. If you would like to change the icon that Hollywood displays when it is minimized
on Workbench, use the SetWBIcon() command.

INPUTS

f$ name of a Hollywood icon OR

table table containing one or more of the supported tags (see above)

EXAMPLE
@APPICON "icon.png"

The code above sets the icon "icon.png" as the icon for the application. This icon must
have been created using SaveIcon().

@APPICON {Ic16x16 = "my16x16icon.png",

Ic24x24 = "my24x24icon.png",

Ic32x32 = "my32x32icon.png",

Ic48x48 = "my48x48icon.png",

Ic64x64 = "my64x64icon.png",

Ic96x96 = "my96x96icon.png",

Ic128x128 = "my128x128icon.png",

Ic256x256 = "my256x256icon.png",

Ic512x512 = "my512x512icon.png",

Ic1024x1024 = "my1024x1024icon.png"}

The code above will replace all inbuilt icons with custom ones provided in the specified
png images.

18.6 APPIDENTIFIER

NAME
APPIDENTIFIER – declare application identifier (V6.1)

SYNOPSIS
@APPIDENTIFIER id$

212 Hollywood manual

FUNCTION
Specify a unique identifier for your application in reverse DNS notation. Some Hollywood
commands like LoadPrefs() and SavePrefs() require you to provide a unique identifier
for your application in reverse DNS notation, e.g. com.airsoftsoftwair.hollywood.
This can be done using the @APPIDENTIFIER preprocessor command.

Also, when compiling application bundles for macOS, the identifier specified in
@APPIDENTIFIER will automatically be written to the Info.plist file of the app
bundle.

INPUTS

id$ application identifier in reverse DNS notation

EXAMPLE
See Section 18.8 [APPVERSION], page 212.

18.7 APPTITLE

NAME
APPTITLE – declare application title (V2.0)

SYNOPSIS
@APPTITLE title$

FUNCTION
This preprocessor command simply allows you to include a string containing the script’s
title into the application. This command does not have any actual function. It just takes
the specified string and saves it in the applet/executable.

Under AmigaOS, the title specified here is used as the title of the commodity that is
added to Exchange.

INPUTS

title$ script title

EXAMPLE
See Section 18.8 [APPVERSION], page 212.

18.8 APPVERSION

NAME
APPVERSION – declare application version (V2.0)

SYNOPSIS
@APPVERSION version$

FUNCTION
This preprocessor command simply allows you to include a string containing the script’s
version into the application. This command does not have any actual function. It just
takes the specified string and saves it in the applet/executable.

Chapter 18: Application library 213

Under AmigaOS, the version specified here is used as the information text of the com-
modity that is added to Exchange.

INPUTS

version$ script version

EXAMPLE
@APPTITLE "Run-away Randy"

@APPAUTHOR "Andreas Falkenhahn"

@APPCOPYRIGHT "(C) Copyright 2002-2005 by Airsoft Softwair."

@APPVERSION "$VER: Run-away Randy 1.0 (23-Dec-05)"

@APPDESCRIPTION "A really cool jump’n’run game done with Hollywood."

@APPIDENTIFIER "com.airsoftsoftwair.runawayrandy"

This is what a complete application information sector looks like. Hollywood will save
all this information in the applet/executable. When the user enter "Version Run-away-
Randy.exe", the version string "$VER: Run-away Randy 1.0 (23-Dec-05)" will be re-
turned.

18.9 DeletePrefs

NAME
DeletePrefs – delete user preferences (V6.1)

SYNOPSIS
DeletePrefs()

FUNCTION
This function can be used to delete user preferences that have been saved using
SavePrefs(). You can use this function to implement a restoration of the default
settings. By calling DeletePrefs() all user preferences will be physically erased from
the user’s hard drive.

Note that this function will only work if you have specified a unique identifier for your
application by using the @APPIDENTIFIER preprocessor command. See Section 18.6 [AP-
PIDENTIFIER], page 211, for details.

INPUTS
none

18.10 GetApplicationInfo

NAME
GetApplicationInfo – get information about the application (V6.0)

SYNOPSIS
t = GetApplicationInfo()

214 Hollywood manual

FUNCTION
This function can be used to obtain the information specified in the @APPXXX prepro-
cessor commands. GetApplicationInfo() returns a table that contains the following
fields:

Title: This is set to the value of @APPTITLE. See Section 18.7 [APPTITLE],
page 212, for details.

Version: This is set to the value of @APPVERSION. See Section 18.8 [APPVERSION],
page 212, for details.

Author: This is set to the value of @APPAUTHOR. See Section 18.1 [APPAUTHOR],
page 207, for details.

Copyright:

This is set to the value of @APPCOPYRIGHT. See Section 18.2 [APPCOPY-
RIGHT], page 207, for details.

Description:

This is set to the value of @APPDESCRIPTION. See Section 18.3 [APPDE-
SCRIPTION], page 207, for details.

Identifier:

This is set to the value of @APPIDENTIFIER. See Section 18.6 [APPIDENTI-
FIER], page 211, for details. (V6.1)

INPUTS
none

RESULTS

t a table containing the fields described above

18.11 GetCommandLine

NAME
GetCommandLine – get the arguments from the command line (V3.0)

SYNOPSIS
t, n, console = GetCommandLine()

FUNCTION
This function allows you to obtain the arguments that your script has been started with.
This makes it possible for your script to take arguments from the user and then react on
it accordingly. All arguments that are not recognized by Hollywood will be forwarded
to your script. Please note that arguments must be prefixed by a dash character (-). A
parameter may also follow after each argument.

GetCommandLine() returns three values: The second return value is a number which
simply specifies how many arguments have been passed to your script from the command
line. The first return value is a table which contains all arguments and their parameters.
The table is an array of "n"-tables with the items arg and param. arg will be initialized
to the argument excluding the dash character. param will receive the parameter for that

Chapter 18: Application library 215

argument if there is one, else it will be receive an empty string (""). The third return
value is new in Hollywood 4.7 and indicates whether or not Hollywood was started from
a console. In that case, the third return value will be True, else it will be False.

Under AmigaOS this function will also take the tooltypes of the script’s or applet’s icon
into account if the program was started from Workbench.

Under macOS this function will look into the CFBundleExecutableArgs dictionary entry
in the application bundle’s Info.plist if the program was started from Finder.

INPUTS
none

RESULTS

t table containing all arguments and their parameters

n number of arguments that have been passed to the program

console True if program was started from a console, otherwise False (V4.7)

EXAMPLE
args, count = GetCommandLine()

NPrint("Number of arguments:", count)

For Local k = 0 to count - 1

NPrint("Arg #", k, ":", args[k].arg, "Param:", args[k].param)

Next

The code above gets all arguments from the command line and prints them to the screen.

18.12 GetFileArgument

NAME
GetFileArgument – get file argument passed to a compiled script (V5.0)

SYNOPSIS
f$ = GetFileArgument([path])

FUNCTION
GetFileArgument() allows you to retrieve the file argument that was passed to a com-
piled Hollywood script. Thus, this function will only work correctly when used by
executables that have been compiled with Hollywood because in script mode the file
argument is obviously always the Hollywood script itself. GetFileArgument() extends
the GetCommandLine() function because the latter only allows you to retrieve option
arguments, not the file argument itself.

This function is especially useful when writing tools that should be able to act as viewers
for certain file formats with Hollywood. By using GetFileArgument() you could create
programs which can be used as a default tool for certain file formats.

Starting with Hollywood 9.0, there is an optional argument named path. If this is set
to True, GetFileArgument() will return a fully qualified path to the file instead of just
the file name. For compatibility reasons, this argument defaults to False.

216 Hollywood manual

INPUTS

path optional: set this to True to get a fully qualified to the file (defaults to
False) (V9.0)

RESULTS

f$ the file argument passed to the compiled Hollywood script or an empty string
if Hollywood is running in interpreter mode

18.13 GetProgramInfo

NAME
GetProgramInfo – get information about the current program (V3.0)

SYNOPSIS
type, name$[, hw$] = GetProgramInfo()

FUNCTION
This function can be used to obtain some information about the currently running Hol-
lywood program. GetProgramInfo() will return two values: The first return value
specifies the program type currently running inside Hollywood. This variable can be
#PRGTYPE_SCRIPT for Hollywood scripts, #PRGTYPE_APPLET for Hollywood applets, or
#PRGTYPE_PROGRAM for compiled executables. The second return value is a string which
contains the file name of the currently running program. If the currently running pro-
gram is an applet or a script, its name will be returned in name$. If the currently running
program is a compiled executable, name$ will receive the file name of this executable.

If the currently running program is an applet or a script, there will be a third return
value hw$. This return value will contain the file name of the Hollywood interpreter used
to run this applet or script.

INPUTS
none

RESULTS

type type of the currently running program (#PRGTYPE_SCRIPT, #PRGTYPE_

APPLET or #PRGTYPE_PROGRAM)

name$ file name of the currently running program

hw$ optional: this value is only returned if the currently running program is a
script or an applet; it specifies the path to the Hollywood interpreter used
to run this script or applet

18.14 GetRawArguments

NAME
GetRawArguments – get all arguments passed to program (V10.0)

SYNOPSIS
args = GetRawArguments()

Chapter 18: Application library 217

FUNCTION
This function can be used to get all arguments passed to your program or script either via
the console or via the host system’s desktop manager. The arguments will be returned
in the args table and won’t be formatted in any way. They will be returned in their
raw form as they were passed to your program or script. This means that the returned
arguments may also include special arguments handled by Hollywood, e.g. "-window"
or "-quiet".

Note that the first table entry will always contain the name of the program but this
will not necessarily include a qualified path but just the name of the program as it was
specified by the caller.

GetRawArguments() can be useful if your script should be capable of handling multiple
file arguments. GetFileArgument() only allows you to get the very first file passed to
your program and GetCommandLine() expects arguments to be formatted in a certain
way which makes it impossible to use it to get al file arguments. GetRawArguments()

allows you to get all file arguments because arguments are never formatted in any way
but they are simply forwarded to your script without any modification by Hollywood.

INPUTS
none

RESULTS

args all arguments in a table; the first entry in that table will contain the name
of the program (not necessarily with its path)

EXAMPLE
t = GetRawArguments()

DebugPrint("Program:", t[0])

For Local k = 1 To ListItems(t) - 1

DebugPrint("Argument", k .. ":", t[k])

Next

The code above gets all arguments passed to the script and prints them.

18.15 LoadPrefs

NAME
LoadPrefs – load user preferences (V6.1)

SYNOPSIS
LoadPrefs(prefs[, t])

FUNCTION
This function loads user preferences that have been stored using the SavePrefs() com-
mand into the table specified by prefs. Prior to calling LoadPrefs(), the prefs table
should have been initialized to the default preferences. LoadPrefs() will then overwrite
all table items for which custom user preferences exist and keep the default values of the
items for which there are no user preferences.

218 Hollywood manual

Note that this function will only work if you have specified a unique identifier for your
application by using the @APPIDENTIFIER preprocessor command. See Section 18.6 [AP-
PIDENTIFIER], page 211, for details.

Starting with Hollywood 9.0, this function accepts a new optional table argument that
can be used to specify further options.

The following tags are currently recognized in the optional table argument:

Adapter: This table tag can be used to specify the deserializer that should be used
to import the preferences. This can be the name of an external deserializer
plugin (e.g. xml) or it can be one of the following inbuilt deserializers:

Default: Use Hollywood’s default deserializer. This will deserialize data
from the JSON format to a Hollywood table.

Inbuilt: Use Hollywood’s legacy deserializer. Using this deserializer is
not recommended any longer as the data is in a proprietary, non-
human-readable format. Using JSON is a much better choice.

If the Adapter tag isn’t specified, it will default to the default set using
SetDefaultAdapter().

UserTags:

This tag can be used to specify additional data that should be passed to
serializer plugins. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

prefs table to load user preferences into

t optional: table containing further options (see above) (V9.0)

EXAMPLE
@APPIDENTIFIER "com.airsoftsoftwair.example"

prf = {lastfile$ = "Unnamed", lastxpos = 0, lastypos = 0}

LoadPrefs(prf)

This initializes the table prf to default values and then uses LoadPrefs() to read
user preferences saved using SavePrefs() into the table. See Section 18.16 [SavePrefs],
page 218, for details.

18.16 SavePrefs

NAME
SavePrefs – save user preferences (V6.1)

SYNOPSIS
SavePrefs(prefs[, t])

FUNCTION
This function saves the table prefs, containing user preferences for your application, to
an external file. You can then load these preferences back into your program the next

Chapter 18: Application library 219

time your program is started by using the LoadPrefs() function. The actual location
where the preferences file will be stored is platform-dependent.

Note that this function will only work if you have specified a unique identifier for your
application by using the @APPIDENTIFIER preprocessor command. See Section 18.6 [AP-
PIDENTIFIER], page 211, for details.

Starting with Hollywood 9.0, this function accepts a new optional table argument that
can be used to specify further options.

The following tags are currently recognized in the optional table argument:

Adapter: This table tag can be used to specify the serializer that should be used to
export the preferences. This can be the name of an external serializer plugin
(e.g. xml) or it can be one of the following inbuilt serializers:

Default: Use Hollywood’s default serializer. This will serialize the pref-
erences to the JSON format.

Inbuilt: Use Hollywood’s legacy serializer. This will serialize the table
into a custom, proprietary format.

If the Adapter tag isn’t specified, it will default to the default set using
SetDefaultAdapter().

UserTags:

This tag can be used to specify additional data that should be passed to
serializer plugins. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

prefs table containing user preferences to save

t optional: table containing further options (see above) (V9.0)

EXAMPLE
@APPIDENTIFIER "com.airsoftsoftwair.example"

prf = {lastfile$ = "test.txt", lastxpos = 100, lastypos = 200}

SavePrefs(prf)

This saves the table prf to a platform-dependent location. At the next program start
you can load the preferences by using the LoadPrefs() function. See Section 18.15
[LoadPrefs], page 217, for details.

221

19 Asynchronous operation library

19.1 AsyncDrawFrame

NAME
AsyncDrawFrame – draw the next frame of an asynchronous object (V4.0)

SYNOPSIS
finish = AsyncDrawFrame(id[, frame])

FUNCTION
This function can be used to draw the next frame of an asynchronous draw object created
by one of functions from the transition effect or move object libraries. AsyncDrawFrame()
will return False if there are frames left in its queue. Thus, you should normally call
this function until it returns True, which means that you have now drawn all frames
that were in the asynchronous draw object’s queue.

When this function returns True, it automatically deletes the asynchronous draw ob-
ject so that is no longer valid and can no longer be used. If you want to stop an
asynchronous drawing sequence before all frames have been drawn, you can use the
CancelAsyncDraw() function. If you want to stop an asynchronous drawing object and
make it execute its finishing code, you have to use the FinishAsyncDraw() function.

Starting with Hollywood 4.5, AsyncDrawFrame() accepts an optional argument which
allows you to explicitly specify which frame you want to have drawn. To find out the
number of frames of an asynchronous draw object, you have to call GetAttribute() on
it using #ATTRNUMFRAMES. The value you get from this call is the largest valid frame
number. To draw the first frame, you have to pass 1. To draw the next frame, pass the
value 0 which is also the default and used if the frame argument is omitted.

If you manually specify the frame to draw, you also need to pay attention that your
asynchronous drawing object is freed correctly. If you do not use the optional argument,
the async drawing object is automatically freed when AsyncDrawFrame() returns True.
If you specify a frame manually, the async draw object is never freed. Even if you specify
the last frame, Hollywood will not free the async draw object because it must be possible
to seek to the last frame and back to the another frame. If Hollywood automatically
freed the async draw object if you chose to draw the last frame, then this would not
be possible. So if you are manually setting the current frame, make sure that you call
FinishAsyncDraw() on the asynchronous drawing object when you are done.

Please note that currently some restrictions apply to this function:

1. Asynchronous frames can only be drawn to the main display window. You cannot
use this function to draw to brushes currently.

2. While there are asynchronous draw objects, you cannot switch the layer mode. Calls
to EnableLayers() or DisableLayers() will be disabled while asynchronous draw
objects are active.

3. You cannot switch background pictures while there asynchronous draw objects.

4. Frame seeking only works with asynchronous drawing objects that are associated
with a layer.

222 Hollywood manual

5. Frame seeking does only work with asynchronous drawing objects of type #ADF_FX.

INPUTS

id identifier of the asynchronous draw object to use

frame optional: the frame you wish to draw; works only with async draw objects
associated with a layer (V4.5)

RESULTS

finish False if there are more frames left to be drawn or True if the asynchronous
draw object has finished

EXAMPLE
obj = DisplayBrushFX(1, #CENTER, #CENTER, {Type = #WATER1, Async = True})

Repeat

done = AsyncDrawFrame(obj)

VWait

Until done = True

The code above displays brush 1 in the center of the screen with the #WATER1 transition
effect. As you can see, the effect is not displayed by DisplayBrushFX() but in the
AsyncDrawFrame() loop below so that you could do some other things as well during
the transition effect.

EnableLayers

DisplayBrush(1, #CENTER, #CENTER)

obj = ShowLayerFX(1, {Type = #WALLPAPERTOP, Async = True})

frames = GetAttribute(#ASYNCDRAW, obj, #ATTRNUMFRAMES)

For Local k = frames To 1 Step -1

AsyncDrawFrame(obj, k)

VWait

Next

For Local k = 1 To frames

AsyncDrawFrame(obj, k)

VWait

Next

FinishAsyncDraw(obj)

The code above shows brush number 1 using #WALLPAPERTOP. The effect is first displayed
the other way round and then in normal order. Note that we have to manually free the
draw object using FinishAsyncDraw().

19.2 CancelAsyncDraw

NAME
CancelAsyncDraw – cancel asynchronous drawing object (V4.0)

SYNOPSIS
CancelAsyncDraw(id)

Chapter 19: Asynchronous operation library 223

FUNCTION
This function can be used to preliminary cancel an asynchronous draw object. See
Section 19.1 [AsyncDrawFrame], page 221, for more information on asynchronous draw
objects.

If the asynchronous draw object you want to stop is associated with a layer, then calling
CancelAsyncDraw() will not execute the finishing code for your draw object. For ex-
ample, if you are removing a layer with an asynchronous effect (i.e. you retrieved your
asynchronous draw object from RemoveLayerFX()), then the layer won’t be removed if
you call CancelAsyncDraw(). The same applies to HideLayerFX() (layer won’t be hid-
den if you cancel the asynchronous draw object halfway through) and ShowLayerFX()

(layer won’t be shown if you cancel the asynchronous draw object).

If you do not want this behaviour, you have to use FinishAsyncDraw() instead.
FinishAsyncDraw() will first call the finishing code for the asynchronous draw
object and then it will free the draw object. This means that if you execute
FinishAsyncDraw() on a drawing object received from RemoveLayerFX(), the layer
will be removed even if the effect is not finished yet. FinishAsyncDraw() will jump to
the last frame, call the finishing code (i.e. remove layer, or hide layer, or show layer)
and free the drawing object.

Please note that there is no difference at all between CancelAsyncDraw() and
FinishAsyncDraw() if layers are disabled. In case layers are off, you should always use
CancelAsyncDraw().

INPUTS

id identifier of the object to cancel

19.3 CancelAsyncOperation

NAME
CancelAsyncOperation – cancel an asynchronous operation (V9.0)

SYNOPSIS
CancelAsyncOperation(id)

FUNCTION
This function cancels the asynchronous operation specified by id. id must be set to
an asynchronous operation handle created by functions which support asynchronous
operations, e.g. CopyFile() or DownloadFile().

INPUTS

id asynchronous operation handle obtained from a function that supports asyn-
chronous operations

EXAMPLE
See Section 19.4 [ContinueAsyncOperation], page 224.

224 Hollywood manual

19.4 ContinueAsyncOperation

NAME
ContinueAsyncOperation – continue an asynchronous operation (V9.0)

SYNOPSIS
done, ... = ContinueAsyncOperation(id)

FUNCTION
This function continues processing the asynchronous object specified by id. id must
be set to an asynchronous operation handle created by functions which support asyn-
chronous operations, e.g. CopyFile() or DownloadFile().

Once the asynchronous operation has finished, ContinueAsyncOperation() will free
the asynchronous operation handle and return True. If ContinueAsyncOperation()
returns False, the operation hasn’t finished yet and you need to call
ContinueAsyncOperation() again until it returns True.

If the Hollywood call that created the asynchronous operation handle returns values
to the script on completion, ContinueAsyncOperation() will forward those values to
your script as soon as the asynchronous operation has finished, i.e. when done becomes
True. In that case, ContinueAsyncOperation() may return additional values depend-
ing on the command that created the asynchronous operation handle. For example,
DownloadFile() will return the downloaded data as well as its length to the script on
completion.

To abort an asynchronous operation, you can use the CancelAsyncOperation() func-
tion. See Section 19.3 [CancelAsyncOperation], page 223, for details.

INPUTS

id asynchronous operation handle obtained from a function that supports asyn-
chronous operations

RESULTS

done True if the operation has finished, False otherwise

... optional: on completion, i.e. when done is True, all additional return values
from the command that created the asynchronous operation handle

EXAMPLE
handle = CopyFile("images", "sounds", {Async = True})

Repeat

NextFrame(1)

Until ContinueAsyncOperation(handle) = True

The code above demonstrates how to show an animation while copying the images

directory into the sounds directory.

19.5 FinishAsyncDraw

NAME
FinishAsyncDraw – finish asynchronous drawing object (V4.5)

Chapter 19: Asynchronous operation library 225

SYNOPSIS
FinishAsyncDraw(id)

FUNCTION
This function can be used to preliminary finish an asynchronous drawing object. When
calling this function, Hollywood will skip to the last frame of the asynchronous drawing
object and finish it. "Finishing" an asynchronous drawing object means drawing its last
frame and running the finishing code (for example, removing the layer if the asynchronous
drawing object belongs to a RemoveLayerFX() call).

There is a difference between FinishAsyncDraw() and CancelAsyncDraw(). See
Section 19.2 [CancelAsyncDraw], page 222, for details.. An exception is when layers
are enabled. In that case there is no difference between CancelAsyncDraw() and
FinishAsyncDraw(). In case layers are off, you should always use CancelAsyncDraw().

INPUTS

id identifier of the object to finish

227

20 BGPic library

20.1 Overview

Background pictures (BGPics) are very important in Hollywood because every display needs
to have a background picture that is attached to it. The background picture is what will
be initially shown to the user when your display becomes visible. The background picture
will then act as the "work area" of your script, i.e. the area that you can use for drawing
any graphics you like. This area is fully yours and you can use it like you want.

The background picture must always be of the same size as the display. Thus, if you
change the display size, e.g. by using ChangeDisplaySize() your background picture will
automatically be scaled to fit the new dimensions because as already said before the display
size is always the same as the current background picture size. If your window is resizeable,
then the user may also adjust your display size. If he does, Hollywood will internally call
ChangeDisplaySize() to adjust to the new dimensions.

If you choose to display a new background picture, e.g. by using the DisplayBGPic()

command, and the dimensions of the new background picture differ from the dimensions
of your current background picture, then your display will also be resized to fit the new
dimensions.

At startup, Hollywood will display the background picture that has been assigned the iden-
tifier 1. If you haven’t declared a background picture that uses the identifier 1 using the
@BGPIC preprocessor command, Hollywood will create this background picture automati-
cally for you and attach it to your display. The background picture will use the fill style and
dimensions specified in the @DISPLAY preprocessor command for display 1 in your script.

Here is a minimal script which creates a display that shows the image file test.jpg:

@BGPIC 1, "test.jpg"

WaitLeftMouse

End

20.2 BGPIC

NAME
BGPIC – preload a background picture for later use (V2.0)

SYNOPSIS
@BGPIC id, filename$[, table]

FUNCTION
This preprocessor command preloads the background picture specified in filename$ and
assigns the identifier id to it. If you specify 1 as the identifier, then this picture will be
used as the initial background picture when Hollywood opens your display.

Image formats that are supported on all platforms are PNG, JPEG, BMP, IFF ILBM,
GIF, and image formats you have a plugin for. Depending on the platform Hollywood is
running on, more image formats might be supported. For example, on Amiga compatible
systems Hollywood will be able to open all image formats you have datatypes for as well.
On Windows, @BGPIC can also load image formats supported by the Windows Imaging
Component.

228 Hollywood manual

Starting with Hollywood 5.0, this function can also load vector formats like SVG if you
have an appropriate plugin installed. Using a vector image as a BGPic has the advantage
that when the size of the display changes (e.g. because the user is resizing the window),
the BGPic can be adapted to the new size without any losses in quality because vector
BGPics can be infinitely scaled without any sacrifices in quality. See Section 20.16
[Vector BGPics], page 248, for more information on vector BGPics.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Transparency:

This field can be used to specify a color in RGB notation that shall appear
transparent in the BGPic.

LoadAlpha:

Set this field to True if the alpha channel of the image shall be loaded,
too. Please note that not all pictures have an alpha channel and that not
all picture formats are capable of storing alpha channel information. It is
suggested that you use the PNG format if you need alpha channel data. This
tag defaults to False. (V4.5)

Link: Set this field to False if you do not want to have this BGPic linked to
your executable/applet when you compile your script. This field defaults to
True which means that the BGPic is linked to your executable/applet when
Hollywood is in compile mode.

FillStyle:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

FillColor:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

TextureBrush:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

TextureX, TextureY:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

GradientStyle:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

GradientAngle:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

GradientStartColor, GradientEndColor:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

GradientCenterX, GradientCenterY:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

GradientBalance:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

GradientBorder:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

Chapter 20: BGPic library 229

GradientColors:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.0)

ScaleWidth, ScaleHeight:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.3)

SmoothScale:

See Section 20.13 [LoadBGPic], page 242, for details. (V5.3)

Loader: See Section 20.13 [LoadBGPic], page 242, for details. (V6.0)

Adapter: See Section 20.13 [LoadBGPic], page 242, for details. (V6.0)

LoadTransparency:

See Section 20.13 [LoadBGPic], page 242, for details. (V6.0)

LoadPalette:

See Section 20.13 [LoadBGPic], page 242, for details. (V9.0)

FillPen: See Section 20.13 [LoadBGPic], page 242, for details. (V9.0)

TransparentPen:

See Section 20.13 [LoadBGPic], page 242, for details. (V9.0)

UserTags:

See Section 20.13 [LoadBGPic], page 242, for details. (V10.0)

If you use Transparency, LoadTransparency or LoadAlpha, your display will automati-
cally adopt the transparency settings of the BGPic when it is displayed. In other words,
if you want to have a display with transparency, simply load a transparent BGPic and
display it.

If you set the LoadPalette tag to True, your display will become a palette display as
soon as the BGPic is shown. Palette displays behave differently than normal true colour
displays and there are some things to be considered when using them. See Section 25.16
[Palette displays], page 400, for details.

Please note that the Transparency, LoadTransparency and LoadAlpha tags are mutu-
ally exclusive. A BGPic can only have one transparency setting!

If you want to load background pictures manually, please use the LoadBGPic() command.

INPUTS

id a value that is used to identify this background picture later in the code; if
this is 1 then the picture will be the initial display background

filename$

the picture file you want to load

table optional: a table for setting further options; see above for explanation

EXAMPLE
@BGPIC 1, "MyBG.png"

Declare "MyBG.png" as the initial background picture (will be displayed when Holly-
wood starts up).

230 Hollywood manual

@BGPIC 1, "MyBG.png", {Transparency = $FF0000}

Does the same like above but the picture is now transparent (transparency color is
red=$FF0000).

@BGPIC 1, "4MB_uncompressed_picture.bmp", {Link = False}

The code above loads the specified picture and tells Hollywood that it should never link
this image because it is so big.

20.3 BrushToBGPic

NAME
BrushToBGPic – convert a brush to a background picture

SYNOPSIS
BrushToBGPic(brushid, bgpicid)

FUNCTION
This function makes a copy of the brush specified by brushid and converts it to a new
background picture that has the identifier bgpicid. Everything will be cloned so the
background picture is independent of the brush (you could free the brush after this
operation for example and the background picture would still be usable!).

INPUTS

brushid brush to clone

bgpicid id for the new background picture

EXAMPLE
BrushToBGPic(1,2)

DisplayBGPic(2)

The above code copies the brush 1 to background picture 2 and displays it then.

20.4 CopyBGPic

NAME
CopyBGPic – clone a background picture (V4.0)

SYNOPSIS
[id] = CopyBGPic(source, dest)

FUNCTION
This function clones the background picture specified by source and creates a copy of it
as background picture dest. If you specify Nil in the dest argument, this function will
choose an identifier for this background picture automatically and return it to you. The
new background picture is independent from the old one so you could free the source
background picture after it has been cloned.

Please note that only the plain graphics data of the background picture will be cloned.
CopyBGPic() will not clone any layers, sprites, or buttons attached to the background
picture.

Chapter 20: BGPic library 231

INPUTS

source source background picture id

dest identifier of the new BGPic or Nil for auto id select

RESULTS

id optional: identifier of the BGPic; will only be returned when you pass Nil
as argument 2 (see above)

EXAMPLE
CopyBGPic(1, 10)

FreeBGPic(1)

The above code creates a new background picture 10 which contains the same graphics
data as background picture 1. Then it frees background picture 1 because it is no longer
needed.

20.5 CreateBGPic

NAME
CreateBGPic – create a blank background picture (V1.5)

SYNOPSIS
[id] = CreateBGPic(id, width, height[[, color], table])

FUNCTION
This function creates a new background picture with the specified width and height and
initializes it to the specified color. If no color is specified, the background picture is
initialized to black. If you specify Nil in the id argument, CreateBGPic() will choose
an identifier for this background picture automatically and return it to you.

Starting with Hollywood 9.0, there is an optional table argument that allows you to
specify further options. The following table tags are currently supported:

Palette: If this tag is set to the identifier of a palette, Hollywood will create a palette
background picture for you. Palettes can be created using functions like
CreatePalette() or LoadPalette(). Alternatively, you can also set this tag
to one of Hollywood’s inbuilt palettes, e.g. #PALETTE_AGA. See Section 44.36
[SetStandardPalette], page 918, for a list of inbuilt palettes.

FillPen: If the Palette tag is set (see above), you can use this tag to set the pen that
should be used for filling the background picture’s background. Note that
the color parameter that is passed to CreateBGPic() is ignored if Palette
is True. That’s why this tag is here to allow you to specify a pen that will
be used when initializing the background picture’s pixels. Defaults to 0.

TransparentPen:

If Palette is set to True, this tag can be used to specify a pen that should
be made transparent in the new background picture. Defaults to #NOPEN

which means that there should be no transparent pen.

INPUTS

id id for the new background picture

232 Hollywood manual

width width for the background picture

height height for the background picture

color optional: RGB color for background (defaults to #BLACK)

table optional: table containing further options (see above) (V9.0)

RESULTS

id optional: identifier of the BGPic; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
CreateBGPic(2, 640, 480)

The above code creates a new black BGPic with the id 2 and the dimension of 640x480.

20.6 CreateGradientBGPic

NAME
CreateGradientBGPic – create a new background picture with a gradient (V2.0)

FORMERLY KNOWN AS
CreateRainbowBGPic (V1.0 - V1.9)

SYNOPSIS
[id] = CreateGradientBGPic(id, type, startcolor, endcolor[, width,

height, angle, table])

FUNCTION
This function can be used to create a new background picture with a gradient on it.
If you specify Nil in the id argument, this function will choose an identifier for this
background picture automatically and return it to you. type specifies the type of the
gradient you want to use. The following gradient types are currently available: #LINEAR,
#RADIAL, and #CONICAL. If width and height are omitted, the dimensions will be set to
the same as the current display’s dimensions. The angle parameter allows you to specify
a rotation angle (in degrees) for the gradient. The angle argument is only supported by
gradients of type #LINEAR and #CONICAL. Radial gradients cannot be rotated.

The optional table argument can be used to specify advanced options. The following
tags are currently recognized:

CenterX, CenterY:

These two tags can be used to specify the center point of the gradient. As
linear gradients do not have a center point, these two tags are only handled
when you use gradients of type #RADIAL or #CONICAL. The center point must
be specified as a floating point value that is between 0.0 (left/top corner) and
1.0 (right/bottom corner). If not specified, both tags default to 0.5 which
means that the center point of the gradient is in the center of the image.
(V5.0)

Border: This tag can be used to set the border size for gradients of type #RADIAL.
For the other gradient types this tag is ignored. The border size of the radial

Chapter 20: BGPic library 233

gradient must be a floating point value between 0.0 and 1.0. Defaults to 0.0
which means no border. (V5.0)

Balance: This tag can be used to set the balance point for gradients of type #CONICAL.
For the other gradient types this tag is ignored. The balance point of the
conical gradient must be floating point value between 0.0 and 1.0. Defaults
to 0.5. Note that this is only used when creating a two-color gradient. When
creating a multi-color gradient using the Colors table, Balance is ignored
because the Colors table allows you to individually balance the colors in the
gradient using color stops. (V5.0)

Colors: This tag allows you to create gradients that contain multiple colors. This
tag must be set to a table that contains a sequence of alternating color and
stop values. The colors must be specified in RGB format. The stop value is
a floating point value between 0.0 and 1.0 and defines the position where the
corresponding color should be merged into the gradient. A position of 0.0
means the start position of the gradient, and a position of 1.0 means the end
position. Please note that the stop positions must be sorted in ascending
order, i.e. starting from 0.0 to 1.0. If you specify this tag, the colors specified
in the startcolor and endcolor arguments are ignored, and Hollywood will
only use the colors specified in this tag. (V5.0)

INPUTS

id id for the new background picture or Nil for auto ID select

type type of the gradient; see above for available types

startcolor

RGB value defining the start color

endcolor RGB value defining the end color

width optional: desired width for the background picture (default: current display
width)

height optional: desired height for the background picture (default: current display
height)

angle optional: rotation angle for the gradient (default: 0)

table optional: table argument specifying further options; see above for a descrip-
tion of available options

RESULTS

id optional: identifier of the BGPic; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
CreateGradientBGPic(2, #LINEAR, #BLACK, #BLUE)

DisplayBGPic(2)

Creates a top to bottom gradient as background picture 2 with a color fade from black
to blue and displays it.

234 Hollywood manual

CreateGradientBGPic(2, #LINEAR, 0, 0, 640, 480, 0, {Colors = {#RED, 0,

#BLUE, 0.25, #GREEN, 0.5, #YELLOW, 0.75, #BLACK, 1}})

DisplayBGPic(2)

The code above creates a gradient containing multiple color stops. This gradient tries
to replicate the look of the famous Amiga copper bars.

20.7 CreateTexturedBGPic

NAME
CreateTexturedBGPic – create a new background picture textured with a brush

SYNOPSIS
[id] = CreateTexturedBGPic(id, brushid[, width, height, x, y])

FUNCTION
This function will create a new background picture for you and it will texture it with
the brush specified by brushid. If you specify Nil in the id argument, this function will
choose an identifier for this background picture automatically and return it to you. If
width and height are omitted, the dimensions will be the same as the current display.

The optional x and y parameters are new in Hollywood 4.6. They allow you to specify
an offset into the texture brush. Texturing will then start from this offset in the brush.
The default for these arguments is 0/0 which means start at the top-left corner inside
the texture brush.

INPUTS

id id for the new background picture or Nil for auto ID select

brushid identifier of the brush to be used as the texture

width optional: desired width for the background picture (default: current display
width)

height optional: desired height for the background picture (default: current display
height)

x optional: start x offset in the texture brush (V4.6)

y optional: start y offset in the texture brush (V4.6)

RESULTS

id optional: identifier of the BGPic; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
CreateTexturedBGPic(2,1)

DisplayBGPic(2)

Creates a background picture that will be textured with brush 1 and displays it.

Chapter 20: BGPic library 235

20.8 DisplayBGPic

NAME
DisplayBGPic – change the background picture

SYNOPSIS
DisplayBGPic(id[, args])

FUNCTION
This function changes the background picture to the one specified by id. If the dimen-
sions of this picture differ from the current one, the display size will be adjusted.

New in Hollywood 4.0: You can pass a table in the optional second argument to specify
further options. Currently, the table can contain the following fields:

X: Specifies the new x position for the display. If you want the display to keep
its current x position, specify the special constant #KEEPPOSITION. Defaults
to #CENTER.

Y: Specifies the new y position for the display. If you want the display to keep
its current y position, specify the special constant #KEEPPOSITION. Defaults
to #CENTER.

INPUTS

id identifier of the background picture to display

args optional: specifies further configuration options (V4.0)

EXAMPLE
DisplayBGPic(2)

Displays background picture 2 and adjusts the window size if necessary.

DisplayBGPic(2, {X = #RIGHT, Y = #BOTTOM})

Displays background picture at the bottom-right of the current desktop.

20.9 DisplayBGPicPart

NAME
DisplayBGPicPart – display a part of a background picture

SYNOPSIS
DisplayBGPicPart(id, x, y, width, height[, dx, dy, table])

FUNCTION
This function displays a tile of the background picture specified by id on the screen.
The tile is defined by x, y and its width and height.

If layers are enabled, this command will add a new layer of the type #BGPICPART to the
layer stack.

As of Hollywood 4.0, this command uses a new syntax, although the old syntax is still
supported for compatibility reasons. New scripts should use the new syntax, though.

236 Hollywood manual

The new syntax accepts a table as the last argument which allows you to specify several
further options:

Layers: If you set this to True, the layers (in case layers are enabled) or the fore-
ground graphics (in case layers are disabled) of the background picture are
drawn, too. This is useful if you want to create an exact copy of a background
picture in a brush, for example. Please note that if layers are disabled,
you can use this argument only if id specifies the identifier of the current
background picture because Hollywood does not keep the entire foreground
contents of all background pictures if layers are disabled.

Furthermore, the optional table argument can also contain one or more of the standard
tags for all drawing commands. See Section 27.17 [Standard drawing tags], page 501, for
more information about the standard tags that nearly all Hollywood drawing commands
support.

INPUTS

id identifier of the background picture to use as source

x left corner

y top corner

width width of the tile

height height of the tile

dx optional: destination x-position for the tile (defaults to x) (V1.5)

dy optional: destination y-position for the tile (defaults to y) (V1.5)

table optional: further configuration table

EXAMPLE
DisplayBGPicPart(2,0,0,100,100)

Display the first 100 pixels and rows from background picture 2 on the screen at position
0:0.

width = GetAttribute(#DISPLAY, 0, #ATTRWIDTH)

height = GetAttribute(#DISPLAY, 0, #ATTRHEIGHT)

id = GetAttribute(#DISPLAY, 0, #ATTRBGPIC)

CreateBrush(1, width, height)

SelectBrush(1)

DisplayBGPicPart(id, 0, 0, width, height, 0, 0, {Layers = TRUE})

EndSelect

This code makes a copy of the current display contents in brush 1.

20.10 DisplayBGPicPartFX

NAME
DisplayBGPicPartFX – display a part of a background picture with transition

Chapter 20: BGPic library 237

SYNOPSIS
[handle] = DisplayBGPicPartFX(id, x, y, width, height[, table])

FUNCTION
This is an extended version of the DisplayBGPicPart() command. It does the same but
displays the part with a transition effect.

If layers are enabled, this command will add a new layer of the type #BGPICPART to the
layer stack.

Starting with Hollywood 4.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the transition effect. The following
options are possible:

Type: Specifies the desired effect for the transition. See Section 20.11 [DisplayTran-
sitionFX], page 238, for a list of all supported transition effects. (defaults to
#RANDOMEFFECT)

Speed: Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter:

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

Async: You can use this field to create an asynchronous draw object for this tran-
sition. If you pass True here DisplayBGPicPartFX() will exit immediately,
returning a handle to an asynchronous draw object which you can then draw
using AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221,
for more information on asynchronous draw objects.

DX: Destination x position for the tile. (defaults to the x specified as parameter
2)

DY: Destination y position for the tile. (defaults to the y specified as parameter
3)

Layers: Specify True here if the layers of the background picture shall also be dis-
played (requires enabled layers). (defaults to False)

INPUTS

id identifier of the background picture to use as source

x left corner

y top corner

width width of the tile

height height of the tile

table optional: transition effect configuration

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

238 Hollywood manual

EXAMPLE
DisplayBGPicPartFX(2, 0, 0, 100, 100, #HSTRIPES32, 10) ; old syntax

OR

DisplayBGPicPartFX(2, 0, 0, 100, 100, {Type = #HSTRIPES32,

Speed = 10}) ; new syntax

Display the first 100 pixels and rows from background picture 2 on the screen with the
transition effect #HSTRIPES32 at speed 10.

20.11 DisplayTransitionFX

NAME
DisplayTransitionFX – change the background picture using a transition effect

SYNOPSIS
[handle] = DisplayTransitionFX(id[, table])

FUNCTION
This function displays a new background picture with the specified transition effect.
A list of all available effects is appended below. You also have to specify the speed
of the transition which can be either one of the special speed constants (#SLOWSPEED,
#NORMALSPEED, #FASTSPEED) or a custom fine-tuned numeric value. The rule of thumb
for the speed parameter: the higher the value the faster the transition will run.

For the best effect, the new background picture should have the same dimensions as the
old. If this is not the case, the old background picture will be scaled to the size of the
new one.

Note that transparent BGPics cannot be displayed using a transition effect. It is also not
possible to display a non-transparent BGPic with transition effect if the current BGPic
is a transparent one. For this function to work, two conditions must be met: The current
BGPic as well as the new BGPic must both be non-transparent.

Starting with Hollywood 4.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the transition effect. The following
options are possible:

Type: Specifies the desired effect for the transition. See the list below for possible
effects. (defaults to #RANDOMEFFECT)

Speed: Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter:

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

Async: You can use this field to create an asynchronous draw object for this transi-
tion. If you pass True here DisplayTransitionFX() will exit immediately,

Chapter 20: BGPic library 239

returning a handle to an asynchronous draw object which you can then draw
using AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221,
for more information on asynchronous draw objects.

X: Specifies the new x position for the display. If you want the display to keep
its current x position, specify the special constant #KEEPPOSITION. Defaults
to #CENTER.

Y: Specifies the new y position for the display. If you want the display to keep
its current y position, specify the special constant #KEEPPOSITION. Defaults
to #CENTER.

The following effects are currently available:

− Horizontal stripes: #HSTRIPES2, #HSTRIPES4, #HSTRIPES16, #HSTRIPES32

− Vertical stripes: #VSTRIPES2, #VSTRIPES8, #VSTRIPES16, #VSTRIPES32

− Fast horizontal blinds: #HBLINDS8, #HBLINDS16, #HBLINDS32, #HBLINDS64,
#HBLINDS128

− Fast vertical blinds: #VBBLINDS8, #VBLINDS16, #VBLINDS32, #VBLINDS64,
#VBLINDS128

− Horizontal curtain: #HOPENCURTAIN, #HCLOSECURTAIN

− Vertical curtain: #VOPENCURTAIN, #VCLOSECURTAIN

− Horizontal lines: #HLINES, #HLINES2

− Vertical lines: #VLINES, #VLINES2

− Reveal: #REVEALLEFT, #REVEALRIGHT, #REVEALTOP, #REVEALBOTTOM

− Bars: #BARS

− Quarters: #QUARTERS

− Crossfade: #CROSSFADE

− Fade: #FADE; optional argument specifies color to use

− Blend: #BLEND; optional argument specifies color to use for blending

Starting with Hollywood 1.5 there are some new effects:

− Rectangle zoom in: #RECTCENTER, #RECTNORTH, #RECTNORTHEAST, #RECTEAST,
#RECTSOUTHEAST, #RECTSOUTH, #RECTSOUTHWEST, #RECTWEST, #RECTNORTHWEST

− Rectangle zoom out: #RECTBACKCENTER, #RECTBACKNORTH, #RECTBACKNORTHEAST,
#RECTBACKEAST, #RECTBACKSOUTHEAST, #RECTBACKSOUTH, #RECTBACKSOUTHWEST,
#RECTBACKWEST, #RECTBACKNORTHWEST

− Scroll in: #SCROLLLEFT, #SCROLLRIGHT, #SCROLLTOP, #SCROLLBOTTOM (optional ar-
gument specifies a special effect to apply to the scroll process, you can use the same
effects here like in MoveBrush())

− Stretch image in: #STRETCHLEFT, #STRETCHRIGHT, #STRETCHTOP, #STRETCHBOTTOM,
#HSTRETCHCENTER, #VSTRETCHCENTER

− Zoom image in: #ZOOMCENTER, #ZOOMNORTH, #ZOOMNORTHEAST, #ZOOMEAST,
#ZOOMSOUTHEAST, #ZOOMSOUTH, #ZOOMSOUTHWEST, #ZOOMWEST, #ZOOMNORTHWEST

− Flow: #HFLOWTOP, #HFLOWBOTTOM, #VFLOWLEFT, #VFLOWRIGHT

− Gates: #HOPENGATE, #HCLOSEGATE, #VOPENGATE, #VCLOSEGATE (B)

240 Hollywood manual

− Pushes: #PUSHLEFT, #PUSHRIGHT, #PUSHTOP, #PUSHBOTTOM (B)

− Puzzle: #PUZZLE

− Diagonal: #DIAGONAL

− Roll on: #ROLLTOP

− Wallpaper: #WALLPAPERTOP

− General vertical stripes: #VSTRIPES; optional argument specifies the number of
stripes to display

− General horizontal stripes: #HSTRIPES; optional argument specifies the number of
stripes to display

Starting with Hollywood 1.9 there are a number of new effects:

− Scroll image in: #SCROLLNORTHEAST, #SCROLLSOUTHEAST, #SCROLLSOUTHWEST,
#SCROLLNORTHWEST (optional argument specifies a special effect to apply to the
scroll process, you can use the same effects here like in MoveBrush())

− Reveal clock wise: #CLOCKWIPE

− Star zoom in: #STAR

− Strange pushes: #HSTRANGEPUSH, #VSTRANGEPUSH (B)

− Slide projector: #SLIDELEFT, #SLIDERIGHT, #SLIDETOP, #SLIDEBOTTOM (B)

− Spiral reveal: #SPIRAL

− Swiss cross effect: #SWISS

− Quad rectangles: #QUADRECT

− Split effects: #HSPLIT, #VSPLIT

− Up’n’down: #UPNDOWN

− Register card effect: #CARDTOP, #CARDBOTTOM (B)

− Sun zoom in: #SUN

− Water ripples: #WATER1, #WATER2, #WATER3, #WATER4 (!)

− Strudel effect: #STRUDEL (!)

− Dissolve picture: #DISSOLVE

− Zoom to pixels: #PIXELZOOM1

− Zoom to pixels 2: #PIXELZOOM2 (B)

− Large zoom effects: #ZOOMIN, #ZOOMOUT (B)

− Crush effects: #CRUSHLEFT, #CRUSHRIGHT, #CRUSHTOP, #CRUSHBOTTOM (B)

− Flip coins: #VFLIPCOIN, #VLOWFLIPCOIN, #HFLIPCOIN, #HLOWFLIPCOIN (B)

− Turn down picture effect: #TURNDOWNTOP, #TURNDOWNBOTTOM, #TURNDOWNLEFT,
#TURNDOWNRIGHT (B)

− Type writer effect: #TYPEWRITER (T) [no longer supported since V3.1]

− Wallpaper: #WALLPAPERLEFT (!)

− Roll on: #ROLLLEFT

If you choose #RANDOMEFFECT, Hollywood will randomly choose any effect from all possi-
ble effects. Very useful when doing slideshows. When using the 68k version of Hollywood,
#RANDOMEFFECT will not choose any high-end effects automatically.

Chapter 20: BGPic library 241

Legend:

(B): effect can only be used with background pictures

(O): effect can only be used with objects (brushes, layers etc. - but not back-
ground pictures!)

(T): effect can only be used with text objects

(!): high-end effects which means that it needs a lot of cpu power to run smoothly.
You can run them on 68k, but it is no fun at all because they will take like
4 minutes for a transition or so. You should only use "!"-effects on PPC
systems, e.g. MorphOS or WarpOS.

INPUTS

id identifier of the background picture to display

table optional: transition effect configuration

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
DisplayTransitionFX(2, #HSTRIPES32, 10) ; old syntax

OR

DisplayTransitionFX(2, {Type = #HSTRIPES32, Speed = 10}) ; new syntax

Display background picture 2 using the #HSTRIPES32 effect and speed 10.

20.12 FreeBGPic

NAME
FreeBGPic – free a background picture

SYNOPSIS
FreeBGPic(id)

FUNCTION
This function frees the memory of the background picture specified by id. To reduce
memory consumption, you should free background picture when you do not need them
any longer.

INPUTS

id identifier of the background picture

242 Hollywood manual

20.13 LoadBGPic

NAME
LoadBGPic – load a background picture

SYNOPSIS
[id] = LoadBGPic(id, filename$[, table])

FUNCTION
This function loads the picture specified by filename$ into memory and assigns the
identifier id to it. If you pass Nil in id, LoadBGPic() will automatically choose an
identifier and return it.

Image formats that are supported on all platforms are PNG, JPEG, BMP, IFF ILBM,
GIF, and image formats you have a plugin for. Depending on the platform Hollywood is
running on, more image formats might be supported. For example, on Amiga compatible
systems Hollywood will be able to open all image formats you have datatypes for as well.
On Windows, LoadBGPic() can also load image formats supported by the Windows
Imaging Component.

Starting with Hollywood 5.0, this function can also load vector formats like SVG if you
have an appropriate plugin installed. Using a vector image as a BGPic has the advantage
that when the size of the display changes (e.g. because the user is resizing the window),
the BGPic can be adapted to the new size without any losses in quality because vector
BGPics can be infinitely scaled without any sacrifices in quality. See Section 20.16
[Vector BGPics], page 248, for more information on vector BGPics.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Transparency:

This field can be used to specify a color in RGB notation that shall appear
transparent in the BGPic.

LoadAlpha:

Set this field to True if the alpha channel of the image shall be loaded,
too. Please note that not all pictures have an alpha channel and that not
all picture formats are capable of storing alpha channel information. It is
suggested that you use the PNG format if you need alpha channel data. This
tag defaults to False. (V4.5)

FillStyle:

This tag allows you to define a background fill style for this BGPic. This fill
style is only used when the BGPic has transparent areas, i.e. when you use
either the Transparency or the LoadAlpha tags, or when loading an image
in a format that always contains an alpha channel. FillStyle is useful
especially in the latter case because some formats always return an alpha
channel but most of the time you will not want to use this alpha channel
when loading such an image into a background picture. See Section 27.14
[SetFillStyle], page 498, for information on all available fill styles. (V5.0)

FillColor:

If the FillStyle tag was set to #FILLCOLOR, you can use this tag to define
the RGB color that shall be used for backfilling. (V5.0)

Chapter 20: BGPic library 243

TextureBrush:

If the FillStyle tag was set to #FILLTEXTURE, you can use this tag to
specify the identifier of the brush that shall be used for texturing. (V5.0)

TextureX, TextureY:

These tags control the start offset inside the texture brush and are only
supported if FillStyle was set to #FILLTEXTURE. See Section 27.14 [Set-
FillStyle], page 498, for details. (V5.0)

GradientStyle:

If the FillStyle tag was set to #FILLGRADIENT, you can use this tag to spec-
ify the gradient type to use. This can be #LINEAR, #RADIAL, or #CONICAL.
(V5.0)

GradientAngle:

Specifies the orientation of the gradient if filling style is set to
#FILLGRADIENT. The angle is expressed in degrees. Only possible for
#LINEAR and #CONICAL gradients. (V5.0)

GradientStartColor, GradientEndColor:

Use these two to configure the colors of the gradient if filling style is set to
#FILLGRADIENT. (V5.0)

GradientCenterX, GradientCenterX:

Sets the center point for gradients of type #RADIAL or #CONICAL. Must be a
floating point value between 0.0 and 1.0. See Section 20.6 [CreateGradient-
BGPic], page 232, for details. (V5.0)

GradientBalance:

This tag controls the balance point for gradients of type #CONICAL. Must be
a floating point value between 0.0 and 1.0. See Section 20.6 [CreateGradi-
entBGPic], page 232, for details. (V5.0)

GradientBorder:

This tag controls the border size for gradients of type #RADIAL. Must be a
floating point value between 0.0 and and 1.0. See Section 20.6 [CreateGra-
dientBGPic], page 232, for details. (V5.0)

GradientColors:

This tag can be used to create a gradient between more than two colors.
This has to be set to a table that contains sequences of alternating color and
stop values. See Section 20.6 [CreateGradientBGPic], page 232, for details.
If this tag is used, the GradientStartColor and GradientEndColor tags
are ignored. (V5.0)

ScaleWidth, ScaleHeight:

These fields can be used to load a scaled version of the image. If the image
driver supports scaled loading, this will give you some significant speed-up
for example in case you just want to load a thumbnail-sized version of a large
image. If the image driver does not support scaled loading, the full image
will be loaded first before it is scaled. This is not much faster than manually
scaling the image after loading. You can pass an absolute pixel value or a
string containing a percent specification here. (V5.3)

244 Hollywood manual

SmoothScale:

If ScaleWidth or ScaleHeight is set, you can use this item to specify
whether or not Hollywood shall use anti-aliased scaling. Defaults to False

which means no anti-aliasing. Note that anti-aliased scaling is much slower
than normal scaling. (V5.3)

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this BGPic. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

LoadTransparency:

If this tag is set to True, the monochrome transparency of the image will
be loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based image. If
you want to load the alphachannel of an image, set the LoadAlpha tag to
True. This tag defaults to False. (V6.0)

LoadPalette:

If this tag is set to True, Hollywood will load the BGPic as a palette BGPic.
This means that you can get and modify the BGPic’s palette which is useful
for certain effects like color cycling. You can also make pens transparent
using the TransparentPen tag (see below) or the LoadTransparency tag (see
above). Palette BGPics also have the advantage of requiring less memory
because 1 pixel just needs 1 byte of memory instead of 4 bytes for 32-bit
images. Note that if you set the LoadPalette tag to True, your display will
become a palette display as soon as the BGPic is shown. Palette displays
behave differently than normal true colour displays and there are some things
to be considered when using them. See Section 25.16 [Palette displays],
page 400, for details. This tag defaults to False. (V9.0)

FillPen: If the LoadPalette tag has been set to True (see above) and there is a trans-
parent pen in the image, you can use the FillPen tag to specify the filling
color for all transparent areas in the image. This is the palette equivalent to
the FillColor tag which is only used for non-palette images. (V9.0)

TransparentPen:

If the LoadPalette tag has been set to True (see above), the
TransparentPen tag can be used to define a pen that should be made
transparent. Pens are counted from 0. Alternatively, you can also set the
LoadTransparency tag to True to force Hollywood to use the transparent
pen that is stored in the image file (if the image format supports the
storage of transparent pens). This tag defaults to #NOPEN. (V9.0)

Chapter 20: BGPic library 245

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

If you use Transparency, LoadTransparency or LoadAlpha your display will automat-
ically adopt the transparency settings of the BGPic when it is shown. In other words,
if you want to have a display with transparency simply load a transparent BGPic and
display it.

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. A BGPic can only have one transparency setting!

This command is also available from the preprocessor: Use @BGPIC to preload background
pictures!

INPUTS

id identifier for the background picture or Nil for auto id select

filename$

file to load

table optional: further configuration options for loading operation

RESULTS

id optional: identifier of the background picture; will only be returned when
you pass Nil as argument 1 (see above)

EXAMPLE
LoadBGPic(2, "MyBG.iff", {Transparency = $00FF00})

This loads "MyBG.iff" as background picture 2 with the color green as transparency
mask.

20.14 ScaleBGPic

NAME
ScaleBGPic – scale a background picture (V1.5)

SYNOPSIS
ScaleBGPic(id, width, height[, smooth])

FUNCTION
This function scales the background picture specified by id to the specified width and
height. You cannot use this function with the background picture that is currently
displayed. If you want to change the size of this picture, you will have to change the
display size using ChangeDisplaySize().

Hollywood keeps the original picture of every background picture so that you do not have
to do that. Every scaling done with ScaleBGPic() is made with the original picture and
not with a scaled versions (in contrast to ScaleBrush()). The original picture will only
be deleted if you modify the background picture’s contents using SelectBGPic().

246 Hollywood manual

New in V2.0: You can pass #KEEPASPRAT as either width or height. Hollywood will
calculate the size then automatically by taking the aspect-ratio of the background picture
into account.

Starting with Hollywood 2.0, width and height can also be a string containing a percent
specification, e.g. "50%".

Starting with Hollywood 2.5 you can choose to have the scaled graphics interpolated by
passing True in the smooth argument. The graphics will then be scaled using anti-alias.

INPUTS

id background picture to scale

width new width for the background picture

height new height for the background picture

smooth optional: whether or not anti-aliased scaling shall be used (V2.5)

20.15 SelectBGPic

NAME
SelectBGPic – select a background picture as output device (V1.5)

SYNOPSIS
SelectBGPic(id[, mode, combomode])

FUNCTION
This function selects the BGPic specified by id as the current output device. This
command be used in various different modes. The usual mode to use SelectBGPic()

is layers mode (#SELMODE_LAYERS) which is also the default mode. Layers mode means
that all graphics data that are output by Hollywood will be added as layers to this
background picture. Therefore you will have to enable layers before using this command
in layers mode. Your background picture will never be modified in layers mode, it will
just get more and more layers.

Alternatively, you can use the #SELMODE_NORMAL or #SELMODE_COMBO modes. These
modes will modify your BGPic’s data. They can only be used on BGPics that are
currently not associated with a display. #SELMODE_NORMAL means that only the color
channels of the BGPic will be altered when you draw to it. The transparency channel
of the BGPic (can be either a mask or an alpha channel) will never be altered. You can
change this behaviour by using #SELMODE_COMBO in the optional mode argument. If you
use this mode, every Hollywood graphics command that is called after SelectBGPic()
will draw into the color and transparency channel of the BGPic. If the BGPic does not
have a transparency channel, #SELMODE_COMBO behaves the same as #SELMODE_NORMAL.

Starting with Hollywood 5.0 you can use the optional combomode argument to specify
how #SELMODE_COMBO should behave. If combomode is set to 0, the color and transparency
information of all pixels in the source image are copied to the destination image in any
case - even if the pixels are invisible. This is the default behaviour. If combomode is set
to 1, only the visible pixels are copied to the destination image. This means that if the
alpha value of a pixel in the source image is 0, i.e. invisible, it will not be copied to the

Chapter 20: BGPic library 247

destination image. Hollywood 6.0 introduces the new combomode 2. If you pass 2 in
combomode, Hollywood will blend color channels and alpha channel of the source image
into the destination image’s color and alpha channels. When you draw the destination
image later, it will look as if the two images had been drawn on top of each other
consecutively. Please note that the combomode argument is only supported together
with #SELMODE_COMBO. It doesn’t have any effect when used with the other modes.

Note that when you use #SELMODE_NORMAL or #SELMODE_COMBO, the original graphics
of the BGPic are modified. You will always be drawing to the original graphics of the
BGPic. Imagine that you have a 640x480 BGPic that is currently scaled to 800x600
because you called ChangeDisplaySize(). If you call SelectBGPic() with #SELMODE_

NORMAL or #SELMODE_COMBO now on this BGPic, you will actually be drawing to the
640x480 picture. The 800x600 picture will be updated when EndSelect() is called. On
EndSelect(), Hollywood will scale the original graphics to the current output size of
the BGPic, but your initial drawing will always occur on the original BGPic.

An alternative way to draw into the transparency channels of a BGPic is to do this sepa-
rately using SelectMask() or SelectAlphaChannel(). These two commands, however,
will write data to the transparency channel only. They will not touch the color channel.
So if you want both channels, color and transparency, to be affected, you need to use
SelectBGPic() with mode set to #SELMODE_COMBO.

When you are finished with rendering to your BGPic and want your display to become
the output device again, just call EndSelect().

Only commands that output graphics directly can be used after SelectBGPic().
You may not call animated functions like MoveBrush() or DisplayBrushFX() while
SelectBGPic() is active.

When mode is set to #SELMODE_LAYERS, SelectBGPic() can also come handy when you
want to make multiple changes to the layers of the current BGPic without causing a
refresh after each change. For example, you may want to insert 100 new layers at once.
This would be pretty slow if you did it in the conventional way because Hollywood would
refresh the display a hundred times. To avoid this, you can simply call SelectBGPic()
and insert the 100 layers and Hollywood will not refresh the display before you call
EndSelect(). Inside a SelectBGPic()-EndSelect() block, you can do as many changes
as you like. They will not be drawn before EndSelect() is called. See below for an
example.

INPUTS

id background picture which shall be used as output device

mode optional: rendering mode to use (see above); this can be either
#SELMODE_LAYERS, #SELMODE_NORMAL or #SELMODE_COMBO; defaults to
#SELMODE_LAYERS (V4.5)

combomode

optional: mode to use when #SELMODE_COMBO is active (see above); defaults
to 0 (V5.0)

EXAMPLE
EnableLayers()

SelectBGPic(2)

248 Hollywood manual

TextOut(#CENTER, #CENTER, "Hello World")

Box(0, 0, 100, 100, #RED)

Box(#RIGHT, #BOTTOM, 100, 100, #BLUE)

EndSelect()

DisplayBGPic(2)

The above code selects background picture 2 as the current output device and adds three
layers to it (one text and two rectangles). After that, the display is selected as the output
device and then background picture 2 is displayed with its three layers.

SetFillStyle(#FILLCOLOR)

EnableLayers

SelectBGPic(1) ; we assume that 1 is our current BGPic

; add 100 random layers

For Local k = 1 To 100

Box(Rnd(540), Rnd(380), 100, 100, RGB(Rnd(255), Rnd(255), Rnd(255)))

Next

EndSelect ; now the 100 layers are drawn in one go!

This code illustrates the case discussed above. You need to make lots of changes and
you want to defer drawing for performance reasons. In our case, we want to add 100
layers to the current BGPic. So we encapsulate this code by a SelectBGPic()-EndSelect
block. Hollywood will silently add the 100 layers and will draw them in one go when
EndSelect() is called. This is much faster than adding them without SelectBGPic()

because in that case every call to Box() would cause a refresh.

20.16 Vector BGPics

When you load a vector image using LoadBGPic() or @BGPIC, you will get a special type
of BGPic: a vector BGPic. When loading normal images like PNG, JPEG, etc. you will
always get a raster BGPic. You can find out the type of a BGPic by querying the #ATTRTYPE
attribute using GetAttribute().

The advantage of a vector BGPic is that you can scale and/or transform it without any
quality losses. For example, when the user resizes a display, its BGPic can be adapted to
the new size without quality sacrifices. So it is possible to create scripts which are infinitely
scalable. All you have to do is stick to vector BGPics, vector brushes, and vector text (i.e.
use TrueType fonts).

Besides vector BGPics generated from vector image formats, there are also some other
types of vector BGPics in Hollywood. For example, the CreateGradientBGPic() and
CreateTexturedBGPic() functions will also create vector BGPics that can be infinitely
scaled.

249

21 Brush library

21.1 Overview

Brushes are the most flexible image type in Hollywood. You can create a brush by either
loading an image file from disk using LoadBrush() or creating image data in memory
using CreateBrush(). Hollywood’s brush library contains a multitude of functions that
allow you to transform brushes or process them using a wide variety of image filters. You
can also draw to a brush by selecting it as the current output device. This is done by
using the SelectBrush() function. See Section 21.64 [SelectBrush], page 303, for details.
You can also draw to a brush’s mask or alpha channel by using the SelectMask() or
SelectAlphaChannel() functions, respectively.

Here is a short code snippet which loads a brush from an image file and draws it to the
center of the display:

LoadBrush(1, "test.jpg")

DisplayBrush(1, #CENTER, #CENTER)

Most other image types in Hollywood can be converted to brushes and vice versa. That’s
why brushes are the most flexible image type Hollywood offers. For hardware-accelerated
drawing, Hollywood also supports hardware brushes. See Section 21.37 [Hardware brush
information], page 280, for details.

Normally, brushes contain raster pixel data, but Hollywood also supports special vector
brushes which consist of vector path data instead and can thus be freely transformed. See
Section 21.80 [Vector brush information], page 316, for details.

21.2 ArcDistortBrush

NAME
ArcDistortBrush – apply arc distortion to brush (V5.0)

SYNOPSIS
ArcDistortBrush(id, angle1[, angle2, rtop, rbottom, smooth])

FUNCTION
This command can be used to apply arc distortion to the brush specified in id. The
angle1 argument specifies the angle over which the brush should be arc’ed. The optional
arguments can be used to control further parameters for the arc distortion. angle2 can
be used to rotate the brush around the circle, and the rtop and rbottom values can
be used to adjust the top and bottom radii settings. Finally, the optional argument
smooth can be used to enable antialiased pixel interpolation which leads to a smoother
appearance but takes longer to calculate.

INPUTS

id brush that shall be distorted

angle1 angle over which to bend the brush

angle2 optional: angle for rotating the brush around the circle (defaults to 0)

250 Hollywood manual

rtop optional: top edge of brush will be set to this radius (defaults to an au-
tomatically calculated value that tries to keep the aspect-ratio as good as
possible)

rbottom optional: bottom edge of brush will be set to this radius (defaults to an
automatically calculated value that tries to keep the aspect-ratio as good as
possible)

smooth optional: whether or not anti-aliased distortion shall be used (defaults to
False)

21.3 BarrelDistortBrush

NAME
BarrelDistortBrush – apply barrel distortion to brush (V5.0)

SYNOPSIS
BarrelDistortBrush(id, ...)

BarrelDistortBrush(id, A, B, C, D[, X, Y])

BarrelDistortBrush(id, Ax, Bx, Cx, Dx, Ay, By, Cy, Dy[, X, Y])

FUNCTION
This command can be used to apply barrel distortion to the brush specified in id. You
can use this function in two different ways: The first way requires you to pass at least
three coefficients (A, B, C) that define the barrel distortion. Optionally, you can specify
a fourth coefficient (D) and a center point for the radial distortion (X and Y). The center
point has to passed in pixels whereas the coefficients must be specified as floating point
values. If all coefficients add up to 1.0, there will be no change in the picture.

The second way of using this function is to provide separate coefficients for the x and
y axis. In that case, you have to pass 8 coefficients (4 for every axis). As in the first
variant, you can optionally specify a center point.

Finally, the optional argument smooth can be used to enable antialiased pixel interpola-
tion which leads to a smoother appearance but takes longer to calculate.

INPUTS

id brush that shall be distorted

... coefficients for the barrel distortion (see above)

X optional: x coordinate of center point (defaults to half of brush width)

Y optional: y coordinate of center point (defaults to half of brush height)

smooth optional: whether or not anti-aliased distortion shall be used (defaults to
False)

Chapter 21: Brush library 251

21.4 BGPicToBrush

NAME
BGPicToBrush – convert a background picture to a brush

SYNOPSIS
BGPicToBrush(bgpicid, brushid)

FUNCTION
This function makes a copy of the background picture specified by bgpicid and converts
it to a brush that will be accessible with the number brushid then. Everything will be
cloned so the brush is independent of background picture (you could free it after this
operation for example and the brush would still be usable!).

INPUTS

bgpicid background picture to clone

brushid id for the new brush

EXAMPLE
BGPicToBrush(1,5)

DisplayBrush(5,#CENTER,#CENTER)

The above code copies the background picture 1 to brush 5 and displays this brush then.

21.5 BlurBrush

NAME
BlurBrush – apply Gaussian blur to brush (V5.0)

SYNOPSIS
BlurBrush(id[, radius])

FUNCTION
This command applies a Gaussian blur to the specified brush. The optional argument
radius can be used to specify the blur radius. The larger the radius you specify here,
the longer this function needs to apply the blur effect. If you do not specify the optional
argument, BlurBrush() will automatically choose a blur radius.

Note that this function cannot be used with palette brushes.

INPUTS

id brush to blur

radius optional: blur radius (defaults to 0 which means that the radius will be
chosen automatically)

21.6 BRUSH

NAME
BRUSH – preload a brush for later use (V2.0)

252 Hollywood manual

SYNOPSIS
@BRUSH id, filename$[, table]

FUNCTION
This preprocessor command preloads the brush specified in filename$ and assigns the
identifier id to it.

Image formats that are supported on all platforms are PNG, JPEG, BMP, IFF ILBM,
GIF, and image formats you have a plugin for. Depending on the platform Hollywood is
running on, more image formats might be supported. For example, on Amiga compatible
systems Hollywood will be able to open all image formats you have datatypes for as well.
On Windows, @BRUSH can also load image formats supported by the Windows Imaging
Component.

Starting with Hollywood 5.0, this function can also load vector formats like SVG if you
have an appropriate plugin installed. Keep in mind, though, that when you load vector
images using this command, the brush will be a special vector brush which does not
support all features of the normal brushes. You can, however, convert vector brushes
to raster brushes by using the RasterizeBrush() function. See Section 21.80 [Vector
brushes], page 316, for more information on vector brushes.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Transparency:

This field can be used to specify a color in RGB notation that shall be made
transparent in the brush.

LoadAlpha:

Set this field to True if the alpha channel of the image shall be loaded,
too. Please note that not all pictures have an alpha channel and that not
all picture formats are capable of storing alpha channel information. It is
suggested that you use the PNG format if you need alpha channel data. This
field defaults to False.

Link: Set this field to False if you do not want to have this brush linked to
your executable/applet when you compile your script. This field defaults to
True which means that the brush is linked to your executable/applet when
Hollywood is in compile mode.

X, Y, Width, Height:

These fields can be used to load only a part of the image into the brush. This
is useful if you have one big image with many different small images in it
and now you want to load the small images into single brushes. Using these
fields you can specify a rectangle inside the image from which Hollywood
will take the graphics data for the brush.

Hardware:

If you set this tag to True, Hollywood will create this brush entirely in video
memory for hardware-accelerated drawing in connection with a hardware
double buffer. Hardware brushes are subject to several restrictions. See
Section 21.37 [hardware brushes], page 280, for details. (V5.0)

Chapter 21: Brush library 253

ScaleWidth, ScaleHeight:

These fields can be used to load a scaled version of the image. If the image
driver supports scaled loading, this will give you some significant speed-up
for example in case you just want to load a thumbnail-sized version of a large
image. If the image driver does not support scaled loading, the full image
will be loaded first before it is scaled. This is not much faster than manually
scaling the image after loading. You can pass an absolute pixel value or a
string containing a percent specification here. (V5.3)

SmoothScale:

If ScaleWidth or ScaleHeight is set, you can use this item to specify
whether or not Hollywood shall use anti-aliased scaling. Defaults to False

which means no anti-aliasing. Note that anti-aliased scaling is much slower
than normal scaling. (V5.3)

Display: If you specify the identifier of a display here, Hollywood will create a display-
dependent hardware brush for you. Display-dependent hardware brushes can
only be drawn to the display they belong to. This tag is only handled if the
Hardware tag has been set to True. Also note that Hollywood’s inbuilt
display adapter does not support display-dependent hardware brushes, but
plugins can install custom display adapters which support display-dependent
hardware brushes. This tag defaults to the identifier of the currently active
display. See Section 21.37 [hardware brushes], page 280, for details. (V6.0)

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this brush. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

LoadTransparency:

If this tag is set to True, the monochrome transparency of the image will
be loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based image. If
you want to load the alphachannel of an image, set the LoadAlpha tag to
True. This tag defaults to False. (V6.0)

LoadPalette:

If this tag is set to True, Hollywood will load the brush as a palette brush.
This means that you can get and modify the brush’s palette which is useful
for certain effects like color cycling. You can also make pens transparent
using the TransparentPen tag (see below) or the LoadTransparency tag (see
above). Palette brushes also have the advantage of requiring less memory
because 1 pixel just needs 1 byte of memory instead of 4 bytes for 32-bit
images. This tag defaults to False. (V9.0)

254 Hollywood manual

TransparentPen:

If the LoadPalette tag has been set to True (see above), the
TransparentPen tag can be used to define a pen that should be made
transparent. Pens are counted from 0. Alternatively, you can also set the
LoadTransparency tag to True to force Hollywood to use the transparent
pen that is stored in the image file (if the image format supports the
storage of transparent pens). This tag defaults to #NOPEN. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. A brush can only have one transparency setting!

If you want to load brushes manually, please use the LoadBrush() command.

INPUTS

id a value that is used to identify this brush later in the code

filename$

the picture file you want to load

table optional argument specifying further options

EXAMPLE
@BRUSH 1, "MyBrush.png"

Load "MyBrush.png" as brush 1 with no transparency.

@BRUSH 1, "MyBrush.png", {Transparency = $FF0000}

Does the same like above but the brush is now transparent (transparency color is
red=$FF0000).

@BRUSH 1, "Sprites.png", {X = 64, Y = 32, Width = 32, Height = 32}

Loads an image of 32x32 pixels from "Sprites.png" starting at X=64 and Y=32.

21.7 BrushToGray

NAME
BrushToGray – convert brush to gray (V1.5)

SYNOPSIS
BrushToGray(id)

FUNCTION
This function converts the brush specified by id to gray. If the brush is big, this can
take some time.

Note that if id specifies a palette brush, BrushToGray() will just convert the palette
colors to gray which makes this function really fast when used with palette brushes.

Chapter 21: Brush library 255

INPUTS

id identifier of the brush to convert

EXAMPLE
BrushToGray(1)

Convert brush 1 to gray.

21.8 BrushToMonochrome

NAME
BrushToMonochrome – convert brush to black and white (V5.0)

SYNOPSIS
BrushToMonochrome(id[, dither])

FUNCTION
This command can be used to map a brush to black and white colors. If the optional
argument dither is set to True, dithering will be applied. Dithering is slower but
generates better looking images.

Note that this function cannot be used with palette brushes.

INPUTS

id brush to convert to black & white

dither optional: whether or not dithering shall be used (defaults to True)

21.9 BrushToPenArray

NAME
BrushToPenArray – convert palette brush to pen array (V9.0)

SYNOPSIS
table = BrushToPenArray(id)

FUNCTION
This command copies all pens from the specified palette brush to a table and returns
that table to you. The table can be seen as a matrix containing a number of rows that is
identical to the brush’s height where each row has a number of elements that is identical
to the brush’s width. The order of the pixel data in this table is as follows: Row after
row in top-down format, i.e. the table starts with the first row of pixels.

Note that the rows won’t be stored as subtables. The table returned by
BrushToPenArray() will be one-dimensional and will contain exactly $height * $width
elements, stored sequentially, row after row.

Please note that the table that you get from this function will usually eat lots of memory.
Thus, you should set this table to Nil as soon as you no longer need it. Otherwise you
will waste huge amounts of memory and it could even happen that your script runs out
of memory altogether. So please keep in mind that you should always set pixel array
tables to Nil as soon as you are done with them.

256 Hollywood manual

To convert a pen array back to a palette brush, you can use the PenArrayToBrush()

function. See Section 21.48 [PenArrayToBrush], page 288, for details.

If you want to have RGB colors instead of pen values, you have to use the
BrushToRGBArray() function instead. See Section 21.10 [BrushToRGBArray], page 256,
for details.

INPUTS

id identifier of the palette brush to be converted to a pen array

RESULTS

table a table containing all pens from the source brush; do not forget to set this
table to Nil when you are done with it!

21.10 BrushToRGBArray

NAME
BrushToRGBArray – convert brush to pixel array (V5.0)

SYNOPSIS
table = BrushToRGBArray(id[, invalpha])

FUNCTION
This command copies all pixels from the specified brush to a table and returns that table
to you. The table can be seen as a matrix containing a number of rows that is identical
to the brush’s height where each row has a number of elements that is identical to the
brush’s width. The order of the pixel data in this table is as follows: Row after row in
top-down format, i.e. the table starts with the first row of pixels. The single pixels are
stored as ARGB values.

Note that the rows won’t be stored as subtables. The table returned by
BrushToRGBArray() will be one-dimensional and will contain exactly $height * $width
elements, stored sequentially, row after row.

The optional argument invalpha can be used to tell BrushToRGBArray() that all alpha
channel values shall be inverted. This means that a value of 0 means 100% visibility
and a value of 255 means invisibility. Normally, it is just the other way round. Due to
historical reasons, the Hollywood drawing library uses inverted alpha values, and this
why they are also supported by BrushToRGBArray(), although they are not the default.

Please note that the table that you get from this function will usually eat lots of memory.
Thus, you should set this table to Nil as soon as you no longer need it. Otherwise you
will waste huge amounts of memory and it could even happen that your script runs out
of memory altogether. So please keep in mind that you should always set pixel array
tables to Nil as soon as you are done with them.

To convert a pixel array back to a brush, you can use the RGBArrayToBrush() function.

Note that for palette brushes, there is also the BrushToPenArray() function which will
return the brush’s pen values instead of RGB colors. See Section 21.9 [BrushToPenAr-
ray], page 255, for details.

Chapter 21: Brush library 257

INPUTS

id identifier of the brush to convert to RGB array

invalpha optional: whether to use inverted alpha values (defaults to False which
means do not invert alpha values)

RESULTS

table a table containing all pixels from the source brush; do not forget to set this
table to Nil when you are done with it!

21.11 ChangeBrushTransparency

NAME
ChangeBrushTransparency – change transparency mode of brush (V5.0)

SYNOPSIS
ChangeBrushTransparency(id, mode)

FUNCTION
This command can be used to change the transparency mode of a brush. Hollywood
currently supports three different transparency modes:

#NONE: No transparency. The entire brush is visible.

#MASK: Monochrome transparency. Every pixel can either be visible or invisible.

#ALPHACHANNEL:

Gradual transparency. Every pixel can have 256 different levels of trans-
parency. An alpha channel value of 0 means full transparency, whereas an
alpha channel value of 255 means no transparency.

ChangeBrushTransparency() is especially useful for switching between the #MASK and
#ALPHACHANNEL modes. For example, when you load a brush using LoadBrush() and
you use the Transparency tag to make a color transparent, you will always get a brush
that has a #MASK transparency mode. However, in some cases you might want the brush
to use a mode of #ALPHACHANNEL instead; because you want to modify the values using
SelectAlphaChannel(), for example. In that case, ChangeBrushTransparency() can
be quite helpful.

Note that this function cannot be used with palette brushes.

INPUTS

id brush whose transparency mode you want to change

mode desired new transparency; can be #NONE, #MASK, or #ALPHACHANNEL

EXAMPLE
LoadBrush(1, "test.iff", {Transparency = #RED})

ChangeBrushTransparency(1, #ALPHACHANNEL)

The code above loads the image "test.iff" into brush 1, makes color red transparent, and
then changes the transparency mode from #MASK to #ALPHACHANNEL.

258 Hollywood manual

21.12 CharcoalBrush

NAME
CharcoalBrush – apply charcoal drawing effect to brush (V5.0)

SYNOPSIS
CharcoalBrush(id, radius)

FUNCTION
This command applies a charcoal drawing effect to the specified brush. The radius

argument specifies the charcoal radius. The larger the radius you specify here, the
longer this function needs to calculate the resulting images.

Note that this function cannot be used with palette brushes.

INPUTS

id brush to modify

radius charcoal effect radius

21.13 ContrastBrush

NAME
ContrastBrush – enhance or reduce brush contrast (V5.0)

SYNOPSIS
ContrastBrush(id, inc[, repeat])

FUNCTION
This command can be used to enhance or reduce the color contrast in the specified brush.
If the inc argument is set to True, the contrast is enhanced. If it is set to False, the
contrast is reduced. The optional argument repeat can be used to apply the effect to
the brush multiple times. This is useful if you want to create sharper contrasts.

Note that if id specifies a palette brush, ContrastBrush() will just apply the contrast to
the palette colors which makes this function really fast when used with palette brushes.

INPUTS

id brush to modify

inc True to increase contrast, False to decrease contrast

repeat optional: specifies how many times the contrast operation should be repeated
(defaults to 1 which means run the effect just once)

21.14 ConvertToBrush

NAME
ConvertToBrush – convert object to brush (V2.5)

SYNOPSIS
[id] = ConvertToBrush(sourcetype, sourceid, dest[, t])

Chapter 21: Brush library 259

FUNCTION
This function allows you to create a new brush from an existing graphics object. This is
useful, for example, to copy the image data from single anim or sprite frames to a brush.
You could then modify them and convert them back into an animation or sprite. You
can also access the graphics of layers and other image types with this function.

Having graphics as brushes is so convenient because brushes are the most flexible graphics
type in Hollywood. Most of the image manipulating functions work only with brushes.
That is why you will often want to convert your graphics data to the brush format.

The sourcetype argument specifies the type of the source object that shall be converted
into a brush. It can be one of the following types:

#ANIM Create a new brush from a single frame from an anim object. By default,
the first anim frame will be converted to a brush. You can change this by
passing the Frame tag in the optional table argument (see below).

#BGPIC Create a new brush from a background picture.

#BRUSH Create a new brush from an other brush. This does the same as the
CopyBrush() command.

#ICON Create a new brush from an image inside an icon. Since icons can contain
multiple images, you can use the Frame tag of the optional table argument
to specify the index of the image that should be converted to a brush. By
default, the first image in the icon will be converted to a brush. You can
also use the Selected tag of the optional table argument to specify whether
or not the selected icon image should be converted to a brush. By default,
the normal image will be converted to a brush. (V8.0)

This type requires you to pass the optional argument par which must be set
to the index of icon image you wish to have converted into a brush. Icon
image indices are counted from 1 until the number of images in the icon.
Additionally, you can specify the optional argument par2: If you set this
to True, the selected icon image will be converted to a brush, otherwise the
normal image will be converted to a brush, which is also the default mode.
(V8.0)

#LAYER Create a new brush from a layer (requires layers to be enabled!). If the layer
is an anim layer, you can use the Frame tag in the optional table argument
to specify which frame of the anim layer should be converted to a brush (see
below). By default, the first frame will be converted.

#SPRITE Create a new brush from a single frame from a sprite object. By default,
the first sprite frame will be converted to a brush. You can change this by
passing the Frame tag in the optional table argument (see below).

#TEXTOBJECT

Create a new brush from a text object.

#VECTORPATH

Create a vector brush from one or more path object(s). If you use this
type, the sourceid argument is unused. Instead, you need to pass a table
argument in the Path tag in the optional table argument. This table must

260 Hollywood manual

contain information about the individual paths to be embedded inside the
new vector brush. The table uses the same layout as the table you have
to pass to the PathToBrush() function. See Section 56.26 [PathToBrush],
page 1191, for details. (V7.0)

The optional table argument allows you to pass the following additional options:

Frame: If the source type specifies a graphics object that has multiple frames, you
can use this tag to specify the frame that should be converted to a brush.
Frames are counted from 1 until the number of frames. This tag defaults to
1.

Selected:

If the source type is #ICON, you can use this tag to specify whether the se-
lected or normal image should be converted to a brush. Icon images have two
states: normal and selected. If you set Selected to True, the selected image
will be converted to a brush. Otherwise ConvertToBrush() will convert the
normal image to a brush. Defaults to False. (V8.0)

Path: If the source type is #VECTORPATH, you must set this tag to a table which
contains information about the individual paths to be embedded inside the
new vector brush. The table uses the same layout as the table you have
to pass to the PathToBrush() function. See Section 56.26 [PathToBrush],
page 1191, for details. (V7.0)

Vector: By default, ConvertToBrush() will convert vector images to raster brushes.
If you want to convert them to vector brushes, set this tag to True. This
makes it possible to convert vector text objects or vector anim frames to
vector brushes that can be scaled and rotated without any quality losses.
Defaults to False. (V10.0)

INPUTS

sourcetype

type of the source object (see list above)

sourceid identifier of the source object

dest id for the brush to be created or Nil for auto id selection

t optional: table argument containing further options (see above)

RESULTS

id optional: handle to the new brush; will only be returned if you specified Nil

in dest

EXAMPLE
ConvertToBrush(#SPRITE, 1, 10, {Frame = 5})

The code above creates a new brush with the id 10 from frame 5 of sprite number 1.

Chapter 21: Brush library 261

21.15 CopyBrush

NAME
CopyBrush – clone a brush (V1.5)

SYNOPSIS
[id] = CopyBrush(source, dest[, table])

FUNCTION
This function clones the brush specified by source and creates a copy of it in brush
dest. The new brush is independent from the old brush so you could free the source
brush after it has been cloned.

If you pass Nil as dest, CopyBrush() will return a handle to the new brush to you.
Otherwise the new brush will use the identifier specified in dest.

Starting with Hollywood 5.0, this function accepts an optional table argument which
accepts the following fields:

Hardware:

If you set this tag to True, Hollywood will create this brush entirely in video
memory for hardware-accelerated drawing in connection with a hardware
double buffer. Hardware brushes are subject to several restrictions. See
Section 21.37 [hardware brushes], page 280, for details. (V5.0)

Display: If you specify the identifier of a display here, Hollywood will create a display-
dependent hardware brush for you. Display-dependent hardware brushes can
only be drawn to the display they belong to. This tag is only handled if the
Hardware tag has been set to True. Also note that Hollywood’s inbuilt
display adapter does not support display-dependent hardware brushes, but
plugins can install custom display adapters which support display-dependent
hardware brushes. This tag defaults to the identifier of the currently active
display. See Section 21.37 [hardware brushes], page 280, for details. (V6.0)

SmoothScale:

If you set this tag to True and the Hardware tag has also been set to True,
Hollywood (or display adapters) will use bilinear interpolation when trans-
forming the newly created brush. Normally, whether interpolation shall
be used or not is set when calling a brush transformation command like
ScaleBrush() or RotateBrush() but some display adapters need to know
this information already at the time a hardware brush is created, and this is
why this tag is here, though it’s probably of not much use because it’s only
needed in rather special situations with display adapters like RebelSDL or
hardware brushes on Android, because normally you can just specify whether
interpolation shall be used or not in the transformation command directly.
Note that SmoothScale is only supported when Hardware is set to True.
(V8.0)

INPUTS

source source brush id

dest identifier of the brush to be created or Nil for auto id selection

262 Hollywood manual

table optional: table configuring further options (V5.0)

RESULTS

id optional: handle to the new brush; will only be returned if you specified Nil

in dest

EXAMPLE
CopyBrush(1, 10)

FreeBrush(1)

The above code creates a new brush 10 which contains the same graphics data as brush
1. Then it frees brush 1 because it is no longer needed.

21.16 CreateBorderBrush

NAME
CreateBorderBrush – make border brush from brush (V5.0)

SYNOPSIS
[id] = CreateBorderBrush(id, src, color[, size])

FUNCTION
This command creates a border from the brush specified in src and copies that border
to a new brush that is specified in id. If id is set to Nil, CreateBorderBrush() will
automatically choose an identifier and return it to you. If id is not Nil, there will be no
return value. The color argument must be set to the color that the border shall be drawn
in. This must be a color in ARGB notation so you can also use a transparency setting
here. Finally, the optional argument size can be used to specify the drop shadow’s size.

Note that the size argument does not specify absolute width or height values but a
relative factor by which the source brush will be grown on each side. This means that
the border brush’s width will be the source brush’s width plus two times size, and the
same applies to the border’s height.

INPUTS

id identifier for the new border brush or Nil for auto id selection

src the brush whose border shall be generated

color desired border color as an ARGB value

size optional: desired border size (defaults to 5)

RESULTS

id optional: identifier of the border brush; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
bordersize = 20

CreateBrush(1, 320, 240, #RED)

CreateBorderBrush(2, 1, #BLACK, bordersize)

DisplayBrush(2, 0, 0)

Chapter 21: Brush library 263

DisplayBrush(1, bordersize, bordersize)

The code above creates a border for a 320x240 red rectangle and displays it beneath it.

21.17 CreateBrush

NAME
CreateBrush – create a blank brush (V1.5)

SYNOPSIS
[id] = CreateBrush(id, width, height[[, color], table])

FUNCTION
This function creates a new brush in the specified dimensions and initializes it to the
specified color. If no color is specified, the brush is initialized to black. If you specify
Nil in the id argument, CreateBrush() will automatically choose an identifier for this
brush and return it to you.

Starting with Hollywood 4.5, there is an optional table argument which you can use to
create a mask or an alpha channel for this brush. The following tags are recognized by
the optional table:

Mask: Set this tag to True if CreateBrush() should attach a mask to the new
brush. If this is True, AlphaChannel must be False. Defaults to False.

AlphaChannel:

Set this tag to True if CreateBrush() should attach an alpha channel to
the new brush. If this is set to True, Mask must be set to False. Defaults
to False.

Clear: This tag is only handled if either AlphaChannel or Mask was set to True. If
that is the case, Clear specifies whether or not the mask or alpha channel
should be cleared (i.e. fully transparent) or not (i.e. opaque). This defaults
to False which means that by default, the new mask or alpha channel will
be opaque.

Hardware:

If you set this tag to True, Hollywood will create this brush entirely in video
memory for hardware-accelerated drawing in connection with a hardware
double buffer. Hardware brushes are subject to several restrictions. See
Section 21.37 [hardware brushes], page 280, for details. (V6.0)

Display: If you specify the identifier of a display here, Hollywood will create a display-
dependent hardware brush for you. Display-dependent hardware brushes can
only be drawn to the display they belong to. This tag is only handled if the
Hardware tag has been set to True. Also note that Hollywood’s inbuilt
display adapter does not support display-dependent hardware brushes, but
plugins can install custom display adapters which support display-dependent
hardware brushes. This tag defaults to the identifier of the currently active
display. See Section 21.37 [hardware brushes], page 280, for details. (V6.0)

264 Hollywood manual

SmoothScale:

If you set this tag to True and the Hardware tag has also been set to True,
Hollywood (or display adapters) will use bilinear interpolation when trans-
forming this brush. Normally, whether interpolation shall be used or not
is set when calling a brush transformation command like ScaleBrush() or
RotateBrush() but some display adapters need to know this information
already at the time a hardware brush is created, and this is why this tag
is here, though it’s probably of not much use because it’s only needed in
rather special situations with display adapters like RebelSDL or hardware
brushes on Android, because normally you can just specify whether inter-
polation shall be used or not in the transformation command directly. Note
that SmoothScale is only supported when Hardware is set to True. (V8.0)

Palette: If this tag is set to the identifier of a palette, Hollywood will create a palette
brush for you. Palettes can be created using functions like CreatePalette()
or LoadPalette(). Alternatively, you can also set this tag to one of Holly-
wood’s inbuilt palettes, e.g. #PALETTE_AGA. See Section 44.36 [SetStandard-
Palette], page 918, for a list of inbuilt palettes. (V9.0)

FillPen: If the Palette tag is set (see above), you can use this tag to set the pen
that should be used for filling the brush’s background. Note that the color
parameter that is passed to CreateBrush() is ignored if Palette is True.
That’s why this tag is here to allow you to specify a pen that will be used
when initializing the brush’s pixels. Defaults to 0. (V9.0)

TransparentPen:

If Palette is set to True, this tag can be used to specify a pen that should
be made transparent in the new brush. Defaults to #NOPEN which means
that there should be no transparent pen. (V9.0)

Depth: This tag allows you to set the desired brush depth. If this is less than or
equal to 8, CreateBrush() will create a palette brush. You can also specify
the Palette tag together with the Depth tag. If the specified palette has
more colors than the specified depth, those colors will be discarded. If it has
less colors, the unused pens will be set to black. By default, CreateBrush()
will create 24-bit or 32-bit brushes, depending on whether the AlphaChannel
tag is set to True or False. (V10.0)

Callback:

If you set this tag to a callback function, CreateBrush() will create a
custom-drawn brush for you. In comparison to normal brushes, custom-
drawn brushes are backed by a callback function that Hollywood will call
whenever the dimensions of the brush change or a transformation is applied.
This allows you to create brushes which dynamically adapt themselves to new
resolutions and transformations. This is very similar to what vector brushes
do except that custom-drawn brushes allow you to assume full control over
the process because your callback does all the drawing. Your callback will
also be called immediately by CreateBrush() to do the initial drawing of
the brush.

Chapter 21: Brush library 265

Custom-drawn brushes can be very useful to implement your own vector
brush type. Since custom-drawn brushes get the chance to redraw them-
selves whenever their resolution or transformation changes, you can use them
to create brushes which can be scaled or transformed without any losses in
quality because your callback redraws the graphics whenever the brush di-
mensions change instead of just scaling its pixels using conventional lossy
scaling. This is especially useful when using the layerscale engine with cus-
tom graphics. If you use custom-drawn brushes for a layer, you can be sure
that that layer will scale losslessly to all resolutions.

The callback function you specify in Callback will receive a message as
parameter 1 with the following fields initialized:

Action: Initialized to Draw.

ID: Identifier of the brush to draw to. Note that this won’t be the
same identifier as the brush you created using CreateBrush().
Your callback needs to call SelectBrush() on the brush speci-
fied in ID and draw the desired graphics to the brush, taking the
current transformation into account (see below). You can also
call SelectMask() and SelectAlphaChannel() on the brush in
case you need to adjust transparency setting.

Width: Current width of the brush.

Height: Current height of the brush.

SX: Specifies the amount of scaling on the x axis. If it is negative,
the image is flipped on the y axis. This will never be 0.

RX: Specifies the amount of rotation on the x axis. This can be 0.

RY: Specifies the amount of rotation on the y axis. This can be 0.

SY: Specifies the amount of scaling on the y axis. If it is negative,
the image is flipped on the x axis. This will never be 0.

UserData:

This will be set to the user data you passed in the UserData tag
of the optional table argument supported by CreateBrush()

(see below). If you haven’t passed any user data in your call to
CreateBrush(), this tag won’t be set.

(V10.0)

UserData:

If you have set the Callback tag (see above), you can use this tag to store
some user data that will be passed to your callback whenever Hollywood
calls it. The user data can be of any type. (V10.0)

INPUTS

id id for the new brush or Nil for auto id selection

width width for the brush

266 Hollywood manual

height height for the brush

color optional: RGB color for background (defaults to #BLACK)

table optional: table for specifying further options (see above) (V4.5)

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
CreateBrush(2, 320, 256, #BLUE)

The above code creates a new blue brush with the id 2 and the dimension of 320x256.

CreateBrush(2, 320, 256, #BLUE, {AlphaChannel = True, Clear = True})

The code above creates a new blue brush with id 2 in a size of 320x256. The new brush
will also get an alpha channel that will be set to 100% transparent. Thus, if you display
the new brush, you will see nothing because the brush is currently fully transparent.

CreateBrush(1, 320, 240, 0, {AlphaChannel = True, Clear = True, Callback =

Function(msg)

SelectBrush(msg.id, #SELMODE_COMBO)

SetFormStyle(#ANTIALIAS)

SetFillStyle(#FILLCOLOR)

Ellipse(0, 0, msg.width / 2, msg.height / 2, #RED)

EndSelect

EndFunction

})

ScaleBrush(1, 640, 480)

DisplayBrush(1, 0, 0)

The code above demonstrates how to create a custom-drawn brush. It creates a brush
that draws an anti-aliased ellipse in its callback function. Since the callback function is
invoked whenever the brush’s dimensions change, the ellipse will scale like a true vector
image and will be perfectly crisp in all resolutions.

21.18 CreateGradientBrush

NAME
CreateGradientBrush – create brush with gradient fill (V5.0)

SYNOPSIS
[id] = CreateGradientBrush(id, width, height, type, startcolor,

endcolor[, angle, table])

FUNCTION
This function can be used to create a new brush which is initialized to a gradient backfill.
If you specify Nil in the id argument, this function will choose an identifier for this brush
automatically and return it to you. The width and height arguments specify the desired

Chapter 21: Brush library 267

dimensions for the new brush. The type argument specifies the type of the gradient you
want to use. The following gradient types are currently available: #LINEAR, #RADIAL,
and #CONICAL. The angle argument allows you to specify a rotation angle (in degrees)
for the gradient. The angle argument is only supported by gradients of type #LINEAR

and #CONICAL. Radial gradients cannot be rotated.

The optional table argument can be used to specify advanced options. The following
tags are currently recognized:

CenterX, CenterY:

These two tags can be used to specify the center point of the gradient. As
linear gradients do not have a center point, these two tags are only handled
when you use gradients of type #RADIAL or #CONICAL. The center point must
be specified as a floating point value that is between 0.0 (left/top corner) and
1.0 (right/bottom corner). If not specified, both tags default to 0.5 which
means that the center point of the gradient is in the center of the image.

Border: This tag can be used to set the border size for gradients of type #RADIAL.
For the other gradient types this tag is ignored. The border size of the radial
gradient must be a floating point value between 0.0 and 1.0. Defaults to 0.0
which means no border.

Balance: This tag can be used to set the balance point for gradients of type #CONICAL.
For the other gradient types this tag is ignored. The balance point of the
conical gradient must be floating point value between 0.0 and 1.0. Defaults
to 0.5. Note that this is only used when creating a two-color gradient. When
creating a multi-color gradient using the Colors table, Balance is ignored
because the Colors table allows you to individually balance the colors in the
gradient using color stops.

Colors: This tag allows you to create gradients that contain multiple colors. This
tag must be set to a table that contains a sequence of alternating color and
stop values. The colors must be specified in RGB format. The stop value is
a floating point value between 0.0 and 1.0 and defines the position where the
corresponding color should be merged into the gradient. A position of 0.0
means the start position of the gradient, and a position of 1.0 means the end
position. Please note that the stop positions must be sorted in ascending
order, i.e. starting from 0.0 to 1.0. If you specify this tag, the colors specified
in the startcolor and endcolor arguments are ignored, and Hollywood will
only use the colors specified in this tag.

INPUTS

id id for the new brush or Nil for auto ID select

width desired width for the new brush

height desired height for the new brush

type type of the gradient; see above for available types

startcolor

RGB value defining the start color

268 Hollywood manual

endcolor RGB value defining the end color

angle optional: rotation angle for the gradient (default: 0)

table optional: table argument specifying further options; see above for a descrip-
tion of available options

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
See Section 20.6 [CreateGradientBGPic], page 232.

21.19 CreateShadowBrush

NAME
CreateShadowBrush – make shadow brush from brush (V5.0)

SYNOPSIS
[id] = CreateShadowBrush(id, src, color[, size])

FUNCTION
This command creates a drop shadow from the brush specified in src and copies that
shadow to a new brush that is specified in id. If id is set to Nil, CreateShadowBrush()
will automatically choose an identifier and return it to you. If id is not Nil, there will
be no return value. The color argument must be set to the color that the shadow shall
be drawn in. In most cases this will be a plain #BLACK but combined with a transparency
value because opaque shadows do not look very good. You can use the ARGB() function
to combine a color and a transparency value into an ARGB color. Finally, the optional
argument size can be used to specify the drop shadow’s size.

Note that the size argument does not specify absolute width or height values but a
relative factor by which the source brush will be grown on each side. This means that
the drop shadow brush’s width will be the source brush’s width plus two times size,
and the same applies to the drop shadow’s height.

INPUTS

id identifier for the new drop shadow brush function or Nil forauto id selection

src the brush to convert into a shadow

color desired shadow color as an ARGB value

size optional: desired shadow size (defaults to 5)

RESULTS

id optional: identifier of the drop shadow brush; will only be returned when
you pass Nil as argument 1 (see above)

EXAMPLE
shadowsize = 20

CreateBrush(1, 320, 240, #RED)

Chapter 21: Brush library 269

CreateShadowBrush(2, 1, ARGB(40, #BLACK), shadowsize)

DisplayBrush(2, 0, 0)

DisplayBrush(1, shadowsize, shadowsize)

The code above creates a drop shadow for a 320x240 red rectangle and displays it beneath
it.

21.20 CreateTexturedBrush

NAME
CreateTexturedBrush – create a textured brush (V5.0)

SYNOPSIS
[id] = CreateTexturedBrush(id, brushid, width, height[, x, y])

FUNCTION
This function will create a new brush for you and it will texture it with the brush specified
by brushid. If you specify Nil in the id argument, this function will choose an identifier
for the new brush automatically and return it to you. The width and height arguments
specify the desired dimensions for the new brush. The optional x and y parameters allow
you to specify an offset into the texture brush. Texturing will then start from this offset
in the brush. The default for these arguments is 0/0 which means start at the top-left
corner inside the texture brush.

INPUTS

id id for the new brush or Nil for auto ID select

brushid identifier of the brush to be used as the texture

width desired width for the new brush

height desired height for the new brush

x optional: start x offset in the texture brush

y optional: start y offset in the texture brush

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 1 (see above)

21.21 CropBrush

NAME
CropBrush – crop a brush (V2.0)

SYNOPSIS
CropBrush(id, x, y, width, height)

FUNCTION
This function crops the brush specified by id at the position specified by x and y to the
new dimension specified by width and height. If the brush has a mask and/or an alpha
channel, they will be cropped as well.

270 Hollywood manual

INPUTS

id brush to crop

x x-position where to start cropping

y y-position where to start cropping

width crop width

height crop height

EXAMPLE
CreateBrush(1, 200, 200)

SelectBrush(1)

Circle(50, 50, 50, #RED)

EndSelect

CropBrush(1, 50, 50, 101, 101)

DisplayBrush(1, #CENTER, #CENTER)

Creates a new brush and draws a red circle in the center of it. After that, the empty
area surrounding the circle will be cropped.

21.22 DeleteAlphaChannel

NAME
DeleteAlphaChannel – remove a brush’s alpha channel (V2.0)

SYNOPSIS
DeleteAlphaChannel(id)

FUNCTION
This function kills the alpha channel of the brush specified by id. See Section 21.63
[SelectAlphaChannel], page 301, for more information on alpha channels in general.

INPUTS

id brush whose alpha channel is to be deleted

21.23 DeleteMask

NAME
DeleteMask – remove a brush’s mask (V2.0)

SYNOPSIS
DeleteMask(id)

FUNCTION
This function kills the mask of the brush specified by id, i.e. the brush will appear
opaque then.

INPUTS

id brush whose mask is to be deleted

Chapter 21: Brush library 271

21.24 DisplayBrush

NAME
DisplayBrush – display a brush

SYNOPSIS
DisplayBrush(id, x, y[, table])

FUNCTION
This function displays the brush specified by id at the coordinates specified by x and y.

If layers are enabled, this command will add a new layer of the type #BRUSH to the layer
stack.

New in Hollywood 4.0: This command has an optional table argument now which al-
lows you to specify one or more of the standard tags for all drawing commands. See
Section 27.17 [Standard drawing tags], page 501, for more information about the stan-
dard tags that nearly all Hollywood drawing commands support.

INPUTS

id identifier of the brush to display

x x offset to display

y y offset to display

table optional: table specifying further options (V4.0)

EXAMPLE
DisplayBrush(1, #CENTER, #CENTER)

Displays brush 1 centered on the screen.

DisplayBrush(1, 0, 0, {Width = 640, Height = 480})

Displays brush 1 scaled to 640x480.

21.25 DisplayBrushFX

NAME
DisplayBrushFX – display a brush with transition effects

SYNOPSIS
[handle] = DisplayBrushFX(id, x, y[, table])

FUNCTION
This function is an extended version of the DisplayBrush() command. It displays the
brush specified by id at the position specified by x,y and it uses one of the many Holly-
wood transition effects to display it. You need also specify the speed for the transition.

If layers are enabled, this command will add a new layer of the type #BRUSH to the layer
stack.

Starting with Hollywood 4.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The

272 Hollywood manual

optional table argument can be used to configure the transition effect. The following
options are possible:

Type: Specifies the desired effect for the transition. See Section 20.11 [DisplayTran-
sitionFX], page 238, for a list of all supported transition effects. (defaults to
#RANDOMEFFECT)

Speed: Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter:

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

Async: You can use this field to create an asynchronous draw object for this tran-
sition. If you pass True here DisplayBrushFX() will exit immediately, re-
turning a handle to an asynchronous draw object which you can then draw
using AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221,
for more information on asynchronous draw objects.

INPUTS

id identifier of the brush to display

x desired x position for the brush

y desired y position for the brush

table optional: configuration for the transition effect

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
DisplayBrushFX(1, 0, 0, #VLINES, 10) ; old syntax

OR

DisplayBrushFX(1, 0, 0, {Type = #VLINES, Speed = 10}) ; new syntax

The above code displays brush 1 at 0:0 with a #VLINES transition at speed 10.

21.26 DisplayBrushPart

NAME
DisplayBrushPart – display a part of a brush

SYNOPSIS
DisplayBrushPart(id, srcx, srcy, destx, desty, width, height[, table])

FUNCTION
This function displays a tile of the brush specified by id on the screen. The tile is defined
by srcx and srcy and its width and height and it is displayed on the display at the
position specified by destx and desty.

Chapter 21: Brush library 273

If layers are enabled, this command will add a new layer of the type #BRUSHPART to the
layer stack.

New in Hollywood 4.0: This command has an optional table argument now which al-
lows you to specify one or more of the standard tags for all drawing commands. See
Section 27.17 [Standard drawing tags], page 501, for more information about the stan-
dard tags that nearly all Hollywood drawing commands support.

INPUTS

id identifier of the brush to use as source

srcx left corner in the brush

srcy top corner in the brush

destx desired x position for the brush on the screen

desty desired y position for the brush on the screen

width width of the tile

height height of the tile

table optional: table specifying further options (V4.0)

EXAMPLE
DisplayBrushPart(1,0,0,50,50,100,100)

Display the first 100 pixels and rows from brush 2 on the screen at the position 50,50.

21.27 EdgeBrush

NAME
EdgeBrush – detect edges within a brush (V5.0)

SYNOPSIS
EdgeBrush(id[, radius])

FUNCTION
This command can be used to detect edges with a brush. The optional argument radius
can be used to specify the search radius. The larger the radius you specify here, the longer
this function needs to execute. If you do not specify the optional argument, EdgeBrush()
will choose an appropriate radius automatically.

Note that this function cannot be used with palette brushes.

INPUTS

id brush to modify

radius optional: search radius (defaults to 0 which means that the radius will be
chosen automatically)

274 Hollywood manual

21.28 EmbossBrush

NAME
EmbossBrush – emboss brush (V5.0)

SYNOPSIS
EmbossBrush(id[, radius])

FUNCTION
This command applies an emboss effect to the specified brush. The optional argument
radius can be used to specify the emboss radius. The larger the radius you specify here,
the longer this function needs to apply the effect. If you do not specify the optional
argument, EmbossBrush() will automatically choose an emboss radius.

Note that this function cannot be used with palette brushes.

INPUTS

id brush to emboss

radius optional: emboss radius (defaults to 0 which means that the radius will be
chosen automatically)

21.29 EndSelect

NAME
EndSelect – select display as output device (V1.5)

SYNOPSIS
EndSelect()

FUNCTION
This function cancels the offscreen-rendering mode by selecting the display as the output
device again. All commands which output graphics will now render directly to the display
again.

Note that EndSelect() cannot be used with SelectDisplay().

Please note that the SelectXXX()/EndSelect() calls do not nest, i.e. EndSelect() will
always select the display as the output device, even if it was not the output device when
SelectXXX() was called.

SelectBrush(1)

Box(0, 0, 100, 100, #RED) ; draw box on brush #1

SelectBrush(2)

Box(0, 0, 100, 100, #GREEN) ; draw box on brush #2

EndSelect ; selects display (not brush #1 !!!)

EndSelect ; Error! Display already selected!

INPUTS
none

EXAMPLE
See Section 20.15 [SelectBGPic], page 246.

Chapter 21: Brush library 275

See Section 21.64 [SelectBrush], page 303.

See Section 17.22 [SelectAnim], page 201.

See Section 34.39 [SelectLayer], page 676.

21.30 ExtendBrush

NAME
ExtendBrush – enlarge a brush (V10.0)

SYNOPSIS
ExtendBrush(id, left, top, right, bottom[, t])

FUNCTION
This function enlarges the brush specified by id. You can specify the desired extension
for all sides of the brush by passing a pixel value in the left, top, right and bottom

parameters. A value of 0 means no extension on that side. Note that the extension
values mustn’t be negative. If you want to crop a brush, use the CropBrush() function
instead.

The optional table argument can be used to specify the following additional options:

Clear: If the brush uses transparency, you can set this tag to True if you want the
newly allocated areas of the brush to be transparent as well. If you set this
tag to False, the new areas will be opaque. Defaults to False.

Color: This tag can be used to specify the filling color for the newly allocated areas
of the brush. This is only used for RGB brushes. For palette brushes, use
the Pen tag instead (see below). Defaults to #BLACK.

Pen: This tag can be used to specify the filling pen for the newly allocated areas
of the brush. This is only used for palette brushes. For RGB brushes, use
the Color tag instead (see above). Defaults to 0.

INPUTS

id brush to enlarge

left number of pixels to add on the left side

top number of pixels to add on the top side

right number of pixels to add on the right side

bottom number of pixels to add on the bottom side

t optional: table specifying further options (see above)

EXAMPLE
CreateBrush(1, 200, 200)

ExtendBrush(1, 50, 50, 50, 50, {Color = #RED})

The code above creates a 200x200 pixel brush and then adds a red border of 50 pixels
around it.

276 Hollywood manual

21.31 FlipBrush

NAME
FlipBrush – flip a brush (V1.5)

SYNOPSIS
FlipBrush(id, xflip)

FUNCTION
This function flips (mirrors) the brush specified by id. If xflip is set to True, the brush
will be flipped in x-direction otherwise it will be flipped in y-direction.

INPUTS

id brush to flip

xflip True for horizontal (x) flip, False for vertical (y) flip

EXAMPLE
FlipBrush(1, TRUE)

The code above flips the brush horizontally.

21.32 FloodFill

NAME
FloodFill – flood fill a brush area with a color (V2.0)

SYNOPSIS
FloodFill(id, x, y, bordercolor, color[, t])

FUNCTION
This function can be used to flood fill a bordered area in the brush specified by id with
a color. You need to pass a starting position in the x and y arguments. FloodFill()

will then start out in all directions replacing all pixels with the specified color until it
reaches the border color which you also have to specify. The starting position is usually
an arbitrary point within the bounded area.

If the brush is a palette brush, FloodFill() will operate in pen mode instead of color
mode. This means that both the bordercolor and the color arguments must be set to
a pen index instead of an RGB color. In pen mode, FloodFill() will behave exactly as
in RGB mode except that it will use pens instead of RGB colors.

Starting with Hollywood 9.0, you can also pass #NOCOLOR in the bordercolor argument.
In that case, borderless flood filling will be used, which means that all neighbouring
pixels matching the color (or pen) of the starting pixel will be filled.

Furthermore, Hollywood 9.0 introduces an optional table argument that allows you to
specify the following options:

AlphaChannel:

If you set this tag to True, FloodFill() will operate on the brush’s alpha
channel instead of on its color channels. This means that you have to pass
values in the range of 0 to 255 instead of RGB colors to FloodFill().

Chapter 21: Brush library 277

ColorSource:

If this and the AlphaChannel tag is set to True, the area to be filled will
be determined by the color channels whereas all output will be written to
the alpha channel. This means that the border color passed to FloodFill()

must be an RGB color (or #NOCOLOR) and the fill color must be an alpha
value between 0 and 255. (V9.1)

INPUTS

id brush to use for flood fill

x start x-position for the fill operation

y start y-position for the fill operation

bordercolor

color (or pen) of the border or #NOCOLOR for borderless flood filling

color color (or pen) to use for filling

t optional: table argument containing further options (V9.0)

EXAMPLE
CreateBrush(1, 241, 201)

SelectBrush(1)

SetFillStyle(#FILLNONE)

Ellipse(0, 0, 120, 100, #RED)

EndSelect

FloodFill(1, 120, 100, #RED, #WHITE)

DisplayBrush(1, 0, 0)

Creates a red ellipse outline and then fills it with the color white using the FloodFill()
command starting from the center of the ellipse in all directions.

21.33 FreeBrush

NAME
FreeBrush – free a brush

SYNOPSIS
FreeBrush(id)

FUNCTION
This function frees the memory of the brush specified by id. To reduce memory con-
sumption, you should free brushes when you do not need them any longer.

INPUTS

id identifier of the brush

278 Hollywood manual

21.34 GammaBrush

NAME
GammaBrush – correct gamma values of brush (V5.0)

SYNOPSIS
GammaBrush(id, red, green, blue)

FUNCTION
This function can be used to gamma correct the color channels of the specified brush.
For each color channel, you have to pass a floating point value that specifies the desired
gamma correction. A value of 1.0 means no change, a value smaller than 1.0 darkens the
channel, a value greater than 1.0 lightens the channel.

Note that if id specifies a palette brush, InvertBrush() will just apply the gamma cor-
rection to the palette colors which makes this function really fast when used with palette
brushes.

INPUTS

id brush to gamma correct

red gamma correction for red channel

green gamma correction for green channel

blue gamma correction for blue channel

EXAMPLE
GammaBrush(1, 1.5, 1.0, 0.5)

The code above lightens the red channel and darkens the blue channel, while leaving the
green color channel untouched.

21.35 GetBrushLink

NAME
GetBrushLink – get a link to a brush (V1.5)

SYNOPSIS
GetBrushLink(id, sourcetype, sourceid[, par])

FUNCTION
Hollywood 2.0 Note: Brush links are no longer supported. You can still use this function
but it will not create links any more. It will simply create a full copy of the image data;
in other words: GetBrushLink() just calls ConvertToBrush().

This function creates a new brush for you which will link data from an other object.
Therefore the new brush will be read-only. This means e.g. that you can display or move
it, but you cannot change its data (e.g. by calling ScaleBrush() or SelectBrush()).

Your brush is fully dependent on the source object. If you free the source object, your
brush will also be freed and is no longer available. Brush links require only little bytes
of memory because the graphics data will be linked from the source object.

Chapter 21: Brush library 279

It is useful to use brush links when you have many objects with the same graphics
data and you want to access them as separate brushes (e.g. for convenience reasons).
Another good reason for brush links is that you can do a lot of more stuff with brushes
than with other objects. For example you could retrieve a link to the first anim frame,
then display it with DisplayBrushFX() and then start the anim with PlayAnim(). This
would display the anim with a transition effect then.

Sourcetype can be one of the following types:

#ANIM Get brush links from single anim frames; this type requires the optional
argument par which specifies the frame you want to have linked

#BGPIC Get brush link from a background picture

#BRUSH Get brush link from an other brush

#LAYER Get brush link from a layer (requires layers to be enabled!)

#TEXTOBJECT

Get brush link from a text object

INPUTS

id identifier for the brush to be created

sourcetype

type of the source object (see list above)

sourceid identifier of the source object

par optional: currently only required for type #ANIM

EXAMPLE
LoadAnim(1, "MyAnim.gif")

GetBrushLink(1, #ANIM, 1, 1)

DisplayBrushFX(1, #CENTER, #CENTER, #CROSSFADE)

PlayAnim(1, #CENTER, #CENTER)

The above code loads the animation "MyAnim.gif", gets a brush link to the first frame,
crossfades this frame on to the display and then starts playing the anim. This is how
you would display an anim with a transition effect.

21.36 GetBrushPen

NAME
GetBrushPen – get pen color from brush’s palette (V9.0)

SYNOPSIS
color = GetBrushPen(id, pen)

FUNCTION
This function gets the color of the pen specified by pen from the palette of the brush
specified by id. The color will be returned as an RGB color.

INPUTS

id identifier of brush to use

280 Hollywood manual

pen pen you want to get (starting from 0)

RESULTS

color color of the pen, specified as an RGB color

EXAMPLE
color = GetBrushPen(1, 0)

The code gets the color of the first pen of brush 1.

21.37 Hardware brushes

Hardware brushes are used for hardware-accelerated drawing in connection with a hard-
ware double buffer. To create a hardware brush, simply set the Hardware tag to True in
LoadBrush() or @BRUSH. Alternatively, you can also create a hardware brush from a nor-
mal brush by using CopyBrush() and setting the Hardware tag to True in this function.
To find out whether or not a brush has been successfully created in hardware, query the
#ATTRHARDWARE attribute using GetAttribute(). Note that this attribute can return False

even if you set the Hardware tag to True, because not all systems support hardware brushes.
If the system Hollywood is running on does not support hardware brushes, a software brush
will be created instead.

The advantage of hardware brushes is that they are stored completely in video memory and
thus can be drawn extremely quickly. However, hardware brushes can only be drawn to
hardware-accelerated double buffers. Nothing else can be done with hardware brushes than
drawing them to a hardware-accelerated double buffer. That is why almost all functions
of the brush library will not work with hardware brushes. If you would like to modify a
hardware brush, you first have to create a software brush which you can modify and then
convert it to a hardware brush. You can create a hardware-accelerated double buffer by
passing True as the first argument to the BeginDoubleBuffer() function. See Section 30.3
[BeginDoubleBuffer], page 590, for details.

Keep in mind that you should only draw to hardware-accelerated double buffers using hard-
ware brushes. All other drawing commands will be much slower! Only by using hardware
brushes can you get full hardware-accelerated drawing. Using normal drawing functions
with a hardware double buffer can even be slower than using them on a software double
buffer. This is especially the case with graphics that use an alpha channel, e.g. anti-aliased
text or vector shapes, because for alpha channel drawing, Hollywood has to read from the
destination device which will be very slow for hardware double buffers because reading
from video memory is very slow. Thus, you should try to use hardware brushes whereever
possible when you work with a hardware double buffer.

On some systems (e.g AmigaOS 4.1) the ScaleBrush(), RotateBrush(), and
TransformBrush() functions as well as the standard draw tags for on-the-fly image
manipulation (e.g. ScaleX and ScaleY) support hardware accelerated image scal-
ing/transformation for hardware brushes. In that case, scaling and transforming brushes
is extremely faster than in software mode, especially for antialiased transformations.

By default, hardware brushes are only supported on AmigaOS and Android. Since Holly-
wood 6.0, however, plugins that install a display adapter are also able to support hardware

Chapter 21: Brush library 281

brushes for their display adapter. In that case you can also use hardware brushes on sys-
tems other than AmigaOS and Android. For example, the GL Galore and RebelSDL plugins
allow you to use hardware brushes and hardware-accelerated double buffers on Windows,
macOS, and Linux. See Section 5.4 [Obtaining plugins], page 66, for details.

Hardware brushes can also be display-dependent. This means that they can only be drawn
to the display that has been used to allocate them. This is often the case when using
custom display adapters made available by plugins. Hollywood’s inbuilt hardware brushes
on AmigaOS and Android, however, are not display-dependent and can be drawn to any
display that is currently open. To allocate a display-dependent hardware brush, you need
to pass the identifier of the display that should own the hardware brush in the Display

tag in LoadBrush(), @BRUSH or CopyBrush(). Note that all display-dependent hardware
brushes are automatically freed by Hollywood when the display they belong to is closed.

21.38 InvertAlphaChannel

NAME
InvertAlphaChannel – invert alpha channel of a brush (V2.0)

SYNOPSIS
InvertAlphaChannel(id)

FUNCTION
This function inverts the alpha channel of the brush specified by id. This means that the
transparency for each pixel is turned around. If a pixel was previously 80% transparent,
it will only be 20% transparent after an inversion and pixels who were 20% transparent
will become 80% transparent after the inversion.

INPUTS

id brush whose alpha channel is to be inverted

21.39 InvertBrush

NAME
InvertBrush – invert colors of a brush (V1.5)

SYNOPSIS
InvertBrush(id)

FUNCTION
This function inverts the brush specified by id, which means that all colors are replaced
with their complements (white will become black, blue will become yellow etc.).

Note that if id specifies a palette brush, InvertBrush() will just invert the palette colors
which makes this function really fast when used with palette brushes.

INPUTS

id brush to invert

EXAMPLE
InvertBrush(1)

282 Hollywood manual

The code above inverts the colors of brush 1.

21.40 InvertMask

NAME
InvertMask – invert mask of a brush (V2.0)

SYNOPSIS
InvertMask(id)

FUNCTION
This function inverts the mask of the brush specified by id. This means that all areas
which were previously transparent, will become opaque and areas that were opaque
previously, will become transparent.

INPUTS

id brush whose mask is to be inverted

21.41 IsBrushEmpty

NAME
IsBrushEmpty – check if a brush has only invisible pixels (V8.0)

SYNOPSIS
r = IsBrushEmpty(id)

FUNCTION
This function can be used to check if the brush specified in id has only invisible pixels, in
which case it can be considered "empty". If there are only invisible pixels in the brush,
True is returned, False otherwise.

Obviously, a brush can only be "empty" if it uses some kind of transparency, either a
mask or an alpha channel. If you call this function on a brush that has neither a mask
nor an alpha channel attached, the return value will always be False.

INPUTS

id brush to check

RESULTS

r True if there are only invisible pixels in the brush, False otherwise

EXAMPLE
CreateBrush(1, 100, 100, #RED, {Mask = True, Clear = True})

Print(IsBrushEmpty(1))

The code above will print 1 because although the brush is filled with red pixels, none of
them will be visible because the mask has all pixels set to invisible.

Chapter 21: Brush library 283

21.42 LoadBrush

NAME
LoadBrush – load a brush

SYNOPSIS
[id] = LoadBrush(id, filename$[, table])

FUNCTION
This function loads the brush specified by filename$ into memory and assigns the
identifier id to it. If you pass Nil in id, LoadBrush() will automatically choose an
identifier and return it.

Image formats that are supported on all platforms are PNG, JPEG, BMP, IFF ILBM,
GIF, and image formats you have a plugin for. Depending on the platform Hollywood is
running on, more image formats might be supported. For example, on Amiga compatible
systems Hollywood will be able to open all image formats you have datatypes for as well.
On Windows, LoadBrush() can also load image formats supported by the Windows
Imaging Component.

Starting with Hollywood 5.0, this function can also load vector formats like SVG if you
have an appropriate plugin installed. Keep in mind, though, that when you load vector
images using LoadBrush(), the brush will be a special vector brush which does not
support all features of the normal brushes. You can, however, convert vector brushes
to raster brushes by using the RasterizeBrush() function. See Section 21.80 [Vector
brushes], page 316, for more information on vector brushes.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Transparency:

This field can be used to specify a color in RGB notation that shall be made
transparent in the brush.

LoadAlpha:

Set this field to True if the alpha channel of the image shall be loaded,
too. Please note that not all pictures have an alpha channel and that not
all picture formats are capable of storing alpha channel information. It is
suggested that you use the PNG format if you need alpha channel data. This
field defaults to False.

X, Y, Width, Height:

These fields can be used to load only a part of the image into the brush. This
is useful if you have one big image with many different small images in it
and now you want to load the small images into single brushes. Using these
fields you can specify a rectangle inside the image from which Hollywood
will take the graphics data for the brush.

Hardware:

If you set this tag to True, Hollywood will create this brush entirely in video
memory for hardware-accelerated drawing in connection with a hardware
double buffer. Hardware brushes are subject to several restrictions. See
Section 21.37 [hardware brushes], page 280, for details. (V5.0)

284 Hollywood manual

ScaleWidth, ScaleHeight:

These fields can be used to load a scaled version of the image. If the image
driver supports scaled loading, this will give you some significant speed-up
for example in case you just want to load a thumbnail-sized version of a large
image. If the image driver does not support scaled loading, the full image
will be loaded first before it is scaled. This is not much faster than manually
scaling the image after loading. You can pass an absolute pixel value or a
string containing a percent specification here. (V5.3)

SmoothScale:

If ScaleWidth or ScaleHeight is set, you can use this item to specify
whether or not Hollywood shall use anti-aliased scaling. Defaults to False

which means no anti-aliasing. Note that anti-aliased scaling is much slower
than normal scaling. (V5.3)

Display: If you specify the identifier of a display here, Hollywood will create a display-
dependent hardware brush for you. Display-dependent hardware brushes can
only be drawn to the display they belong to. This tag is only handled if the
Hardware tag has been set to True. Also note that Hollywood’s inbuilt
display adapter does not support display-dependent hardware brushes, but
plugins can install custom display adapters which support display-dependent
hardware brushes. This tag defaults to the identifier of the currently active
display. See Section 21.37 [hardware brushes], page 280, for details. (V6.0)

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this brush. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

LoadTransparency:

If this tag is set to True, the monochrome transparency of the image will
be loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based image. If
you want to load the alphachannel of an image, set the LoadAlpha tag to
True. This tag defaults to False. (V6.0)

LoadPalette:

If this tag is set to True, Hollywood will load the brush as a palette brush.
This means that you can get and modify the brush’s palette which is useful
for certain effects like color cycling. You can also make pens transparent
using the TransparentPen tag (see below) or the LoadTransparency tag (see
above). Palette brushes also have the advantage of requiring less memory
because 1 pixel just needs 1 byte of memory instead of 4 bytes for 32-bit
images. This tag defaults to False. (V9.0)

Chapter 21: Brush library 285

TransparentPen:

If the LoadPalette tag has been set to True (see above), the
TransparentPen tag can be used to define a pen that should be made
transparent. Pens are counted from 0. Alternatively, you can also set the
LoadTransparency tag to True to force Hollywood to use the transparent
pen that is stored in the image file (if the image format supports the
storage of transparent pens). This tag defaults to #NOPEN. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. A brush can only have one transparency setting!

This command is also available from the preprocessor: Use @BRUSH to preload brushes!

INPUTS

id identifier for the brush or Nil for auto id selection

filename$

file to load

table optional: transparency and crop options (see above) (V2.0)

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
LoadBrush(2, "MyBrush.png", {Transparency = #RED})

This loads "MyBrush.png" as brush 2 with the color red being transparent.

21.43 Mask and alpha channel

Hollywood supports two kinds of transparency for its graphics objects: Mask transparency
and alpha transparency. This section will explain the difference between the two.

Mask transparency knows only two settings per pixel: Visible and invisible. Alpha trans-
parency, however, supports 256 different levels of transparency for every pixel. An alpha
level of 0 means that the pixel is not visible, and a level of 255 means that the pixel is fully
visible. A level of 128 thus means that a pixel is only 50% visible. Alpha transparency is
very useful if you want to embed images that shall smoothly adapt to your background.
For example, a brush with a shadow where the background shines through, or a brush with
antialiased edges. For such purposes a mask is not enough.

Please note also that mask and alpha channel are mutually exclusive. That is, a brush
cannot have a mask and an alpha channel but only one of the two.

286 Hollywood manual

21.44 MixBrush

NAME
MixBrush – mix two brushes (V1.5)

SYNOPSIS
MixBrush(brush1, brush2, level)

FUNCTION
This function mixes brush2 into brush1 at the specified level. The argument level
specifies the mixing level which ranges from 0 to 255. Alpha channel and mask data of
the second brush are also taken into account.

Starting with Hollywood 2.0, level can also be a string containing a percent specification,
e.g. "50%".

INPUTS

brush1 source brush

brush2 brush to mix

level mixing level (0 to 255 or percent specification)

EXAMPLE
MixBrush(1, 2, 128)

The code above mixes brush 2 into brush 1 at a mix ratio of 50% (= 128).

21.45 ModulateBrush

NAME
ModulateBrush – change brightness, saturation, and hue of brush (V5.0)

SYNOPSIS
ModulateBrush(id, brightness, saturation, hue)

FUNCTION
This function can be used to change the brightness, saturation, and hue settings of
a brush. For each setting, you need to pass a floating point value that describes the
desired change. A value of 1.0 means no change, a value smaller than 1.0 reduces the
brightness/saturation/hue, while a value greater than 1.0 enhances it.

Note that if id specifies a palette brush, ModulateBrush() will just modulate the palette
colors which makes this function really fast when used with palette brushes.

INPUTS

id brush to modulate

brightness

desired brightness correction

saturation

desired saturation correction

hue desired hue correction

Chapter 21: Brush library 287

EXAMPLE
ModulateBrush(1, 1.0, 2.0, 1.0)

The code above increases the saturation while leaving brightness and hue untouched.
The result is an image with emphasized colors, just like in a cartoon.

21.46 MoveBrush

NAME
MoveBrush – move a brush from a to b

SYNOPSIS
[handle] = MoveBrush(id, xa, ya, xb, yb[, table])

FUNCTION
This function moves (scrolls) the brush specified by id softly from the location specified
by xa,ya to the location specified by xb,yb.

Further parameters can be specified in the optional table argument. The following pa-
rameters are recognized:

Speed: Defines the number of pixels that the brush will be moved per draw. There-
fore a higher number means higher speed. You can also specify a constant
for the speed argument (#SLOWSPEED, #NORMALSPEED or #FASTSPEED).

FX: Specifies a special effect that shall be applied to the move. The following
effects are currently possible:

#BOUNCE: Bounces the object at move end

#DAMPED: Damps the object at move end

#SMOOTHOUT:

Decreases object move speed towards the move end

#SINE: Displays the object on a sine wave (*)

#BIGSINE:

Displays the object on a big sine wave (*)

#LOWERCURVE:

Moves the object on a curve below the move line (*)

#UPPERCURVE:

Moves the object on a curve above the move line (*)

Effects marked with an asterisk are only possible with horizontal moves,
which means that ya and yb coordinates must be equal!

Async: You can use this field to create an asynchronous draw object for this move. If
you pass True here MoveBrush() will exit immediately, returning a handle
to an asynchronous draw object which you can then draw using Async-
DrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221, for more in-
formation on asynchronous draw objects.

288 Hollywood manual

INPUTS

id identifier of the brush to move

xa source x position

ya source y position

xb destination x position

yb destination y position

table optional: further configuration for this move

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
MoveBrush(1, 100, 50, 0, 50, {Speed = 5})

Moves the brush from 100:50 to 0:50 with speed 5.

MoveBrush(1, #RIGHTOUT, #BOTTOM, #LEFTOUT, #BOTTOM, {Speed = #NORMALSPEED})

Moves the brush from the outer right position to the outer left position with a normal
speed.

21.47 OilPaintBrush

NAME
OilPaintBrush – apply oil paint effect to brush (V5.0)

SYNOPSIS
OilPaintBrush(id, radius)

FUNCTION
This command applies an oil painting effect to the specified brush. The radius argument
specifies the oil paint radius. The larger the radius you specify here, the longer this
function needs to calculate the resulting images.

Note that this function cannot be used with palette brushes.

INPUTS

id brush to modify

radius oil paint effect radius

21.48 PenArrayToBrush

NAME
PenArrayToBrush – convert pen array to palette brush (V9.0)

Chapter 21: Brush library 289

SYNOPSIS
[id] = PenArrayToBrush(id, table, width, height[, t])

FUNCTION
This command creates a new palette brush from the array of pens specified in table.
The table can be seen as a matrix containing height number of rows where each row has
width number of elements, stored sequentially. The order of the pen data in this table
must be as follows: Row after row in top-down format, i.e. the table starts with the first
row of pens. Each row must contain exactly width number of pens, and there must be
exactly height number of rows. The table must be one-dimensional, i.e. it mustn’t use
subtables for the individual rows but just store the pen values sequentially.

The palette that the pens should use can be set in the optional table argument t. The
following table elements are currently recognized:

Palette: Set this to the id of a palette that has been created by CreatePalette(),
LoadPalette() or the @PALETTE preprocessor command. If you don’t set
this tag, Hollywood will use a default palette that has all colors initialized
to black.

TransparentPen:

This tag can be used to specify a pen that should appear transparent. If no
pen should be made transparent, set this tag to #NOPEN, which is also the
default.

Please note that the table that you pass to this function will usually eat lots of memory.
Thus, you should set this table to Nil as soon as you no longer need it. Otherwise you
will waste huge amounts of memory and it could even happen that your script runs out
of memory altogether. So please keep in mind that you should always set pixel array
tables to Nil as soon as you are done with them.

To convert a palette brush to a pen array, you can use the BrushToPenArray() function.
See Section 21.9 [BrushToPenArray], page 255, for details.

INPUTS

id identifier for the new palette brush or Nil for auto id selection

table table containing an array of pens that describe the contents of the new brush

width number of elements in each row

height number of rows in table

t optional: table containing further options (see above)

RESULTS

id optional: identifier of the new palette brush; will only be returned when you
pass Nil as argument 1 (see above)

EXAMPLE
pixels = {}

For Local y = 0 To 479

For Local x = 0 To 639 Do pixels[y * 640 + x] = y \ 2

Next

290 Hollywood manual

PenArrayToBrush(1, pixels, 640, 480, {Palette = #PALETTE_AGA})

pixels = Nil ; IMPORTANT: free memory!

DisplayBrush(1, 0, 0)

The code above creates a palette brush that contains the first 240 pens from the default
palette #PALETTE_AGA. Each palette pen uses two rows. Important: Do not forget to
set the pixel array to Nil when you no longer need it because otherwise it will stay in
memory and pixel arrays will eat huge amounts of memory!

21.49 PerspectiveDistortBrush

NAME
PerspectiveDistortBrush – apply perspective distortion to brush (V5.0)

SYNOPSIS
PerspectiveDistortBrush(id,cx1,cy1,cx2,cy2,cx3,cy3,cx4,cy4[,smooth])

FUNCTION
This command can be used to apply perspective distortion to the brush specified in
id. You have to pass 4 control points that describe a quadrangle into which the brush
shall be mapped. The optional argument smooth can be used to enable antialiased pixel
interpolation which leads to a smoother appearance but takes longer to calculate.

The control point mapping is as follows: The top-left corner of the brush is mapped
to control point 1, the top-right corner is mapped to control point 2, the bottom-right
corner to control point 3, and the bottom-left corner to control point 4.

INPUTS

id brush that shall be distorted

cx1 x coordinate of control point 1

cy1 y coordinate of control point 1

cx2 x coordinate of control point 2

cy2 y coordinate of control point 2

cx3 x coordinate of control point 3

cy3 y coordinate of control point 3

cx4 x coordinate of control point 4

cy4 y coordinate of control point 4

smooth optional: whether or not anti-aliased distortion shall be used (defaults to
False)

EXAMPLE
PerspectiveDistortBrush(1, 100, 0, 400, 0, 500, 300, 0, 300)

The code above maps brush 1 into a trapezoid shape.

Chapter 21: Brush library 291

21.50 PixelateBrush

NAME
PixelateBrush – zoom pixel cells of a brush (V5.0)

SYNOPSIS
PixelateBrush(id, cellsize)

FUNCTION
This command can be used to enlarge the pixel cells of the specified brush. Every pixel
in the brush will be zoomed to the size specified in the cellsize argument. Pixelization
will start in the top-left corner of the brush.

INPUTS

id brush to pixelate

cellsize desired pixelization level; must be greater than 1

21.51 PolarDistortBrush

NAME
PolarDistortBrush – apply polar distortion to brush (V5.0)

SYNOPSIS
PolarDistortBrush(id[, rmax, rmin, cx, cy, start, end, smooth])

FUNCTION
This command can be used to apply polar distortion to the brush specified in id. The
optional arguments can be used to control the parameters for the polar distortion. The
rmin and rmax arguments specify the minimum and maximum radii to use. cx and cy

can be used to specify the center point for the distortion. Both the radius values and the
center point must be specified in pixels. start and end specify the start and end angles
for the polar distortion. Finally, the optional argument smooth can be used to enable
antialiased pixel interpolation which leads to a smoother appearance but takes longer to
calculate.

INPUTS

id brush that shall be distorted

rmax optional: maximum radius (defaults to brush diagonal divided by 2)

rmin optional: minimum radius (defaults to 0)

cx optional: x coordinate of center point (defaults to half of brush width)

cy optional: y coordinate of center point (defaults to half of brush height)

start optional: start angle (defaults to -180)

end optional: end angle (defaults to 180)

smooth optional: whether or not anti-aliased distortion shall be used (defaults to
False)

292 Hollywood manual

21.52 QuantizeBrush

NAME
QuantizeBrush – reduce number of colors in brush (V6.0)

SYNOPSIS
QuantizeBrush(id[, t])

DEPRECATED SYNTAX
QuantizeBrush(id[, colors, dither])

FUNCTION
This function can be used to reduce colors in a brush. This is useful to create a retro
palette-based-display look for your brush.

Starting with Hollywood 9.0, this function uses a new syntax with an optional table
argument to specify additional options. The following table tags are currently recognized:

Colors: This tag allows you to specify the desired number of colors for the brush.
This must be a value between 1 and 256. Defaults to 256. Alternatively, you
can also set the Depth table tag to specify the desired number of colors for
the brush (see below).

Dither: This tag allows you to control whether or not dithering should be used. Set
this to True to enable or to False to disable dithering. Defaults to True.

Depth: This tag allows you to specify the desired number of colors for the brush.
This must be a value between 1 (= 2 colors) and 8 (= 256 colors). Defaults
to 8. This tag is an alternative to the Colors tag (see above). (V9.0)

Palette: Set this tag to True if you want QuantizeBrush() to convert your brush
into a palette brush. Note that by default QuantizeBrush() will not create
palette brushes even though it effectively always reduces colors to a number
that would fit into a palette. Still, it doesn’t do so due to compatibility
reasons because palette brushes weren’t supported before Hollywood 9.0. So
if you want QuantizeBrush() to create a palette brush for you, you must
set this tag to True. Defaults to False. (V9.0)

TransparentPen:

If Palette has been set to True (see above) and the brush to be quantized
has a mask, all invisible pixels will be set to the number of the pen specified
here so that this pen will become the transparent pen. Defaults to 0 which
means tha the first pen should be made transparent by default. (V9.0)

TransparentColor:

If Palette has been set to True and the brush to be quantized has a mask,
the brush’s transparent pen will be set to the color you specify here. This
color must be specified as an RGB color. If this tag is not set, the transparent
pen won’t be set to any specific color. (V9.0)

INPUTS

id identifier of the brush to quantize

t optional: table containing further arguments (see above) (V9.0)

Chapter 21: Brush library 293

EXAMPLE
QuantizeBrush(1, 32)

Convert brush 1 to a 32-color brush with dithering enabled

21.53 RasterizeBrush

NAME
RasterizeBrush – convert vector brush to raster brush (V5.0)

SYNOPSIS
RasterizeBrush(id)

FUNCTION
This function will convert the vector brush specified in id to a raster brush. Raster
brushes are the normal brush type in Hollywood and they are supported by all commands
of the brush library. The downside, however, is that scaling, rotation, and transformation
are only possible with quality sacrifices on raster brushes.

You can find out the type of a brush by checking the #ATTRTYPE attribute using
GetAttribute().

INPUTS

id vector brush to convert

21.54 ReadBrushPixel

NAME
ReadBrushPixel – read single pixel from brush (V5.0)

SYNOPSIS
color, trans = ReadBrushPixel(id, x, y)

FUNCTION
This command reads the color and transparency states of the specified pixel from the
brush specified in id. The color is returned in RGB format whereas the format of the
trans value depends on the type of transparency used by the brush. If the brush has a
mask, trans will be either 0 (invisible) or 1 (visible). If the brush has an alpha channel,
then trans will be in the range of 0 (invisible) to 255 (visible). If the brush does not
have a transparency channel, -1 is returned in trans.

You can also read pixels from brushes by selecting the brush as the output device using
SelectBrush() and then call the ReadPixel() function. Using ReadBrushPixel(),
however, is faster for most cases because it allows you to access color and transparency
channels at the same time and you can also avoid the overhead that is generated by
calling SelectBrush() and EndSelect().

Note that when using this function with a palette brush, ReadBrushPixel() won’t return
the RGB color but the pen at the specified position.

INPUTS

id identifier of the brush to use

294 Hollywood manual

x x offset

y y offset

RESULTS

color RGB color or pen at the specified location

trans transparency state at the specified location

EXAMPLE
color, trans = ReadBrushPixel(1, 100, 100)

Reads pixel states from position 100:100 in brush 1.

21.55 ReduceAlphaChannel

NAME
ReduceAlphaChannel – reduce alpha channel intensity (V6.0)

SYNOPSIS
ReduceAlphaChannel(id, ratio)

FUNCTION
This function can be used to reduce the intensity of the alpha channel associated with
the specified brush. Every alpha pixel is multiplied by the ratio you pass in argument
2. This ratio must be between 0 and 255. A ratio of 255 means 1.0 or 100% whereas 0
means 0.0 or 0%. Thus, if you want to reduce the alpha transparency of all pixels by
50%, you would have to pass 128 in the ratio parameter.

ratio can also be a string containing a percent specification, e.g. "50%".

INPUTS

id brush whose alpha channel should be modified

ratio value between 0 and 255 that specifies the intensity of the reduction opera-
tion or a percent specification

21.56 RemapBrush

NAME
RemapBrush – remap brush colors (V9.0)

SYNOPSIS
RemapBrush(id, palid[, t])

FUNCTION
This function can be used to remap the colors of the brush specified by id to the colors
of the palette specified by palid. The source brush can either be a normal or a palette
brush. If it is a normal brush, RemapBrush() will also convert it to a palette brush while
remapping so the resulting brush will always be a palette brush.

Chapter 21: Brush library 295

The optional table argument t can be used to specify additional options. The following
table tags are currently recognized:

Dither: This tag allows you to control whether or not dithering should be used. Set
this to True to enable or to False to disable dithering. Defaults to True.

Note that if the brush uses transparency, you have to use SetTransparentPen() on the
palette first to define a pen that should be made transparent.

INPUTS

id identifier of the brush to remap

palid identifier of the palette whose colors the brush should be remapped to

t optional: table containing further arguments

EXAMPLE
CreatePalette(1, {#BLACK, #WHITE}, {Depth = 1})

RemapBrush(1, 1, {Dither = True})

Convert brush 1 to a black & white palette brush. Remapping will be done with dithering
enabled.

21.57 RemoveBrushPalette

NAME
RemoveBrushPalette – convert palette brush to RGB (V9.0)

SYNOPSIS
RemoveBrushPalette(id[, trans])

FUNCTION
This function can be used to convert the palette brush specified by id into an RGB brush.
This means that all brush pixels will be converted to 32-bit RGB and the palette will be
removed from the brush. The optional argument trans allows you to specify how the
brush’s transparency should be converted. This can be either #MASK or #ALPHACHANNEL.
If you set it to #MASK, which is also the default, the brush’s transparent pen will be
mapped to a mask. If it is set to #ALPHACHANNEL, the brush’s transparent pen will be
mapped to an alpha channel.

INPUTS

id identifier of the brush to convert

trans optional: desired type of brush transparency; must be either #MASK or
#ALPHACHANNEL; defaults to #MASK

21.58 ReplaceColors

NAME
ReplaceColors – replace colors in a brush (V1.5)

296 Hollywood manual

SYNOPSIS
ReplaceColors(id, colors)

FUNCTION
This function scans through a color array that you specify and replaces each color with
another color which you also have to specify. The color array must be organized in the
way: Search color 1, Replace color 1, Search color 2, Replace color 2,,.

Note that if you pass a palette brush in id, you need to pass pens instead of colors in
the table argument.

INPUTS

id identifier of the brush to use

colors color table that describes which colors (or pens) to replace

EXAMPLE
ReplaceColors(1, {#BLACK, #WHITE, #RED, #GREEN})

The code changes all black pixels in brush 1 to white ones and all red pixels to green
ones.

21.59 RGBArrayToBrush

NAME
RGBArrayToBrush – convert pixel array to brush (V5.0)

SYNOPSIS
[id] = RGBArrayToBrush(id, table, width, height[, transtype, invalpha])

FUNCTION
This command creates a new brush from the array of RGB pixels specified in table.
The table can be regarded as a matrix containing height number of rows where each
row has width number of elements. The order of the pixel data in this table must be
as follows: Row after row in top-down format, i.e. the table starts with the first row of
pixels. Every row must contain exactly width number of pixels, and there must be at
least height number of rows. The single pixels must be passed in the RGB format with
an optional alpha value. The transtype argument allows you to specify the transparency
type the new brush should use. This can be either #NONE for no transparency, #MASK for
monochrome transparency, and #ALPHACHANNEL for alpha channel transparency.

The optional argument invalpha can be used to tell RGBArrayToBrush() that all alpha
channel values are inverted. This means that a value of 0 means 100% visibility and a
value of 255 means invisibility. Normally, it is just the other way round. Due to historical
reasons, the Hollywood drawing library uses inverted alpha values, and this why they
are also supported by RGBArrayToBrush(), although they are not the default.

If transtype is set to #NONE, the pixels’ alpha values are ignored altogether and invalpha

does not have any effect either.

Please note that the table that you pass to this function will usually eat lots of memory.
Thus, you should set this table to Nil as soon as you no longer need it. Otherwise you
will waste huge amounts of memory and it could even happen that your script runs out

Chapter 21: Brush library 297

of memory altogether. So please keep in mind that you should always set pixel array
tables to Nil as soon as you are done with them.

To convert a brush to a pixel array, you can use the BrushToRGBArray() function.

INPUTS

id identifier for the new brush or Nil for auto id selection

table table containing an array of RGB pixels that describe the contents of the
new brush; if transtype is set to #MASK or #ALPHACHANNEL you must also
specify alpha values in the highest 8 bits

width number of elements in each row

height number of rows in table

transtype

optional: desired transparency setting for brush (defaults to #NONE)

invalpha optional: whether to use inverted alpha values (defaults to False which
means do not invert alpha values)

RESULTS

id optional: identifier of the new brush; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
pixels = {}

col = #BLUE

stp = 256 / 480

For Local y = 0 To 479

For Local x = 0 To 639 Do pixels[y * 640 + x] = col

col = col - stp

Next

RGBArrayToBrush(1, pixels, 640, 480)

pixels = Nil ; IMPORTANT: free memory!

DisplayBrush(1, 0, 0)

The code above creates a color gradient from red to #BLACK and converts it into a brush
using RGBArrayToBrush(). Important: Do not forget to set the pixel array to Nil when
you no longer need it because otherwise it will stay in memory and pixel arrays will eat
huge amounts of memory!

21.60 RotateBrush

NAME
RotateBrush – rotate a brush (V1.5)

SYNOPSIS
RotateBrush(id, angle[, factorx, factory, smooth])

298 Hollywood manual

FUNCTION
This function rotates the brush specified by id by the specified angle (in degrees). A
positive angle rotates anti-clockwise, a negative angle rotates clockwise.

Starting with Hollywood 2.5, this function can also scale the brush while rotating it
(called a rot-zoom). This is done in one pass so the quality of the resulting image data
is much better than if you would first call ScaleBrush() and then RotateBrush(). If
you want to have the brush scaled with the rotation, simply pass two scaling factors as
factorx and factory. These two factors are floating point numbers representing a zoom
percentage (1 corresponds to 100%, 0.5 to 50%, 1.5 to 150% etc.)

Additionally, you can choose to have the scaled and/or rotated graphics interpolated by
passing True in the smooth argument. The graphics will then be scaled/rotated using
anti-alias.

Please note:

− If you rotate a brush for instance by a 45 degree angle and your brush does not
have a mask, Hollywood will automatically create a mask for this brush because the
rotate operation usually leads to some unused areas in the brush. If your brush has
a mask, then Hollywood will rotate this mask also.

− You should not rotate a rotated brush again because this will lead to loss of data!
You should always use the original brush when creating rotated versions of the brush,
e.g. if you rotate a brush by 45 degrees and then rotate it back by -45 degrees, the
resulting brush will not be of the same quality as the original one.

− Note that for vector brushes, RotateBrush() will always operate on the untrans-
formed brush. This means that any previous transformations applied to the brush
using RotateBrush(), ScaleBrush(), or TransformBrush() will be undone when
calling RotateBrush().

INPUTS

id brush to rotate

angle rotation angle in degrees

factorx optional: scaling factor on the x-axis (defaults to 1 which means no x scaling)
(V2.5)

factory optional: scaling factor on the y-axis (defaults to 1 which means no y scaling)
(V2.5)

smooth optional: whether or not anti-aliased rotation shall be used (V2.5)

21.61 SaveBrush

NAME
SaveBrush – save brush to a file (V2.0)

SYNOPSIS
SaveBrush(id, f$[, t])

DEPRECATED SYNTAX
SaveBrush(id, f$[, transcolor, fmt, table])

Chapter 21: Brush library 299

FUNCTION
This function saves the brush specified by id to the file specified by f$. By default, the
brush will be saved as a Windows bitmap (BMP) file. This can be changed by passing
a different format identifier to SaveBrush() (see below for details).

SaveBrush() supports several optional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is
recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to SaveBrush().

The following table fields are recognized by this function:

Format: Set this tag to the image format that should be used. This can either be one
of the following constants or an image saver provided by a plugin:

#IMGFMT_BMP:

Windows bitmap. Hollywood’s BMP saver supports RGB and
palette images. #IMGFMT_BMP is the default format used by
SaveBrush().

#IMGFMT_PNG:

PNG format. Hollywood’s PNG saver supports RGB and palette
images. RGB images also can have an alpha channel, palette
images can have a transparent pen. (V2.5)

#IMGFMT_JPEG:

JPEG format. Note that the JPEG format does not support
alpha channels or palette-based graphics. The Quality field
(see below) allows you to specify the quality level for the JPEG
image (valid values are 0 to 100 where 100 is the best quality).
(V4.0)

#IMGFMT_GIF:

GIF format. Because GIF images are always palette-based, RGB
graphics have to be quantized before they can be exported as
GIF. You can use the Colors and Dither tags (see below) to
specify the number of palette entries to allocate for the image
and whether or not dithering shall be applied. When using
#IMGFMT_GIF with a palette brush, no quantizing will be done.
#IMGFMT_GIF also supports palette images with a transparent
pen. (V4.5)

#IMGFMT_ILBM:

IFF ILBM format. Hollywood’s IFF ILBM saver supports RGB
and palette images. Palette images can also have a transparent
pen, alpha channels are unsupported for this output format.
(V4.5)

Defaults to #IMGFMT_BMP.

Dither: Set to True to enable dithering. This field is only handled when the destina-
tion format is palette-based and the source data is in RGB format. Defaults
to False which means no dithering.

300 Hollywood manual

Depth: Specifies the desired image depth. This is only handled when the format
is palette-based and the source data is in RGB format. Valid values are
between 1 (= 2 colors) and 8 (= 256 colors). Defaults to 8. (V9.0)

Colors: This is an alternative to the Depth tag. Instead of a bit depth, you can pass
how many colors the image shall use here. Again, this is only handled when
the format is palette-based and the source data is in RGB format. Valid
values are between 1 and 256. Defaults to 256.

Quality: Here you can specify a value between 0 and 100 indicating the compression
quality for lossy compression formats. A value of 100 means best quality, 0
means worst quality. This is only available for image formats that support
lossy compression. Defaults to 90 which means pretty good quality.

FillColor:

When saving an RGB image that has transparent pixels, you can specify
an RGB color that should be written to all transparent pixels here. This is
probably of not much practical use. Defaults to #NOCOLOR which means that
transparent pixels will be left as they are. (V9.0)

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to save the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Here is an overview that shows which formats support which tags:

 BMP PNG JPEG GIF ILBM

Dither No No No Yes No

Colors No No No Yes No

Quality No No Yes No No

INPUTS

id identifier of the brush to save

f$ destination file

t optional: table specifying further options (see above) (V9.0)

EXAMPLE
SaveBrush(1, "test.jpg", {Format = #IMGFMT_JPEG, Quality = 80})

The code above saves brush 1 as "test.jpg" using a quality of 80%.

Chapter 21: Brush library 301

21.62 ScaleBrush

NAME
ScaleBrush – scale a brush

SYNOPSIS
ScaleBrush(id, width, height[, smooth])

FUNCTION
This command scales the brush specified by id to the specified dimensions. Optionally,
you can choose to have the scaled graphics interpolated by passing True in the smooth

argument. The graphics will then be scaled using anti-alias.

Please note: You should always do scale operations with the original brush. For instance,
if you scale brush 1 to 12x8 and then scale it back to 640x480, you will get a messed
image. Therefore you should always keep the original brush and scale only copies of it.

Note that for vector brushes, ScaleBrush() will always operate on the untransformed
brush. This means that any previous transformations applied to the brush using
ScaleBrush(), TransformBrush(), or RotateBrush() will be undone when calling
ScaleBrush().

New in V2.0: You can pass #KEEPASPRAT as either width or height. Hollywood will
calculate the size then automatically by taking the aspect-ratio of the brush into account.

Starting with Hollywood 2.0, width and height can also be a string containing a percent
specification, e.g. "50%".

INPUTS

id identifier of the brush to use as source

width desired new width for the brush

height desired new height for the brush

smooth optional: whether or not anti-aliased scaling shall be used (V2.5)

EXAMPLE
ScaleBrush(1,640,480)

Scales brush 1 to a resolution of 640x480.

21.63 SelectAlphaChannel

NAME
SelectAlphaChannel – select an alpha channel as output device (V2.0)

SYNOPSIS
SelectAlphaChannel(id[, type, frame])

FUNCTION
This function selects the alpha channel of the graphics object specified by id as the
current output device. This means that all graphics data that are output by Hollywood
will be drawn to this alpha channel. Alpha channels are no stand-alone objects in

302 Hollywood manual

Hollywood; they are always attached to an image object, for example a brush or an
animation.

By default, SelectAlphaChannel() always works with the alpha channels of brushes.
However, starting with Hollywood 4.5, you can also use it to draw to the alpha channel of
animations and BGPics. To do this you have to specify #ANIM or #BGPIC in the optional
type argument. If you use #ANIM in the type argument, you have to specify the frame
of the anim that you want to draw to, too. See SelectAnim() for more information. If
you specify #BGPIC in type, note that you can only modify the alpha channel of BGPics
that are currently not associated with a display. Starting with Hollywood 4.7, you can
also pass #LAYER as the type to modify the alpha channel of a layer. Note that if the
layer is an anim layer, you will also have to specify the number of the frame to select.

Alpha channels can be used to give each pixel its own transparency setting. There are
256 different transparency levels available for each pixel. An alpha channel value of
0 means that the pixel is fully transparent and an alpha channel value of 255 means
that the pixel is opaque. All Hollywood graphics functions will render with a static
alpha channel intensity into the alpha channel of the graphics object. You can configure
this intensity using the SetAlphaIntensity() command. Alternatively, you can set the
alpha render mode to a vanilla copy mode. This is done by calling SetAlphaIntensity()
with #VANILLACOPY as the argument. Then, all Hollywood graphics commands which
output alpha channel pixels will copy the exact alpha channel data to your brush’s alpha
channel. This vanilla copy mode is a new feature of Hollywood 2.5.

The color argument that several Hollywood functions (like Box() or Circle())
expect, is superfluous when rendering to alpha channels. You only need to use
SetAlphaIntensity() when rendering to alpha channels.

Alpha channels are usually used for nice background shine-through effects or for anti-
aliasing jagged edges. If you do not need different transparency levels but only two
choices, namely transparent pixels and opaque pixels, you should use SelectMask()

instead because it can be drawn faster. Please note that graphics objects cannot have a
mask and an alpha channel. Only one transparency setting is possible. Thus, if you use
this command on a graphics object that has a mask, this mask will be deleted first.

If the graphics object you specify in id does not have an alpha channel yet, it will
be automatically created when you call a command that wants to draw to the alpha
channel. The alpha channel created will be opaque then, i.e. every pixel will have an
alpha intensity of 255 which means that it is 0% transparent. To cancel alpha channel
rendering mode and return to main display output, just call the EndSelect() function.

If you do not need an alpha channel any longer, you should use the command
DeleteAlphaChannel() to remove it from the brush.

You cannot use brush links with this command because the graphics data of the brush
specified by id will be changed. It is also forbidden to call commands which change the
dimensions of the brush/anim that is currently used as output device, e.g. you may not
call ScaleBrush() or ScaleAnim() to scale the brush/anim that is currently the output
device. Furthermore, it is not allowed to call SelectAlphaChannel() for animations
that are loaded from disk. Animations must always reside completely in memory if you
want to draw to their frames using SelectAlphaChannel().

Chapter 21: Brush library 303

Only commands that output static graphics can be used when SelectAlphaChannel()

is active. You may not call animated functions like MoveBrush() or DisplayBrushFX()
while SelectAlphaChannel() is active.

If you are using type #LAYER and the specified layer is a vector layer,
SelectAlphaChannel() will rasterize the layer to a brush layer first. See Section 34.39
[SelectLayer], page 676, for details.

INPUTS

id graphics object whose alpha channel shall be used as output device

type optional: type of the graphics object specified in id; can be #BRUSH, #ANIM,
#BGPIC, or #LAYER (defaults to #BRUSH) (V4.5)

frame optional: animation frame to use; only required if type is set to #ANIM or
#LAYER in case the specified layer is an anim layer (V4.5)

EXAMPLE
CreateBrush(1, 256, 50, #RED) ; create a brush of size 256x50

SelectAlphaChannel(1) ; alphachannel becomes output device

For k = 255 To 0 Step -1

SetAlphaIntensity(k) ; set alpha intensity to k

Line(255 - k, 0, 255 - k, 49) ; draw lines with various intensities

Next

EndSelect ; make display the output device again

DisplayBrush(1, #CENTER, #CENTER)

This code demonstrates the 256 different transparency levels by creating a brush with
the width of 256 pixels and drawing 256 lines with different transparency settings into it.
The result will be a red rectangle which smoothly merges with the background picture.
Please note that you need a 24-bit screen for the full eye-candy. On 15-bit and 16-bit
screens there are not enough colors to display all different levels.

21.64 SelectBrush

NAME
SelectBrush – select a brush as output device (V1.5)

SYNOPSIS
SelectBrush(id[, mode, combomode])

FUNCTION
This function selects the brush specified by id as the current output device. This means
that all graphics data that are drawn by Hollywood will be rendered to your brush.

The optional mode argument defaults to #SELMODE_NORMAL which means that only the
color channels of the brush will be altered when you draw to it. The transparency channel
of the brush (can be either a mask or an alpha channel) will never be altered. You can
change this behaviour by using #SELMODE_COMBO in the optional mode argument. If you
use this mode, every Hollywood graphics command that is called after SelectBrush()

304 Hollywood manual

will draw into the color and transparency channel of the brush. If the brush does not
have a transparency channel, #SELMODE_COMBO behaves the same as #SELMODE_NORMAL.

Starting with Hollywood 5.0 you can use the optional combomode argument to specify
how #SELMODE_COMBO should behave. If combomode is set to 0, the color and transparency
information of all pixels in the source image are copied to the destination image in any
case - even if the pixels are invisible. This is the default behaviour. If combomode is set
to 1, only the visible pixels are copied to the destination image. This means that if the
alpha value of a pixel in the source image is 0, i.e. invisible, it will not be copied to the
destination image. Hollywood 6.0 introduces the new combomode 2. If you pass 2 in
combomode, Hollywood will blend color channels and alpha channel of the source image
into the destination image’s color and alpha channels. When you draw the destination
image later, it will look as if the two images had been drawn on top of each other
consecutively. Please note that the combomode argument is only supported together
with #SELMODE_COMBO. It doesn’t have any effect when used with the other modes.

An alternative way to draw into the transparency channels of a brush is to do this sepa-
rately using SelectMask() or SelectAlphaChannel(). These two commands, however,
will write data to the transparency channel only. They will not touch the color channel.
So if you want both channels, color and transparency, to be affected, you need to use
SelectBrush() with mode set to #SELMODE_COMBO.

When you are finished with rendering to your brush and want your display to become
the output device again, just call EndSelect().

While SelectBrush() is active, it is forbidden to call commands which change the
dimensions of the brush that is currently used as the output device, e.g. you may not
call ScaleBrush() to scale the brush that is currently the output device.

Only Hollywood commands that draw graphics directly can be used when
SelectBrush() is active. You may not call animated functions like MoveBrush() or
DisplayBrushFX() while SelectBrush() is active.

INPUTS

id brush which shall be used as output device

mode optional: rendering mode to use (see above); this can be either #SELMODE_
NORMAL or #SELMODE_COMBO; defaults to #SELMODE_NORMAL (V4.5)

combomode

optional: mode to use when #SELMODE_COMBO is active (see above); defaults
to 0 (V5.0)

EXAMPLE
CreateBrush(1, 320, 256)

SelectBrush(1)

SetFillStyle(#FILLCOLOR)

Box(0, 0, 320, 256, #RED)

EndSelect()

MoveBrush(1, #CENTER, #BOTTOMOUT, #CENTER, #TOPOUT, 10)

The above code creates a 320x256 brush, draws a red rectangle into it and then scrolls
the rectangle on the screen. This is very abstract example. You can of course do a lot of

Chapter 21: Brush library 305

more with this command, just have a look at the examples supplied with the Hollywood
distribution. They use SelectBrush() in more advanced contexts.

21.65 SelectMask

NAME
SelectMask – select a mask as output device (V2.0)

SYNOPSIS
SelectMask(id[, type, frame])

FUNCTION
This function selects the mask of the graphics object specified by id as the current output
device. This means that all graphics data that are output by Hollywood will be drawn
to this mask. Masks are no stand-alone objects in Hollywood; they are always connected
to an image object, for example a brush or an animation.

By default, SelectMask() always works with the masks of brushes. However, starting
with Hollywood 4.5, you can also use it to draw to the masks of animations and BGPics.
To do this you have to specify #ANIM or #BGPIC in the optional type argument. If you
specify #ANIM in type, you have to specify the frame of the animation that you want to
draw to, too. See SelectAnim() for more information. If you specify #BGPIC in type,
note that you can only modify the masks of BGPics that are currently not associated
with a display. Starting with Hollywood 4.7, you can also pass #LAYER as the type to
modify the mask of a layer. Note that if the layer is an anim layer, you will also have to
specify the number of the frame to select.

Masks are used to control the transparency of a graphics object. They do not carry
any color information. Every pixel in a mask can only have two different states: 1,
which means that this pixel is visible and 0, which means that the pixel is invisible.
Therefore you need to tell Hollywood whether or not the drawing commands should
draw visible pixels (1) or invisible pixels (0) to the mask. This is done by using the
SetMaskMode() command. The color argument that several Hollywood functions (like
Box() or Circle()) expect, is superfluous when rendering to masks. You only need to
use SetMaskMode().

If the graphics object you specify in id does not have a mask yet, it will be automatically
created when you call a command that wants to draw to the mask. If a mask is created
by SelectMask(), it will initially be fully opaque.

To cancel mask rendering mode and return to main display output, just call the
EndSelect() function.

If you do not need a mask any longer, you can remove it from a brush by calling
SetBrushTransparency() with the argument #NOTRANSPARENCY. Or simply use
DeleteMask().

You cannot use brush links with this command because the graphics data of the brush
specified by id will be changed. It is also forbidden to call commands which change
the dimensions of the brush/anim that is currently used as output device, e.g. you may
not call ScaleBrush() or ScaleAnim() to scale the brush/anim that is currently the
output device. Furthermore, it is not allowed to call SelectMask() for animations that

306 Hollywood manual

are loaded from disk. Animations must always reside completely in memory if you want
to draw to their frames using SelectMask().

Only commands that output graphics directly can be used after SelectMask(). You may
not call animated functions like MoveBrush() or DisplayBrushFX() while SelectMask()
is active.

Please note that graphics objects cannot have a mask and an alpha channel. Only one
transparency setting is possible. Thus, if you use this command on an object that already
has an alpha channel, this alpha channel will be deleted.

If you are using type #LAYER and the specified layer is a vector layer, SelectMask() will
rasterize the layer to a brush layer first. See Section 34.39 [SelectLayer], page 676, for
details.

INPUTS

id graphics object whose mask shall be used as output device

type optional: type of the graphics object specified in id; can be #BRUSH, #ANIM,
#BGPIC, or #LAYER (defaults to #BRUSH) (V4.5)

frame optional: animation frame to use; only required if type is set to #ANIM or if
#LAYER is used on an anim layer (V4.5)

EXAMPLE
w = GetAttribute(#BRUSH, 1, #ATTRWIDTH)

h = GetAttribute(#BRUSH, 1, #ATTRHEIGHT)

SetFillStyle(#FILLCOLOR)

SelectMask(1) ; select mask as output device

SetMaskMode(#MASKINVISIBLE) ; all calls will draw invisible pixels now

Cls ; clear all pixels

SetMaskMode(#MASKVISIBLE) ; all calls will draw visible pixels now

Box(0, 0, w, h, 0, 20) ; draw a rectangle with rounded edges

EndSelect ; select display as output device again

The code above renders a rectangle with rounded edges to the mask of brush 1. When
you display brush 1 now, it will appear with rounded edges.

21.66 SepiaToneBrush

NAME
SepiaToneBrush – apply sepia-tone effect to brush (V5.0)

SYNOPSIS
SepiaToneBrush(id, level)

FUNCTION
This command can be used to apply a sepia-tone effect to the specified brush. The
sepia-tone effect tries to simulate the look of old photographs. The second argument
controls the intensity of the sepia-toning and can be any value between 0 and 255, or a
percentage specification inside a string. Usually, a value around 204 is used (= 80%) for
the best looks.

Chapter 21: Brush library 307

Note that this function cannot be used with palette brushes.

INPUTS

id brush to sepia-tone

level desired sepia-toning level (0 to 255, or a string containing a percentage spec-
ification)

EXAMPLE
SepiaToneBrush(1, "80%")

The code above applies a sepia-tone effect to brush 1 using an intensity of 80%.

21.67 SetAlphaIntensity

NAME
SetAlphaIntensity – define intensity for alpha rendering (V2.0)

SYNOPSIS
SetAlphaIntensity(level)

FUNCTION
This function allows you to specify the level of transparency all graphics functions shall
use when they render into a brush’s alpha channel (when SelectAlphaChannel() is
active). The transparency level must be in the range of 0 to 255, where 0 means 100%
transparency and 255 means no transparency. The intensity you specify here will be used
by all graphics functions of Hollywood instead of a color. The default alpha intensity is
128.

Level can also be a string containing a percent specification, e.g. "50%".

Please note that this is just the other way round from SetLayerTransparency() where
0 means no transparency and 255 means full transparency.

See Section 21.63 [SelectAlphaChannel], page 301, for more information on alpha chan-
nels in general.

New in V2.5: You can also specify the special constant #VANILLACOPY as the level argu-
ment. If you do this, Hollywood will enable the new vanilla copy mode. This means that
all graphics commands which render alpha channel pixels will copy these pixels directly
to your brush’s alpha channel. For instance, if you select an alpha channel of a brush
and then use TextOut() to draw anti-aliased text, Hollywood will render the exact alpha
channel data of the anti-aliased text to your brush’s alpha channel where you can process
it further. If #VANILLACOPY is active and you draw graphics to the alpha channel that
do not have any alpha data, Hollywood will write an alpha intensity of 255 (i.e. fully
visible) into your alpha channel.

INPUTS

level desired transparency level (0 to 255 or percent specification) or: special
constant #VANILLACOPY for special vanilla copy mode (V2.5)

EXAMPLE
See Section 21.63 [SelectAlphaChannel], page 301.

308 Hollywood manual

21.68 SetBrushDepth

NAME
SetBrushDepth – set brush palette depth (V9.0)

SYNOPSIS
SetBrushDepth(id, depth[, t])

FUNCTION
This function sets the depth of the palette of the brush specified by id to the depth
specified in depth. depth must be a bit depth ranging from 1 (= 2 colors) to 8 (=
256 colors). See Section 44.1 [Palette overview], page 889, for details. Note that if the
specified depth is less than that of the pixel data attached to the palette, the pixel data
will be remapped to match the new depth.

Starting with Hollywood 10.0, SetBrushDepth() accepts an optional table argument
which can contain the following tags:

Remap: If this tag is set to False, out-of-range pens will not be remapped to existing
pens but instead they will simply be set to the pen specified in the ClipPen
tag (see below), i.e. no remapping will take place. Note that Remap is only
effective when reducing colors. If the new depth has more pens than the old
depth, Remap won’t do anything. (V10.0)

ClipPen: This is only used in case the Remap tag is set to False (see above). In
that case, out-of-range pens will not be remapped to existing pens but will
simply be set to the pen specified in the ClipPen tag, i.e. no remapping will
take place. Note that ClipPen is only effective when reducing colors. If the
new depth has more pens than the old depth, ClipPen won’t do anything.
(V10.0)

INPUTS

id identifier of brush to modify

depth desired new palette depth (ranging from 1 to 8)

t optional: table argument containing further options (see above) (V10.0)

EXAMPLE
SetBrushDepth(1, 8)

The code above changes the depth of brush 1’s palette to 8 (= 256 colors).

21.69 SetBrushPalette

NAME
SetBrushPalette – change brush palette (V9.0)

SYNOPSIS
SetBrushPalette(id, palid[, t])

Chapter 21: Brush library 309

FUNCTION
This function replaces the palette of the brush specified by id with the palette specified
by palid. The optional table argument t allows you to specify some further options.
The following tags are currently supported by the optional table argument t:

Remap: If this is set to True, the pixels of the brush will be remapped to match the
colors of the new palette as closely as possible. By default, there will be no
remapping and the actual pixel data of the brush will remain untouched. If
you want remapping, set this tag to True but be warned that remapping all
pixels will of course take much more time than just setting a new palette
without remapping. Defaults to False.

Dither: If the Remap tag (see above) has been set to True, you can use the Dither

tag to specify whether or not dithering should be used. Defaults to True

which means dithering should be used.

CopyCycleTable:

Palettes can have a table containing color cycling information. If you set this
tag to True, this cycle table will be copied to the brush as well. Defaults to
False.

INPUTS

id identifier of brush to use

palid identifier of palette to copy to brush

t optional: table for specifying further options (see above)

21.70 SetBrushPen

NAME
SetBrushPen – change brush palette pen (V9.0)

SYNOPSIS
SetBrushPen(id, pen, color)

FUNCTION
This function sets the color of the pen specified by pen to the color specified by color

in the palette of the brush specified by id.

INPUTS

id identifier of brush

pen pen you want to modify (starting from 0)

color new color for the pen, must be specified as an RGB color

EXAMPLE
SetBrushPen(1, 0, #RED)

The code above sets pen 0 to red in the palette of brush 1.

310 Hollywood manual

21.71 SetBrushTransparency

NAME
SetBrushTransparency – define transparent color of a brush (V1.5)

SYNOPSIS
SetBrushTransparency(id, col)

FUNCTION
This function makes the color specified by col transparent in the brush with the number
id. This is done by creating a mask for the brush. SetBrushTransparency() will
scan through all pixels of the brush and mask out all pixels that have the specified
color. The mask that is created by this function is not automatically updated when
you call SelectBrush() to modify pixels of your brush. Hence, it is necessary to call
SetBrushTransparency() again after a call to SelectBrush(), so that the mask can be
updated, too.

You can also use this function to remove a mask from a brush. Just specify
#NOTRANSPARENCY as the color.

Note that this function cannot be used with palette brushes. You can use
SetTransparentPen() to change the transparent pen in a palette brush. See
Section 44.37 [SetTransparentPen], page 920, for details.

INPUTS

id source brush id

col color to be displayed transparently or #NOTRANSPARENCY to kill the brush’s
mask

EXAMPLE
CreateBrush(1, 320, 256)

SelectBrush(1)

SetFillStyle(#FILLCOLOR)

Circle(0, 0, 100, #RED)

EndSelect()

SetBrushTransparency(1, #BLACK)

MoveBrush(1, #CENTER, #BOTTOMOUT, #CENTER, #TOPOUT, 10)

The above code creates a brush, draws a filled circle on it and then sets the background
color black as transparent color. After that it scrolls the circle through the screen. It is
important that you call SetBrushTransparency() when output is done, i.e. after calling
EndSelect().

21.72 SetBrushTransparentPen

NAME
SetBrushTransparentPen – set transparent pen of brush palette (V9.0)

SYNOPSIS
SetBrushTransparentPen(id, pen)

Chapter 21: Brush library 311

FUNCTION
This function sets the transparent pen of the palette of the brush specified by id to the
pen specified in pen. Pens are counted from 0.

INPUTS

id identifier of brush to use

pen desired transparent pen (starting from 0)

EXAMPLE
SetBrushTransparentPen(1, 4)

The code makes pen 4 in the palette of brush 1 transparent.

21.73 SetMaskMode

NAME
SetMaskMode – define rendering mode for masks (V2.0)

SYNOPSIS
SetMaskMode(mode)

FUNCTION
This function can be used to define the rendering mode when SelectMask() is active.
The argument mode can either be #MASKVISIBLE or #MASKINVISIBLE. The default is
#MASKVISIBLE. If you select the visible mode, all graphics commands will draw visible
pixels into the mask, otherwise invisible pixels will be drawn. Obviously, a mask does
not carry any color information but only those two flags per pixel (visible or invisible).

As of Hollywood 4.0, the following new mask modes are supported:

#MASKVANILLACOPY:

Masking data of the source image will be copied exactly to the destination.

#MASKAND:

Masking data of the source image will be copied to the destination mask
using a logical AND operation on each pixel.

#MASKOR: Masking data of the source image will be copied to the destination mask
using a logical OR operation on each pixel.

#MASKXOR:

Masking data of the source image will be copied to the destination mask
using a logical XOR operation on each pixel.

Below is a table summing up the different mask modes. Please note that the mask mode
#MASKVISIBLE, #MASKINVISIBLE, and #MASKVANILLACOPY are independent of the desti-

312 Hollywood manual

nation mask data. Destination mask data is only taken into account by the #MASKAND,
#MASKOR, and #MASKXOR modes.

Source Dest VISIBLE INVISIBLE VANILLA AND OR XOR

0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1

1 0 1 0 1 0 1 1

1 1 1 0 1 1 1 0

See Section 21.65 [SelectMask], page 305, for more information on mask rendering.

INPUTS

mode mask rendering mode (see above)

EXAMPLE
See Section 21.65 [SelectMask], page 305.

21.74 SharpenBrush

NAME
SharpenBrush – apply sharpening filter to brush (V5.0)

SYNOPSIS
SharpenBrush(id[, radius])

FUNCTION
This command sharpens the appearance of the specified brush. The optional argument
radius can be used to specify the sharpening radius. The larger the radius you specify
here, the longer this function needs to apply the sharpening effect. If you do not specify
the optional argument, this command will automatically choose an appropriate radius.

Note that this function cannot be used with palette brushes.

INPUTS

id brush to sharpen

radius optional: sharpening radius (defaults to 0 which means that the radius will
be chosen automatically)

21.75 SolarizeBrush

NAME
SolarizeBrush – apply solarization effect to brush (V5.0)

SYNOPSIS
SolarizeBrush(id, level)

FUNCTION
This command can be used to apply a solarization effect to the specified brush. The
solarization effect tries to simulate the look of photographic film exposed to light. The

Chapter 21: Brush library 313

second argument controls the intensity of the solarization effect and can be any value
between 0 and 255, or a percentage specification inside a string.

Note that if id specifies a palette brush, SolarizeBrush() will just solarize the palette
colors which makes this function really fast when used with palette brushes.

INPUTS

id brush to solarize

level desired solarization level (0 to 255, or a string containing a percentage spec-
ification)

21.76 SwirlBrush

NAME
SwirlBrush – apply swirl effect to brush (V5.0)

SYNOPSIS
SwirlBrush(id, degrees)

FUNCTION
This command applies a swirl effect to the specified brush. The brush will be swirled
around its center point by the specified amount of degrees. This can range from 0 for no
swirling to 360 for the most dramatic swirling effect.

INPUTS

id brush to swirl

degrees desired swirl level (can be from 0 to 360)

21.77 TintBrush

NAME
TintBrush – tint brush (V1.5)

SYNOPSIS
TintBrush(id, color, level)

FUNCTION
This function tints the brush specified by id with the RGB color specified by color at
a level which ranges from 0 to 255.

Starting with Hollywood 2.0, level can also be a string containing a percent specifica-
tion, e.g. "50%".

Note that if id specifies a palette brush, TintBrush() will just tint the palette colors
which makes this function really fast when used with palette brushes.

INPUTS

id identifier of the brush to tint

color a RGB color to use for tinting

314 Hollywood manual

level tint level (0 to 255 or percent specification)

EXAMPLE
TintBrush(1, #RED, 128)

The code above gives brush number 1 a red look.

21.78 TransformBrush

NAME
TransformBrush – apply affine transformation to a brush (V4.5)

SYNOPSIS
TransformBrush(id, sx, rx, ry, sy[, smooth])

FUNCTION
This function can be used to apply affine transformation to a brush. You have to pass a
2x2 transformation matrix to this function that will define how each pixel in the brush
will be transformed. This function is useful if you want to apply rotation and scaling
at the same time. Of course, you could do this with calls to ScaleBrush() and then
RotateBrush(), but this would lead to quality losses. If you do the transformation using
TransformBrush() instead, everything will be done in a single run.

The 2x2 transformation matrix consists of four floating point factors:

sx: Specifies the amount of scaling on the x axis. This must not be zero. If it is
negative, the image is flipped on the y axis.

rx: Specifies the amount of rotation on the x axis. This can be 0.

ry: Specifies the amount of rotation on the y axis. This can be 0.

sy: Specifies the amount of scaling on the y axis. This must not be zero. If it is
negative, the image is flipped on the x axis.

The identity matrix is defined as

(1 0)

(0 1)

If you pass this matrix, then no transformation will be applied because there is no rotation
and no scaling defined. I.e. if Hollywood applied this matrix to every pixel in your brush,
the result would be just a copy of the brush. But of course, if TransformBrush() detects
that you passed an identity matrix, it will return immediately and do nothing.

The optional argument smooth can be set to True if Hollywood shall use interpolation
during the transformation. This yields results that look better but interpolation is quite
slow.

Please note: You should always do transformation operations using the original brush.
For instance, if you transform brush 1 to 12x8 pixels and then transform it back to
640x480, you will get a messed image. Therefore you should always keep the original
brush and transform only copies of it.

Chapter 21: Brush library 315

Note that for vector brushes, TransformBrush() will always operate on the untrans-
formed brush. This means that any previous transformations applied to the brush us-
ing TransformBrush(), ScaleBrush(), or RotateBrush() will be undone when calling
TransformBrush().

INPUTS

id identifier of the brush to be transformed

sx scale x factor; must never be 0

rx rotate x factor

ry rotate y factor

sy scale y factor; must never be 0

smooth optional: whether or not affine transformation should use interpolation

EXAMPLE
angle = Rad(45) ; convert degrees to radians

TransformBrush(1, Cos(angle), Sin(angle), -Sin(angle), Cos(angle))

The code above rotates brush number 1 by 45 degrees using a 2x2 transformation matrix.

21.79 TrimBrush

NAME
TrimBrush – remove blank spaces from a brush (V4.6)

SYNOPSIS
left, top = TrimBrush(id)

FUNCTION
This command will remove all bordering blank spaces from the specified brush. If the
specified brush does not have a mask or an alpha channel, this function does nothing.
TrimBrush() will return the number of columns removed from the left side as well as
the number of rows removed from the top side of the brush. You can calculate the
right/bottom trim values on your own then.

INPUTS

id brush to trim

RESULTS

left number of columns removed from the left

top number of rows removed from the top

EXAMPLE
CreateBrush(1, 640, 480, #BLACK, {Mask = True, Clear = True})

SelectBrush(1, #SELMODE_COMBO)

SetFillStyle(#FILLCOLOR)

Box(#CENTER, #CENTER, 100, 100, #RED)

EndSelect

316 Hollywood manual

TrimBrush(1)

The code above will create a 640x480 brush, draw a 100x100 red rectangle to it and then
trim it down to 100x100 because all borders are blank.

21.80 Vector brushes

When you load a vector image using LoadBrush() or @BRUSH, you will get a special type
of brush: a vector brush. When loading normal images like PNG, JPEG, etc. you will
always get a raster brush. You can find out the type of a brush by querying the #ATTRTYPE
attribute using GetAttribute().

The advantage of a vector brush is that you can scale and/or transform it without any
quality losses. For example, the ScaleBrush(), RotateBrush(), and TransformBrush()

commands will produce high-quality images when used with vector brushes. Also, when
layers and the layer scaling engine are enabled, vector brush layers will be automatically
scaled without any quality losses. Therefore, if you only use vector brushes and TrueType
text in your script, it can be scaled to any resolution and will still appear perfectly crisp.

The disadvantage of vector brushes is that they are not supported by all image manipulating
functions. Of course, all the major functions like DisplayBrush(), DisplayBrushPart(),
ScaleBrush(), RotateBrush(), etc. work fine with vector brushes but certain functions
like TintBrush(), GammaBrush(), SelectBrush(), etc. can only handle raster brushes. So
if you want to use one of these functions on a vector brush, you need to convert the brush
to a raster brush first. This can be done by using the RasterizeBrush() function. Keep
in mind, though, that as soon as you convert a vector brush to a raster brush, it will no
longer be possible to scale and transform it without sacrifices in quality.

21.81 WaterRippleBrush

NAME
WaterRippleBrush – apply water ripple effect to brush (V5.0)

SYNOPSIS
WaterRippleBrush(id[, wavelength, amplitude, phase, cx, cy])

FUNCTION
This command can be used to apply a water ripple effect to the specified brush. The
five optional arguments allow you to control the parameters of the water ripple effect.
Wavelength, amplitude, and phase control the look of the ripples, whereas the cx and
cy arguments can be used to specify the center point of the ripple. This point must be
specified as a floating point value ranging from 0.0 (left/top) to 1.0 (right/bottom). The
center of the brush is thus at position 0.5/0.5.

INPUTS

id brush to apply water ripples to

wavelength

optional: desired wavelength of the ripple (defaults to 32)

amplitude

optional: desired ripple amplitude (defaults to 1)

Chapter 21: Brush library 317

phase optional: desired ripple phase (defaults to 0)

cx optional: x center point of ripple (defaults to 0.5)

cy optional: y center point of ripple (defaults to 0.5)

21.82 WriteBrushPixel

NAME
WriteBrushPixel – write single pixel to brush (V5.0)

SYNOPSIS
WriteBrushPixel(id, x, y, color[, trans])

FUNCTION
This command writes the specified RGB color to the brush passed in id at the position
specified in the first two arguments. If the optional argument trans is specified and the
brush has a mask or an alpha channel, then the value specified in the optional argument
is written to the transparency channel of the brush. If the brush has a mask, trans may
be set to 0 or 1, and if the brush has an alpha channel, then trans must be in the range
of 0 to 255.

You can also write pixels to brushes by selecting the brush as the output device using
SelectBrush() and then call the Plot() function. Using WriteBrushPixel(), however,
is faster for most cases because it allows you to modify color and transparency channels
at the same time and you can also avoid the overhead that is generated by calling
SelectBrush() and EndSelect().

Note that when id specifies a palette brush, color must not be an RGB color but a pen
value.

INPUTS

id identifier of the brush to use

x x offset

y y offset

color RGB color or pen to write to brush

trans optional: value to copy to the transparency channel

EXAMPLE
WriteBrushPixel(1, 100, 100, #RED)

Plots a red pixel at position 100:100 in brush 1.

319

22 Clipboard library

22.1 ClearClipboard

NAME
ClearClipboard – clear clipboard contents (V4.5)

SYNOPSIS
ClearClipboard()

FUNCTION
This function can be used to empty the clipboard. Any data that is currently stored in
the clipboard will be deleted.

INPUTS
none

22.2 GetClipboard

NAME
GetClipboard – read clipboard contents (V4.5)

SYNOPSIS
type[, data] = GetClipboard()

FUNCTION
This function retrieves the data that is currently stored in the clipboard.
GetClipboard() will return two values: The first return value indicates the format of
the data in the clipboard, and the second return value then contains the format-specific
data. Currently, Hollywood supports two different kinds of clipboard data: Text and
images.

If there is currently text stored in the clipboard, GetClipboard() will return
#CLIPBOARD_TEXT as the first return value, and a string containing the text in the
clipboard as the second return value.

If there is currently an image stored in the clipboard, GetClipboard() will return
#CLIPBOARD_IMAGE as the first return value, and the second return value will be a handle
to a brush which will contain the image from the clipboard. Once you are done working
with this brush, you should call FreeBrush() on it to free any memory allocated by it.

If there is neither text nor an image in the clipboard, GetClipboard() will return
#CLIPBOARD_UNKNOWN to you. The second return value is unused in this case. If the
clipboard is empty, then #CLIPBOARD_EMPTY will be returned.

To get notified whenever the contents of the clipboard change, you can install the
ClipboardChange event handler using InstallEventHandler().

If you just want to find out the format of the data currently in the clipboard without
actually receiving a copy of this data, you can use the PeekClipboard() command. But
keep in mind that the data on the clipboard can change at any time. So there is no
guarantee that the data that was on the clipboard when you called PeekClipboard()

will still be there when you call GetClipboard().

320 Hollywood manual

INPUTS
none

RESULTS

type format of the data currently in the clipboard or #CLIPBOARD_EMPTY or
#CLIPBOARD_UNKNOWN

data optional: if the first return value is not #CLIPBOARD_EMPTY or #CLIPBOARD_
UNKNOWN then this return value contains the actual data retrieved from the
clipboard; the data that is returned here depends on the format (see above)

EXAMPLE
SetClipboard(#CLIPBOARD_TEXT, "Hello clipboard!")

type, data = GetClipboard()

If type = #CLIPBOARD_TEXT

NPrint(data)

Else

NPrint("No text on the clipboard!")

EndIf

The code above puts the text "Hello clipboard!" on the clipboard and then retrieves the
current clipboard contents. If no other program meddles with the clipboard between
SetClipboard() and GetClipboard(), this code should print "Hello clipboard!" to the
screen then.

22.3 PeekClipboard

NAME
PeekClipboard – examine clipboard contents (V4.5)

SYNOPSIS
type = PeekClipboard()

FUNCTION
This function peeks into the clipboard and returns the format of the data that is currently
stored in the clipboard. Currently, Hollywood recognizes only text and image data in
the clipboard. Thus, this function will return one of the following type specifiers:

#CLIPBOARD_TEXT:

Text is currently on the clipboard.

#CLIPBOARD_IMAGE:

Graphics data is currently on the clipboard.

#CLIPBOARD_EMPTY:

The clipboard is currently empty.

#CLIPBOARD_UNKNOWN:

Hollywood did not recognize the data currently stored on the clipboard.

To retrieve the data from the clipboard, you have to use GetClipboard() but keep in
mind that the data on the clipboard can change at any time. So there is no guarantee

Chapter 22: Clipboard library 321

that the data that was on the clipboard when you called PeekClipboard() will still be
there when you call GetClipboard().

INPUTS
none

RESULTS

type value specifying the format of the data currently on the clipboard

22.4 SetClipboard

NAME
SetClipboard – change clipboard contents (V4.5)

SYNOPSIS
SetClipboard(type, data)

FUNCTION
This function can be used to put new data on the clipboard. The previous contents
of the clipboard will be erased. Currently, you can put either text or an image on the
clipboard with this function.

To put text on the clipboard, specify #CLIPBOARD_TEXT as type and pass a string con-
taining the text to be put on the clipboard in the data argument.

To put an image on the clipboard, specify #CLIPBOARD_IMAGE as type and pass the
identifier of a brush containing the image you wish to save to the clipboard in the data
argument.

INPUTS

type format of the data specified in second argument

data depends on the format specified in argument 1; see above for more informa-
tion

EXAMPLE
See Section 22.2 [GetClipboard], page 319.

323

23 Console library

23.1 AllocConsoleColor

NAME
AllocConsoleColor – allocate console color (V10.0)

SYNOPSIS
col = AllocConsoleColor(color)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function allocates the color specified by color for the current console and returns it.
You can then make it the active color by passing it to functions like SetConsoleColor().
Color allocation is necessary because by default only a few predefined ANSI colors like
#BLACK, #WHITE, #RED, etc. are available. If you want to use custom colors, you need to
allocate them first.

When you’re done with a color allocated by this function, call FreeConsoleColor() to
a free the color. This is important to make sure that you don’t run out of colors.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

color color to allocate; this must be passed as an RGB color

RESULTS

col allocated color

EXAMPLE
EnableAdvancedConsole()

SetConsoleColor(1, AllocConsoleColor($FFA500))

ConsolePrint("Hello World")

RefreshConsole()

The code above prints the string "Hello World" in orange. Note that under normal
circumstances you should free the console color when you’re done with it. This part has
been left out for readability reasons.

23.2 BeepConsole

NAME
BeepConsole – beep console (V10.0)

SYNOPSIS
BeepConsole()

PLATFORMS
Linux, macOS, Windows

324 Hollywood manual

FUNCTION
This function sounds the audible bell on the terminal. If that’s not possible, it calls
FlashConsole().

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

23.3 ClearConsole

NAME
ClearConsole – clear console (V10.0)

SYNOPSIS
ClearConsole()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function clears the console by copying the current background character set using
SetConsoleBackground() to every cell of the window. ClearConsole() will also set the
Clear flag from the SetConsoleOptions() command to True for the current window
to ensure that the window is cleared on the next refresh. If you don’t want that, use
EraseConsole() instead. See Section 23.20 [EraseConsole], page 334, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

23.4 ClearConsoleStyle

NAME
ClearConsoleStyle – clear console style (V10.0)

SYNOPSIS
ClearConsoleStyle(style)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function clears the specified style(s) in the current console window. The
style parameter can be one or more of the console style flags as described in the
SetConsoleStyle() documentation. See Section 23.55 [SetConsoleStyle], page 358, for
details. Since all style flags are bit masks you can combine multiple styles using the
bitwise OR operator (|).

Chapter 23: Console library 325

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

style one or more style flags to clear

23.5 CloseConsole

NAME
CloseConsole – close console window (V10.0)

SYNOPSIS
CloseConsole()

PLATFORMS
Windows

FUNCTION
This closes a console window previously opened using OpenConsole(). This is only
supported on Windows because only Windows distinguishes between non-console and
console programs. See Section 23.44 [OpenConsole], page 349, for details.

INPUTS
none

23.6 ConsolePrint

NAME
ConsolePrint – print to console (V8.0)

SYNOPSIS
ConsolePrint(...)

FUNCTION
This function prints all arguments you specify to the console. You can specify as many
arguments as you like and they may be of any type. If you pass multiple arguments to
this function, they will be printed with a space to separate them.

ConsolePrint() will also automatically append a newline character to the end of its
output. If you don’t want that, use ConsolePrintNR() instead. See Section 23.7 [Con-
solePrintNR], page 326, for details.

INPUTS

... at least one value to print to the console

EXAMPLE
ConsolePrint("The user entered", name$, "as his name and", age,

"as his age!")

326 Hollywood manual

23.7 ConsolePrintNR

NAME
ConsolePrintNR – print to console without newline (V8.0)

SYNOPSIS
ConsolePrintNR(...)

FUNCTION
This does the same as ConsolePrint() but doesn’t append a new line character to the
string.

See Section 23.6 [ConsolePrint], page 325, for details.

INPUTS

... at least one value to print to the console

EXAMPLE
ConsolePrintNR("Hello ")

ConsolePrintNR("World!")

ConsolePrintNR("\n")

This does the same as ConsolePrint("Hello World!").

23.8 ConsolePrompt

NAME
ConsolePrompt – read user input from console (V8.0)

SYNOPSIS
s$ = ConsolePrompt(p$)

FUNCTION
This function can be used to prompt the user to enter a string in the console.
ConsolePrompt() will present the string specified in p$ as the prompt and halt the
script’s execution until the user has entered a string and confirmed his input using the
RETURN key. The string will then be returned by this function.

INPUTS

p$ prompt to present to the user

RESULTS

s$ string entered by user

EXAMPLE
name$ = ConsolePrompt("What is your name? ")

age$ = ConsolePrompt("And your age? ")

home$ = ConsolePrompt("Where do you live? ")

ConsolePrint("Your name is", name$, "and you are", age$,

"years old and live in", home$, "!")

The code above demonstrates the usage of the ConsolePrompt() function.

Chapter 23: Console library 327

23.9 CopyConsoleWindow

NAME
CopyConsoleWindow – copy text from another console window (V10.0)

SYNOPSIS
CopyConsoleWindow(id[, overlay, srcx, srcy, dstx1, dsty1, dstx2, dsty2])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function copies the text from the console window specified by id to the currently
active console window. If the overlay parameter is True, only non-blank characters
are copied, i.e. all whitespace characters are ignored. If the optional arguments after
overlay are left out, only those characters in the source window that intersect with
the destination window are copied, so that the characters appear in the same physical
position on the screen.

If you specify the optional arguments after overlay, the two windows needn’t overlap.
The arguments srcx and srcy specify the top left corner of the region to be copied. The
arguments dstx1, dsty1, dstx2, and dsty2 specify the region within the destination
window to copy to. All positions must be given in characters.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

id id of the console window to copy from

overlay optional: whether or not only non-blank characters should be skipped (de-
faults to False)

srcx1 optional: x offset in the source console window

srcy1 optional: y offset in the source console window

dstx1 optional: destination start x offset

dsty1 optional: destination start y offset

dstx2 optional: destination end x offset

dsty2 optional: destination end y offset

23.10 CreateConsoleWindow

NAME
CreateConsoleWindow – create a new console window (V10.0)

SYNOPSIS
[id] = CreateConsoleWindow(id, cols, rows, x, y[, parent, rel])

PLATFORMS
Linux, macOS, Windows

328 Hollywood manual

FUNCTION
This function creates a new window with the given number of columns and rows. The
upper left corner of the window is at the coordinates specified by x and y. To create a
new full-screen window, just set cols, rows, x and y all to 0. The new window will be
given the identifier specified in id. If you pass Nil in id, CreateConsoleWindow() will
automatically choose an identifier and return it.

If you set the parent argument to the identifier of an existing console window, the
specified window will be set as the parent of the new console window so that the new
console window will become a subwindow. You can pass -1 in parent to set the default
console window as the parent. If you set rel to True, the x and y coordinates will be
interpreted as relative to the parent window’s origin instead of relative to the screen’s
origin.

Once you have created the console window, you can then use SelectConsoleWindow() to
make it the active console window. See Section 23.49 [SelectConsoleWindow], page 353,
for details.

Note that a console window is not the same as a window on your desktop. A console
window merely is a certain area in the console that is regarded as an own window. This
makes it easier to create textual user interfaces because you can divide your console
screen into several windows and then all drawing is automatically clipped at the window
edges.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

id id for the console window or Nil for auto id selection

cols number of columns for the window

rows number of rows for the window

x left window offset

y top window offset

parent optional: identifier of a console window to be used as a parent (defaults to
-1 which means the screen is the parent)

rel optional: whether or not x and y specify relative offsets (defaults to False)

RESULTS

id optional: identifier of the new console window; will only be returned if you
pass Nil as argument 1 (see above)

EXAMPLE
EnableAdvancedConsole()

w, h = GetConsoleSize()

CreateConsoleWindow(1, 20, 20, (w - 20) / 2, (h - 20) / 2)

SelectConsoleWindow(1)

DrawConsoleBorder()

RefreshConsole()

Chapter 23: Console library 329

The code above creates a new 20x20 window, draws a border around it and centers it on
the screen.

23.11 DecomposeConsoleChr

NAME
DecomposeConsoleChr – decompose styled character (V10.0)

SYNOPSIS
ch, style, pen = DecomposeConsoleChr(c)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function can be used to extract the individual components of a styled character
composed by MakeConsoleChr(). You have to pass the styled character in the c param-
eter and DecomposeConsoleChr() will return the Unicode codepoint of the character,
the styling flags and the pen that should be used to draw the character. See Section 23.42
[MakeConsoleChr], page 346, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

c styled character as composed by MakeConsoleChr()

RESULTS

ch Unicode codepoint of character

style console style flags

pen pen that shall be used to draw the correct

23.12 DeleteConsoleChr

NAME
DeleteConsoleChr – delete console character (V10.0)

SYNOPSIS
DeleteConsoleChr()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function deletes the character under the cursor in the current window. All characters
to the right on the same line are moved to the left one position and the last character
on the line is filled with a blank. The cursor position isn’t changed.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

330 Hollywood manual

INPUTS
none

23.13 DeleteConsoleLine

NAME
DeleteConsoleLine – delete console line (V10.0)

SYNOPSIS
DeleteConsoleLine()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function deletes the line under the cursor in the current window. All lines below
the current line are moved up one line. The bottom line of the window is cleared. The
cursor position does not change.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

23.14 DisableAdvancedConsole

NAME
DisableAdvancedConsole – stop advanced console mode (V10.0)

SYNOPSIS
DisableAdvancedConsole()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function ends the advanced console mode and puts the console back to normal
mode. Ending advanced console mode will also clear the console and restore the original
contents from before advanced mode was started on the console.

To start advanced console mode, call the EnableAdvancedConsole() function.

INPUTS
none

Chapter 23: Console library 331

23.15 DrawConsoleBorder

NAME
DrawConsoleBorder – draw border to console (V10.0)

SYNOPSIS
DrawConsoleBorder([ls, rs, ts, bs, tl, tr, bl, br])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function draws a border around the edge of the current console window. All ar-
guments must be character codes that specify the character that should be put at the
respective position. The ls parameter specifies the character to be drawn at the left
side of the border, rs specifies the right side of the border, ts the top side and bs the
bottom side. The tl parameter specifies the character to be drawn in the top left corner
of the border, tr specifies the top right corner of the border, bl the bottom left corner
and br the bottom right corner. If a parameter is 0, DrawConsoleBorder() will use its
default character for the specified border position.

Characters must be passed as numeric values, not as strings. For normal characters this
value is simply the Unicode codepoint of the respective character, e.g. 65 for ’A’. You
can, however, also pass a special character code composed by the MakeConsoleChr()

function. This function allows you to merge text formatting styles into the character
code and it also supports special character codes like arrows or border pieces. See
Section 23.42 [MakeConsoleChr], page 346, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

ls optional: character for left side of border (defaults to 0)

rs optional: character for right side of border (defaults to 0)

ts optional: character for top side of border (defaults to 0)

bs optional: character for bottom side of border (defaults to 0)

tl optional: character for top left corner of border (defaults to 0)

tr optional: character for top right corner of border (defaults to 0)

bl optional: character for bottom left corner of border (defaults to 0)

br optional: character for bottom right corner of border (defaults to 0)

EXAMPLE
EnableAdvancedConsole()

DrawConsoleBorder()

RefreshConsole()

The code above draws a border using the default characters around the current console
window.

332 Hollywood manual

23.16 DrawConsoleBox

NAME
DrawConsoleBox – draw box to console (V10.0)

SYNOPSIS
DrawConsoleBox([xc, yc])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function draws a box around the edge of the current console window. The xc and
yc arguments must be character codes that specify the character that should be used for
the horizontal and vertical frames. If a parameter is 0, DrawConsoleBox() will use its
default character for the specified border position.

Characters must be passed as numeric values, not as strings. For normal characters this
value is simply the Unicode codepoint of the respective character, e.g. 65 for ’A’. You
can, however, also pass a special character code composed by the MakeConsoleChr()

function. This function allows you to merge text formatting styles into the character
code and it also supports special character codes like arrows or border pieces. See
Section 23.42 [MakeConsoleChr], page 346, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

xc optional: character for horizontal frame (defaults to 0)

yc optional: character for vertical frame (defaults 0)

EXAMPLE
EnableAdvancedConsole()

DrawConsoleBox()

RefreshConsole()

The code above draws a box using the default characters around the current console
window.

23.17 DrawConsoleHLine

NAME
DrawConsoleHLine – draw horizontal line to console (V10.0)

SYNOPSIS
DrawConsoleHLine([ch, n])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function draws a horizontal line using the character code specified in ch. By default,
the line is extended until the end of the window. Alternatively, you can use the n

Chapter 23: Console library 333

parameter to tell DrawConsoleHLine() how many characters should be drawn. Passing
0 in ch makes DrawConsoleHLine() use a default character. The cursor position won’t
be advanced by this function.

Characters must be passed as numeric values, not as strings. For normal characters this
value is simply the Unicode codepoint of the respective character, e.g. 65 for ’A’. You
can, however, also pass a special character code composed by the MakeConsoleChr()

function. This function allows you to merge text formatting styles into the character
code and it also supports special character codes like arrows or border pieces. See
Section 23.42 [MakeConsoleChr], page 346, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

ch optional: character to draw with (defaults to 0)

n optional: number of characters to draw (defaults to number of columns)

23.18 DrawConsoleVLine

NAME
DrawConsoleVLine – draw vertical line to console (V10.0)

SYNOPSIS
DrawConsoleVLine([ch, n])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function draws a vertical line using the character code specified in ch. By default,
the line is extended until the end of the window. Alternatively, you can use the n

parameter to tell DrawConsoleVLine() how many characters should be drawn. Passing
0 in ch makes DrawConsoleVLine() use a default character. The cursor position won’t
be advanced by this function.

Characters must be passed as numeric values, not as strings. For normal characters this
value is simply the Unicode codepoint of the respective character, e.g. 65 for ’A’. You
can, however, also pass a special character code composed by the MakeConsoleChr()

function. This function allows you to merge text formatting styles into the character
code and it also supports special character codes like arrows or border pieces. See
Section 23.42 [MakeConsoleChr], page 346, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

ch optional: character to draw with (defaults to 0)

n optional: number of characters to draw (defaults to number of rows)

334 Hollywood manual

23.19 EnableAdvancedConsole

NAME
EnableAdvancedConsole – put console into advanced mode (V10.0)

SYNOPSIS
EnableAdvancedConsole()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function will clear the console screen and put the console into advanced mode. Most
functions of the console library require the console to be in advanced mode because things
like free cursor positioning, colors, input handling, etc. are not available in standard
console mode. Thus, EnableAdvancedConsole() is typically the first function to call
when you want to have advanced control over the console.

To go back to normal console mode, call the DisableAdvancedConsole() function.

Please also read the chapter on Hollywood and the console to learn more about using
Hollywood in console mode. See Section 3.1 [Console mode], page 31, for details.

INPUTS
none

EXAMPLE
EnableAdvancedConsole()

w, h = GetConsoleSize()

s$ = "Hello World!"

SetConsoleCursor((w - StrLen(s$)) / 2, h / 2)

ConsolePrintNR(s$)

RefreshConsole()

The code above prints the string "Hello World" centered in the console.

23.20 EraseConsole

NAME
EraseConsole – erase console (V10.0)

SYNOPSIS
EraseConsole()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function clears the console by copying the current background character set using
SetConsoleBackground() to every cell of the window. In contrast to ClearConsole()

EraseConsole() won’t set the Clear flag from the SetConsoleOptions() command
to True for the current window. If you want that, use ClearConsole() instead. See
Section 23.3 [ClearConsole], page 324, for details.

Chapter 23: Console library 335

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

23.21 FlashConsole

NAME
FlashConsole – flash console (V10.0)

SYNOPSIS
FlashConsole()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function flashes the screen, by inverting the foreground and background of every
cell, pausing, and then restoring the original attributes.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

23.22 FormatConsoleLine

NAME
FormatConsoleLine – set style and color for several characters (V10.0)

SYNOPSIS
FormatConsoleLine(n, style[, pen, fgcolor, bgcolor])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function sets the specified style and color for the next n characters on the current
line without changing the existing text, or altering the existing style or color settings.
Passing -1 for n means to apply the format to all characters until the end of the current
line.

All console styles supported by the SetConsoleStyle() function can be passed in the
style parameter. See Section 23.55 [SetConsoleStyle], page 358, for details. If you don’t
want to modify any style settings, you can pass the special style #CONSOLESTYLE_NONE

for style. In that case, FormatConsoleLine() won’t apply any styles.

The optional parameters pen, fgcolor and bgcolor can be used to change the color of
the characters. They can be used in the same way as with SetConsoleColor(). See
Section 23.52 [SetConsoleColor], page 355, for details.

336 Hollywood manual

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

n number of characters to format or -1 for all character in the current line

style formatting style to apply or #CONSOLESTYLE_NONE to ignore the argument

pen optional: color pen to use or 0 to reset text color to default (defaults to 0)

fgcolor optional: desired foreground color for the pen; this must be either an RGB
color from the list above or a color allocated by AllocConsoleColor() (de-
faults to #NOCOLOR)

bgcolor optional: desired background color for the pen; this must be either an RGB
color from the list above or a color allocated by AllocConsoleColor() (de-
faults to #NOCOLOR)

23.23 FreeConsoleColor

NAME
FreeConsoleColor – free console color (V10.0)

SYNOPSIS
FreeConsoleColor(color)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function frees the console color allocated by AllocConsoleColor(). It is important
to call this function when you no longer need a color to make sure that you don’t run
out of colors.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

color color to free; this must have been allocated by AllocConsoleColor()

23.24 FreeConsoleWindow

NAME
FreeConsoleWindow – free console window (V10.0)

SYNOPSIS
FreeConsoleWindow(id)

PLATFORMS
Linux, macOS, Windows

Chapter 23: Console library 337

FUNCTION
This function frees the console window specified by id. This must have been allocated by
CreateConsoleWindow() before. See Section 23.10 [CreateConsoleWindow], page 327,
for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

id id of the console window to free

23.25 GetAllocConsoleColor

NAME
GetAllocConsoleColor – get allocated color (V10.0)

SYNOPSIS
color = GetAllocConsoleColor(c)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function returns the RGB color of a console color allocated using
AllocConsoleColor(). You have to pass the color allocated by AllocConsoleColor()

in the c parameter.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

c allocated color to get

RESULTS

color allocated color as an RGB color

23.26 GetConsoleBackground

NAME
GetConsoleBackground – get console background (V10.0)

SYNOPSIS
ch = GetConsoleBackground()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function returns the character that is currently used for background filling. This
character can be set using SetConsoleBackground(). Note that the character can also
be a special character composed by the MakeConsoleChr() function. To decompose such

338 Hollywood manual

characters into their constituents, you can call the DecomposeConsoleChr() function.
See Section 23.11 [DecomposeConsoleChr], page 329, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

ch character used for filling

23.27 GetConsoleChr

NAME
GetConsoleChr – get console character (V10.0)

SYNOPSIS
ch = GetConsoleChr()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function gets the character at the current cursor position and returns it. Note
that the character can also be a special character composed by the MakeConsoleChr()

function. To decompose such characters into their constituents, you can call the
DecomposeConsoleChr() function. See Section 23.11 [DecomposeConsoleChr],
page 329, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

ch character at current cursor position

23.28 GetConsoleColor

NAME
GetConsoleColor – get console color (V10.0)

SYNOPSIS
pen, fgcolor, bgcolor = GetConsoleColor([cursor])

PLATFORMS
Linux, macOS, Windows

Chapter 23: Console library 339

FUNCTION
This function returns the active color of the current console window. If the optional
argument cursor is set to True, the color at the current cursor position will be returned.
Otherwise the color of the current window will be returned.

GetConsoleColor() will return three values: The currently active pen and the current
foreground and background colors.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

cursor optional: True to get the color at the cursor position, False to get the color
of the current window (defaults to False)

RESULTS

pen current color pen

fgcolor current foreground color as an RGB color

bgcolor current background color as an RGB color

23.29 GetConsoleControlChr

NAME
GetConsoleControlChr – get a standard control character (V10.0)

SYNOPSIS
ch = GetConsoleControlChr(ctrl)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function returns the character code of a standard console control character. The
following control characters are currently supported and can be passed in the ctrl

parameter:

#CONSOLECHR_KILL:

Returns the KILL character.

#CONSOLECHR_ERASE:

Returns the ERASE character.

#CONSOLECHR_WORD:

Returns the DELETEWORD character.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

ctrl control character to get; must be one from the list above

RESULTS

ch the requested control character in the format of the current terminal

340 Hollywood manual

23.30 GetConsoleCursor

NAME
GetConsoleCursor – get console cursor position (V10.0)

SYNOPSIS
x, y = GetConsoleCursor()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function returns the cursor position of the current window. The position returned
is relative to the upper left corner of the window, which is (0,0).

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

x current x position

y current y position

23.31 GetConsoleOrigin

NAME
GetConsoleOrigin – get console origin (V10.0)

SYNOPSIS
x, y = GetConsoleOrigin()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function returns the x and y coordinates of the origin of the current console window.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

x origin x position

y origin y position

Chapter 23: Console library 341

23.32 GetConsoleSize

NAME
GetConsoleSize – get console dimensions (V10.0)

SYNOPSIS
cols, rows = GetConsoleSize()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function returns the size of the current window. The size is returned as the number
of columns and rows available in the current window. A typical terminal size is 80x24,
i.e. 24 rows with 80 characters per row.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

cols number of columns in window

rows number of rows in window

23.33 GetConsoleStr

NAME
GetConsoleStr – read string from console (V10.0)

SYNOPSIS
s$ = GetConsoleStr()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function reads all characters from the current cursor position to the end of the line
and returns them as a string.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

s$ string read from console

342 Hollywood manual

23.34 GetConsoleStyle

NAME
GetConsoleStyle – get console style (V10.0)

SYNOPSIS
style = GetConsoleStyle([cursor])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function returns the style of the current console window. If the optional argument
cursor is set to True, the style at the current cursor position will be returned. Otherwise
the style for the current window will be returned.

The style return value will be a bitmask of style flags. See Section 23.55 [SetCon-
soleStyle], page 358, for all available console styles.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

cursor optional: True to get the style at the cursor position, False to get the style
for the current window (defaults to False)

RESULTS

style style flags

23.35 GetConsoleWindow

NAME
GetConsoleWindow – return active console window (V10.0)

SYNOPSIS
id = GetConsoleWindow()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function returns the currently active console window. If no console window has
been made active using SelectConsoleWindow(), -1 will be returned.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

id id of the active console window or -1 if the default screen is active

Chapter 23: Console library 343

23.36 HaveConsole

NAME
HaveConsole – check if there is a console (V10.0)

SYNOPSIS
ok = HaveConsole()

FUNCTION
This function returns True if the program has an attached console. This is only of use
when using the non-console version of Hollywood on Windows. In that case, there is
initially no console but it has to be manually opened using OpenConsole(). On all
other platforms and in the console version of Hollywood on Windows, there’ll always
be a console so this function will always return True. See Section 23.44 [OpenConsole],
page 349, for details.

INPUTS
none

RESULTS

ok True if a console is available, False otherwise

23.37 HideConsoleCursor

NAME
HideConsoleCursor – hide console cursor (V10.0)

SYNOPSIS
HideConsoleCursor()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function hides the console cursor.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

23.38 InitConsoleColor

NAME
InitConsoleColor – init console color (V10.0)

SYNOPSIS
InitConsoleColor(pen[, fgcolor, bgcolor])

PLATFORMS
Linux, macOS, Windows

344 Hollywood manual

FUNCTION
This function can be used to set the foreground color of the console pen specified by
pen to fgcolor and the background color to bgcolor. The pen could then be set as the
text pen using SetConsoleColor(). See Section 23.52 [SetConsoleColor], page 355, for
details.

The specified pen must be greater than 0. The number of available pens depends on the
console. Typically, 256 pens are available which means that the highest pen number you
can use is 255 but for the best compatibility you should use lower pen numbers because
not all consoles might have 256 pens.

The fgcolor and bgcolor arguments can be either RGB values or colors allocated
using AllocConsoleColor(). Note that only a few colors are available by default and
can be passed in fgcolor or bgcolor without allocation. These are: #BLACK, #WHITE,
#RED, #GREEN, #BLUE, #YELLOW, #AQUA (cyan), and #FUCHSIA (magenta). If you want
to use other colors, you need to allocate them first using AllocConsoleColor(). See
Section 23.1 [AllocConsoleColor], page 323, for details.

Note that terminals might choose to use a darkened version of the colors you specify
here so don’t be surprised if your color appears as grey even though you specified white.
Many terminals are configured to treat grey as white. If you want to avoid this, allocate
custom colors using AllocConsoleColor().

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

pen color pen to use

fgcolor optional: desired foreground color; this must be either an RGB color from
the list above or a color allocated by AllocConsoleColor() (defaults to
#NOCOLOR)

bgcolor optional: desired background color; this must be either an RGB color from
the list above or a color allocated by AllocConsoleColor() (defaults to
#NOCOLOR)

EXAMPLE
EnableAdvancedConsole()

SetConsoleStyle(#CONSOLESTYLE_BOLD)

InitConsoleColor(1, #BLACK, #WHITE)

SetConsoleColor(1)

ConsolePrint("Hello World")

RefreshConsole()

The code above prints the string "Hello World" in black on white background.

23.39 InsertConsoleChr

NAME
InsertConsoleChr – insert console character (V10.0)

Chapter 23: Console library 345

SYNOPSIS
InsertConsoleChr(ch)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function inserts the character specified by ch into the current console window at
the current cursor position. All characters to the right of the cursor are moved to the
right, with the possibility of the rightmost characters on the line being lost. The cursor
is not advanced.

The character must be passed as a numeric value, not a string. For normal charac-
ters ch simply specifies the Unicode codepoint of the respective character, e.g. 65 for
’A’. The ch argument, however, can also be a special character code composed by the
MakeConsoleChr() function. This function allows you to merge text formatting styles
into the character code and it also supports special character codes like arrows or border
bits. See Section 23.42 [MakeConsoleChr], page 346, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

ch character to insert

EXAMPLE
EnableAdvancedConsole()

InsertConsoleChr(’A’)

RefreshConsole()

The code above adds the character ’A’ to the console.

23.40 InsertConsoleLine

NAME
InsertConsoleLine – insert console line (V10.0)

SYNOPSIS
InsertConsoleLine()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function inserts a blank line above the current line. The bottom line is lost.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

346 Hollywood manual

23.41 InsertConsoleStr

NAME
InsertConsoleStr – insert console string (V10.0)

SYNOPSIS
InsertConsoleStr(s$)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function inserts the string specified by s$ into the current console window at the
current cursor position. All characters to the right of the cursor are moved to the right,
with the possibility of the rightmost characters on the line being lost. The cursor is not
advanced.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

s$ string to insert

EXAMPLE
EnableAdvancedConsole()

InsertConsoleStr("Hello World!")

RefreshConsole()

The code above prints the string "Hello World!" to the console.

23.42 MakeConsoleChr

NAME
MakeConsoleChr – merge style and color into character code (V10.0)

SYNOPSIS
ch = MakeConsoleChr(c[, style, pen])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function can be used to create a formatted character code that can be passed
to all functions that accepted a numeric character code, e.g. InsertConsoleChr().
MakeConsoleChr() takes the character passed in c and applies the style settings passed
in style and the color settings of the pen passed in pen to it.

The character must be passed by its numeric Unicode codepoint, not as a string. So for
the character ’A’ you would have to pass the value 65 in c. Alternatively, you can also
pass one of the following special characters in c:

#CONSOLECHR_BLOCK:

Solid block

Chapter 23: Console library 347

#CONSOLECHR_BOARD:

Board of squares

#CONSOLECHR_BTEE:

Bottom "T"

#CONSOLECHR_BULLET:

Bullet

#CONSOLECHR_CKBOARD:

Checkerboard

#CONSOLECHR_DARROW:

Down arrow

#CONSOLECHR_DEGREE:

Degree symbol

#CONSOLECHR_DIAMOND:

Diamond

#CONSOLECHR_GEQUAL:

Greater than or equal

#CONSOLECHR_HLINE:

Horizontal line

#CONSOLECHR_LANTERN:

Lantern symbol

#CONSOLECHR_LARROW:

Left arrow

#CONSOLECHR_LEQUAL:

Less than or equal

#CONSOLECHR_LLCORNER:

Lower left box corner

#CONSOLECHR_LRCORNER:

Lower right box corner

#CONSOLECHR_LTEE:

Left "T"

#CONSOLECHR_NEQUAL:

Not equal

#CONSOLECHR_PI:

Pi

#CONSOLECHR_PLMINUS:

Plus/minus sign

#CONSOLECHR_PLUS:

Plus sign, cross, or four-corner piece

348 Hollywood manual

#CONSOLECHR_RARROW:

Right arrow

#CONSOLECHR_RTEE:

Right "T"

#CONSOLECHR_S1:

Scan line 1

#CONSOLECHR_S3:

Scan line 3

#CONSOLECHR_S7:

Scan line 7

#CONSOLECHR_S9:

Scan line 9

#CONSOLECHR_STERLING:

Pounds sterling symbol

#CONSOLECHR_TTEE:

Top "T"

#CONSOLECHR_UARROW:

Up arrow

#CONSOLECHR_ULCORNER:

Upper left box corner

#CONSOLECHR_URCORNER:

Upper right box corner

#CONSOLECHR_VLINE:

Vertical line

The style parameter supports all console styles offered by the SetConsoleStyle()

function. See Section 23.55 [SetConsoleStyle], page 358, for details. If you don’t want
to set any style flags, you can pass the special style #CONSOLESTYLE_NONE for style. In
that case, MakeConsoleChr() won’t apply any styles.

The optional parameter pen can be used to define the pen that should be used to draw
the character. Fore- and background colors of that pen can be initialized using the
InitConsoleColor() function. See Section 23.38 [InitConsoleColor], page 343, for de-
tails.

To decompose a character that contains style or color formatting into its constituents,
use the DecomposeConsoleChr() function. See Section 23.11 [DecomposeConsoleChr],
page 329, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

c character as a Unicode codepoint

style formatting style to apply or #CONSOLESTYLE_NONE to ignore the argument

Chapter 23: Console library 349

pen optional: color pen to use or -1 to skip setting a pen (defaults to -1)

RESULTS

ch formatted character code

23.43 MoveConsoleWindow

NAME
MoveConsoleWindow – move console window (V10.0)

SYNOPSIS
MoveConsoleWindow(id, x, y)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function moves the console window specified by id to the position specified by x

and y. This position must be in characters and it must not be off-screen.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

id id of the console window to move

x desired x position for the window

y desired y position for the window

23.44 OpenConsole

NAME
OpenConsole – open console window (V10.0)

SYNOPSIS
OpenConsole()

PLATFORMS
Windows

FUNCTION
Windows distinguishes between non-console and console programs. That’s why Holly-
wood can compile two different types of programs on Windows: Non-console programs
and console programs. The difference between non-console programs and console pro-
grams is that console programs will automatically open a console when they are started
whereas non-console programs won’t do that. However, it’s possible to manually open a
console in non-console programs by calling this function.

On all other platforms there’s no such distinction between console and non-console pro-
grams which is why this function is only supported on Windows and only if you use the
non-console version of Hollywood.

350 Hollywood manual

To close the console opened by this function, simply call the CloseConsole() function.

Please also read the chapter on Hollywood and the console to learn more about using
Hollywood in console mode. See Section 3.1 [Console mode], page 31, for details.

INPUTS
none

23.45 ReadConsoleKey

NAME
ReadConsoleKey – read console key (V10.0)

SYNOPSIS
key = ReadConsoleKey()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function reads a character from the current console window. By default, it will wait
until the user presses a key. If you want it to return immediately in case the user hasn’t
pressed a key, you need to set the Delay option to False in SetConsoleOptions(). In
that case, ReadConsoleKey() will return #CONSOLEKEY_NONE in case no key has been
pressed.

If ReadConsoleKey() is set to wait until a key is pressed, its behaviour is also influenced
by the CBreak setting of SetConsoleOptions(). If CBreak is set to True, which is
also the default, one key press is enough to make ReadConsoleKey() stop blocking and
return. If CBreak is set to False, however, it will block until a newline occurs.

By default, the key that the user presses is echoed in the console. If you don’t want that,
set the Echo tag in SetConsoleOptions() to False.

Finally, ReadConsoleKey() can also read function keys like F1, F2, cursor keys, ESC
and so on. If you want ReadConsoleKey() to support function keys, you must put the
console into keypad mode by setting the Keypad tag in SetConsoleOptions() to True.
If you have done that, ReadConsoleKey() can also return the following function keys:

#CONSOLEKEY_ENTER

#CONSOLEKEY_UP

#CONSOLEKEY_DOWN

#CONSOLEKEY_RIGHT

#CONSOLEKEY_LEFT

#CONSOLEKEY_BACKSPACE

#CONSOLEKEY_DEL

#CONSOLEKEY_F1

#CONSOLEKEY_F2

#CONSOLEKEY_F3

#CONSOLEKEY_F4

#CONSOLEKEY_F5

#CONSOLEKEY_F6

Chapter 23: Console library 351

#CONSOLEKEY_F7

#CONSOLEKEY_F8

#CONSOLEKEY_F9

#CONSOLEKEY_F10

#CONSOLEKEY_F11

#CONSOLEKEY_F12

#CONSOLEKEY_F13

#CONSOLEKEY_F14

#CONSOLEKEY_F15

#CONSOLEKEY_F16

#CONSOLEKEY_INSERT

#CONSOLEKEY_HOME

#CONSOLEKEY_END

#CONSOLEKEY_PRINT

#CONSOLEKEY_PAGEUP

#CONSOLEKEY_PAGEDOWN

#CONSOLEKEY_IC

#CONSOLEKEY_EIC

As you can see, many SetConsoleOptions() options influence the behaviour of
ReadConsoleKey(). See Section 23.54 [SetConsoleOptions], page 357, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

key key that has been pressed or #CONSOLEKEY_NONE if no key has been pressed
and the console is in NoDelay mode

23.46 ReadConsoleStr

NAME
ReadConsoleStr – read console string (V10.0)

SYNOPSIS
s$ = ReadConsoleStr()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function reads a string from the current console window and returns it. In contrast
to ReadConsoleKey(), ReadConsoleStr() isn’t compatible with the Delay option of
SetConsoleOptions(). It will only work correctly if Delay is set to True, which is also
the default. This implies that ReadConsoleStr() is always meant to block until there’s
some input on the console.

352 Hollywood manual

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

RESULTS

s$ string read from the console

23.47 RefreshConsole

NAME
RefreshConsole – refresh console (V10.0)

SYNOPSIS
RefreshConsole()

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function draws the changes in the current console window to the screen. To optimize
drawing, the console typically won’t refresh automatically when changes are made to its
contents. Instead, RefreshConsole() must usually be called manually to make the
console redraw itself. If you want Hollywood to automatically refresh the console, you
can set the Immediate flag to True in SetConsoleOptions() but this can lead to flickery
drawing.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS
none

23.48 ScrollConsole

NAME
ScrollConsole – scroll console lines (V10.0)

SYNOPSIS
ScrollConsole(n)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function scrolls the console window up or down by the specified delta n. A positive
value in n scrolls the console up n lines while a negative n scrolls the console down n

lines.

Before you can use this function you must set the Scroll tag to True in
SetConsoleOptions. See Section 23.54 [SetConsoleOptions], page 357, for details.

Chapter 23: Console library 353

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

n number of lines to scroll up or down; positive values scroll up, negative values
scroll down

23.49 SelectConsoleWindow

NAME
SelectConsoleWindow – make console window active (V10.0)

SYNOPSIS
SelectConsoleWindow(id)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function makes the console window specified by id the active one. All commands of
the console library will then target this console window. The id parameter must be the
identifier of a console window allocated by CreateConsoleWindow(). See Section 23.10
[CreateConsoleWindow], page 327, for details. The special value -1 can be passed in id

to make the default console screen the active window.

Make sure that you do not confuse SelectConsoleWindow() with the similarly
named functions SelectBrush(), SelectBGPic(), SelectAnim(), SelectMask(), and
SelectAlphaChannel(). All of these functions require you to call EndSelect() when
you are done with them, but SelectConsoleWindow() does not have this requirement.
In fact, it works in a completely different way so you must never call EndSelect()
for SelectConsoleWindow(). If you want to return to the previously active console
window, you must call SelectConsoleWindow() again. Calling EndSelect() to restore
the previously active console window will definitely not work.

To find out the currently active console window, call the GetConsoleWindow() function.
See Section 23.35 [GetConsoleWindow], page 342, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

id id of the console window to make active

EXAMPLE
EnableAdvancedConsole()

w, h = GetConsoleSize()

CreateConsoleWindow(1, 20, 20, (w - 20) / 2, (h - 20) / 2)

SelectConsoleWindow(1)

DrawConsoleBorder()

RefreshConsole()

354 Hollywood manual

The code above creates a new 20x20 window, draws a border around it and centers it on
the screen.

23.50 SetAllocConsoleColor

NAME
SetAllocConsoleColor – change allocated color (V10.0)

SYNOPSIS
SetAllocConsoleColor(c, color)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function changes a color allocated using AllocConsoleColor(). You have to pass
the color allocated by AllocConsoleColor() in the c parameter and the new color in
the color parameter (as an RGB color).

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

c allocated color to modify

color new color as an RGB color

23.51 SetConsoleBackground

NAME
SetConsoleBackground – set console background (V10.0)

SYNOPSIS
SetConsoleBackground(ch)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function fills the background of the current console window with the character
specified by ch. The character must be passed as a numeric value, not a string. For
normal characters ch simply specifies the Unicode codepoint of the respective character,
e.g. 65 for ’A’. The ch argument, however, can also be a special character code composed
by the MakeConsoleChr() function. This function allows you to merge text formatting
styles into the character code and it also supports special character codes like arrows or
border bits. See Section 23.42 [MakeConsoleChr], page 346, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

ch character to use for filling

Chapter 23: Console library 355

EXAMPLE
EnableAdvancedConsole()

SetConsoleBackground(’=’)

RefreshConsole()

The code above fills the console background with ’=’ characters.

23.52 SetConsoleColor

NAME
SetConsoleColor – set console color (V10.0)

SYNOPSIS
SetConsoleColor(pen[, fgcolor, bgcolor])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function can be used to set the specified pen as the text pen. If the fgcolor and
bgcolor arguments are also specified, the pen will be initialized to the colors passed in
fgcolor and bgcolor before making it the text pen. This is only possible if the pen
number is greater than 0. Pen 0 is reserved for the default text color. Thus, if you pass
0 in pen, fgcolor and bgcolor will be ignored and the text color will be reset to the
console’s default text color.

The number of available pens depends on the console. Typically, 256 pens are available
which means that the highest pen number you can use is 255 but for the best com-
patibility you should use lower pen numbers because not all consoles might have 256
pens.

The fgcolor and bgcolor arguments can be either RGB values or colors allocated
using AllocConsoleColor(). Note that only a few colors are available by default and
can be passed in fgcolor or bgcolor without allocation. These are: #BLACK, #WHITE,
#RED, #GREEN, #BLUE, #YELLOW, #AQUA (cyan), and #FUCHSIA (magenta). If you want
to use other colors, you need to allocate them first using AllocConsoleColor(). See
Section 23.1 [AllocConsoleColor], page 323, for details.

Note that terminals might choose to use a darkened version of the colors you specify
here so don’t be surprised if your color appears as grey even though you specified white.
Many terminals are configured to treat grey as white. If you want to avoid this, allocate
custom colors using AllocConsoleColor().

To initialize the foreground and background color of a pen without making it the active
text pen, you can use the InitConsoleColor() function. See Section 23.38 [InitCon-
soleColor], page 343, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

pen color pen to use or 0 to reset text color to default

356 Hollywood manual

fgcolor optional: desired foreground color for the pen; this must be either an RGB
color from the list above or a color allocated by AllocConsoleColor() (de-
faults to #NOCOLOR)

bgcolor optional: desired background color for the pen; this must be either an RGB
color from the list above or a color allocated by AllocConsoleColor() (de-
faults to #NOCOLOR)

EXAMPLE
EnableAdvancedConsole()

SetConsoleStyle(#CONSOLESTYLE_BOLD)

SetConsoleColor(1, #BLACK, #WHITE)

ConsolePrint("Hello World")

RefreshConsole()

The code above prints the string "Hello World" in black on white background.

23.53 SetConsoleCursor

NAME
SetConsoleCursor – set console cursor position (V10.0)

SYNOPSIS
SetConsoleCursor(x, y)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function moves the cursor of the current window to the location specified by x and
y. This does not move the physical cursor of the terminal until RefreshConsole() is
called. The position specified is relative to the upper left corner of the window, which is
(0,0).

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

x desired x position

y desired y position

EXAMPLE
EnableAdvancedConsole()

w, h = GetConsoleSize()

s$ = "Hello World!"

SetConsoleCursor((w - StrLen(s$)) / 2, h / 2)

ConsolePrintNR(s$)

RefreshConsole()

The code above prints the string "Hello World" centered in the console.

Chapter 23: Console library 357

23.54 SetConsoleOptions

NAME
SetConsoleOptions – configure console settings (V10.0)

SYNOPSIS
SetConsoleOptions(table)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function can be used to configure several settings that determine how the console
should behave in advanced console mode. You must enable advanced console mode
using EnableAdvancedConsole() before you can use this function. See Section 23.19
[EnableAdvancedConsole], page 334, for details.

SetConsoleOptions() accepts a single table argument that can contain the following
tags:

Delay: If this tag is set to False, ReadConsoleKey() won’t wait until a key is
pressed but will return immediately if no key is pressed. Defaults to True.

HalfDelay:

When Delay is set to True, HalfDelay can be used to specify a time limit
to be specified, in tenths of a second. This causes ReadConsoleKey() to
block for that period before returning #CONSOLEKEY_NONE if no key has been
received. If set, this value must be between 1 and 255.

Echo: If this tag is set to False, typed characters won’t be echoed in the console.
Defaults to True.

Keypad: If this tag is set to True, ReadConsoleKey() will also be able to read function
keys like F1, F2, cursor keys, ESC, etc. Defaults to False.

Scroll: If this tag is set to True, the console will automatically scroll the console
when writing past the end of the console window. Defaults to False.

Clear: If this tag is set to True, RefreshConsole() will clear the screen completely
and redraw the entire screen. Defaults to False.

Leave: If this tag is set to True, the cursor will be left wherever a screen update
happens to leave it. This can be useful for applications where the cursor is
not used, since it reduces the need for cursor motions. If possible, the cursor
is made invisible when this option is enabled. Defaults to False.

Immediate:

If this tag is set to True, the console window will be refreshed every time a
change is made to it. Defaults to False.

CBreak: When Delay is set to True, CBreak controls which characters can make
ReadConsoleKey() stop blocking and return. If CBreak is set to True, one
key press will be enough to make ReadConsoleKey() stop blocking and re-
turn. If CBreak is set to False, however, ReadConsoleKey() will block until
a newline occurs.

358 Hollywood manual

Newline: If this is set to True, newlines are translated to carriage returns on input. If
you don’t want that, set Newline to False. Defaults to True.

INPUTS

table table containing one or more settings to modify (see above)

23.55 SetConsoleStyle

NAME
SetConsoleStyle – set console style (V10.0)

SYNOPSIS
SetConsoleStyle(style)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function sets the style of the current console window to the one passed in the style
parameter. This can be one or more of the following flags:

#CONSOLESTYLE_NORMAL:

Reset text style to default. This cannot be combined with any other styles.

#CONSOLESTYLE_BOLD:

Make text bold.

#CONSOLESTYLE_ITALIC:

Make text italic.

#CONSOLESTYLE_UNDERLINED:

Underline text.

#CONSOLESTYLE_STANDOUT:

Highlight text.

#CONSOLESTYLE_BLINK:

Make text blink.

#CONSOLESTYLE_REVERSE:

Reverse video on text.

#CONSOLESTYLE_DIM:

Half bright effect for text. This is not supported everywhere.

#CONSOLESTYLE_PROTECT:

Protected mode for text. This is not supported everywhere.

#CONSOLESTYLE_INVISIBLE:

Invisible text. This is not supported everywhere.

#CONSOLESTYLE_ALTCHARSET:

Use the alternate character set.

Chapter 23: Console library 359

Note that all style flags are bit masks so you can combine multiple styles using the bitwise
OR operator (|).

To clear console one or more console styles, use the ClearConsoleStyle() function. See
Section 23.4 [ClearConsoleStyle], page 324, for details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

style one or more style flags to set (see above)

EXAMPLE
EnableAdvancedConsole()

SetConsoleStyle(#CONSOLESTYLE_BOLD|#CONSOLESTYLE_UNDERLINED)

ConsolePrint("Hello World!")

RefreshConsole()

The code above prints the text "Hello World!" in bold and underlined style.

23.56 SetConsoleTitle

NAME
SetConsoleTitle – set console title (V10.0)

SYNOPSIS
SetConsoleTitle(t$)

PLATFORMS
Windows

FUNCTION
This function changes the title of the console window to the text specified in t$. This is
currently only supported on Windows.

INPUTS

t$ new title for the console window

23.57 ShowConsoleCursor

NAME
ShowConsoleCursor – show console cursor (V10.0)

SYNOPSIS
ShowConsoleCursor([normal])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function can be used to show the console cursor. The optional normal argument
can be used to set whether you’d like to have the normal or the block cursor. If normal

360 Hollywood manual

is set to True, the normal cursor will be shown. If it is set to False, the block cursor
will be used. By default, ShowConsoleCursor() will show the normal cursor.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

normal optional: whether to show the normal or the block cursor (defaults to True,
which means show the normal cursor)

23.58 StartConsoleColorMode

NAME
StartConsoleColorMode – put console into color mode (V10.0)

SYNOPSIS
StartConsoleColorMode([defcolor])

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function puts the console in color mode. Normally, it’s not necessary to call this
function because all console library functions that operate in color mode will enable color
mode automatically. There’s one exception, though: If you don’t want to use the default
colors, you have to start color mode manually and set the defcolor argument to False.
In that case color mode will be enabled but without using the default colors. Note that if
you do that, it’s important to call StartConsoleColorMode() before any other console
library functions that might enable color mode so if you use this function the best idea
is to call it right after EnableAdvancedConsole().

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

defcolor optional: whether or not to use the default colors (defaults to True)

23.59 TouchConsoleWindow

NAME
TouchConsoleWindow – touch console window (V10.0)

SYNOPSIS
TouchConsoleWindow(id)

PLATFORMS
Linux, macOS, Windows

FUNCTION
This function marks the whole console window specified by id as needing refresh. By
default, only the areas in the window that have changed are marked for refresh. If you
want to force a refresh of the whole window, call TouchConsoleWindow() on it.

Chapter 23: Console library 361

The id parameter must be the identifier of a console window allocated by
CreateConsoleWindow(). See Section 23.10 [CreateConsoleWindow], page 327, for
details.

You must enable advanced console mode using EnableAdvancedConsole() before you
can use this function. See Section 23.19 [EnableAdvancedConsole], page 334, for details.

INPUTS

id id of the console window to use

363

24 Debug library

24.1 Assert

NAME
Assert – fail if given expression is false (V5.0)

SYNOPSIS
Assert(expr)

FUNCTION
This command checks whether or not the given expression is False (or Nil) and causes
an error if this is the case. This is mainly useful for debugging purposes. You can also
pass a table or a function in expr. In that case, expr will be considered True.

This call can be disabled by specifying the -nodebug console argument when running a
script or applet. In that case, calling Assert() will do nothing at all. See Section 3.2
[Console arguments], page 33, for details.

INPUTS

expr expression to check

EXAMPLE
a = 5

b = 0

Assert(b <> 0)

c = a / b

In the above code, Assert() is used to make sure that we don’t divide by zero. Assert()
will prevent such an error by checking b against zero.

24.2 CloseResourceMonitor

NAME
CloseResourceMonitor – close Hollywood’s resource monitor (V4.5)

SYNOPSIS
CloseResourceMonitor()

FUNCTION
This function will close Hollywood’s inbuilt resource monitor. You can bring it up again
by calling OpenResourceMonitor().

See Section 24.7 [OpenResourceMonitor], page 366, for more information about Holly-
wood’s resource monitor.

INPUTS
none

364 Hollywood manual

24.3 DebugOutput

NAME
DebugOutput – enable/disable debug output

SYNOPSIS
DebugOutput(enable)

FUNCTION
This function enables or disables debug output to the default debug device. If debug
output is enabled, Hollywood will print information about any function it calls so you
can easily track down problems.

This call can be disabled by specifying the -nodebug console argument when running
a script or applet. In that case, calling DebugOutput() will do nothing at all. See
Section 3.2 [Console arguments], page 33, for details.

INPUTS

enable enable flag; True to enable debug output, False to disable it

EXAMPLE
DebugOutput(TRUE)

The above code enables debug output.

24.4 DebugPrint

NAME
DebugPrint – print to debug device (V2.0)

FORMERLY KNOWN AS
DebugVal (V1.x) ; DebugStr (V1.x)

SYNOPSIS
DebugPrint(...)

FUNCTION
This function prints all arguments you specify to the current debug device. This is
usually your console window. You can specify as many arguments as you like and they
may be of any type. If you pass multiple arguments to this function, they will be printed
with a space to separate them.

DebugPrint() will also automatically append a newline character to the end of its out-
put. If you don’t want that, use DebugPrintNR() instead. See Section 24.5 [Debug-
PrintNR], page 365, for details.

This function supersedes the DebugStr() and DebugVal() calls. They now simply point
to this call.

This call can be disabled by specifying the -nodebug console argument when running a
script or applet. In that case, calling DebugPrint() will do nothing at all. See Section 3.2
[Console arguments], page 33, for details.

Also note that when compiling an applet or executable, debugging will be automatically
disabled unless you explicitly enable it by setting the EnableDebug tag to True

Chapter 24: Debug library 365

in @OPTIONS. So if you have compiled an applet or executable and you see that
DebugPrint() doesn’t do anything, the reason is probably that debugging is disabled.

INPUTS

... at least one value to print to the debug device

EXAMPLE
DebugPrint("The user entered", name$, "as his name and", age,

"as his age!")

24.5 DebugPrintNR

NAME
DebugPrintNR – print to debug device without newline (V6.1)

SYNOPSIS
DebugPrintNR(...)

FUNCTION
This does the same as DebugPrint() but doesn’t append a new line character to the
string.

This call can be disabled by specifying the -nodebug console argument when running
a script or applet. In that case, calling DebugPrintNR() will do nothing at all. See
Section 3.2 [Console arguments], page 33, for details.

Also note that when compiling an applet or executable, debugging will be automatically
disabled unless you explicitly enable it by setting the EnableDebug tag to True

in @OPTIONS. So if you have compiled an applet or executable and you see that
DebugPrintNR() doesn’t do anything, the reason is probably that debugging is disabled.

See Section 24.4 [DebugPrint], page 364, for details.

INPUTS

... at least one value to print to the debug device

EXAMPLE
DebugPrintNR("Hello ")

DebugPrintNR("World!")

DebugPrintNR("\n")

This does the same as DebugPrint("Hello World!").

24.6 DebugPrompt

NAME
DebugPrompt – read user input from debug device (V5.0)

SYNOPSIS
s$ = DebugPrompt(p$)

366 Hollywood manual

FUNCTION
This function can be used to prompt the user to enter a string in the current debug
device. DebugPrompt() will present the string specified in p$ as the prompt and halt
the script’s execution until the user has entered a string and confirmed his input using
the RETURN key. The string will then be returned by this function.

This call can be disabled by specifying the -nodebug console argument when running a
script or applet. In that case, calling DebugPrompt() will just return an empty string.
See Section 3.2 [Console arguments], page 33, for details.

Also note that when compiling an applet or executable, debugging will be automatically
disabled unless you explicitly enable it by setting the EnableDebug tag to True

in @OPTIONS. So if you have compiled an applet or executable and you see that
DebugPrompt() doesn’t do anything, the reason is probably that debugging is disabled.

INPUTS

p$ prompt to present to the user

RESULTS

s$ string entered by user

EXAMPLE
name$ = DebugPrompt("What is your name? ")

age$ = DebugPrompt("And your age? ")

home$ = DebugPrompt("Where do you live? ")

DebugPrint("Your name is", name$, "and you are", age$,

"years old and live in", home$, "!")

The code above demonstrates the usage of the DebugPrompt() function.

24.7 OpenResourceMonitor

NAME
OpenResourceMonitor – open Hollywood’s resource monitor (V4.5)

SYNOPSIS
OpenResourceMonitor()

FUNCTION
This function will open Hollywood’s inbuilt resource monitor. The resource monitor
will display a list of all resources that Hollywood has currently in memory. The list is
updated several times per second so it is always up to date.

The resource monitor is very useful to make sure the memory management of your
script is correct. Although Hollywood features resource tracking and will automatically
deallocate all resources when it terminates, it is still important for bigger projects to keep
an eye on their resource management because otherwise, your program will consume more
and more memory. If you do not keep an eye on your resources, it can often happen that
the longer your program runs, the more memory it will consume, and that must never
happen.

Hollywood’s resource monitor conveniently allows you to keep an eye on your resources.
If you have the resource monitor always open while you develop, you will easily notice

Chapter 24: Debug library 367

if there is a resource problem somewhere. For example, if you notice that brush or layer
numbers are steadily increasing while your script runs, you should be alarmed and it is
likely that there is something wrong with your code which you need to fix.

You can also enable the resource monitor directly at startup by using the
-resourcemonitor console argument.

To close the resource monitor, simply close its window or just call the
CloseResourceMonitor() function.

INPUTS
none

24.8 WARNING

NAME
WARNING – send a warning message to the debug device (V6.1)

SYNOPSIS
@WARNING msg$

FUNCTION
This preprocessor command will send the specified warning message to the debug device
right before running the script. This allows you to conveniently store important infor-
mation like to do lists, "fix me" parts, etc. alongside your source code and you will be
reminded of them whenever you run your script.

This preprocessor command can be disabled by specifying the -nodebug console argu-
ment when running a script or applet. In that case, this preprocessor command will do
nothing at all. See Section 3.2 [Console arguments], page 33, for details.

INPUTS

msg$ error message to show

EXAMPLE
@WARNING "FIXME: support other image formats"

The code above will send the string "FIXME: support other image formats" to the debug
device right before Hollywood runs the script.

369

25 Display library

25.1 Overview

A display is an area on the screen your script can draw to. Typically, a display is a window
on your desktop screen but it can also be in full-screen mode and fill up the entire monitor
space. In Hollywood, a display is always tied to a background picture (BGPic). The
background picture is what will be initially shown to the user when your display becomes
visible.

The background picture attached to a display must always be of the same size as the display.
Thus, if you change the display size, e.g. by using ChangeDisplaySize() your background
picture will automatically be scaled to fit the new dimensions because as already said before
the display size is always the same as the current background picture size. If your window
is resizeable, then the user may also adjust your display size. If he does, Hollywood will
internally call ChangeDisplaySize() to adjust to the new dimensions.

If you choose to display a new background picture, e.g. by using the DisplayBGPic()

command, and the dimensions of the new background picture differ from the dimensions
of your current background picture, then your display will also be resized to fit the new
dimensions.

At startup, Hollywood will display the background picture that has been assigned the iden-
tifier 1. If you haven’t declared a background picture that uses the identifier 1 using the
@BGPIC preprocessor command, Hollywood will create this background picture automati-
cally for you and attach it to your display. The background picture will use the fill style and
dimensions specified in the @DISPLAY preprocessor command for display 1 in your script.

Displays can also have transparent areas. Hollywood supports displays with alpha trans-
parency (256 levels of transparency) and monochrome transparency.

Here is a minimal script which creates a 1024x768 display filled with the color red:

@DISPLAY {Width = 1024, Height = 768, Color = #RED}

WaitLeftMouse

End

Displays can also automatically scale their content using one of Hollywood’s inbuilt scaling
engines: Auto scaling or layer scaling. When enabling one of those scaling engines, the
script will think it is running in its original resolution although the display is promoting
it to an entirely different resolution using the selected scaling engine. See Section 25.18
[Scaling engines], page 401, for details.

Hollywood displays can also run in palette mode. Displays will switch to palette mode
whenever a BGPic that uses a palette is displayed. Palette mode displays behave quite
differently than normal true color displays so there are some important things to consider
when using displays in palette mode. See Section 25.16 [Palette mode displays], page 400,
for details.

Hollywood’s display library also supports multiple monitors. You can specify the monitor
a display should be opened on. See Section 25.14 [Multi-monitor support], page 397, for
details.

370 Hollywood manual

25.2 ActivateDisplay

NAME
ActivateDisplay – activate a display (V4.5)

SYNOPSIS
ActivateDisplay(id[, nofront])

FUNCTION
This command can be used to activate the specified display. Activating a display just
means that Hollywood tells the window manager of the host operating system to give the
focus to this display. Activating a display does not make the display the current output
device for Hollywood’s graphics library. If you want to select a display, as the current
output device, you have to use SelectDisplay() which will also activate the display if
you do not explicitly forbid this.

See Section 25.20 [SelectDisplay], page 405, for more information on the difference be-
tween active displays and displays that are selected as the current output device.

Starting with Hollywood 5.0 there is a new optional argument called nofront. If you
set this to True, the display will be activated but it will not be moved to the front of
the windows’ stacking order. This argument is only handled on AmigaOS compatible
systems because active windows in the background are not supported on other operating
systems.

INPUTS

id identifier of the display that shall be activated

nofront optional: True if display should not be brought to the front (defaults to
False which means pop display to front) (V5.0)

25.3 BACKFILL

NAME
BACKFILL – configure backfill settings for script (V4.5)

SYNOPSIS
@BACKFILL table

FUNCTION
Important note: This preprocessor command is deprecated since Hollywood 6.0. As
Hollywood 6.0 introduced support for multiple monitors, there could also be multi-
ple backfills (one for every display as displays could be on separate monitors). That
is why backfills should be set up using the @DISPLAY preprocessor command or the
CreateDisplay() function now. You can still use this preprocessor command but it will
affect the first display only.

This preprocessor command can be used to configure the backfill settings for your script.
Backfills can be used to create a shielding window that covers the whole area not occupied
by your main display. You can use a static color as a backfill, a gradient, an image, or a
texture. Before Hollywood 4.5, backfills were configured using the @DISPLAY preprocessor
command. Hollywood 4.5, however, introduced multiple displays which made it necessary

Chapter 25: Display library 371

to move the backfill settings into its own preprocessor command because there can be
only a single backfill per script.

You have to pass a table to this command. The following table tags are currently
recognized:

Type: This field is obligatory. It can be Color, Gradient, Texture or Picture.
The type must be passed as a string here.

Color: If you’ve specified Color as backfill type, pass the desired backfill color in
this field.

StartColor, EndColor:

If you’ve specified Gradient as backfill type, use these two fields to define
the start and end colors for the gradient.

Brush: If you’ve specified Texture or Picture as backfill type, specify the identifier
of the brush to use as the source image here. If you want to pass the file
name directly, use the BrushFile tag instead.

X,Y: If you’ve specified Picture as backfill type, you can use these two fields to
position the picture on the screen. They both default to #CENTER.

BrushFile:

If you’ve specified Texture or Picture as backfill type, you can specify the
file name of the brush to use as the source image here. The file specified
here will be linked to the applet/executable on compilation unless you set
LinkBrushFile to False. If you want to pass a brush identifier, use the
Brush tag instead. (V4.0)

LinkBrushFile:

If BrushFile has been specified this tag can be used to declare whether or
not the brush file shall be linked into the applet/executable on compilation.
Defaults to True which means that the brush file will be linked. (V4.0)

Transparency:

If backfill type is Picture you can specify an RGB color here that shall be
shown transparently. Defaults to #NOTRANSPARENCY. (V4.0)

ScalePicture:

If backfill type is Picture you can use this tag to define whether or not the
picture shall be scaled to fit the backfill window’s dimensions. Defaults to
False. (V4.0)

SmoothScale:

Set this tag to True if you want to have interpolated scaling of the pic-
ture that should be used as a backfill image. This tag is only handled if
ScalePicture has been set to True. Defaults to False. (V6.0)

Alternatively, backfill settings can also be configured from the command line. If you
want to disable that, you should compile your scripts using the -locksettings console
argument.

You might also want to specify the HideTitleBar tag in @SCREEN. If you specify
HideTitleBar, the backfill will also shield the current screen’s title bar (Amiga) or
Finder’s menu bar (macOS).

372 Hollywood manual

INPUTS

table table declaring the style of the script’s backfill

EXAMPLE
@BACKFILL {Type = "Gradient", StartColor = #BLACK, EndColor = #BLUE}

This declaration will install a gradient from black to blue as the backfill.

25.4 ChangeDisplayMode

NAME
ChangeDisplayMode – switch between window and full screen mode (V4.5)

SYNOPSIS
ChangeDisplayMode(mode[, table])

DEPRECATED SYNTAX
ChangeDisplayMode(mode[, width, height, table])

FUNCTION
This function can be used to change the display mode to the mode specified in the mode
parameter. This can be one of the following modes:

#DISPMODE_FULLSCREEN:

Switch to full screen mode. Note that this will switch the monitor’s resolu-
tion which might not be supported on all systems. Alternatively, you can
also use #DISPMODE_FULLSCREENSCALE (see below) which will simply scale
the display to the monitor’s resolution. If you choose to use #DISPMODE_

FULLSCREEN, you can pass the desired monitor resolution in the Width and
Height tags of the optional table argument (see below). If you don’t set
Width and Height, the best monitor resolution for the display’s current
dimensions will be chosen automatically. If the display is already in full
screen mode and you pass #DISPMODE_FULLSCREEN in the mode argument,
ChangeDisplayMode() can be used to change the current monitor resolution
to a different one.

#DISPMODE_WINDOWED:

Switch to windowed mode. This mode can be used to switch a display back
to windowed mode. Obviously, it only makes sense to use this mode on
displays which are currently full screen.

#DISPMODE_FULLSCREENSCALE:

Switch into scaled full screen mode. This mode will make the display full
screen without changing the monitor’s resolution. Instead, the display’s
graphics will be scaled to the monitor’s current resolution. Thus, they will
fill the whole screen even though the monitor didn’t change its resolution. By
default, Hollywood’s auto scaling engine will be used for scaling but you can
set the LayerScale tag in the optional table argument (see below) to True

to use the layer scaling engine instead. See Section 25.18 [Scaling engines],
page 401, for details. Note, however, that #DISPMODE_FULLSCREENSCALE can

Chapter 25: Display library 373

become quite slow on platforms which don’t support hardware-accelerated
scaling. (V9.0)

#DISPMODE_MODESWITCH:

This switches between display modes. If the display is currently windowed,
it will switch to full screen. If the display is currently full screen,
it will switch to windowed. Note that the full screen mode chosed
by #DISPMODE_MODESWITCH can be both, #DISPMODE_FULLSCREEN and
#DISPMODE_FULLSCREENSCALE. #DISPMODE_MODESWITCH uses the same logic
as the ALT+RETURN hotkey that switches a Hollywood display between
full screen and windowed mode. See the documentation of the ScaleSwitch
tag in the documentation of the @DISPLAY preprocessor command for
details. See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

Starting with Hollywood 6.0 this function accepts an optional table argument which
allows you to configure further options:

Width: If mode is #DISPMODE_FULLSCREEN, this tag can be used to specify the width
of the resolution the monitor should be switched to. You can also pass the
special constant #NATIVE here to indicate that Hollywood should use the
monitor’s native width.

Height: If mode is #DISPMODE_FULLSCREEN, this tag can be used to specify the height
of the resolution the monitor should be switched to. You can also pass the
special constant #NATIVE here to indicate that Hollywood should use the
monitor’s native height.

LayerScale:

If mode is #DISPMODE_FULLSCREENSCALE, this tag can be used to make Hol-
lywood use the layer scaling engine instead of the auto scaling engine. See
Section 25.18 [Scaling engines], page 401, for details. Defaults to False.
(V9.0)

KeepProportions:

If mode is #DISPMODE_FULLSCREENSCALE, you can activate proportional scal-
ing by setting this tag to True. Defaults to False. (V9.0)

SmoothScale:

If mode is #DISPMODE_FULLSCREENSCALE, you can activate interpolated scal-
ing by setting this tag to True. Defaults to False. (V9.0)

Monitor: This tag allows you to specify the monitor that should be used. Monitors
are counted from 1 which is the primary monitor. By default, the monitor
currently associated with the active display is used.

Backfill:

This tag allows you to configure the backfill setting for this display. The table
you have to specify here has to follow the same conventions as its counter-
part that can be passed to the Backfill tag of the @DISPLAY preprocessor
command. See Section 25.8 [DISPLAY], page 380, for details.

374 Hollywood manual

Note that starting with Hollywood 6.0 it is possible to have more than one display in full
screen mode since Hollywood 6.0 introduces support for multiple monitors. This makes
it possible to have several displays running in full screen mode on separate displays.

To find out whether or not the desired display mode can be handled by the current
monitor, use the GetDisplayModes() function.

INPUTS

mode mode to switch into (see above)

table optional: table configuring further options (see above) (V6.0)

EXAMPLE
ChangeDisplayMode(#DISPMODE_FULLSCREEN, {Width = 1024, Height = 768})

NPrint("We are now in full screen mode. Press left mouse to return\n" ..

"to windowed mode.")

WaitLeftMouse

ChangeDisplayMode(#DISPMODE_WINDOWED)

NPrint("We are back in windowed mode now.")

WaitLeftMouse

The code above goes into 1024x768 full screen mode, waits for left mouse button to be
pressed and then returns to windowed mode again.

25.5 ChangeDisplaySize

NAME
ChangeDisplaySize – change the dimensions of the current display

SYNOPSIS
ChangeDisplaySize(width, height[, args])

FUNCTION
This function changes the dimensions of the currently active display to the specified
dimensions. The background picture associated with the current display will be scaled
to fit the new dimensions. Therefore you can also use this function for scaling background
pictures.

New in V2.0: You can pass #KEEPASPRAT as either width or height. Hollywood will cal-
culate the size then automatically by taking the aspect-ratio of the display into account.

Starting with Hollywood 2.0, width and height can also be a string containing a percent
specification, e.g. "50%".

New in Hollywood 4.0: You can pass a table in the optional third argument to specify
further options. Currently, the table can contain the following fields:

X: Specifies the new x-position for the display. If you want the display to keep
its current x-position, pass the special constant #KEEPPOSITION. Defaults to
#CENTER.

Y: Specifies the new y-position for the display. If you want the display to keep
its current y-position, pass the special constant #KEEPPOSITION. Defaults to
#CENTER.

Chapter 25: Display library 375

Smooth: Specifies whether or not the graphics shall be scaled using anti-alias inter-
polation. Defaults to False.

Starting with Hollywood 7.0 you can also pass the special constant #NATIVE in the width
and height parameters. In that case, Hollywood will use the dimensions of the display’s
host device.

INPUTS

width desired new width for the display

height desired new height for the display

args optional: further configuration options (V4.0)

EXAMPLE
ChangeDisplaySize(320, 240)

This changes the display size to 320x240.

25.6 CloseDisplay

NAME
CloseDisplay – close a display (V4.5)

SYNOPSIS
CloseDisplay(id)

FUNCTION
This function closes a currently open display. Please note that it will not free the display.
You can still call SelectDisplay() on it even if it is closed. You can also make it visible
again later using OpenDisplay() if necessary.

If you do not want to close the display completely but only minimize it, you can use the
HideDisplay() command to achieve this. If you want to dispose of a display completely,
you have to use the FreeDisplay() command instead of CloseDisplay().

INPUTS

id identifier of the display to close

25.7 CreateDisplay

NAME
CreateDisplay – create a new display (V4.5)

SYNOPSIS
[id] = CreateDisplay(id[, table])

FUNCTION
This function can be used to create a new display which you can open using
OpenDisplay(). You have to pass an identifier for the new display or Nil. If you pass
Nil, CreateDisplay() will return a handle to the new display which you can then use
to refer to this display.

376 Hollywood manual

Furthermore, you should pass a table in the second argument to configure the style for
the new display. Please note that every display must have a BGPic associated with it.
Thus, it is advised that you always specify the BGPic tag in the optional table when
creating a display. If you do not specify the BGPic tag, CreateDisplay() will create a
new BGPic for the new display automatically. The newly created BGPic will be of the
size specified in Width and Height and it will be filled according to the style specified in
FillStyle. If you specify the BGPic tag, Width, Height and FillStyle are ignored.

Also note that the same BGPic cannot be associated with multiple displays. Each
BGPic must only be associated with a single display. It is not possible to have BGPic 1
associated with display 1 and 2, for example. Simply make a copy of the BGPic using
CopyBGPic() if you need to use a single BGPic with multiple displays.

The optional table argument recognizes the following tags:

BGPic: Specifies the BGPic that shall be attached to the new display. You need to
specify either this tag or the Width, Height and FillStyle tags. See further
notes above.

Width, Height:

See Section 25.8 [DISPLAY], page 380, for details. Ignored if BGPic tag is
set.

X, Y: See Section 25.8 [DISPLAY], page 380, for details.

Mode: See Section 25.8 [DISPLAY], page 380, for details.

Title: See Section 25.8 [DISPLAY], page 380, for details.

Borderless:

See Section 25.8 [DISPLAY], page 380, for details.

Sizeable:

See Section 25.8 [DISPLAY], page 380, for details.

Fixed: See Section 25.8 [DISPLAY], page 380, for details.

Backfill:

See Section 25.8 [DISPLAY], page 380, for details.

ScrWidth, ScrHeight:

See Section 25.8 [DISPLAY], page 380, for details.

ScrDepth:

See Section 25.8 [DISPLAY], page 380, for details.

NoHide: See Section 25.8 [DISPLAY], page 380, for details.

NoModeSwitch:

See Section 25.8 [DISPLAY], page 380, for details.

NoClose: See Section 25.8 [DISPLAY], page 380, for details.

Active: See Section 25.8 [DISPLAY], page 380, for details.

HidePointer:

See Section 25.8 [DISPLAY], page 380, for details.

Chapter 25: Display library 377

UseQuartz:

See Section 25.8 [DISPLAY], page 380, for details.

ScaleMode:

See Section 25.8 [DISPLAY], page 380, for details.

ScaleWidth, ScaleHeight:

See Section 25.8 [DISPLAY], page 380, for details.

SmoothScale:

See Section 25.8 [DISPLAY], page 380, for details.

DragRegion:

See Section 25.8 [DISPLAY], page 380, for details.

SizeRegion:

See Section 25.8 [DISPLAY], page 380, for details.

Layers: See Section 25.8 [DISPLAY], page 380, for details.

FitScale:

See Section 25.8 [DISPLAY], page 380, for details. (V4.7)

KeepProportions:

See Section 25.8 [DISPLAY], page 380, for details. (V4.7)

FillStyle:

See Section 25.8 [DISPLAY], page 380, for details.. Ignored if BGPic tag is
set. Defaults to #FILLCOLOR. (V5.0)

Color: See Section 25.8 [DISPLAY], page 380, for details.

TextureBrush:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

TextureX, TextureY:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

GradientStyle:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

GradientAngle:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

GradientStartColor, GradientEndColor:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

GradientCenterX, GradientCenterY:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

GradientBalance:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

GradientBorder:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

GradientColors:

See Section 25.8 [DISPLAY], page 380, for details. (V5.0)

378 Hollywood manual

KeepScreenOn:

See Section 25.8 [DISPLAY], page 380, for details. (V5.1)

PubScreen:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

HideFromTaskbar:

See Section 25.8 [DISPLAY], page 380, for details. (V5.3)

HideOptionsMenu:

See Section 25.8 [DISPLAY], page 380, for details. (V5.3)

Orientation:

See Section 25.8 [DISPLAY], page 380, for details. (V5.3)

DisableBlanker:

See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

Menu: See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

Monitor: See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

XServer: See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

ScreenTitle:

See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

ScreenName:

See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

RememberPosition:

See Section 25.8 [DISPLAY], page 380, for details. (V6.1)

Maximized:

See Section 25.8 [DISPLAY], page 380, for details. (V7.0)

TrapRMB: See Section 25.8 [DISPLAY], page 380, for details. (V7.0)

NoScaleEngine:

See Section 25.8 [DISPLAY], page 380, for details. (V7.0)

NoLiveResize:

See Section 25.8 [DISPLAY], page 380, for details. (V7.0)

NativeUnits:

See Section 25.8 [DISPLAY], page 380, for details. (V7.0)

AlwaysOnTop:

See Section 25.8 [DISPLAY], page 380, for details. (V7.1)

NoCyclerMenu:

See Section 25.8 [DISPLAY], page 380, for details. (V8.0)

HideTitleBar:

See Section 25.8 [DISPLAY], page 380, for details. (V8.0)

Subtitle:

See Section 25.8 [DISPLAY], page 380, for details. (V8.0)

Chapter 25: Display library 379

SingleMenu:

See Section 25.8 [DISPLAY], page 380, for details. (V8.0)

ScaleFactor:

See Section 25.8 [DISPLAY], page 380, for details. (V8.0)

ImmersiveMode:

See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

Palette: See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

FillPen: See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

SoftwareRenderer:

See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

VSync: See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

ScaleSwitch:

See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

UserTags:

See Section 25.8 [DISPLAY], page 380, for details. (V10.0)

After the display has been successfully created, you can open it by calling
OpenDisplay(), you can draw to it by using SelectDisplay() and you can close it
using CloseDisplay().

See Section 25.20 [SelectDisplay], page 405, for an in-depth discussion of using multiple
displays in Hollywood.

This command is also available from the preprocessor: Use @DISPLAY to create displays
at startup time!

INPUTS

id identifier for the display or Nil for auto id select

table optional: further configuration options for loading operation

RESULTS

id optional: identifier of the new display; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
CreateDisplay(2, {BGPic = 2, Active = True})

OpenDisplay(2)

NPrint("Hello World")

The code above creates a new display and attaches BGPic number 2 to it. The display
will inherit the size and graphics from BGPic. Then we open the display and print "Hello
World" into it.

CreateDisplay(2, {Width = 800, Height = 600, Borderless = True,

Color = #WHITE, Active = True})

OpenDisplay(2)

380 Hollywood manual

The code above creates and opens a 800x600 borderless display with white background.
Because we did not specify a BGPic for this display, CreateDisplay() will create one
automatically and attach it to the new display. You can get a handle to the automatically
created BGPic by querying #ATTRBGPIC on the new display using GetAttribute().

25.8 DISPLAY

NAME
DISPLAY – create new display (V2.0)

SYNOPSIS
@DISPLAY [id,] table

FUNCTION
This preprocessor command creates a new display using the attributes specified in the
optional table argument. Specifying an identifier for the display is only needed if your
script uses multiple displays. If you are using just a single display, you can leave out the
identifier completely and Hollywood will then use the identifier 1 for the display. If you
are using multiple displays, style guide suggests that you use the identifier 1 for your
first/main display.

If you want to create displays dynamically at run time, you can use the function
CreateDisplay() for this.

The style of the new display is configured by setting a number of tags in the optional
table argument. The following style tags are currently supported by @DISPLAY:

Title: Use this field to set the title for this display. This title will be shown then
in display’s window bar (if the window has a border). Default title is "Hol-
lywood".

X,Y: These two allow you to define where on the host screen this display should
open. Using absolute values here is rather counterproductive because you
mostly do not know the size of the screen your window will be opened on
(except you are using full screen mode). It is wiser to use Hollywood’s
special coordinate constants here. If you do not set these fields, the display
will always be opened in the center of the screen. You can also move the
display later by calling MoveDisplay().

BGPic: Specifies the BGPic that shall be attached to the new display. Every display
needs an associated BGPic. Thus, if you do not specify this tag, Hollywood
will create a new BGPic for this display automatically using the fill style
specified in the FillStyle tag (see below) and the size specified in Width

and Height. An exception is made for the display that uses the identifier
1: For reasons of compatibility the display number 1 will automatically be
associated with the BGPic number 1 if there is one. (V4.5)

Width, Height:

You only have to use these fields if you did not specify a background picture
in BGPic (see above) and if you want your display size’s dimensions to be
different from the default size 640x480. If this applies, set these fields to the

Chapter 25: Display library 381

desired dimensions and Hollywood will open such an initial display for you.
These tags are ignored if you specify a BGPic. Starting with Hollywood 7.0
you can also set these tags to the special constant #NATIVE. In that case,
Hollywood will use the dimensions of the display’s host device.

Desktop: If you set this field to True, the initial background picture will be a copy of
your desktop screen. This can be used for some nice effects with that screen.
Hollywood will also automatically open a borderless window if this field is
True.

Mode: This tag allows you to specify the mode the display should be opened in.
You have to pass one of the following strings to this tag:

Windowed Open display in windowed mode.

FullScreen

Open in full screen mode. This can change your monitor’s
resolution to the dimensions which fit best to your display’s
dimensions. If you don’t want that, take a look at the
FullScreenScale and FakeFullScreen modes below.

FullScreenScale

This is a special full screen mode which won’t change your
monitor’s resolution. Instead, Hollywood’s display will be
resized to fit your monitor’s dimensions. Additionally, this
full screen mode will activate the auto scaling engine so that
your display is automatically scaled to fit your monitor’s
dimensions. FullScreenScale will use auto scaling by default.
If you would like it to use layer scaling, you have to set
ScaleMode to #SCALEMODE_LAYER as well. FullScreenScale is
especially useful on mobile devices whose display hardware has
a hard-coded resolution and doesn’t support resolution changes
in the same way as an external monitor connected to a desktop
computer does. The downside of FullScreenScale is that it is
slower because Hollywood has to scale all rendering operations
to the monitor’s dimensions. (V7.0)

AutoFullScreen:

This will put the display into full screen mode using the auto
scaling engine instead of changing the monitor’s resolution but
only when running Hollywood on systems that support GPU-
accelerated scaling. On all other platforms a normal full screen
mode will be used, i.e. Hollywood will change the monitor’s res-
olution to fit the current display dimensions. Currently, GPU-
accelerated scaling is supported on Windows, macOS, Android,
and iOS which means that on those platforms no monitor reso-
lution change will occur because Hollywood can simply scale the
graphics to fit to the current monitor dimensions. On AmigaOS
compatibles and Linux, however, there will still be a monitor
resolution change with this mode because Hollywood doesn’t
support GPU-accelerated scaling on those platforms. (V9.1)

382 Hollywood manual

LayerFullScreen:

This will put the display into full screen mode using the layer
scaling engine instead of changing the monitor’s resolution but
only when running Hollywood on systems that support GPU-
accelerated scaling. On all other platforms a normal full screen
mode will be used, i.e. Hollywood will change the monitor’s res-
olution to fit the current display dimensions. Currently, GPU-
accelerated scaling is supported on Windows, macOS, Android,
and iOS which means that on those platforms no monitor reso-
lution change will occur because Hollywood can simply scale the
graphics to fit to the current monitor dimensions. On AmigaOS
compatibles and Linux, however, there will still be a monitor
resolution change with this mode because Hollywood doesn’t
support GPU-accelerated scaling on those platforms. (V9.1)

FakeFullScreen

Open in fake full screen mode. This means that Hollywood
will not change the monitor’s resolution but the backfill window
will be configured to shield the desktop completely. Thus, the
user gets the impression as if Hollywood was running full screen,
although it is running on the desktop.

ModeRequester

This will open a display mode requester allowing the user to
choose the desired full screen mode for this display.

Ask This will open a requester asking the user to choose between
windowed and full screen mode.

SystemScale:

If you choose this display mode, the host system’s scaling factor
will automatically be applied to your display. This can be useful
on systems with high-DPI monitors. For example, if your display
normally opens in 640x480 pixels and you run it on a monitor
that uses twice as many dots per inch (DPI), using SystemScale
mode will automatically scale your script to 1280x960 pixels so
that it doesn’t look tiny just because the system uses a high-
DPI monitor. Note that by default, using SystemScale will
activate the auto scaling engine. If you want it to use layer
scaling instead, just use the ScaleMode tag to change this to
layer scaling. Note that SystemScale uses the same scale mode
as ScaleFactor internally, so displays using SystemScale will
behave as if ScaleFactor was specified. It is even possible to
specify the ScaleFactor tag on top of SystemScale, in that
case the value specified in ScaleFactor will be multiplied by
host system’s default scaling factor. See Section 25.18 [Scaling
engines], page 401, for details. Note that on Windows you must
also set the DPIAware tag to True in the @OPTIONS preproces-

Chapter 25: Display library 383

sor command in order to use SystemScale. See Section 52.25
[OPTIONS], page 1088, for details. (V8.0)

By default, windowed mode will be used.

Borderless:

Set this field to True if this display shall be a borderless window. Defaults
to False.

Sizeable:

Set this field to True if this display shall be resizeable by the user. If
Borderless is also set to True, the size widget will be invisible in the bottom
right window corner. Defaults to False.

Fixed: If you set this field to True, Hollywood will create a fixed, non-draggable
window. This is especially useful on full screen displays. Defaults to False.

Backfill:

This tag can be used to configure the backfill settings for this display. Back-
fills can be used to create a shielding window that covers the whole area not
occupied by your main display. They are only supported if Mode has been set
to FullScreen or FakeFullScreen. You can use a static color as a backfill,
a gradient, an image, or a texture. You have to pass a table in this tag. The
following table tags are currently recognized:

Type: This field is obligatory. It can be Color, Gradient, Texture or
Picture. The type must be passed as a string here.

Color: If you’ve specified Color as backfill type, pass the desired backfill
color in this field.

StartColor, EndColor:

If you’ve specified Gradient as backfill type, use these two fields
to define the start and end colors for the gradient.

Brush: If you’ve specified Texture or Picture as backfill type, specify
the identifier of the brush to use as the source image here. If
you want to pass the file name directly, use the BrushFile tag
instead.

X,Y: If you’ve specified Picture as backfill type, you can use these two
fields to position the picture on the screen. They both default
to #CENTER.

HideTitleBar:

If you set this tag to True, the backfill will also shield the host
screen’s title bar (for example Finder’s title bar on macOS or the
Workbench title bar on AmigaOS compatibles). Note that you
can also specify HideTitleBar outside the Backfill tag because
on Android and iOS HideTitleBar can also be used without a
backfill. When used without a backfill, HideTitleBar hides the
device’s status bar on Android and iOS.

384 Hollywood manual

BrushFile:

If you’ve specified Texture or Picture as backfill type, you can
specify the file name of the brush to use as the source image here.
The file specified here will be linked to the applet/executable on
compilation unless you set LinkBrushFile to False. If you want
to pass a brush identifier, use the Brush tag instead. (V4.0)

LinkBrushFile:

If BrushFile is specified this tag can be used to declare whether
or not the brush file shall be linked into the applet/executable
on compilation. Defaults to True which means that the brush
file will be linked. (V4.0)

Transparency:

If backfill type is Picture you can specify a RGB color here that
shall be shown transparently. Defaults to #NOTRANSPARENCY.
(V4.0)

ScalePicture:

If backfill type is Picture you can use this tag to define whether
or not the picture shall be scaled to fit the backfill window’s
dimensions. Defaults to False. (V4.0)

SmoothScale:

Set this tag to True if you want to have interpolated scaling of
the picture that should be used as a backfill image. This tag is
only handled if ScalePicture has been set to True. Defaults to
False. (V6.0)

ScrWidth, ScrHeight:

If Mode has been set to FullScreen, these tags allows you to set the desired
dimensions for the full screen mode. Defaults to what has been set when
creating the display. Starting with Hollywood 7.0 you can also set these
tags to the special constant #NATIVE. In that case, Hollywood will use the
dimensions of the display’s host device. (V3.0)

ScrDepth:

If Mode has been set to FullScreen, this tag allows you to set the desired
depth for the full screen mode. Defaults to what has been set when creating
the display. (V3.0)

HidePointer:

If you specify this field, the mouse pointer will automatically be hidden as
soon as Hollywood enters full screen or fake full screen mode. This argument
has the advantage over the HidePointer() command in that it only hides the
mouse pointer in full screen mode. If Hollywood opens in windowed mode,
the mouse pointer will remain visible because hiding the mouse pointer in
windowed mode usually causes confusion with the user. Defaults to False.
(V3.0)

Chapter 25: Display library 385

NoModeSwitch:

If you set this tag to True, it will not be possible to switch this display
between windowed and full screen mode by pressing the CMD+RETURN
(LALT+RETURN on Windows) hotkey. If NoModeSwitch is specified, this
display will always remain in its initial display mode and no switches between
windowed and full screen will be allowed. Defaults to False. (V3.0)

NoHide: Set this tag to True if you do not want this display to have an iconify widget.
If you do not specify this tag, your display will always get an iconify widget.
Defaults to False. (V4.5)

ScaleMode:

By setting this argument, you can choose a scaling engine for this display.
ScaleMode can be set to one of the following parameters: #SCALEMODE_

LAYER (uses layer scale engine), #SCALEMODE_AUTO (uses auto scaling engine)
or #SCALEMODE_NONE (uses no scaling engine). If ScaleMode is not spec-
ified, the display’s scaling mode will be set to #SCALEMODE_NONE, i.e. no
scaling is active. When specifying ScaleMode, you will usually also want to
set either the ScaleWidth and ScaleHeight arguments or the ScaleFactor
or the SystemScale display mode to define the scaling dimensions (see be-
low). See Section 25.18 [Scaling engines], page 401, for more information on
Hollywood’s scaling engines. (V4.5)

ScaleWidth, ScaleHeight:

These two can be used to specify the desired scaling dimensions if a scaling
engine is active (check the documentation of ScaleMode above). You can
pass the size either as a direct value or you can pass a percentage string
(i.e. ScaleWidth="200%"). If you pass a percentage string, the scaling size
is set relative to the original size (i.e. ScaleWidth="200%" means twice
the original width). Starting with Hollywood 7.0 you can also set these
tags to the special constant #NATIVE. In that case, Hollywood will use the
dimensions of the display’s host device. (V4.5)

SmoothScale:

If ScaleMode is set, you can use this argument to specify whether or not
Hollywood shall use anti-aliased scaling. Defaults to False which means
no anti-aliasing. Note that anti-aliased scaling is much slower than normal
scaling. (V4.5)

Hidden: Set this to True if you want this display to be initially hidden. If you set
this to True, the display will not be shown until you call OpenDisplay()
on it. You could also use this tag to run a Hollywood script that does not
open a display at all but please keep in mind that some commands (e.g.
WaitLeftMouse()) only work with a visible display. (V4.5)

Active: This tag allows you to specify the display that will be active on startup.
Please note that only one display can be the active one so it is not valid to
set Active to True for multiple displays. This will yield undefined results.
If you do not specify Active for any of your displays, Hollywood will make
the display number 1 the active one by default. (V4.5)

386 Hollywood manual

DragRegion:

This tag allows you to define a custom drag region for this display. Custom
drag regions are only supported for borderless displays, so you need to set
Borderless to True too if you use this tag. You can define multiple drag
regions with this tag; this is why you have to pass a table which contains
a list of tables, each defining a single rectangular region, to this tag. Each
table in the list must have the following tags specified: Type, X, Y, Width, and
Height. Type currently must always be set to #BOX because currently, only
rectangular regions are supported. This might sound pretty complicated,
but in fact it is really easy. All you have to remember is to pass a list of
tables to this tag. Even if you only want a single rectangular drag region,
you have to pass a list. See below for an example. (V4.5)

SizeRegion:

This tag allows you to define a custom size region for this display. Custom
size regions are only supported for borderless displays, so you need to set
Borderless to True, too if you use this tag. You can define multiple size
regions with this tag; this is why you have to pass a table which contains
a list of tables, each defining a single rectangular region, to this tag. Each
table in the list must have the following tags specified: Type, X, Y, Width, and
Height. Type currently must always be set to #BOX because currently, only
rectangular regions are supported. This might sound pretty complicated,
but in fact it is really easy. All you have to remember is to pass a list of
tables to this tag. Even if you only want a single rectangular size region,
you have to pass a list. See below for an example. (V4.5)

Layers: Set this tag to True if you want to enable layers for this display. If you set
this tag to True, you do not have to call EnableLayers() for this display
again. See Section 34.1 [Layers introduction], page 647, for more information
on layers.. This tag is set to False by default. (V4.5)

UseQuartz:

This tag is only supported if Hollywood is running on macOS. If you set this
tag to True, this display will draw its graphics using the Quartz 2D API. If
it is set to False, QuickDraw will be used. Note that this argument is only
supported by the PowerPC version of Hollywood. The x86/x64 versions of
Hollywood for macOS will always use Quartz 2D. Defaults to False. (V4.5)

NoClose: Set this tag to True if this display shall not have a close box in its window
frame. Think twice before using this tag because it might confuse the user
and you must provide a replacement for closing the display (e.g. by listening
to the escape key etc.). Defaults to False. (V4.5)

FitScale:

This tag is only handled when either #SCALEMODE_AUTO or #SCALEMODE_

LAYER is active in ScaleMode (see above). In that case, setting FitScale

to True will set the scaling resolution of the display to the current screen’s
resolution so that the script will always fill out the whole screen. This is
basically the same as passing the current screen’s dimensions in ScaleWidth

and ScaleHeight. Note that using FitScalemight distort the appearance of

Chapter 25: Display library 387

your script in case the current screen resolution uses a different aspect-ratio
than your script. To prevent distortion, you have to use KeepProportions

(see below). Defaults to False. (V4.7)

KeepProportions:

This tag is only handled when either #SCALEMODE_AUTO or #SCALEMODE_

LAYER is active in ScaleMode (see above). In that case, passing True here
will not allow the user to distort the resolution of the current script by
resizing the window to odd sizes. Instead, black borders will be used to pad
the non-proportional window regions. The display itself will always keep its
aspect-ratio. This is very useful for scripts that should not be distorted.
(V4.7)

FillStyle:

This tag allows you to define a background fill style for this display. This
tag is only handled if the BGPic tag is not specified. The default setting
for this tag is #FILLCOLOR. See Section 27.14 [SetFillStyle], page 498, for
information on all available fill styles. (V5.0)

Color: This tag is only handled if you did not specify a BGPic and fill style is set
to #FILLCOLOR. In that case, you can use this tag to specify the color for
the background picture that will be automatically created for this display.

TextureBrush:

If the FillStyle tag has been set to #FILLTEXTURE, you can use this tag to
specify the identifier of the brush that shall be used for texturing. (V5.0)

TextureX, TextureY:

These tags control the start offset inside the texture brush and are only
supported if FillStyle has been set to #FILLTEXTURE. See Section 27.14
[SetFillStyle], page 498, for details. (V5.0)

GradientStyle:

If the FillStyle tag has been set to #FILLGRADIENT, you can use this tag
to specify the gradient type to use. This can be #LINEAR, #RADIAL, or
#CONICAL. (V5.0)

GradientAngle:

Specifies the orientation of the gradient if filling style style is set to
#FILLGRADIENT. The angle is expressed in degrees. Only possible for
#LINEAR and #CONICAL gradients. (V5.0)

GradientStartColor, GradientEndColor:

Use these two to configure the colors of the gradient if filling style is set to
#FILLGRADIENT. (V5.0)

GradientCenterX, GradientCenterY:

Sets the center point for gradients of type #RADIAL or #CONICAL. Must be a
floating point value between 0.0 and 1.0. See Section 20.6 [CreateGradient-
BGPic], page 232, for details. (V5.0)

388 Hollywood manual

GradientBalance:

This tag controls the balance point for gradients of type #CONICAL. Must be
a floating point value between 0.0 and 1.0. See Section 20.6 [CreateGradi-
entBGPic], page 232, for details. (V5.0)

GradientBorder:

This tag controls the border size for gradients of type #RADIAL. Must be a
floating point value between 0.0 and and 1.0. See Section 20.6 [CreateGra-
dientBGPic], page 232, for details. (V5.0)

GradientColors:

This tag can be used to create a gradient between more than two colors. This
has to be set to a table that contains sequences of alternating color and stop
values. If this tag is used, the GradientStartColor and GradientEndColor

tags are ignored. See Section 20.6 [CreateGradientBGPic], page 232, for
details. (V5.0)

KeepScreenOn:

This tag is only supported if Hollywood is running on Android and iOS. If
you set this tag to True, battery saving mode will be disabled on mobile
devices. This means that the device’s screen will never be dimmed or turned
off to save energy. Useful for scripts that do not require user input. Defaults
to False. (V5.1)

PubScreen:

This tag can be used to specify the public screen this display should be
opened on. You have to pass a string that contains the name of the public
screen to use here. This is only supported on AmigaOS compatible operating
systems. Please note that if you use multiple displays on multiple public
screens, it is absolutely mandatory that the individual public screens use
the same pixel format, i.e. it is not allowed to have one display on a 16-bit
public screen while the other display is on a 32-bit public screen. The pixel
format must be identical for all public screens. (V5.2)

HideFromTaskbar:

This tag is only supported if Hollywood is running on Windows. If you set
this tag to True, your display will not get an entry in the Windows taskbar.
This is useful if your application has added an icon to the system tray and
you want it to be accessible from the system tray only. Defaults to False.
(V5.3)

HideOptionsMenu:

This tag is only supported on Android devices. When the user opens the
options menu on Android devices, Hollywood will allow the user to configure
several display parameters like enabling or disabling autoscaling or layerscal-
ing. If you do not want to give the user this possibility to change the display
parameters via the app’s options menu, set this tag to True. Defaults to
False. (V5.3)

Chapter 25: Display library 389

Orientation:

This tag is only supported on mobile platforms. It allows you to specify a
hard-coded orientation for your script. If you set this tag, Hollywood will
not react to orientation changes when the user rotates the device. Instead, it
will keep the orientation mode that you specified here. The following values
are possible:

#ORIENTATION_NONE

#ORIENTATION_PORTRAIT

#ORIENTATION_LANDSCAPE

#ORIENTATION_PORTRAITREV

#ORIENTATION_LANDSCAPEREV

Defaults to #ORIENTATION_NONE which means that there is no fixed orienta-
tion and that Hollywood should dynamically adapt to orientation changes.
(V5.3)

NoHardwareScale:

This tag is only supported on Android. For performance reasons Holly-
wood will try to use hardware-accelerated scaling when autoscaling is enabled
on Android devices by default. Some devices, however, do not implement
hardware-accelerated scaling properly so if you experience strange behaviour
when using autoscale mode, try to disable hardware-accelerated scaling us-
ing this tag and see if it helps. This tag is obsolete since Hollywood 8.0.
Hollywood will always use hardware-accelerated scaling now. (V5.3)

DisableBlanker:

Set this tag to True if you want to disable the screen blanker while this
display is open. Defaults to False. (V6.0)

Menu: This tag can be used to attach a menu strip to this display. You have to
pass the identifier of a menu strip that has been created using the @MENU

preprocessor command or the CreateMenu() function to this tag. It is also
possible to attach a single menu strip to multiple displays. See Section 39.8
[MENU], page 804, for details. (V6.0)

Monitor: This tag allows you to specify the monitor this display should be opened
on. Monitors are counted from 1 to the number of monitors available to the
system. Please note that if you set this tag, functions that accept display
coordinates, e.g. MoveDisplay(), will interpret them as values relative to
the origin of the monitor specified in the Monitor tag. This tag defaults to
1 which means that the display should open on the primary monitor. (V6.0)

XServer: This tag can be used to specify the X Server that should host this display.
By default, Hollywood will use the X Server that has been specified in the
DISPLAY environment variable. If you want Hollywood to use a different X
Server for your display, use this tag. This tag is only available in the Linux
version of Hollywood. (V6.0)

ScreenTitle:

On AmigaOS, this tag can be used to set the text that should be shown in
the screen’s title bar whenever the display is active. By default, "Workbench

390 Hollywood manual

screen" will be shown. This tag is only available in the AmigaOS compatible
versions of Hollywood. (V6.0)

ScreenName:

If this display is to be opened in full screen mode, you can set the desired
public screen name of the display’s own screen with this tag. By default,
Hollywood will use "HOLLYWOOD.X" where "X" is replaced by a vacant
index. This tag is only available in the AmigaOS compatible versions of
Hollywood. (V6.0)

RememberPosition:

Set this to True if you want this display to remember its position and size.
This is obviously only possible with windowed displays. It won’t work for
full screen displays. You also have to specify a unique identifier for your
application using the @APPIDENTIFIER preprocessor command if you want
to use this tag. The display also must use a numeric identifier, i.e. you
cannot use this tag for displays which use automatic id selection. Note
that this tag can be overridden by the -overrideplacement argument. If
you start Hollywood or your compiled script using the -overrideplacement
argument, any saved position or size information is ignored. See Section 3.2
[Console arguments], page 33, for details. (V6.1)

Maximized:

If you set this tag to True, the display will open in maximized mode. This is
only possible if the display is sizeable. This tag is currently only supported
on Windows. (V7.0)

TrapRMB: On AmigaOS, if this is set to True, Hollywood will deliver right mouse button
events also when a menu strip is associated with this display. The downside
is that menu access will only be possible via the screen’s title bar then. This
tag is only handled in case your display has a menu strip, otherwise it has
no effect at all. TrapRMB defaults to False which means that when a menu
strip is associated with a display, right mouse button events aren’t generated.
This tag is only available in the AmigaOS compatible versions of Hollywood.
(V7.0)

NoScaleEngine:

This tag is only handled if Mode is set to FullScreenScale for your display.
In that case Hollywood will not use any scaling engine but will simply open
your display in the same dimensions as the monitor’s resolution. Your script
then needs to manually adapt to the monitor’s resolution. This allows you
to write scripts which can dynamically adapt to different resolutions without
simply scaling their graphics. (V7.0)

NoLiveResize:

On many platforms Hollywood will use live resizing when the user is resizing
a display. This means that the display’s contents will be automatically scaled
while the user is resizing the display. If you don’t want this, you can set this
tag to True. (V7.0)

Chapter 25: Display library 391

NativeUnits:

If you set this tag to True, Hollywood will use the host system’s native
coordinate space and units instead of pixels. This currently only has an
effect on macOS and iOS because both operating systems use custom units
instead of pixels when running on a Retina device. By default, Hollywood
will enforce the use of pixels on Retina Macs and iOS devices for cross-
platform compatibility reasons but you may want to override this setting by
using this tag. (V7.0)

AlwaysOnTop:

If you set this tag to True, the display will always stay on top of other
windows. Use this tag with care because it can be quite annoying to the
user. (V7.1)

NoCyclerMenu:

On Android, Hollywood will automatically add a cycler menu to the options
menu in the app’s action bar whenever more than one Hollywood display
is open. You can then use this cycler menu to conveniently switch to other
displays. If you don’t want Hollywood to add such a cycler menu, set this
tag to False. This is supported only on Android. Defaults to False. (V8.0)

HideTitleBar:

Set this to True to hide the status bar on iOS or the action bar on An-
droid. By default, both the status bar and the action bar are always visible.
Defaults to False. (V8.0)

Subtitle:

This tag allows you to set the display’s subtitle. This is only supported on
Android. The display subtitle is shown in the app’s action bar below the
display title set using the Title tag above. By default, there is no subtitle.
(V8.0)

SingleMenu:

This tag allows you to place menu items in the root level of the action
bar’s options menu on Android. Normally, this is not possible because on
desktop systems menu items always have to be members of certain root
groups (e.g. "File", "Edit", "View", etc.) When using menu strips on
Android, Hollywood will of course replicate the desktop menu behaviour by
creating individual submenus for those root groups. This means that the
user has to tap at least twice to select a menu item because there won’t be
any menu items in the root level, they will always be in submenus instead. If
you don’t want Hollywood to create those submenus but just place all items
in the root level, set this tag to True. This is especially useful if there are
only a few menu items and it doesn’t make sense to place them in submenus.
This tag is only available on Android. Defaults to False. (V8.0)

ScaleFactor:

If a scaling engine has been activated using the ScaleMode tag (see above),
this tag can be used to apply a global scaling factor to your display. The
scaling factor must be specified as a fractional number indicating the de-
sired scaling coefficient, e.g. a value of 0.5 shrinks everything to half of its

392 Hollywood manual

size whereas a value of 2.0 scales everything to twice its size. Note that
setting ScaleFactor will make the script behave slightly different than set-
ting ScaleWidth and ScaleHeight (see above). The latter will enforce a
fixed display size which will never be changed unless the user manually uses
the mouse to change the display size. Setting ScaleFactor, however, will
apply the scale factor to all new BGPics and display sizes so the display
size may change if the BGPic size changes or the script changes the display
size. Thus, using ScaleFactor is perfect for scaling a script for a high dpi
display because it makes sure that the script behaves exactly the same but
just appears larger (or smaller if you want!). You can also set the Mode tag
to SystemScale to automatically apply the host system’s scaling factor to
your display (see above). See Section 25.18 [Scaling engines], page 401, for
details. (V8.0)

ImmersiveMode:

On Android, this tag allows you to put the display into immersive mode.
Immersive mode is a special full screen mode that hides most system UI
components (like the status bar) to give your application as much screen
space as possible. If you want your display to use immersive mode, you have
to set ImmersiveMode to one of the following tags. All those modes only
differ in the way the user can bring back the system bars and whether or
not your script is notified about it.

#IMMERSIVE_NORMAL:

Normal immersive mode. Users can bring back the system bars
by swiping from any edge where there is a hidden system bar.
You will be notified about system bar visibility changes via the
ShowSystemBars and HideSystemBars event handlers.

#IMMERSIVE_LEANBACK:

Lean back immersive mode. In this mode, system bars can
be brought back by tapping anywhere on the screen. You
will be notified about system bar visibility changes via the
ShowSystemBars and HideSystemBars event handlers.

#IMMERSIVE_STICKY:

Sticky immersive mode. This is the same as #IMMERSIVE_NORMAL
except that there will be no notification when the system bar vis-
ibility changes. Instead, the raw swipe events will be forwarded
to you even if they caused the system bars to reappear.

Note that both #IMMERSIVE_NORMAL and #IMMERSIVE_LEANBACK will notify
your script about system bar visibility changes using the ShowSystemBars

and HideSystemBars event handlers. You can listen to those events
using InstallEventHandler(). See Section 29.13 [InstallEventHandler],
page 553, for details. (V9.0)

Palette: If this tag is set to the identifier of a palette, Hollywood will create
a palette display for you. Palettes can be created using functions like
CreatePalette() or LoadPalette(). Alternatively, you can also set

Chapter 25: Display library 393

this tag to one of Hollywood’s inbuilt palettes, e.g. #PALETTE_AGA. See
Section 44.36 [SetStandardPalette], page 918, for a list of inbuilt palettes.
(V9.0)

FillPen: If the Palette tag is set (see above), you can use the FillPen tag to set the
pen that should be used for filling the display’s background. (V9.0)

SoftwareRenderer:

On Windows systems, you can set this tag to True to disable Hollywood’s
GPU-accelerated Direct2D renderer on Windows systems. Hollywood will
use its CPU-based renderer for maximum compatibility then. This is mostly
useful for testing purposes. Normally, there shouldn’t be any reason for
setting this tag to True. (V9.0)

VSync: On Windows systems, this tag can be set to True to force Hollywood’s
renderer to throttle refresh to the monitor’s refresh rate. This means that
you’ll no longer have to use functions like VWait() to throttle drawing. How-
ever, do note that if you set this to True, you must make sure to draw in
full frames only otherwise drawing will become extremely slow. Full frame
drawing can be achieved e.g. by either using a double buffer or by using
BeginRefresh() and EndRefresh(). Also note that VSync is currently only
supported on Windows and only if Hollywood uses its Direct2D backend.
Direct2D is not available before Windows Vista SP2. (V9.0)

ScaleSwitch:

When switching a display between windowed and full screen mode by press-
ing the CMD+RETURN (LALT+RETURN on Windows) hotkey or pass-
ing the #DISPMODE_MODESWITCH mode to ChangeDisplayMode(), Hollywood
will not change the monitor’s screen mode on systems where hardware-
accelerated scaling is available. On those systems, Hollywood will just sim-
ulate full screen mode by scaling the display to the monitor’s current res-
olution. Only on older systems or platforms that don’t support hardware-
accelerated scaling will Hollywood switch the monitor to a new resolution.
The reason why switching the monitor’s resolution is no longer done by de-
fault is that it often takes considerable time for the monitor to do so and
not all display devices support it (e.g. laptop screens often don’t support it).
If you want to force Hollywood to always change the monitor’s resolution
when going full screen and never simulate full screen mode by scaling, just
set this tag to True. Defaults to False. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
display adapter plugins. If you use this tag, you must set it to a table of
key-value pairs that contain the additional data that should be passed to
display adapter plugins. See Section 7.10 [User tags], page 95, for details.
(V10.0)

Many of the tags from above - especially the ones used to configure the appearance of
the display - are also available from the command line to give the user some flexibility
in controlling the appearance of the script. For example, it is possible to change the

394 Hollywood manual

display mode of your script (windowed, full screen, etc.) or window style (borderless,
sizeable, etc.) from the command line as well. If you do not want that, you have to use
the -locksettings argument when compiling your scripts. This will forbid any user
changes to the settings defined by you in this preprocessor command.

INPUTS

table a table containing one or more of the fields listed above

EXAMPLE
@DISPLAY {Title = "My App", X = #LEFT, Y = #TOP, Width = 320,

Height = 240, Color = #WHITE}

The above declaration opens a 320x240 sized display with a white colored background.
The display is positioned at top-left edge of the host screen. The window title will be
"My App".

@DISPLAY {Width = 640, Height = 480, Borderless = True,

DragRegion = {

{Type = #BOX, X=0, Y=460, Width=640, Height=20}, ; bottom drag bar

{Type = #BOX, X=0, Y=0, Width=20, Height=480} ; left drag bar

}

}

The code above will open a borderless 640x480 display. The drag bar of the display
will not be in the top region of the display but it will be put into the bottom and the
left regions of the display by specifying a custom drag region using the DragRegion tag.
Note that the DragRegion tag always requires you to pass a list of rectangular regions,
even if you are only using a single region. See above for more information.

25.9 FreeDisplay

NAME
FreeDisplay – free a display (V4.5)

SYNOPSIS
FreeDisplay(id)

FUNCTION
This function closes the specified display and frees all of its resources. When
FreeDisplay() returns, the specified display will be no longer available.

Please note that you cannot call this on the current display. You must select an other
display using SelectDisplay() first before you can call FreeDisplay(). This is because
Hollywood always requires a current display. Freeing the current display would lead to
a non-existent current display and this is not supported by Hollywood. There always
must be a display that is the current one. Even if all displays are closed and there is
no visible display at all, Hollywood will internally still have a current display that can
handle calls that draw graphics.

INPUTS

id identifier of the display to free; must not be the current display

Chapter 25: Display library 395

25.10 GetDisplayModes

NAME
GetDisplayModes – return available display modes (V5.0)

SYNOPSIS
t = GetDisplayModes([monitor])

FUNCTION
This function can be used to find out all display modes supported by the specified
monitor. GetDisplayModes() will then store all supported modes in a table and return
it to you. The table returned by this function is a collection of a number of sub-tables
that all have Width and Height elements initialized.

This function is useful for finding out if a specific display mode is actually supported
by this system before trying to switch to this mode using the ChangeDisplayMode()

command.

INPUTS

monitor optional: monitor whose display modes shall be queried (defaults to 1 which
means query the primary monitor) (V6.0)

RESULTS

t a collection of all available display modes

EXAMPLE
t = GetDisplayModes()

For Local k = 0 To ListItems(t) - 1

DebugPrint("Mode", k + 1, "Width:", t[k].Width, "Height:", t[k].Height)

Next

The code above queries the display mode database and then prints all available modes.

25.11 GetMonitors

NAME
GetMonitors – return information about available monitors (V6.0)

SYNOPSIS
t = GetMonitors()

FUNCTION
This function can be used to obtain information about all monitors currently available
to the system. A table will be returned that contains a number of subtables describing
each individual monitor’s dimensions and the position of this monitor on the desktop
screen.

Please note that the way the monitor positions on the desktop screen are described is
platform-dependent. See Section 25.14 [Multi-monitor support], page 397, for details.

396 Hollywood manual

INPUTS
none

RESULTS

t a collection of all available monitors and their desktop alignment

EXAMPLE
t = GetMonitors()

For Local k = 0 To ListItems(t) - 1

DebugPrint("Monitor", k + 1, "X:", t[k].X, "Y:", t[k].Y,

"Width:", t[k].Width, "Height:", t[k].Height)

Next

The code above queries the operating system’s monitor database and then prints infor-
mation about all available monitors.

25.12 HideDisplay

NAME
HideDisplay – minimize the current display (V3.0)

SYNOPSIS
HideDisplay([toback])

FUNCTION
This function minimizes the current display. The script execution will continue while the
display is minimized. You can use the ShowDisplay() command to bring a minimized
display back to the front.

If you want to close the display instead of minimizing it, use the CloseDisplay() com-
mand instead.

Starting with Hollywood 8.0, there is an optional argument named toback, which is only
supported on AmigaOS and compatible systems. If you set it to True, the display won’t
be minimized, but instead it will be hidden by moving it all the way to the bottom of
the current screen’s window stack, i.e. all other windows will appear in front of it then.

INPUTS

toback optional: whether to hide the window by moving it to the bottom of the
window stack instead of minimizing it; this is only supported on AmigaOS
and compatible systems (defaults to False) (V8.0)

EXAMPLE
HideDisplay()

Wait(100)

ShowDisplay()

This code hides the display, waits two seconds, and pops up the display again.

Chapter 25: Display library 397

25.13 MoveDisplay

NAME
MoveDisplay – move the display to a new position on the host screen (V2.0)

SYNOPSIS
MoveDisplay(x, y)

FUNCTION
This function moves the display to the new position specified by x and y. You can
also use Hollywood’s special coordinate constants here. To find out which x- and y-
positions are valid, you can query the #ATTRMAXWIDTH and #ATTRMAXHEIGHT attributes
with GetAttribute().

The initial position of the display can be set with the @DISPLAY preprocessor command.

INPUTS

x new x-position for the display

y new y-position for the display

EXAMPLE
MoveDisplay(#LEFT, #TOP)

This moves the display to the top-left of the screen

25.14 Multi-monitor support

Starting with Hollywood 6.0 multiple monitor systems are supported by Hollywood. You
can specify on which monitor a display should open by setting the Monitor tag in the
@DISPLAY preprocessor command or in the CreateDisplay() or OpenDisplay() functions.
To get information about all available monitors, you can use the GetMonitors() function.

Please note that the way extended desktop coordinates are handled with multiple monitors is
platform-dependent. For example, on Windows the primary monitor’s area in the extended
desktop will always start at offset 0:0. If there is a monitor to the left or top of the primary
monitor, its offset will use negative coordinates. On Linux, however, negative coordinate
space isn’t used at all. Thus, it can happen on Linux that the primary monitor’s area in the
extended desktop doesn’t start at offset 0:0 but at a higher offset if there is a monitor to the
left or top of the primary monitor. Hollywood doesn’t level these platform dependencies
for you because they are an integral part of the window manager’s coordinate system and
it could become very confusing in some parts for the programmer if Hollywood tried to
introduce its own coordinate abstraction layer on top of the window manager’s coordinate
system. Normally, you won’t have to deal with the absolute offsets anyway, since functions
like MoveDisplay() from the display library work relative to the display’s monitor offset
anyway.

25.15 OpenDisplay

NAME
OpenDisplay – open a display (V4.5)

398 Hollywood manual

SYNOPSIS
OpenDisplay(id[, table])

FUNCTION
This function will open a display previously created using CreateDisplay() and make
it visible. Starting with Hollywood 6.0 this function accepts an optional table argument
which can be used to configure some advanced options. The following tags are currently
recognized by the optional table argument:

Mode: This tag allows you to specify the mode the display should be opened in.
You have to pass one of the following strings to this tag:

Windowed Open display in windowed mode.

FullScreen

Open in full screen mode. This can change your monitor’s
resolution to the dimensions which fit best to your display’s
dimensions. If you don’t want that, take a look at the
FullScreenScale and FakeFullScreen modes below.

FullScreenScale

This is a special full screen mode which won’t change your
monitor’s resolution. Instead, Hollywood’s display will be
resized to fit your monitor’s dimensions. Additionally, this
full screen mode will activate the auto scaling engine so that
your display is automatically scaled to fit your monitor’s
dimensions. FullScreenScale will use auto scaling by default.
If you would like it to use layer scaling, you have to set
ScaleMode to #SCALEMODE_LAYER as well. FullScreenScale is
especially useful on mobile devices whose display hardware has
a hard-coded resolution and doesn’t support resolution changes
in the same way as an external monitor connected to a desktop
computer does. The downside of FullScreenScale is that it is
slower because Hollywood has to scale all rendering operations
to the monitor’s dimensions. (V7.0)

FakeFullScreen

Open in fake full screen mode. This means that Hollywood
will not change the monitor’s resolution but the backfill window
will be configured to shield the desktop completely. Thus, the
user gets the impression as if Hollywood was running full screen,
although it is running on the desktop.

ModeRequester

This will open a display mode requester allowing the user to
choose the desired full screen mode for this display.

Ask This will open a requester asking the user to choose between
windowed and full screen mode.

By default, OpenDisplay() will use the mode that was specified when cre-
ating the display.

Chapter 25: Display library 399

ScrWidth, ScrHeight:

If Mode has been set to FullScreen, these tags allow you to set the desired
dimensions for the full screen mode. Defaults to what has been set when
creating the display. Starting with Hollywood 7.0 you can also set these
tags to the special constant #NATIVE. In that case, Hollywood will use the
dimensions of the display’s host device.

ScrDepth:

If Mode has been set to FullScreen, this tag allows you to set the desired
depth for the full screen mode. Defaults to what has been set when creating
the display.

Backfill:

This tag allows you to configure the backfill setting for this display. The table
you have to specify here has to follow the same conventions as its counter-
part that can be passed to the Backfill tag of the @DISPLAY preprocessor
command. See Section 25.8 [DISPLAY], page 380, for details.

NoSelect:

This tag allows you to specify whether or not the newly opened display shall
be selected as the current output device. NoSelect defaults to False which
means that by default, OpenDisplay() will open the specified display and
select it as the current output device. If you do not want this behaviour, pass
True in NoSelect. In that case, you need to manually call SelectDisplay()
before you can draw into the display.

Monitor: This tag allows you to specify the monitor this display should be opened
on. Monitors are counted from 1 to the number of monitors available to the
system. Please note that if you set this tag, functions that accept display
coordinates, e.g. MoveDisplay(), will interpret them as values relative to
the origin of the monitor specified in the Monitor tag. This tag defaults to
what has been set when creating the display.

XServer: This tag can be used to specify the X Server that should open this dis-
play. By default, Hollywood will use the X Server that has been specified
when creating the display. This tag is only available in the Linux version of
Hollywood.

PubScreen:

This tag can be used to specify the public screen this display should be
opened on. You have to pass a string that contains the name of the public
screen to use here. By default, Hollywood will use the public screen spec-
ified when creating the display. This tag is only supported on AmigaOS
compatible operating systems.

ScreenName:

If this display is to be opened in full screen mode, you can set the desired
public screen name of the display’s own screen with this tag. By default,
Hollywood will use the screen name specified when creating the display. This
tag is only available in the AmigaOS compatible versions of Hollywood.

400 Hollywood manual

INPUTS

id identifier of the display to open

table optional: table argument containing further options (see above) (V6.0)

EXAMPLE
See Section 25.7 [CreateDisplay], page 375.

25.16 Palette displays

When showing a palette BGPic using DisplayBGPic() or assigning a palette BGPic to
a display using the @DISPLAY preprocessor command or SetDisplayAttributes(), Holly-
wood will put the display into palette mode. This means that the only colors available for
drawing on that display are the colors that are part of the palette. This is very similar to
old graphics hardware from the 1980s and early 1990s which was only capable of showing a
fixed amount of colors, ranging from 2 to 256 colors, on screen.

An advantage of putting a display into palette mode is that by changing the color of a pen
in the palette, all pixels which use that pen will change their color instantly as well. This
makes it possible to easily write code that fades palette colors or cycles them. Color cycling
effects were a very popular way of animating graphics like waterfalls or rain in the 1980s
and early 1990s. By using a Hollywood display in palette mode, these effects can be easily
replicated in Hollywood.

Another advantage of palette mode displays is that the memory consumption is much lower
than when using true colour displays. In 32-bit true colour mode, a single pixel will require
4 bytes of memory whereas in palette mode, a single pixel will just require 1 byte of memory.
Thus, a 1920x1080 image will require about 8 megabytes of memory in 32-bit mode but
only 2 megabytes of memory in palette mode.

However, great care needs to be taken when using displays in palette mode because otherwise
drawing can become really slow. This is because by default, all graphics that you draw to a
palette mode display will be remapped to the display’s palette so that their appearance is
as close to the original as possible. Precisely, remapping means that Hollywood has to scan
all pixels of the source graphics and find the closest match for each pixel in the display’s
palette. This is of course a very time-consuming operation and will make drawing very
slow. That’s why the fastest way of drawing to a palette mode display is to make sure all
graphics use the same palette. Then no remapping needs to be done and the graphics data
can just be copied to the display without any expensive pixel adaptation algorithm.

To disable remapping in a palette mode display, you have to pass #PALETTEMODE_PEN to
SetPaletteMode(). This will enable pen-based drawing and whenever you draw palette
graphics to the display, Hollywood will assume that they use the same palette as the display.
Thus, they can just be copied to the display as they are.

Furthermore, when the palette mode has been set to #PALETTEMODE_PEN, single-color draw-
ing functions like Box() or Circle() will ignore the RGB color that is passed to them. In-
stead, they will simply draw the shapes using the pen that has been set using SetDrawPen().
Shadow and border effects that might be active will also ignore the standard shadow and
border color set using SetFormStyle() or SetFontStyle() and will draw the shadow and

Chapter 25: Display library 401

border using the pen that has been set using SetShadowPen() and SetBorderPen(), re-
spectively. Also, antialiasing will be disabled when #PALETTEMODE_PEN is active because in
most cases palettes don’t have enough colors for satisfactorily anti-aliasing edges.

Note, however, that even if #PALETTEMODE_PEN is active, RGB graphics, of course, still have
to be remapped because it’s obviously impossible to draw RGB graphics to a palette mode
display in any other way. Thus, drawing 32-bit true color graphics to palette displays should
be avoided because it will always be slow because remapping needs to be done for those
graphics and there is no way around this.

The way graphics data is remapped to a display’s palette can be configured by calling
SetDitherMode(). This allows you to enable or disable dithering and you can also specify
the dithering algorithm to use.

Palette mode displays support all features of normal displays. It is possible to use layers,
sprites, transition effects, clipping regions, videos, and double buffers with palette mode
displays as well. Keep in mind, however, to pay attention to the remarks mentioned above
or drawing might become very slow.

See Section 44.1 [Palette overview], page 889, to learn more about palettes.

25.17 RefreshDisplay

NAME
RefreshDisplay – force display refresh (V9.0)

SYNOPSIS
RefreshDisplay([t])

FUNCTION
This command can be used to force the current display to refresh itself. It is normally
not needed to call this function as display refresh is handled by Hollywood automatically.
This function is only here for debugging purposes. The optional table argument can be
used to pass additional options but this is currently just for internal use and not publicly
documented.

INPUTS

t optional: table containing further options

25.18 Scaling engines

Starting with Hollywood 4.0, there are two scaling engines available which you can use to
force your script to run in a different resolution than it was designed for. For example, you
wrote a little game in 320x240 so that it runs fast enough on classic Amigas. On modern
Amigas, however, 320x240 will appear as a tiny window. Thus, you can now use Hollywood’s
scaling engines to make your script appear in 640x480 or 800x600 without changing a single
line of your code! All you have to do is activate one of Hollywood’s scaling engines!

When a scaling engine is active, your script will still think that it is running in its original
resolution. This means, for instance, that calls like

width = GetAttribute(#DISPLAY, 0, #ATTRWIDTH)

402 Hollywood manual

height = GetAttribute(#DISPLAY, 0, #ATTRHEIGHT)

will still return 320x240 even though your script is now running in a completely different
resolution. It is obvious that such a behaviour is necessary for consistency i.e. to ensure
that the script runs flawlessly in the new resolution. Your script will not notice that a
scaling engine is active at all! The scaling engine will be installed completely transparently
on top of your script.

Scaling engines can be activated either from the command line by using one of the scaling
engine arguments (-autoscale or -layerscale) or it can be activated from within your
script by either specifying ScaleMode in a @DISPLAY preprocessor command or by calling
SetDisplayAttributes().

Hollywood offers two scaling engines:

1. Auto scaling engine: You can activate this scaling engine by specifying the -autoscale
argument or using #SCALEMODE_AUTO with @DISPLAY or SetDisplayAttributes().
This scaling engine is a lowlevel scaling engine which will simply scale all of Holly-
wood’s graphical output to the new dimensions. Because of this very nature, the auto
scaling engine will work with all Hollywood scripts without exceptions. The drawback
of the auto scaling engine is a) that it can get quite expensive on the CPU in case
the host system doesn’t support hardware-accelerated scaling b) that it scales vector
graphics in bitmap mode which means that, for instance, true type fonts, graphics
primitives, or vector brushes will deteriorate in quality, and c) that drawing is slower
because the whole display has to be refreshed even if only a single pixel has changed.
You can improve the performance of the auto scaling engine by using a double buffer
for drawing for encapsulating all your drawing commands inside a BeginRefresh()

and EndRefresh() section. See Section 30.4 [BeginRefresh], page 591, for details. An-
other option to greatly improve the performance of the auto scaling engine is to use a
plugin which supports hardware-accelerated scaling, e.g. the GL Galore or RebelSDL
plugins. Plugins which support hardware-accelerated scaling can apply auto scaling in
almost no time. So if Hollywood’s inbuilt auto scaling performance is too poor for your
requirements, you might want to use a plugin which supports hardware-accelerated
scaling. See Section 5.4 [Obtaining plugins], page 66, for details.

2. Layer scaling engine: The layer scaling engine is a more sophisticated, high-level scal-
ing engine which you can activate by specifying the -layerscale argument or using
#SCALEMODE_LAYER with @DISPLAY or SetDisplayAttributes(). This scaling engine
a) is often faster than the auto scaling engine because layers have only to be scaled
once, b) offers a higher output quality for vector graphics (i.e. graphics primitives,
vector brushes, true type text) which can be scaled without loss of quality, and c)
draws faster because only parts of the display need to be refreshed. The drawback of
the layer scaling engine is that it works only when Hollywood is in layer mode and it
needs more memory. Also, you cannot call DisableLayers() when the layer scaling
engine is active. Thus, if you want to use the layer scaling engine, your whole script
has to run with enabled layers.

From these descriptions it might sound like option (2) is the way to go, but this is not
necessarily true. In fact, the auto scaling engine is pretty sufficient in most cases. The
layer scaling engine is only important for projects like presentations that shall be promoted
to a UltraHD resolution or similar. In that case, it is important that the vector graphics

Chapter 25: Display library 403

are property scaled in vector mode so that a crisp result is achieved. Under normal cir-
cumstances, however, using the auto scaling engine should do everything you want. And
don’t be discouraged by the fact that it is slower than the layer scaling engine - on modern
systems you probably won’t notice this slowdown at all!

When activating a scaling engine, you also have to specify the target scaling resolution. This
can be done in two different ways: You can either set the target scaling resolution using
the -scalewidth and -scaleheight console arguments or their counterparts ScaleWidth
and ScaleHeight if you are using @DISPLAY or SetDisplayAttributes(), or you can set
a global scaling coefficient using the -scalefactor or -systemscale console arguments or
their runtime counterparts accepted by @DISPLAY or SetDisplayAttributes().

Note that there is a difference in behaviour between setting the target resolution
using ScaleWidth and ScaleHeight, and between setting the scaling resolution using
ScaleFactor and SystemScale. If you use ScaleWidth and ScaleHeight, the size passed
to these tags will be rigidly enforced and your display will always keep this size, even if the
script requests to change it by calling ChangeDisplaySize() or by showing a background
picture that is of a different size using DisplayBGPic(). The only way the display size can
be changed when ScaleWidth and ScaleHeight were used to set the scaling resolution is
that the user resizes the window. Otherwise the display will never change its dimensions.

When using ScaleFactor or SystemScale, on the other hand, a scaling coefficient is applied
to the current display size. This means that the target scaling size is not static as it is the
case with ScaleWidth and ScaleHeight (see above), but it is dynamic because it is relative
to the current display size, e.g. if a scaling coefficient of 2.0 is applied and a display is first
640x480 pixels in size and later 800x600 pixels in size, the display will first be promoted to
1280x960 pixels and then to 1600x1200 pixels. This is what makes ScaleFactor perfect for
scaling a script for a high dpi display because it makes sure that the script behaves exactly
the same but just appears larger (or smaller if you want!).

There is also the difference that, in case a scaling engine is active, SizeWindow events are
only delivered to your display if you use either ScaleFactor or SystemScale to set the
target scaling resolution. If you use ScaleWidth and ScaleHeight, no SizeWindow events
will be sent to your display because window size changes are handled by the scaling engine.

If you activate a scaling engine but specify neither -scalewidth, -scaleheight, nor
-scalefactor or -systemscale the scaling engines won’t be activated until the user resizes
the window. As soon as he does this, the new window size will be set as the target scaling
size.

Finally, you can specify the -smoothscale argument to enable interpolated anti-alias scaling
for bitmap graphics which looks better but can be slower if no hardware-accelerated scaling
is available.

25.19 SCREEN

NAME
SCREEN – configure screen mode for script (V4.5)

SYNOPSIS
@SCREEN table

404 Hollywood manual

FUNCTION
Important note: This preprocessor command is deprecated since Hollywood 6.0. As Hol-
lywood 6.0 introduced support for multiple monitors, there can also be multiple displays
in full screen mode on separate monitors. That is why a single @SCREEN preprocessor
command is no longer sufficient. Instead, display mode parameters should now be con-
figured using the @DISPLAY preprocessor command or the CreateDisplay() function.
You can still use this preprocessor command but it will affect the first display only.

This preprocessor command can be used to configure the initial screen mode for your
script. By default, all Hollywood scripts will open in a window. If you want your script
to open in full screen mode by default, you can use this preprocessor command to achieve
this.

Before Hollywood 4.5, screen mode was configured using the @DISPLAY preprocessor
command. Hollywood 4.5, however, introduced multiple displays which made it neces-
sary to move the screen mode settings into its own preprocessor command because it is
impossible to have multiple displays running in full screen mode.

You have to pass a table to this command. The following table tags are currently
recognized:

Mode: Defines which display mode your script should start in. This can be either
Windowed, FullScreen, FullScreenScale, FakeFullScreen, or Ask. See
Section 3.2 [Console arguments], page 33, for information on what the dif-
ferent modes mean. If you specify Ask, Hollywood will ask the user if the
script should be run in full screen or windowed mode. Defaults to Windowed.

HideTitleBar:

This field can be used to hide the screen’s title bar. It is only effective when
Hollywood opens on its own screen or when you use a backfill. Defaults to
False.

Desktop: If you set this field to True, the initial background picture will be a copy of
your desktop screen. This can be used for some nice effects with that screen.
Hollywood will also automatically open a borderless window if this field is
True. Note that setting this attribute puts Hollywood in a special mode and
you must not open any other displays.

Width, Height:

If Mode is set to FullScreen, you can use these two to specify the dimensions
for the screen that Hollywood should open. If you pass 0 in here, Hollywood
will use the dimensions of the desktop screen. If you do not specify them at
all, Hollywood will automatically determine a screen size that fits.

Depth: This field can be used to specify the color depth of the screen that Hollywood
should open. Thus, it can only be used when Hollywood opens in full screen
mode. If you do not specify this field, Hollywood will use the color depth
of the desktop screen for the new screen. Normally, you should not use this
field and leave the choice to Hollywood to detect an appropriate depth for
the current system.

Chapter 25: Display library 405

Alternatively, screen mode settings can also be configured from the command line. If you
want to disable this, you should compile your scripts using the -locksettings console
argument.

You can also switch between full screen and windowed mode at run time using the
ChangeDisplayMode() command.

INPUTS

table table declaring the initial screen mode for the script

EXAMPLE
@SCREEN {Mode = "FullScreen", Width = 800, Height = 600}

This declaration will set up 800x600 as the initial screen mode for the script.

25.20 SelectDisplay

NAME
SelectDisplay – select a display as output device (V4.5)

SYNOPSIS
SelectDisplay(id[, noactivate])

FUNCTION
This function makes the display specified by id the current display. The current display is
the display that all commands of Hollywood’s graphics library draw to. Furthermore, sev-
eral other functions refer to the current display; for example, WaitLeftMouse() will wait
for the left mouse button to be clicked in the currently active display, and SetPointer()

will change the mouse pointer of the currently active display.

The optional argument noactivate specifies whether or not the display shall also be
activated. This argument defaults to False which means that by default, the specified
display is made the current display and it is also activated. Make sure you understand
the difference between the current display and the active display: The current display
is not necessarily the active display and vice versa. The active display has nothing
to do with Hollywood itself. It just means that the window manager of the host OS
will highlight the display and make it the active one. Active windows will also get the
keyboard focus and on some operating systems active windows are always put to the
front. The current display on the other hand is the display that Hollywood commands
use to draw their graphics to. Thus, you could also turn an inactive display into the
current display. Hence, you should keep in mind that this function makes the specified
display the current display. Optionally, it activates the display, too. If you only want to
activate a display without making it the current one, ActivateDisplay() is the proper
function for you.

Also note that Hollywood always requires a current display. It is not possible to create
a Hollywood script that runs without a current display. You can, however, create the
illusion of a Hollywood script without a current display. By using CloseDisplay() you
can close all displays (or use the Hidden tag in @DISPLAY). It will then seem as if there
was no current display but that is a wrong assumption. There is still a current display; it
is just not visible. Even if all displays are closed, you will still be able to call functions like

406 Hollywood manual

DisplayBrush(). They will still draw their graphics to the display, even if it is currently
not visible. That is why you can also call SelectDisplay() on closed displays.

Make sure that you do not confuse SelectDisplay() with the similarly named
functions SelectBrush(), SelectBGPic(), SelectAnim(), SelectMask(), and
SelectAlphaChannel(). All of these functions require you to call EndSelect() when
you are done with them, but SelectDisplay() does not have this requirement. In
fact, it works in a completely different way so you must never call EndSelect() for
SelectDisplay(). If you want to return to the previously current display, you must
call SelectDisplay() again. Calling EndSelect() to restore the previously current
display will definitely not work.

If you call SelectDisplay() when SelectBrush() (or one of its related commands)
is active, Hollywood will internally call EndSelect() first to finish the SelectBrush()

operation. After that, SelectDisplay() will switch the current display.

Double-buffering modes are not cancelled by SelectDisplay(). You can safely take the
focus away from a double buffered display using SelectDisplay(), make some changes in
another display, and then return to the double-buffered display. Double-buffered modes
are fully preserved by SelectDisplay().

Also note that OpenDisplay() will always automatically select the specified display as
the current one, except when you specify use the optional argument to tell it not to do so.
Thus, when using OpenDisplay() you normally do not have to call SelectDisplay()
at all. SelectDisplay() is only needed when selecting a display as the current one that
is already open.

INPUTS

id identifier of the display to select as the current display

noactivate

optional: set this to True if the display shall not be activated by this function
(defaults to False)

25.21 SetDisplayAttributes

NAME
SetDisplayAttributes – change attributes of current display (V4.5)

SYNOPSIS
SetDisplayAttributes(table)

FUNCTION
This function can be used to change one or several window attributes of the current
display with a single function call. It is a very powerful function that gives you the
utmost flexibility for dealing with your displays. Almost all attributes of the display can
be changed on the fly using this function. For example, you can make a display sizeable
or borderless with this function.

You have to pass a table containing a collection of attributes that you want to modify
to this function.

Chapter 25: Display library 407

Here is a list of display attributes that you can modify using this function:

BGPic: Allows you to exchange the BGPic currently associated with this display.
This is basically the same as calling DisplayBGPic(). The advantage of
exchanging BGPics with SetDisplayAttributes() is that you can change
other display attributes at the same time. To exchange the BGPic for this
display, simply pass the identifier of the new BGPic in this tag.

Width, Height:

These allow you to change the dimensions of the current display. This is the
same as calling ChangeDisplaySize(). You can specify either a direct value
of a string containing a percentage specification (e.g "200%"). Starting with
Hollywood 7.0 you can also set these tags to the special constant #NATIVE.
In that case, Hollywood will use the dimensions of the display’s host device.

X, Y: Allows you to change the position of the current display. This is the same
as calling MoveDisplay(). You can either specify a direct value or one of
Hollywood’s special coordinate constants.

Title: See Section 25.8 [DISPLAY], page 380, for details.

Borderless:

See Section 25.8 [DISPLAY], page 380, for details.

Sizeable:

See Section 25.8 [DISPLAY], page 380, for details.

Fixed: See Section 25.8 [DISPLAY], page 380, for details.

NoHide: See Section 25.8 [DISPLAY], page 380, for details.

NoModeSwitch:

See Section 25.8 [DISPLAY], page 380, for details.

NoClose: See Section 25.8 [DISPLAY], page 380, for details.

HidePointer:

See Section 25.8 [DISPLAY], page 380, for details.

ScaleMode:

See Section 25.8 [DISPLAY], page 380, for details.

ScaleWidth, ScaleHeight:

See Section 25.8 [DISPLAY], page 380, for details.

SmoothScale:

See Section 25.8 [DISPLAY], page 380, for details.

DragRegion:

See Section 25.8 [DISPLAY], page 380, for details.

SizeRegion:

See Section 25.8 [DISPLAY], page 380, for details.

PubScreen:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

408 Hollywood manual

FillStyle:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

Color: See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

TextureBrush:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

TextureX, TextureY:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

GradientStyle:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

GradientAngle:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

GradientStartColor, GradientEndColor:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

GradientCenterX, GradientCenterY:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

GradientBalance:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

GradientBorder:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

GradientColors:

See Section 25.8 [DISPLAY], page 380, for details. (V5.2)

HideFromTaskbar:

See Section 25.8 [DISPLAY], page 380, for details. (V5.3)

HideOptionsMenu:

See Section 25.8 [DISPLAY], page 380, for details. (V5.3)

Orientation:

See Section 25.8 [DISPLAY], page 380, for details. (V5.3)

Menu: This tag can be used to attach a menu strip to the current display. You
have to pass the identifier of a menu strip that has been created using the
@MENU preprocessor command or the CreateMenu() function to this tag. If
you pass the special value -1 here, the currently attached menu strip will be
removed from the display. See Section 39.8 [MENU], page 804, for details.
(V6.0)

Monitor: See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

XServer: See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

ScreenTitle:

See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

ScreenName:

See Section 25.8 [DISPLAY], page 380, for details. (V6.0)

Chapter 25: Display library 409

RememberPosition:

See Section 25.8 [DISPLAY], page 380, for details. (V7.0)

HideTitleBar:

See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

ImmersiveMode:

See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

INPUTS

table a table containing a collection of attributes that shall be modified in the
current BGPic; see the list above

EXAMPLE
SetDisplayAttributes({Borderless = True, Sizeable = True})

The code above makes the current display borderless and sizeable.

25.22 SetSubtitle

NAME
SetSubtitle – set subtitle of current display (V8.0)

SYNOPSIS
SetSubtitle(subtitle$)

PLATFORMS
Android only

FUNCTION
This function changes the subtitle of the currently active display to the new subtitle
specified in subtitle$. The subtitle is shown in the action bar below the display’s title,
which can be set using SetTitle(). To remove the subtitle, pass an empty string in
subtitle$. By default, there is no subtitle at all.

Alternatively, you can also set the subtitle in the @DISPLAY preprocessor command or
when creating the display using CreateDisplay().

INPUTS

subtitle$

new subtitle for display

EXAMPLE
SetSubtitle("Written by Andreas Falkenhahn")

The above code changes the subtitle to "Written by Andreas Falkenhahn".

25.23 SetTitle

NAME
SetTitle – change the title of the current display

410 Hollywood manual

SYNOPSIS
SetTitle(title$)

FUNCTION
This function changes the title of the currently active display to the new title specified in
title$. This is only useful for changing the title while the script is running. If you want
to give your application a global title, just use the @DISPLAY preprocessor command.

INPUTS

title$ new window title

EXAMPLE
SetTitle("My cool program")

The above code changes the window title to "My cool program".

25.24 ShowDisplay

NAME
ShowDisplay – show minimized display (V3.0)

SYNOPSIS
ShowDisplay()

FUNCTION
This function unminimizes the current display and brings it back to the front. The
display must have been minimized previously either using the HideDisplay() command
or by the user using the window’s minimize button.

Note that you cannot use this function to show a display that is closed. If the display is
closed, you need to use OpenDisplay().

INPUTS
none

EXAMPLE
See Section 25.12 [HideDisplay], page 396.

411

26 DOS library

26.1 CanonizePath

NAME
CanonizePath – convert path into canonical format (V9.0)

SYNOPSIS
p$ = CanonizePath(path$)

FUNCTION
This function can be used to turn the path specified in path$ into a canonical one.
Canonizing a path involves the following operations:

− shortcuts like ".." or "." will be resolved to fully qualified paths

− relative paths will be converted to fully qualified paths

− on platforms with case-insensitive file systems, the spelling of all path components
will be adapted to the spelling as it is stored in the file system

− slashes and backslashes will be adapted to the host operating system’s convention

− any assigns in the path will be resolved on AmigaOS and compatibles

Note that the path passed to CanonizePath() needn’t exist. If it doesn’t exist,
CanonizePath() will try to resolve as many components in the path as possible. Note,
however, that CanonizePath() doesn’t perform path validation. If you pass a path
that is invalid because of syntactical errors, the result is undefined.

INPUTS

path$ path to canonize

RESULTS

p$ fully qualified path in the host system’s canonical format

EXAMPLE
Print(CanonizePath("../image.jpg"))

The code above will print the fully qualified path of the file image.jpg.

26.2 ChangeDirectory

NAME
ChangeDirectory – change the current directory

SYNOPSIS
ChangeDirectory(dir$[, t])

FUNCTION
This function changes the directory to the one specified in dir$.

Starting with Hollywood 10.0, this function accepts an optional table argument which
supports the following tags:

Adapter: This tag allows you to specify one or more filesystem adapters that should
be asked to handle the operation. This must be set to a string containing

412 Hollywood manual

the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
filesystem adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

dir$ directory to make the current directory

t optional: table argument containing further options (see above) (V10.0)

EXAMPLE
ChangeDirectory("Data")

OpenFile(1, "Highscores.txt")

CloseFile(1)

The above code changes the current directory to "Data" and opens the file "High-
scores.txt" inside the "Data" directory.

26.3 CloseDirectory

NAME
CloseDirectory – close an open directory (V4.0)

SYNOPSIS
CloseDirectory(id)

FUNCTION
This function closes a directory previously opened using OpenDirectory(), @DIRECTORY,
or MonitorDirectory(). You should always close directories as soon as you are finished
with them. This ensures that the file system does not unnecessarily keep directories
locked.

INPUTS

id identifier of the directory to close

EXAMPLE
See Section 26.47 [OpenDirectory], page 458.

26.4 CloseFile

NAME
CloseFile – close an open file

SYNOPSIS
CloseFile(id)

Chapter 26: DOS library 413

FUNCTION
Closes the file with the identifier id which was opened with OpenFile().

INPUTS

id number that the file was opened with

EXAMPLE
See Section 26.48 [OpenFile], page 459.

26.5 CompressFile

NAME
CompressFile – compress a file (V4.0)

SYNOPSIS
size = CompressFile(src$, dst$)

FUNCTION
This function compresses file src$ and saves the packed data to dst$. The return value
specifies the size of the compressed file. Hollywood uses zlib for data compression.

To decompress files packed by CompressFile() use the Hollywood function
DecompressFile().

INPUTS

src$ file to compress

dst$ output file

RESULTS

size size of the compressed file

EXAMPLE
CompressFile("image.bmp", "image.pak")

The code above compresses file image.bmp to image.pak.

26.6 CopyFile

NAME
CopyFile – copy file or directory (V2.0)

SYNOPSIS
CopyFile(src$, dst$[, t])

DEPRECATED SYNTAX
CopyFile(src$, dst$[, newname$, func, userdata, pattern$, matchdir])

FUNCTION
This function copies the file or directory specified in src$ to the directory specified in
dst$. Note that by default, existing files will be overwritten without asking. You can

414 Hollywood manual

customize this behaviour by specifying a callback function (see below). Also note that
you have to specify a directory, not a file, in dst$.

This function is powerful. It will fully recurse into all subdirectories and copy the file
attributes, date stamps and comments as well. If the destination directory does not
exist, it will be created for you (even if it contains subdirectories that do not exist yet).
All path specifications can be local to the current directory or qualified. You can also
copy files to the current directory by specifying "" as dst$.

CopyFile() supports many optional arguments. Before Hollywood 9.0, those had to be
passed as optional parameters (see above). Since Hollywood 9.0, however, it is recom-
mended to use the new syntax, which has a single optional table argument that can be
used to pass one or more optional arguments to CopyFile().

The following table fields are recognized by this function:

NewName: If you would like to change the name of the file while copying it, set this
field to the desired new name for the file. Obviously, setting this field only
makes sense when you specify a file in src$.

Pattern: You can pass a filter pattern in this table field. In that case, CopyFile() will
only copy the files that match the specified pattern. For example, passing
*.jpg in Pattern will only copy files that use the .jpg file extension. Of
course, using a filter pattern makes only sense if you pass a directory in
src$. Note that for historical reasons, the pattern specified in Pattern will
also be matched against all subdirectories that are to be copied. If you
don’t want that, set the MatchDir table tag to False (see below). The
pattern specified in Pattern must adhere to the pattern rules as described
in the documentation of the MatchPattern() function. See Section 26.42
[MatchPattern], page 449, for details. (V5.0)

MatchDir:

This table field specifies whether or not the filter pattern specified in
Pattern should also be matched against subdirectories. If this is set to
True, CopyFile() will only recurse into subdirectories that match the
specified filter pattern. If it is set to False, CopyFile() will recurse into
all subdirectories. For compatibility reasons, MatchDir defaults to True,
but most of the time you will want to pass False here because it usually
does not make sense to match a file pattern against a directory name. For
example, it does not make sense to match the *.jpg example from above
against directories as well. (V5.0)

BufferSize:

This table field can be used to set the buffer size that should be used for
copying files. The value passed here must be specified in bytes. The default
is 16384, i.e. 16 kilobytes. (V9.0)

FailOnError:

By default, CopyFile() will fail when an error occurs. You can change this
behaviour by setting FailOnError to False. In that case, CopyFile() won’t
fail on an error but instead your callback function, if there is one, will be
notified using the #COPYFILE_FAILED message and your callback must tell

Chapter 26: DOS library 415

CopyFile() how to proceed (retry, continue, abort). See below to learn how
to set up a callback function for CopyFile(). FailOnError defaults to True.
(V9.0)

Force: If this tag is set to True, write- or delete-protected files will automatically be
overwritten without asking the callback function first. Note that if there is
no callback function and Force is set to False (the default), CopyFile() will
fail if it can’t overwrite a file because that file is write- or delete-protected.
Defaults to False. (V9.0)

Async: If this is set to True, CopyFile() will operate in asynchronous mode. This
means that it will return immediately, passing an asynchronous operation
handle to you. You can then use this asynchronous operation handle to
finish the operation by repeatedly calling ContinueAsyncOperation() until
it returns True. This is very useful in case your script needs to do something
else while the operation is in progress, e.g. displaying a status animation or
something similar. By putting CopyFile() into asynchronous mode, it is
easily possible for your script to do something else while the operation is
being processed. See Section 19.4 [ContinueAsyncOperation], page 224, for
details. Defaults to False. (V9.0)

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to open the source file or directory. If you use this tag, you must
set it to a string containing the name(s) of one or more adapter(s). Defaults
to the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders
and adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
file or directory adapters. If you use this tag, you must set it to a table of
key-value pairs that contain the additional data that should be passed to
plugins. See Section 7.10 [User tags], page 95, for details. (V10.0)

DstAdapter:

This tag allows you to specify one or more filesystem adapters that should be
asked to handle all operations on the side of the copy target. The filesystem
adapter specified here will be responsible for creating directories and setting
file and directory attributes, for example. This must be set to a string
containing the name(s) of one or more adapter(s). Defaults to default. See
Section 7.9 [Loaders and adapters], page 92, for details. (V10.0)

DstUserTags:

This tag can be used to specify additional data that should be passed to
filesystem adapters specified in DstAdapter. See above for details. If you
use this tag, you must set it to a table of key-value pairs that contain the
additional data that should be passed to plugins. See Section 7.10 [User
tags], page 95, for details. (V10.0)

Callback:

This table field can be used to pass a callback function which will be called
by CopyFile() on various occasions, e.g. to allow you to update a progress

416 Hollywood manual

bar for example. The callback function also gets called if a destination file
already exists or is write/delete protected. The callback function receives
one argument: A table that contains more information.

The following callback types are available:

#COPYFILE_OVERWRITE:

CopyFile() will run this callback to ask if a file can be overwrit-
ten. Your callback function has to return True if the file shall
be overwritten or False if it shall be skipped. To abort the copy
operation completely, return -1. The following fields will be set
in the table parameter that is passed to your callback function:

Action: #COPYFILE_OVERWRITE

Source: Contains the fully qualified path of the file to copy.

Destination:

Contains the fully qualified path of the file that does
already exist.

UserData:

Contains the value you passed in the UserData table
field (see below).

#COPYFILE_UNPROTECT:

The callback function of type #COPYFILE_UNPROTECT will be
called if the file that should be overwritten is write- or delete-
protected. This callback function needs to return True if it is
okay to unprotect the file or False if it shall be skipped. If you
return -1, the copy operation will be completely aborted.

Starting with Hollywood 9.0, your callback function can also
return -2 to indicate that copying should still be attempted
even though the file is write- or delete-protected. This, how-
ever, will typically lead to an error because write- or delete-
protected files can’t be overwritten without unprotecting them
first. However, if you return -2 you can catch the ensuing error
in your #COPYFILE_FAILED callback if you have set FailOnError
to False (see above).

The following fields will be set in the table parameter that is
passed to your callback function:

Action: #COPYFILE_UNPROTECT

Destination:

Contains the write or delete protected destination
file to be unprotected.

UserData:

Contains the value you passed in the UserData table
field (see below).

Chapter 26: DOS library 417

#COPYFILE_STATUS:

This callback function is run from time to time so that you can
update a status bar or something similar. The callback function
of type #COPYFILE_STATUS should normally return False. If it
returns True, the copy operation will be aborted. The following
fields will be set in the table parameter that is passed to your
callback function:

Action: #COPYFILE_STATUS

Source: Contains the fully qualified path of the file that is
currently being copied (source).

Destination:

Contains the fully qualified path of the file that is
currently being written (destination).

Copied: Contains the number of bytes that were already
copied.

Filesize:

Contains the filesize of the source file.

UserData:

Contains the value you passed in the UserData table
field (see below).

#COPYFILE_FAILED:

This callback can only be called if the FailOnError tag has
been set to False (see above). In that case, the callback func-
tion of type #COPYFILE_FAILED will be called whenever a copy
operation has failed. It has to return True to abort the copy
operation, False to continue even though an error has occurred
or -1 to retry the copy operation that has just failed. The fol-
lowing fields will be set in the table parameter that is passed to
your callback function:

Action: #COPYFILE_FAILED

Source: Contains the fully qualified path of the file that is
currently being copied (source).

Destination:

Contains the fully qualified path of the file that is
currently being written (destination).

UserData:

Contains the value you passed in the UserData table
field (see below).

(V9.0)

UserData:

This field can be used to pass an arbitrary value to your callback function.
The value you specify here will be passed to your callback function whenever

418 Hollywood manual

it is called. This is useful if you want to avoid working with global variables.
Using the UserData tag you can easily pass data to your callback function.
You can specify a value of any type in UserData. Numbers, strings, tables,
and even functions can be passed as user data. Your callback will receive
this data in the UserData field in the table that is passed to it. (V5.1)

INPUTS

src$ source file or directory to copy

dst$ destination directory

t optional: table containing additional options (see above) (V9.0)

EXAMPLE
CopyFile("image.png", "TestDir")

Copy the file "image.png" from the current directory to "TestDir".

CopyFile("Images", "Images_Bak")

Create a backup of the "Images" directory in the "Images Bak" directory (the new
directory will be created by this function automatically). All files including subdirectories
will be copied to the new location.

CopyFile("Hollywood_Sources/WarpOS", "HW_BAK", {Pattern = "*.c;*.h",

MatchDir = False})

Copies all source code and header files from Hollywood Sources/WarpOS to HW BAK.

Function p_CopyCallback(msg)

Switch msg.action

Case #COPYFILE_STATUS:

DebugPrint("Now copying", FilePart(msg.source), "to",

PathPart(msg.destination))

Case #COPYFILE_OVERWRITE:

Return(SystemRequest("Hollywood", FilePart(msg.destination) ..

" does already exist!\nDo you want me to overwrite it?",

"Yes|No"))

Case #COPYFILE_UNPROTECT:

Return(SystemRequest("Hollywood", FilePart(msg.destination) ..

" is write/delete protected!\nDo you want me to unprotect it?",

"Yes|No"))

EndSwitch

Return(False)

EndFunction

CopyFile("Images", "Copy_of_Images", {Callback = p_CopyCallback})

Demonstrates the use of a callback function.

Chapter 26: DOS library 419

26.7 CountDirectoryEntries

NAME
CountDirectoryEntries – count entries in directory (V8.0)

SYNOPSIS
n, ... = CountDirectoryEntries(id[, what, recursive])

FUNCTION
This function can be used to count all entries in the directory specified by id. This
directory must have been opened using OpenDirectory() or @DIRECTORY before.

The optional argument what can be used to specify what kind of entries should be
counted. The following entry types are currently supported:

#COUNTFILES:

Count all files in the directory. This is the default.

#COUNTDIRECTORIES:

Count all directories in the directory.

#COUNTBOTH:

Count both, files and directories.

#COUNTSEPARATE:

In that mode, files and directories will be counted separately. This means
that two values will be returned: The first return value contains the number
of files counted, the second return value the number of directories counted.
(V9.0)

Starting with Hollywood 9.0, there is a new optional argument named recursive. If
this is set to True, CountDirectoryEntries() will recurse into all subdirectories and
include those in the count as well.

Note that CountDirectoryEntries() will iterate through all entries in the directory so
it must not be used during an iteration using NextDirectoryEntry(). Doing so will
automatically rewind any existing directory iterations.

INPUTS

id identifier of the directory whose entries should be counted

what optional: what should be counted (see above) (defaults to #COUNTFILES)

recursive

optional: whether or not counting should recurse into subdirectories as well
(defaults to False) (V9.0)

RESULTS

n number of entries of desired type in directory

... optional: additional return values depending on the current count mode (see
above)

EXAMPLE
OpenDirectory(1, "data")

NPrint(CountDirectoryEntries(1))

420 Hollywood manual

The code above prints the number of files in the directory data.

26.8 CRC32

NAME
CRC32 – calculate 32-bit checksum of a file (V2.0)

SYNOPSIS
chk = CRC32(f$)

FUNCTION
This function computes the 32-bit cyclic redundancy checksum (CRC32) for a given file.
This checksum allows you to identify your files.

If you want to compute the CRC32 checksum of a string, use the CRC32Str() function
instead.

INPUTS

f$ source file

RESULTS

chk 32-bit CRC32 of f$

26.9 DecompressFile

NAME
DecompressFile – decompress a file (V4.0)

SYNOPSIS
size = DecompressFile(src$, dst$)

FUNCTION
This function decompresses file src$ and saves the unpacked data to dst$. The file must
have been packed by the CompressFile() function. The return value specifies the size
of the uncompressed file.

INPUTS

src$ file to decompress

dst$ output file

RESULTS

size size of the decompressed file

EXAMPLE
DecompressFile("image.pak", "image.bmp")

The code above decompresses file image.pak to image.bmp.

Chapter 26: DOS library 421

26.10 DefineVirtualFile

NAME
DefineVirtualFile – define a virtual file inside a real file (V4.0)

SYNOPSIS
virtfile$ = DefineVirtualFile(file$, offset, size, name$)

FUNCTION
This function allows you to define a virtual file inside another file which can be useful
in several situations. Imagine you are working on a game and you want to store all data
of the game in one huge resource file. Now you need to load some data from this huge
resource file and that is when DefineVirtualFile() comes into play.

As parameter 1 you pass the name of the file that shall be the source of the virtual file.
Parameters 2 and 3 then define the location of the virtual file inside file$. The virtual
file to be created will be located inside file$ from file position offset to file position
offset+size. Parameter 4 finally specifies the file name for the virtual file. The only
thing that is important here is the file extension because it gives Hollywood a hint of the
virtual file’s type. Thus, you should make sure that you pass the correct file extension.
The name does not matter, but the file extension should be passed because not all files
can be easily identified by their header.

DefineVirtualFile() returns a string describing the virtual file. You can pass this
string to all Hollywood functions which accept a file name. Of course, only read access
is supported by virtual files. Attempting to write to virtual files will not work.

INPUTS

file$ source file from which data of the virtual file shall be taken

offset start position of the virtual file inside file$

size length in bytes of the virtual file inside file$

name$ the name and file extension of the virtual file (see above)

RESULTS

virtfile$

string describing the virtual file

EXAMPLE
vf$ = DefineVirtualFile("hugeresource.dat", 100000, 32768, "image.png")

LoadBrush(1, vf$, {LoadAlpha = True})

The code above defines a virtual file inside "hugeresource.dat". The virtual file is of the
size of 32768 bytes and starts at position 100000 inside "hugeresource.dat". The virtual
file is a PNG image. After describing the virtual file, the image will be loaded with a
simple call to LoadBrush().

26.11 DefineVirtualFileFromString

NAME
DefineVirtualFileFromString – define a virtual file from a string source (V5.0)

422 Hollywood manual

SYNOPSIS
virtfile$ = DefineVirtualFileFromString(data$, name$[, writable])

FUNCTION
This function allows you to define a virtual file from a string source. A virtual
file is a file that exists only in memory but you can still pass it to all Hollywood
functions and they will act as if the file was really present on a physical drive.
DefineVirtualFileFromString() takes two mandatory arguments: In the first
argument you have to provide the data that shall constitute your virtual file’s contents.
Argument two specifies the name of the virtual file. The only thing that is important
here is the file extension because it gives Hollywood a hint of the virtual file’s type.
Thus, you should make sure that you pass the correct file extension. The name does
not matter, but the file extension should be passed because not all files can be easily
identified by looking at their header bytes.

Starting with Hollywood version 6.1 DefineVirtualFileFromString() also supports
the creation of virtual files that can be written to. If you want the virtual file
to be writable, you have to set the writable parameter to True. In that case,
DefineVirtualFileFromString() will create a writable virtual file for you. The
writable file will be initialized with the contents passed in data$. If you pass an empty
string in data$, an empty new writable virtual file will be created.

DefineVirtualFileFromString() returns a string describing the virtual file. You can
pass this string to all Hollywood functions which accept a file name.

Please note that the file’s contents are not limited to text only. You can also pass binary
data inside data$ because Hollywood strings can contain special control characters and
the NULL character as well. Thus, it is perfectly possible to create virtual files containing
binary data with this function.

When you are finished dealing with the virtual file, you should free the virtual file by
calling the UndefineVirtualStringFile() function. Doing this is important because
it will free any memory occupied by the virtual file.

INPUTS

data$ source string that constitutes the virtual file’s contents

name$ the name and file extension of the virtual file (see above)

writable optional: True if this virtual file should be writable, False otherwise (de-
faults to False) (V6.1)

RESULTS

virtfile$

string describing the virtual file

EXAMPLE
vf$ = DefineVirtualFileFromString("This is a virtual file test.",

"test.txt")

OpenFile(1, vf$)

While Not Eof(1) Do Print(Chr(ReadChr(1)))

CloseFile(1)

UndefineVirtualStringFile(vf$)

Chapter 26: DOS library 423

The code above creates a virtual text file and then reads from this virtual file using the
Hollywood DOS library.

data$ = DownloadFile("http://www.airsoftsoftwair.de/images/" ..

"products/hollywood/47_shot1.jpg")

vf$ = DefineVirtualFileFromString(data$, "image.jpg")

LoadBrush(1, vf$)

DisplayBrush(1, 0, 0)

UndefineVirtualStringFile(vf$)

data$ = Nil

The code above downloads a JPEG image to a string and loads the image directly into
Hollywood without having to save it to an external file first.

vf$ = DefineVirtualFileFromString("", "test.txt", True)

OpenFile(1, vf$, #MODE_WRITE)

WriteLine(1, "A virtual file test!")

CloseFile(1)

CopyFile(vf$, GetSystemInfo().UserHome)

UndefineVirtualStringFile(vf$)

The code above writes a string to a virtual file and then copies this virtual file to the
user’s home directory.

26.12 DeleteFile

NAME
DeleteFile – delete a file or directory

SYNOPSIS
DeleteFile(file$[, t])

DEPRECATED SYNTAX
DeleteFile(file$[, callback, userdata, pattern$, matchdir])

FUNCTION
Deletes the file or directory specified in file$. Please note that this function will recur-
sively delete whole directories by default. It does not check if the specified directory is
empty or not! If you specify a directory, it will be deleted with all subdirectories and all
files in it unless explicitly told not to do so. So be very careful with this function!

DeleteFile() supports several optional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is
recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to DeleteFile().

The following table fields are recognized by this function:

Recursive:

By default, DeleteFile() will recurse into all subdirectories and delete them
if file$ specifies a directory. If you don’t want that, set this tag to False.
(V9.0)

424 Hollywood manual

Force: If this tag is set to True, write- or delete-protected files will automatically
be deleted without asking the callback function first. Note that if there is
no callback function and Force is set to False (the default), DeleteFile()
will just skip all write- or delete-protected files. Defaults to False. (V9.0)

MustExist:

By default, DeleteFile() will silently fail if you specify a file or directory
that does not exist in file$. No error will be generated in this case. If you
want DeleteFile() to show an error instead, set this tag to True. (V9.0)

Pattern: You can pass a filter pattern in this table field. In that case, DeleteFile()
will only delete the files that match the specified pattern. For example, pass-
ing *.jpg in Pattern will only delete files that use the .jpg file extension.
Of course, using a filter pattern makes only sense if you pass a directory
in file$. Note that for historical reasons, the pattern specified in Pattern

will also be matched against all subdirectories that are to be deleted. If
you don’t want that, set the MatchDir table tag to False (see below). The
pattern specified in Pattern must adhere to the pattern rules as described
in the documentation of the MatchPattern() function. See Section 26.42
[MatchPattern], page 449, for details. (V5.0)

MatchDir:

This table field specifies whether or not the filter pattern specified in
Pattern should also be matched against subdirectories. If this is set to
True, DeleteFile() will only recurse into subdirectories that match the
specified filter pattern. If it is set to False, DeleteFile() will recurse into
all subdirectories. For compatibility reasons, MatchDir defaults to True,
but most of the time you will want to pass False here because it usually
does not make sense to match a file pattern against a directory name. For
example, it does not make sense to match the *.jpg example from above
against directories as well. (V5.0)

FailOnError:

By default, DeleteFile() will fail if a file or directory can’t be deleted. You
can change this behaviour by setting FailOnError to False. In that case,
DeleteFile() won’t fail if a file or directory can’t be deleted but instead your
callback function, if there is one, will be notified using the #DELETEFILE_

FAILED message and your callback must tell DeleteFile() how to proceed
(retry, continue, abort). See below to learn how to set up a callback function
for DeleteFile(). Note that FailOnError isn’t used when file$ is just a
single file. It is only used when deleting complete directories or multiple files
using patterns. FailOnError defaults to True. (V9.0)

Async: If this is set to True, DeleteFile() will operate in asynchronous mode. This
means that it will return immediately, passing an asynchronous operation
handle to you. You can then use this asynchronous operation handle to
finish the operation by repeatedly calling ContinueAsyncOperation() until
it returns True. This is very useful in case your script needs to do something
else while the operation is in progress, e.g. displaying a status animation or
something similar. By putting DeleteFile() into asynchronous mode, it

Chapter 26: DOS library 425

is easily possible for your script to do something else while the operation is
being processed. See Section 19.4 [ContinueAsyncOperation], page 224, for
details. Defaults to False. (V9.0)

Adapter: This tag allows you to specify one or more filesystem adapters that should
be asked to handle the operation. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
filesystem adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Callback:

For fine-tuned control of the delete operation, you can specify a callback func-
tion that will be called on various occasions. For example, DeleteFile() will
call it from time to time so that you can update a progress bar. It will also
be called when a file is delete-protected to ask you how to proceed. If there is
no callback function, DeleteFile() will silently skip delete-protected files.
The callback function receives one argument: A table that contains more
information.

The following callback types are available:

#DELETEFILE_UNPROTECT:

The callback function of type #DELETEFILE_UNPROTECT will be
called if a file that should be deleted is delete-protected. This
callback function needs to return True, if it is okay to unprotect
the file or False if it shall not be unprotected. If you return -1,
the delete operation will be completely aborted.

Action: #DELETEFILE_UNPROTECT

File: Contains the delete protected file that is to be un-
protected. (fully qualified path)

UserData:

Contains the value you specified in the UserData

table field (see below).

(V2.0)

#DELETEFILE_STATUS:

This callback will be run whenever a file is deleted. This is useful
for updating a status bar, for example. The callback function of
type #DELETEFILE_STATUS should normally return False. If it
returns True, the delete operation will be aborted.

Action: #DELETEFILE_STATUS

File: Contains the fully qualified path of the file that is
to be deleted next

426 Hollywood manual

UserData:

Contains the value you specified in the UserData

table field (see below).

(V2.0)

#DELETEFILE_FAILED:

This callback can only be called if the FailOnError tag has been
set to False (see above). In that case, the callback function
of type #DELETEFILE_FAILED will be called whenever a delete
operation has failed. It has to return True to abort the delete
operation, False to continue even though an error has occurred
or -1 to retry the delete operation that has just failed. The
following fields will be set in the table parameter that is passed
to your callback function:

Action: #DELETEFILE_FAILED

File: Contains the fully qualified path of the file that
could not be deleted.

UserData:

Contains the value you passed in the UserData table
field (see below).

(V9.0)

UserData:

This field can be used to pass an arbitrary value to your callback function.
The value you specify here will be passed to your callback function whenever
it is called. This is useful if you want to avoid working with global variables.
Using the UserData tag you can easily pass data to your callback function.
You can specify a value of any type in UserData. Numbers, strings, tables,
and even functions can be passed as user data. Your callback will receive
this data in the UserData field in the table that is passed to it. (V3.1)

INPUTS

file$ Filename or directory to delete

t optional: table containing further options (see above) (V9.0)

EXAMPLE
DeleteFile("FooBar")

Deletes the file (or directory) "FooBar" from the current directory.

Function p_DeleteCallback(msg)

Switch msg.action

Case #DELETEFILE_STATUS:

DebugPrint("Now deleting", FilePart(msg.file))

Case #DELETEFILE_UNPROTECT:

Return(SystemRequest("Hollywood", FilePart(msg.file) ..

" is delete protected!\nDo you want me to unprotect it?",

Chapter 26: DOS library 427

"Yes|No"))

EndSwitch

Return(False)

EndFunction

DeleteFile("TestDir", {Callback = p_DeleteCallback})

Demonstrates the usage of a callback function. It will delete the directory "TestDir"
from the current directory and print out information about the file that is currently
being deleted.

26.13 DIRECTORY

NAME
DIRECTORY – link whole directory into applet or executable (V8.0)

SYNOPSIS
@DIRECTORY id, dir$[, table]

FUNCTION
This preprocessor command can be used to link the whole directory specified in dir$

into your applet or executable when compiling your script. This makes it possible to
conveniently link a lot of files into your applet or executable when compiling your script
because you only need to add one additional line to your script instead of individual lines
for each file.

Note that if you use @DIRECTORY you have to use the GetDirectoryEntry() function
to access individual files and subdirectories stored in the directory that you have linked
to your applet or executable. See below for an example. In case you are just running
your script using the Hollywood interpreter, GetDirectoryEntry() will simply return
the string you passed to it so that the script will work identically no matter if you’re
running it as a script using the Hollywood interpreter or if you’ve compiled it as an
applet or executable. See Section 26.29 [GetDirectoryEntry], page 441, for details.

This preprocessor command also accepts an optional table argument that can be used
to configure further options. The following tags are currently supported by the optional
table argument:

Recursive:

If this tag is set to True, @DIRECTORY will link all files in subdirectories
of dir$ as well. This is the default. Set it to False if you don’t want
@DIRECTORY to recurse into subdirectories as well.

Link: Set this field to False if you do not want to have this directory linked to
your executable/applet when you compile your script. This field defaults to
True which means that the directory will be linked to your executable/applet
when Hollywood is in compile mode.

Note that @DIRECTORY doesn’t only link all files and subdirectories inside dir$ into
your applet or executable, it will also create a directory object which can then be
used with all functions that support directory objects, e.g. NextDirectoryEntry()

428 Hollywood manual

and RewindDirectory(). It is even possible to iterate over all files and subdirectories
linked by @DIRECTORY to your script. See below for an example.

Finally, please note that only file/directory names, sizes, and the files’ actual content will
be linked to your applet or executable. File attributes like protection flags, date stamps,
and comments won’t be linked so if you try to query them, you’ll get some default values
instead.

If you want to open directories at runtime, please use the OpenDirectory() command.

INPUTS

id a value that is used to identify this directory later in the code

dir$ the directory you want to have linked to your applet or executable

table optional: a table containing further options (see above)

EXAMPLE
@DIRECTORY 1, "data"

LoadBrush(1, GetDirectoryEntry("data/title.png"))

The code above shows how to link all files and subdirectories inside the data directory
to your applet or executable and then load the file title.png from this directory into
brush 1. Note that in case the script hasn’t been compiled as an applet or executable,
LoadBrush() will simply load the file from data/title.png. In case the script has been
compiled as an applet or executable, however, the file title.png is loaded directly from
the applet or executable because it has been linked to it.

@DIRECTORY 1, "data"

Function p_DumpDirs(d$, indent)

Local handle

If d$ <> ""

handle = OpenDirectory(Nil, GetDirectoryFile(1, d$))

Else

handle = 1

EndIf

Local e = NextDirectoryEntry(handle)

While e <> Nil

If e.Type = #DOSTYPE_DIRECTORY Then e.size = 0

NPrint(RepeatStr(" ", indent) .. IIf(e.type = #DOSTYPE_FILE,

"File:", "Directory:") .. " " .. e.name .. " " .. e.size

.. " " .. HexStr(e.flags) .. " " .. e.time)

If e.Type = #DOSTYPE_DIRECTORY Then p_DumpDirs(FullPath(d$,

e.name), indent + 4)

e = NextDirectoryEntry(handle)

Wend

If GetType(handle) = #LIGHTUSERDATA Then CloseDirectory(handle)

EndFunction

p_DumpDirs("", 0)

Chapter 26: DOS library 429

The code above shows how to recursively print all files and directories in a directory that
has been linked to the applet or executable.

26.14 DirectoryItems

NAME
DirectoryItems – iterate over all items in a directory (V7.0)

SYNOPSIS
f = DirectoryItems(d$)

FUNCTION
This function can be used together with the generic For statement to traverse all files
and sub-directories in a directory. It returns an iterator function which will return two
values for each directory item: The first return value will be the name of the file or
directory, the second return value will be a table with additional information about the
directory item. Once all directory items have been returned, the iterator function will
return Nil to break the generic For statement.

See Section 11.4 [Generic For statement], page 127, for details.

The table that is returned by DirectoryItems() as the second return value when used
in a generic For loop will have the following fields initialized:

Type: This will be #DOSTYPE_FILE if the entry is a file or #DOSTYPE_DIRECTORY if
the entry is a directory.

Size: This field will only be present if the entry is a file. In that case, this field
will receive the size of the file in bytes.

Flags: This field will receive a combination of protection flags of the file or directory.
See Section 26.50 [Protection flags], page 461, for details.

Time: This field will receive a string containing the time the file or directory was last
modified. The string will always be in the format dd-mmm-yyyy hh:mm:ss.
E.g.: 08-Nov-2004 14:32:13.

LastAccessTime:

This field will receive a string containing the time the file or directory was
last accessed. This attribute is not supported on AmigaOS.

CreationTime:

This field will receive a string containing the time the file or directory was
created. This attribute is only supported on Windows.

Comment: This field will contain the comment of a file. This is only supported by the
Amiga versions.

Note that you can also manually traverse all files and sub-directories inside a directory by
using the OpenDirectory(), NextDirectoryEntry() and CloseDirectory() functions.
Using DirectoryItems(), however, is often more convenient.

INPUTS

d$ directory to traverse

430 Hollywood manual

RESULTS

f iterator function for generic for loop

EXAMPLE
Function p_TraverseDir(d$, indent)

For s$,t In DirectoryItems(d$)

DebugPrint(RepeatStr(" ", indent) .. s$, t.time)

If t.type = #DOSTYPE_DIRECTORY

p_TraverseDir(FullPath(d$, s$), indent + 8)

EndIf

Next

EndFunction

p_TraverseDir("images", 0)

The function p_TraverseDir() can be used recursively print all files and sub-directories
in the given directory. The example call prints the contents of a directory named "im-
ages" that must be stored relative to the script’s path.

26.15 Eof

NAME
Eof – returns whether end of file has been reached

SYNOPSIS
result = Eof(id)

FUNCTION
Returns True in case the end of the file specified by id has been reached. Otherwise
returns False.

INPUTS

id identifier of a file

RESULTS

result True if end of file was reached or False

EXAMPLE
See Section 26.48 [OpenFile], page 459.

26.16 Execute

NAME
Execute – synchronously execute a program

SYNOPSIS
Execute(file$[, args$, t])

DEPRECATED SYNTAX
Execute(cmdline$[, resetkeys])

Chapter 26: DOS library 431

FUNCTION
This function executes the program specified by file$ synchronously and passes the
arguments specified in args$ to it. If you need to execute a program asynchronously,
you have to use the Run() function. See Section 26.63 [Run], page 470, for details.

If supported by the operating system, this command can also be used to view data files
like documents or images using their default viewer. In that case, file$ can also be a
non-executable file like a JPEG image or an MP3 file.

On Android file$ has to be either a data file like a JPEG image or a package name like
com.airsoftsoftwair.hollywood if you want this function to start another app.

Note that due to historical reasons, there are some pitfalls when using this function.
Before Hollywood 9.0 this command expected program and arguments combined in just
a single cmdline$ string. In that case, extra care has to be taken when dealing with
spaces (see below for details). Starting with Hollywood 9.0, there is a new syntax which
allows you to pass program and arguments as two separate arguments which makes
things much easier. However, to maintain compatibility with previous versions this new
syntax can only be used if you explicitly pass a string in the second argument. So if you
want to use the new syntax, make sure to pass a string in the second argument. If the
program you want to start doesn’t need any arguments, just pass an empty string ("")
just to signal Hollywood that you want to use the new syntax.

If you don’t pass a string in the second argument, the old syntax will be used which
means that you need to be very careful when passing program paths that contain spaces
since the very first space in cmdline$ is interpreted as the separator of program and
arguments. If you want to start a program whose path specification uses spaces, you
need to use double quotes around this path specification or it won’t work. You can easily
avoid these complications by simply passing a string in the second argument, even if it
is empty (see above for details).

Starting with Hollywood 9.0, it is possible to specify the program and its arguments in
two separate arguments, which makes things much more convenient. Also, there is a new
optional table argument now that can be used to specify further options.

The following options are currently supported by the optional table argument:

Directory:

This table argument allows you to set the current directory for the program
that is to be started. (V9.0)

ResetKeys:

This table argument is only interesting for advanced users. If this is set
to False, Execute() won’t reset all internal key states after executing the
program. By default, all key states will be reset when Execute() returns
because programs started using Execute() often assume the keyboard fo-
cus and Hollywood might be unable to reset its internal state flags because
the new program started via Execute() takes over keyboard focus. That’s
why by default Execute() will reset all internal key state flags when it re-
turns. Disabling this behaviour can make sense if you use Execute() to start
programs that don’t have a GUI and don’t take away the keyboard focus.
Defaults to True. (V5.1)

432 Hollywood manual

ForceExe:

If this tag is set to True, Execute() will always treat the file passed in
file$ as an executable. This is only useful on Linux and macOS because
on those platforms files that have an extension will be treated as data files
so Hollywood will try to launch the corresponding viewer for the data file
instead. Thus, trying to use Execute() on an executable named "test.exe"
will not work on Linux and macOS because of the *.exe extension. By setting
ForceExe to True, however, you can make it work. Defaults to False. (V9.0)

Verb: On Windows, this can be set to a string telling Execute() what to do with
the file. This can be one of the following verbs:

edit Opens the specified file in an editor.

explore Opens the specified folder in Explorer. When using this verb,
you must pass a folder instead of a file to Execute().

find Opens the search dialog for the specified folder. When using this
verb, you must pass a folder instead of a file to Execute().

open Opens the specified file.

print Prints the specified file.

runas Launches the specified file in administrator mode.

Note that the Verb tag is only supported on Windows. (V9.1)

INPUTS

file$ the program (or data file) to be started

args$ optional: arguments to pass to the program; note that you must pass this
parameter to signal Hollywood to use the new syntax; you can do so by just
passing an empty string (""); see above for a detailed discussion (V9.0)

t optional: table containing further arguments (see above) (V9.0)

EXAMPLE
Execute("Sys:Prefs/Locale")

On AmigaOS systems the above code executes the locale preferences. Your script’s exe-
cution will be halted until the user closes the locale preferences (synchronous execution).

Execute("Echo", ">Ram:Test \"Hello World\"")

On AmigaOS systems the above code writes "Hello World" to "Ram:Test".

Execute("\"C:\\Program Files (x86)\\Hollywood\\ide.exe\"")

The code above runs the Hollywood IDE on Windows systems. Note that we’ve embed-
ded the program specification inside double quotes. This is absolutely necessary because
the first space in the string passed to Execute() is normally interpreted as the separator
between program and arguments. If we didn’t use double quotes in the code above,
Execute() would try to start the program "C:\Program" and pass the arguments "Files
(x86)\Hollywood\ide.exe" to it which we obviously don’t want. Note that since Hol-
lywood 9.0, it is now much easier to deal with spaces in paths. You just need to use

Chapter 26: DOS library 433

the new syntax which takes the program and its arguments in two separate arguments.
With Hollywood 9.0, you could simply use this code:

Execute("C:\\Program Files (x86)\\Hollywood\\ide.exe", "")

Note that passing the empty string in the second argument is absolutely necessary here
to signal Hollywood that you want to use the new syntax. See above for a detailed
discussion on this.

26.17 Exists

NAME
Exists – check if the specified file exists

SYNOPSIS
result = Exists(filename$)

FUNCTION
Checks if the file specified by filename$ exists and returns True to the variable result
if it does. Otherwise result receives the value of False.

INPUTS

filename$

file to check

RESULTS

result True if the specified file exists, False otherwise

EXAMPLE
result = Exists("test.hws")

Print(result)

This tests whether the file "test.hws" exists in the current directory and returns True

or False.

26.18 FILE

NAME
FILE – open a file for later use (V2.0)

SYNOPSIS
@FILE id, filename$[, table]

FUNCTION
This preprocessor command can be used to open a file so you can use it later. The
file will not be loaded completely into memory, it will just be opened as if you called
OpenFile(). The file will always be opened in read-only mode. You cannot use this
preprocessor command to write to files.

The innovative feature of the @FILE preprocessor command is that when you compile
your script, the file will be linked to it and you can still access it in the same way as if

434 Hollywood manual

it were a normal file on your harddisk, i.e. you can use the normal functions of the DOS
library on the file.

The third argument is optional. It is a table that can be used to set further options for
the operation. The following fields of the table can be used:

Link: Set this field to False if you do not want to have this file linked to your
executable/applet when you compile your script. This field defaults to True

which means that the file is linked to your executable/applet when Holly-
wood is in compile mode.

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
file adapters. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

If you want to open the file manually, please use the OpenFile() command.

INPUTS

id a value that is used to identify this file later in the code

filename$

the file you want to have opened

table optional: a table containing further options

EXAMPLE
@FILE 1, "Highscore.txt"

The declaration above opens the file "Highscore.txt" for further processing in the script.

26.19 FileAttributes

NAME
FileAttributes – get attributes of a file (V6.0)

SYNOPSIS
t = FileAttributes(id)

FUNCTION
This function returns a table that contains the attributes of a file that has been opened
using OpenFile(). This includes information such as the file time, the full path of the
file, protection flags, and more, depending on the host file system.

On return, the table will have the following fields initialized:

Path: This field will contain a string with the full path to this file.

Chapter 26: DOS library 435

Size: This field will be set to the size of the file in bytes.

Flags: This field will be set to a combination of protection flags of the file. See
Section 26.50 [Protection flags], page 461, for details.

Time: This field will receive a string containing the time the file or directory was last
modified. The string will always be in the format dd-mmm-yyyy hh:mm:ss.
E.g.: 08-Nov-2004 14:32:13.

LastAccessTime:

This field will receive a string containing the time the file or directory was
last accessed. This attribute is not supported on AmigaOS.

CreationTime:

This field will receive a string containing the time the file or directory was
created. This attribute is only supported on Windows.

Comment: This field will contain the comment of a file. This is only supported by the
Amiga versions.

Streaming:

This field will be set to True if the file is being streamed from a remote
source instead of being read from a physical drive.

NoSeek: This field will be set to True if this file cannot be seeked. This could happen
if the file is being streamed from a remote source that only allows sequential
reads without any seeking capabilities.

If you want to query the attributes of a file that is not currently open, use
GetFileAttributes() instead. See Section 26.31 [GetFileAttributes], page 442, for
details.

INPUTS

id identifier of the file to query

RESULTS

t a table initialized as shown above

EXAMPLE
OpenFile(1, "test.txt")

t = FileAttributes(1)

Print(t.time)

If t.flags & #FILEATTR_READ_USR

Print("#FILEATTR_READ_USR is set.")

Else

Print("#FILEATTR_READ_USR is not set.")

EndIf

The code above examines the file "test.txt" and prints the time it was last modified to
the screen. Additionally, it checks if the protection flag #FILEATTR_READ_USR is set.

436 Hollywood manual

26.20 FileLength

NAME
FileLength – return size of an open file (V3.0)

SYNOPSIS
size = FileLength(id)

FUNCTION
This function returns the current size of the file specified by id. The size returned by
this function will be up to date with all operations done on this file. For example, you
could write to the file and then FileLength() would return the new size of the file.

Please note that FileLength() can also return -1 if it does not know the file’s size. This
can happen in case the file is read from a streamed source through a file adapter, for
example.

INPUTS

id identifier of the file to query

RESULTS

size current size of this file

EXAMPLE
OpenFile(1, "test.txt", #MODE_WRITE)

NPrint(FileLength(1))

WriteLine(1, "Hello World.")

NPrint(FileLength(1))

CloseFile(1)

The code above opens file "test.txt" for writing and calls FileLength() twice. The first
call will return 0 because the file is empty at that point but the second call will return
13 because some characters have been written to the file now.

26.21 FileLines

NAME
FileLines – return a line-based iterator function (V5.0)

SYNOPSIS
f = FileLines(file$)

FUNCTION
This function can be used in conjunction with the generic For statement to traverse over
all lines of a file. It will return an iterator function which will return the next line of
the file specified in file$. When the end of the file is reached, the iterator function will
return Nil to break the generic For statement.

See Section 11.4 [Generic For statement], page 127, for details.

INPUTS

file$ source filename

Chapter 26: DOS library 437

RESULTS

f line-based iterator function

EXAMPLE
For s$ In FileLines("Highscores.txt") Do DebugPrint(s$)

This will print all lines of the file "Highscores.txt".

26.22 FilePart

NAME
FilePart – return the file component of a path

SYNOPSIS
file$ = FilePart(path$)

FUNCTION
This function extracts the filename from a path specified by path$ and returns it.

INPUTS

path$ source path

RESULTS

file$ file part

EXAMPLE
f$ = FilePart("Data/Gfx/Test.jpg")

Print(f$)

The above code prints "Test.jpg" to the screen.

26.23 FilePos

NAME
FilePos – return file cursor position (V2.0)

SYNOPSIS
pos = FilePos(id)

FUNCTION
This function returns the file cursor position of the file specified by id. The cursor starts
at 0 (beginning of the file) and ends at the length of the file. You can use this function
to find out where you are in a file because all read and write operations will start at this
cursor position. You can use Seek() to modify the file cursor position.

INPUTS

id identifier of the file to query

RESULTS

pos cursor position of this file

438 Hollywood manual

EXAMPLE
OpenFile(1, "test.txt", #MODE_READ)

Seek(1, 1024)

Print(FilePos(1))

CloseFile(1)

This prints 1024.

26.24 FileSize

NAME
FileSize – return the size of a specified file

SYNOPSIS
size = FileSize(file$)

FUNCTION
Returns the size of file file$. If the file does not exist, -1 is returned.

Please note that FileSize() can also return -1 if it does not know the file’s size. This
can happen in case the file is read from a streamed source through a file adapter, for
example.

INPUTS

file$ source filename

RESULTS

size size of the specified file in bytes

EXAMPLE
result = FileSize("test.jpg")

Print("The file test.jpg takes up", result, "bytes!")

This will print the size of the file "test.jpg".

26.25 FileToString

NAME
FileToString – read whole file into a string (V5.0)

SYNOPSIS
s$, len = FileToString(file$[, t])

FUNCTION
This command is a convenience function which simply reads the specified file into memory
and returns it as a string. The second return value contains the file length in bytes. Note
that since Hollywood strings can also contain binary data, you can also use this function
to read non-text files into strings.

Starting with Hollywood 10.0, FileToString() accepts an optional table argument that
allows you to pass additional arguments to the function. The following tags are currently
supported by the optional table argument:

Chapter 26: DOS library 439

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to open the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
file adapters. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

file$ file to read into string

t optional: table containing additional options (see above) (V10.0)

RESULTS

s$ contents of the specified file as a string

len length of the file in bytes

26.26 FlushFile

NAME
FlushFile – flush all pending buffers (V2.5)

SYNOPSIS
FlushFile(id)

FUNCTION
This function flushes any pending buffers on the file specified by id and re-adjusts the
file cursor. It is important that you call this function if you switch between buffered and
unbuffered IO on the same file. If you do not use SetIOMode() at all, you do not have
to worry about flushing buffers either because everything will be done automatically by
the file system if you only use buffered IO.

INPUTS

id identifier of the file to be flushed

26.27 FullPath

NAME
FullPath – combine directory and file into a path (V2.0)

SYNOPSIS
path$ = FullPath(dir$, file$[, ...])

FUNCTION
This function combines dir$ and file$ into a path specification.

440 Hollywood manual

Starting with Hollywood 9.0, this function accepts an unlimited number of arguments,
allowing you to combine an unlimited number of path constituents into a single path.

INPUTS

dir$ source directory

file$ source file

... optional: additional items to be appended to the path (V9.0)

RESULTS

path$ path specification

EXAMPLE
path$ = FullPath("/home/andreas", "image.jpg")

path$ receives the string "/home/andreas/image.jpg".

path$ = FullPath("/home", "andreas", "image.jpg")

This does the same as the first example but passes three instead of two arguments to
FullPath().

26.28 GetCurrentDirectory

NAME
GetCurrentDirectory – return full path of current directory (V4.5)

SYNOPSIS
dir$ = GetCurrentDirectory([t])

FUNCTION
This function simply returns a fully qualified path to the current directory. You can
change the current directory using ChangeDirectory().

Starting with Hollywood 10.0, this function accepts an optional table argument which
supports the following tags:

Adapter: This tag allows you to specify one or more filesystem adapters that should
be asked to handle the operation. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
filesystem adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

t optional: table argument containing further options (see above) (V10.0)

Chapter 26: DOS library 441

RESULTS

dir$ path to the current directory

26.29 GetDirectoryEntry

NAME
GetDirectoryEntry – get entry from linked directory (V8.0)

SYNOPSIS
e$ = GetDirectoryEntry(id, entry$)

FUNCTION
This function can be used to get the entry specified by entry$ from the directory specified
by id. This directory must have been opened by using the @DIRECTORY preprocessor
command before.

When called from an applet or executable which has all the files in the directory specified
by id linked to it, GetDirectoryEntry() will return a special handle which can then be
passed to all Hollywood functions that accept a file or directory name, e.g. LoadBrush().

If this function is called when just running a script with the Hollywood interpreter, i.e.
not from a stand-alone applet or executable, GetDirectoryEntry() will simply return
the string that has been passed to it in entry$, which makes it possible for scripts using
@DIRECTORY to behave exactly the same, no matter whether they have been compiled as
applets or executables, or if they are run as scripts using the Hollywood interpreter. If
they are run using the Hollywood interpreter, they will just load the data from a real
file then, whereas the data will be loaded directly from the applet or executable in case
GetDirectoryEntry() is called from a stand-alone applet or executable.

INPUTS

id identifier of the directory to query

entry$ entry of the directory you want to receive

RESULTS

e$ special handle to this entry that can be passed to all Hollywood functions
accepting files or directories as their parameters

EXAMPLE
See Section 26.13 [DIRECTORY], page 427.

26.30 GetEnv

NAME
GetEnv – read environment variable (V5.0)

SYNOPSIS
s$, ok = GetEnv(var$)

442 Hollywood manual

FUNCTION
This command can be used to read the contents of the environment variable specified
in var$. If the specified environment variable could not be found, an empty string is
returned and the second return value is set to False. If the environment variable could
be found, the second return value will be True.

INPUTS

var$ environment variable to examine

RESULTS

s$ contents of specified environment variable

ok True or False depending whether or not the specified environment variable
could be found

26.31 GetFileAttributes

NAME
GetFileAttributes – get attributes of a file or directory (V3.0)

SYNOPSIS
t = GetFileAttributes(f$[, table])

DEPRECATED SYNTAX
t = GetFileAttributes(f$[, adapter$])

FUNCTION
This function returns a table that contains the attributes of a file or directory. This
includes information such as the file time, the full path of the file, protection flags,
and more, depending on the host file system. Pass the name of a file or a directory to
this command. You can specify an empty string ("") to get information of the current
directory.

This function accepts an optional table argument which can be used to pass additional
parameters. The following table elements are currently recognized:

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
file adapters. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

On return, the table will have the following fields initialized:

Type: This will be #DOSTYPE_FILE if f$ is a file or #DOSTYPE_DIRECTORY if f$ is a
directory.

Chapter 26: DOS library 443

Path: This field will contain a string with the full path to this file or directory.

Size: This field will only be present if f$ is a file. In that case, this field will
receive the size of the file in bytes.

Flags: This field will receive a combination of protection flags of the file or directory.
See Section 26.50 [Protection flags], page 461, for details.

Time: This field will receive a string containing the time the file or directory was last
modified. The string will always be in the format dd-mmm-yyyy hh:mm:ss.
E.g.: 08-Nov-2004 14:32:13.

LastAccessTime:

This field will receive a string containing the time the file or directory was
last accessed. This attribute is not supported on AmigaOS.

CreationTime:

This field will receive a string containing the time the file or directory was
created. This attribute is only supported on Windows.

Comment: This field will contain the comment of a file. This is only supported by the
Amiga versions.

Virtual: This field will be set to True if the file you passed to this function is a
virtual file, i.e. a file linked to your applet/executable or a file created using
DefineVirtualFile(). (V5.2)

If you want to query the attributes of a file that you have opened using OpenFile(), use
FileAttributes() instead. See Section 26.19 [FileAttributes], page 434, for details.

INPUTS

f$ name of file or directory to be examined

table optional: table containing further options (see above) (V10.0)

RESULTS

t a table initialized as shown above

EXAMPLE
t = GetFileAttributes("test.txt")

Print(t.time)

If t.flags & #FILEATTR_READ_USR

Print("#FILEATTR_READ_USR is set.")

Else

Print("#FILEATTR_READ_USR is not set.")

EndIf

The code above examines the file "test.txt" and prints the time it was last modified to
the screen. Additionally, it checks if the protection flag #FILEATTR_READ_USR is set.

444 Hollywood manual

26.32 GetProgramDirectory

NAME
GetProgramDirectory – return program directory (V9.0)

SYNOPSIS
dir$ = GetProgramDirectory()

FUNCTION
This function returns the program’s directory. Note that using this function only makes
sense in compiled programs because when running scripts, GetProgramDirectory() will
return the directory of the Hollywood interpreter because there is no other program at
this time.

INPUTS
none

RESULTS

dir$ path to the program directory

26.33 GetStartDirectory

NAME
GetStartDirectory – return initial directory (V9.0)

SYNOPSIS
dir$ = GetStartDirectory()

FUNCTION
This function returns the directory that was the current directory when the Hollywood
script was started. This is only of use when running Hollywood scripts because in
that case Hollywood will always change the current directory to the script’s directory
(unless you use the -nochdir console argument) so it’s not easily possible to find out
the directory that was current before Hollywood changed it to the script’s directory.

For compiled programs, the start directory will obviously always be identical to the
program directory that you can get using GetProgramDirectory(). See Section 26.32
[GetProgramDirectory], page 444, for details.

INPUTS
none

RESULTS

dir$ path to the initial directory

26.34 GetTempFileName

NAME
GetTempFileName – return name for a temporary file (V3.0)

Chapter 26: DOS library 445

SYNOPSIS
f$ = GetTempFileName()

FUNCTION
This function can be used to obtain a file that you can use temporarily. This is useful in
case you temporarily need to store some information in a file which you will delete later.
Hollywood will delete all temporary files automatically when it terminates but you can
also do that manually using DeleteFile().

It is preferable to use this function if you need to work with temporary files because each
operating system stores its temporary files in a different place. By using this function
you can be sure that your temporary files end up in the correct folder.

Please note that this function will not only return a file name but it will also create
an empty file for you. This is done to avoid any possible race conditions with other
applications which might want to store their own temporary file under the very same
name. This is not possible if the file already exists so this is why GetTempFileName()

will create an empty file for you.

INPUTS
none

RESULTS

f$ file name that you can use for temporary operations

EXAMPLE
f$ = GetTempFileName()

OpenFile(1, f$, #MODE_WRITE)

WriteLine(1, "My temporary file")

CloseFile(1)

The code above will obtain the name of a temporary file and then write some text into
it. The file will be automatically deleted when Hollywood terminates.

26.35 GetVolumeInfo

NAME
GetVolumeInfo – get space information about a volume

SYNOPSIS
space = GetVolumeInfo(vol$, type)

FUNCTION
This function queries the volume specified by vol$ for the information specified by type.
The following constants are possible for type:

#FREESPACE:

Returns the free space of the volume

#USEDSPACE:

Returns the used space of the volume

INPUTS

vol$ name of a DOS volume

446 Hollywood manual

type one of the constants as listed above

RESULTS

info free/used space of the volume

EXAMPLE
space = GetVolumeInfo("SYS:",#FREESPACE)

Print(space, "bytes are free on SYS:!")

The above code returns the free space on your SYS: volume on AmigaOS systems.

26.36 GetVolumeName

NAME
GetVolumeName – get a volume name

SYNOPSIS
name$ = GetVolumeName(vol$)

FUNCTION
This function tries to get the name of the volume specified by vol$. If it is successful,
the volume’s name is returned to name$.

INPUTS

vol$ a DOS volume descriptor

RESULTS

name$ name of the volume

EXAMPLE
n$=GetVolumeName("df0:")

Print(n$)

The above code prints the name of the volume in drive df0: (if there is any).

26.37 HaveVolume

NAME
HaveVolume – check if a volume exists in the system (V8.0)

SYNOPSIS
r = HaveVolume(vol$)

FUNCTION
This function can be used to check if the volume specified by vol$ is currently available.
This is especially useful on AmigaOS and compatible systems because it will suppress
the "Please insert volume XXX into any drive" system requester that usually pops up on
AmigaOS systems when trying to access non-existent volumes. By checking the existence
of the volume using this command first, you can easily get rid of the annoying requester
on AmigaOS.

Chapter 26: DOS library 447

INPUTS

vol$ name of a DOS volume whose presence should be checked

RESULTS

r True if volume exists, False otherwise

EXAMPLE
Print(HaveVolume("FOOBAR:"))

The code above should return 0 because the specified typically doesn’t exist. On Ami-
gaOS, there will be no system requester asking for volume "FOOBAR:" if you use this
code.

26.38 IsAbsolutePath

NAME
IsAbsolutePath – check if path is absolute (V9.0)

SYNOPSIS
result = IsAbsolutePath(p$)

FUNCTION
This function checks if the path specified by p$ is an absolute path and returns True if
it is or False if it isn’t.

Note that this expects the specified path to be in the host’s canonical format. Thus, a
path like "/home" will be absolute on Linux (among others) but not on AmigaOS where
"/home" just refers to a directory named "home" in the parent directory. To convert a
path to the host format, you can use MakeHostPath().

INPUTS

p$ path to check

RESULTS

result True if path is absolute, False otherwise

26.39 IsDirectory

NAME
IsDirectory – check for file or directory (V2.0)

SYNOPSIS
r = IsDirectory(f$)

FUNCTION
This function checks if f$ is a file or directory. If it is a directory, this function returns
True, otherwise False.

INPUTS

f$ file system object

448 Hollywood manual

RESULTS

r True if f$ is a directory, False otherwise

EXAMPLE
r = IsDirectory("S:")

This returns True.

26.40 MakeDirectory

NAME
MakeDirectory – make a new directory (V1.5)

SYNOPSIS
MakeDirectory(dir$[, t])

FUNCTION
This function creates the new directory specified by dir$. Note that this function won’t
fail the directory specified by dir$ already exists.

This function can also create more than one directory if required. MakeDirectory() will
scan dir$ recursively and create every directory that does not exist yet (Hollywood 1.9
and up).

Starting with Hollywood 10.0, this function accepts an optional table argument which
supports the following tags:

Adapter: This tag allows you to specify one or more filesystem adapters that should
be asked to handle the operation. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
filesystem adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

dir$ directory to create

t optional: table containing further options (see above) (V10.0)

EXAMPLE
MakeDirectory("Test")

The code above creates the new directory "Test" in the current directory.

MakeDirectory("A/B/C/D/E")

The code above creates five new directories inside the current directory.

Chapter 26: DOS library 449

26.41 MakeHostPath

NAME
MakeHostPath – convert Hollywood path to host path format (V9.0)

SYNOPSIS
p$ = MakeHostPath(path$)

FUNCTION
This function can be used to convert a platform-independent Hollywood path to a path
in the host system’s canonical path format. The path that should be converted has to
be passed in path$.

To ensure cross-platform compatibility, Hollywood paths may contain several
constituents that the underlying host operating system doesn’t understand. For
example, it is possible to use .. on AmigaOS and compatibles to indicate the parent
directory even though AmigaOS doesn’t understand this. It’s also possible to use
normal slashes in paths on Windows even though that operating system normally
uses backslashes. Conversely, it’s also possible to use backslashes on all other systems
although they use slashes, and so on.

MakeHostPath() will make sure that the path it returns is fully compliant with the host
operating system’s requirements. However, you normally don’t have to use this function
as all Hollywood functions can deal with platform-independent Hollywood paths. It
might only be necessary to call this function when passing paths to external programs
which don’t understand Hollywood’s platform-independent path format.

INPUTS

path$ path to convert

RESULTS

p$ converted path in the host’s canonical format

EXAMPLE
Print(MakeHostPath("../image.jpg"))

On AmigaOS, this will print "/image.jpg" since AmigaOS doesn’t understand the .. to-
ken. On Windows, this will print "..\image.jpg" since Windows uses backslashes instead
of slashes. On all other platforms the source string will be returned because no changes
are necessary.

26.42 MatchPattern

NAME
MatchPattern – check for a pattern match with a string (V2.0)

SYNOPSIS
bool = MatchPattern(src$, pattern$)

FUNCTION
This function checks if the string specified in src$ matches the pattern specified in
pattern$. If it does, True will be returned, else False. MatchPattern() will compare

450 Hollywood manual

pattern$ to src$ character by character and abort as soon as it finds a difference. If it
does not find a difference, it will return True.

The pattern specified in pattern$ is a string that can contain normal characters and
wildcards. A wildcard is a special character that can be used to match more than one
character in the source string. The following wildcards are currently supported:

* Matches all characters.

? Matches just a single character.

Matches all numbers.

[] Matches one or several characters or a range of characters if delimited using
a hyphen. For example, [a] matches only a, whereas [af] matches a and f

and [a-f] matches all characters in the range of a to f. You can use the ’ !’
prefix to negate the result, i.e. [!a] matches every character except a.

You can also combine multiple patterns in a single string by separating them using a
semicolon.

If you need more sophisticated pattern matching, have a look at the PatternFindStr()
function. See Section 51.44 [PatternFindStr], page 1050, for details.

INPUTS

src$ source string

pattern$ pattern to compare string with

RESULTS

bool True if string matches the pattern or False

EXAMPLE
r = MatchPattern("Pictures/JPG/Pic1.jpg", "*.jpg")

Returns True because the string matches the pattern.

r = MatchPattern("Pictures/JPG/Pic1.gif", "*.jpg;*.gif")

Returns True because the string matches the pattern.

r = MatchPattern("Hollywood 2.a", "Hollywood #.#")

Returns False because a does not match the numeric wildcard (#).

26.43 MD5

NAME
MD5 – calculate MD5 checksum of file (V5.0)

SYNOPSIS
sum$ = MD5(f$)

FUNCTION
This function calculates the MD5 checksum of the file specified in f$ and returns it. The
128-bit checksum is returned as a string containing 16 hex digits.

Chapter 26: DOS library 451

If you want to compute the MD5 checksum of a string, use the MD5Str() function instead.

INPUTS

f$ file whose checksum you want to have calculated

RESULTS

sum$ MD5 checksum of file

26.44 MonitorDirectory

NAME
MonitorDirectory – monitor changes in a directory (V8.0)

SYNOPSIS
[id] = MonitorDirectory(id, dir$[, table])

FUNCTION
This function can be used to monitor changes in the directory specified by dir$. In
order to monitor directory changes, MonitorDirectory() will create a new directory
object and assign the specified id to it. If you pass Nil in id, MonitorDirectory() will
automatically choose an identifier and return it.

Whenever something in the directory specified by dir$ changes, MonitorDirectory()
will send a DirectoryChanged event to your script. In order to handle this event, you
need to install an event handler for it first using the InstallEventHandler() function.
See Section 29.13 [InstallEventHandler], page 553, for details.

MonitorDirectory() also accepts an optional table argument which allows you to con-
figure some further options. The following tags are currently recognized by the optional
table argument:

All: If this tag is set to True, MonitorDirectory() will forward all directory
change notifications from the operating system to your script. Think twice
before using this because, depending on the operating system and file system,
you might get several messages for just a single change because of file system
internals. By default, MonitorDirectory() will try to filter such duplicate
notifications for you so that you don’t get several messages for just a single
change. If you don’t want MonitorDirectory() to apply this filter, i.e. if
you want all notifications, set this tag to True. Defaults to False.

UserData:

This tag can be set to a value of an arbitrary type. MonitorDirectory()

will store it in the MonitorUserData field of the message that is sent by
InstallEventHandler(). This is useful for avoiding global variables.

ReportChanges:

If this tag is set to True, your event callback will also be notified about what
exactly has changed. Your event callback will receive two new parameters:
Type informing you about the type of change, i.e. whether a file or directory
has been added, removed, or changed, and Name will contain the name of
the file or directory that has been changed. Note that the All table tag (see
above) will be ignored when setting ReportChanges to True. (V9.0)

452 Hollywood manual

Note that the directory object created by this function must only be used for moni-
toring directory changes. It is not possible to pass it to other directory functions like
NextDirectoryEntry() or RewindDirectory(). An exception is the CloseDirectory()
function: You should call CloseDirectory() as soon as you are finished monitoring the
directory. This ensures that no resources are wasted and no unnecessary messages are
posted to your script.

Also note that some file systems do not support monitoring of directories. This
can happen especially on network volumes or network file systems. In that case,
MonitorDirectory() can fail.

INPUTS

id id for the directory or Nil for auto id selection

dir$ name of the directory to monitor

table optional: table containing further parameters (see above)

RESULTS

id optional: identifier of the directory; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
InstallEventHandler({DirectoryChanged = Function(msg)

NPrint(msg.action, msg.id, msg.directory)

EndFunction})

MonitorDirectory(1, "Data")

Repeat

WaitEvent

Forever

The code above monitors all changes in the "Data" directory and prints a message
whenever something changes in that directory.

26.45 MoveFile

NAME
MoveFile – move file or directory (V7.1)

SYNOPSIS
MoveFile(src$, dst$[, t])

DEPRECATED SYNTAX
MoveFile(src$, dst$[, func, userdata])

FUNCTION
This function moves the file or directory specified in src$ to the file or directory specified
in dst$. Note that dst$ must not exist or MoveFile() will fail. Also, src$ must not be
a volume’s root directory because this obviously cannot be moved anywhere.

Moving files (or directories) on the same volume is really quick and takes almost no time.
When moving files from one volume to another, MoveFile() first has to copy the files

Chapter 26: DOS library 453

and in a second step, delete them from the original volume. This process is much slower
than moving files around on the same volume. That is why you can specify a callback
function which monitors the progress of this operation.

MoveFile() supports several optional arguments. Before Hollywood 9.0, those had to
be passed as optional parameters (see above). Since Hollywood 9.0, however, it is rec-
ommended to use the new syntax, which has a single optional table argument that can
be used to pass one or more optional arguments to MoveFile().

The following table fields are recognized by this function:

Force: If this tag is set to True, write- or delete-protected files will automatically
be deleted without asking the callback function first. Note that if there is no
callback function and Force is set to False (the default), MoveFile() will
just skip all write- or delete-protected files instead of deleting them. Note
that Force is only used when MoveFile() actually needs to delete files, i.e.
when moving files from one volume to another. Moving files on the same
volume doesn’t involve any deleting. Defaults to False. (V9.0)

BufferSize:

This table field can be used to set the buffer size that should be used when
copying files. The value passed here must be specified in bytes. The de-
fault is 16384, i.e. 16 kilobytes. Note that BufferSize is only used when
MoveFile() actually needs to copy files, i.e. when moving files from one vol-
ume to another. Moving files on the same volume doesn’t involve copying.
(V9.0)

FailOnError:

By default, MoveFile() will fail if a file or directory can’t be copied or
deleted. You can change this behaviour by setting FailOnError to False.
In that case, MoveFile() won’t fail if a file or directory can’t be copied or
deleted but instead your callback function, if there is one, will be notified
using the #MOVEFILE_COPYFAILED and #MOVEFILE_DELETEFAILED messages
and your callback must tell MoveFile() how to proceed (retry, continue,
abort). See below to learn how to set up a callback function for MoveFile().
Note that FailOnError is only used when MoveFile() actually needs to
copy and delete files, i.e. when moving files from one volume to another.
Moving files on the same volume doesn’t involve any copying or deleting.
FailOnError defaults to True. (V9.0)

Async: If this is set to True, MoveFile() will operate in asynchronous mode. This
means that it will return immediately, passing an asynchronous operation
handle to you. You can then use this asynchronous operation handle to
finish the operation by repeatedly calling ContinueAsyncOperation() until
it returns True. This is very useful in case your script needs to do something
else while the operation is in progress, e.g. displaying a status animation or
something similar. By putting MoveFile() into asynchronous mode, it is
easily possible for your script to do something else while the operation is
being processed. See Section 19.4 [ContinueAsyncOperation], page 224, for
details. Defaults to False. (V9.0)

454 Hollywood manual

Adapter: This tag allows you to specify one or more filesystem adapters that should
be asked to handle the operation. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
filesystem adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Callback:

For fine-tuned control of the move operation, you can specify a callback
function that will be called on various occasions. For example, MoveFile()
will call it from time to time so that you can update a progress bar. It will
also be called when a file is delete-protected to ask you how to proceed. If
there is no callback function, MoveFile() will silently skip delete-protected
files. The callback function receives one argument: A table that contains
more information.

Note that the callback function will only be called when moving files across
volumes. Moving files on the same volume can be done instantly and won’t
result in any callback invocation. Also note that if files are moved across
volumes and you do not specify a callback function, files that are delete-
protected won’t be deleted but will just be copied to the new location without
deleting the old file.

The following callback types are available:

#MOVEFILE_UNPROTECT:

The callback function of type #MOVEFILE_UNPROTECT will be
called when MoveFile() needs to delete a file which is delete-
protected. The parameter table for this callback type will con-
tain the following fields:

Action: #MOVEFILE_UNPROTECT

File: Contains the fully qualified path to the file that is
delete-protected.

UserData:

Contains the value you passed in the UserData table
field (see below).

This callback function needs to return True if it is okay to un-
protect the file or False if it shall not be unprotected. If you
return -1, the move operation will be completely aborted.

#MOVEFILE_DELETE:

This callback will be run whenever a file is deleted. The call-
back function of type #MOVEFILE_DELETE should normally re-

Chapter 26: DOS library 455

turn False. If it returns True, MoveFile() will abort the entire
operation.

Action: #MOVEFILE_DELETE

File: Contains the fully qualified path of the file that is
to be deleted next.

UserData:

Contains the value you specified in the UserData

table field (see below).

#MOVEFILE_COPY:

This callback will be called while MoveFile() is copying files.
The callback function of type #MOVEFILE_COPY should normally
return False. If it returns True, MoveFile() will abort the
entire operation.

Action: #MOVEFILE_COPY

Source: Contains the fully qualified path of the file that is
currently being copied (source).

Destination:

Contains the fully qualified path of the file that is
currently being copied (destination).

Copied: Contains the number of bytes that have already
been copied.

Filesize:

Contains the filesize of the source file.

UserData:

Contains the value you passed in the UserData table
field (see below).

#MOVEFILE_DELETEFAILED:

This callback can only be called if the FailOnError tag has been
set to False (see above). In that case, the callback function of
type #MOVEFILE_DELETEFAILED will be called whenever a delete
operation has failed. It has to return True to abort the entire
operation, False to continue even though an error has occurred
or -1 to retry the delete operation that has just failed. The
following fields will be set in the table parameter that is passed
to your callback function:

Action: #MOVEFILE_DELETEFAILED

File: Contains the fully qualified path of the file that
could not be deleted.

UserData:

Contains the value you passed in the UserData table
field (see below).

456 Hollywood manual

(V9.0)

#MOVEFILE_COPYFAILED:

This callback can only be called if the FailOnError tag has been
set to False (see above). In that case, the callback function of
type #MOVEFILE_COPYFAILED will be called whenever a copy op-
eration has failed. It has to return True to abort the entire
operation, False to continue even though an error has occurred
or -1 to retry the copy operation that has just failed. The fol-
lowing fields will be set in the table parameter that is passed to
your callback function:

Action: #MOVEFILE_COPYFAILED

Source: Contains the fully qualified path of the file that is
currently being copied (source).

Destination:

Contains the fully qualified path of the file that is
currently being written (destination).

UserData:

Contains the value you passed in the UserData table
field (see below).

(V9.0)

UserData:

This field can be used to pass an arbitrary value to your callback function.
The value you specify here will be passed to your callback function whenever
it is called. This is useful if you want to avoid working with global variables.
Using the UserData tag you can easily pass data to your callback function.
You can specify a value of any type in UserData. Numbers, strings, tables,
and even functions can be passed as user data. Your callback will receive
this data in the UserData field in the table that is passed to it.

INPUTS

src$ source file or directory to move

dst$ destination file or directory; must not exist

t optional: table containing additional options (see above) (V9.0)

EXAMPLE
MoveFile("image.png", "images/image.png")

Moves the file "image.png" to the subdirectory "images" while keeping its name.

26.46 NextDirectoryEntry

NAME
NextDirectoryEntry – get next entry from an open directory (V4.0)

Chapter 26: DOS library 457

SYNOPSIS
t = NextDirectoryEntry(id)

FUNCTION
This function gets the next entry from a directory previously opened using
OpenDirectory() or @DIRECTORY. The function will return a table that contains
detailed information about the entry just retrieved. If there are no more entries in the
specified directory, this function will return Nil. Normally, this function is called in a
loop until it returns Nil. That way you can scan the whole contents of a directory.

The table that is returned by this function will have the following fields initialized:

Name: This field will contain the name of entry.

Type: This will be #DOSTYPE_FILE if the entry is a file or #DOSTYPE_DIRECTORY if
the entry is a directory.

Size: This field will only be present if the entry is a file. In that case, this field
will receive the size of the file in bytes.

Flags: This field will receive a combination of protection flags of the file or directory.
See Section 26.50 [Protection flags], page 461, for details.

Time: This field will receive a string containing the time the file or directory was last
modified. The string will always be in the format dd-mmm-yyyy hh:mm:ss.
E.g.: 08-Nov-2004 14:32:13.

LastAccessTime:

This field will receive a string containing the time the file or directory was
last accessed. This attribute is not supported on AmigaOS.

CreationTime:

This field will receive a string containing the time the file or directory was
created. This attribute is only supported on Windows.

Comment: This field will contain the comment of a file. This is only supported by the
Amiga versions.

To rewind a directory iteration, use the RewindDirectory() function. See Section 26.62
[RewindDirectory], page 469, for details.

INPUTS

id identifier of the directory to query

RESULTS

t a table initialized as shown above

EXAMPLE
See Section 26.47 [OpenDirectory], page 458.

458 Hollywood manual

26.47 OpenDirectory

NAME
OpenDirectory – open a directory for examination (V4.0)

SYNOPSIS
[id] = OpenDirectory(id, dir$[, table])

FUNCTION
This function opens the directory specified in dir$ and assigns the specified id to
it. If you pass Nil in id, OpenDirectory() will automatically choose an identifier
and return it. The directory can then subsequently be examined by using the
NextDirectoryEntry() function which gives you low-level access to the directory
which is especially useful for large directories or if you need additional information like
sizes/attributes for the individual directory entries. You can get these very fast using a
loop as presented in the example below.

Starting with Hollywood 6.0 this function accepts an optional table argument which
can be used to pass additional parameters. The following table elements are currently
recognized:

Adapter: This tag allows you to specify one or more directory adapters that should be
asked to open the specified directory. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
directory adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

You should call CloseDirectory() as soon as you are finished with the directory. This
ensures that the directory does not stay locked by the file system longer than needed.

This command is also available from the preprocessor: Use @DIRECTORY to link whole
directories to your applet or executable.

INPUTS

id id for the directory or Nil for auto id selection

dir$ name of the directory to open

table optional: table containing further parameters (V6.0)

RESULTS

id optional: identifier of the directory; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
OpenDirectory(1, "Data")

e = NextDirectoryEntry(1)

While e <> Nil

Chapter 26: DOS library 459

NPrint(IIf(e.type = #DOSTYPE_FILE, "File:", "Directory:"), e.name)

e = NextDirectoryEntry(1)

Wend

CloseDirectory(1)

The code above opens directory "Data" and prints all files and directories present in
that directory.

26.48 OpenFile

NAME
OpenFile – open a file for reading and writing

SYNOPSIS
[id] = OpenFile(id, filename$[, mode, table])

FUNCTION
This function attempts to open the file specified by filename$ and assigns id to it. If
you pass Nil in id, OpenFile() will automatically choose an identifier and return it. If
the file does not exist, this function will fail unless you use the mode argument to open
a file for writing. In that case, OpenFile() will create the file for you.

All read and write operations will start at the current file cursor position. You can
manually set the file cursor by using the Seek() function but it is also increased if you
use other functions which read from or write to the file.

Starting with Hollywood 2.0 you can use the optional argument mode to open the file in
read (default) or write mode or in shared mode, which means that you can read from
the file and you can also write to it. If a file is opened in read mode, all write operations
will fail. If a file is opened in write mode, all read operations will fail.

Starting with Hollywood 6.0 this function accepts an optional table argument which
can be used to pass additional parameters. The following table elements are currently
recognized:

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Encoding:

In case the file is a text file, you can set this tag to the charset used by the file.
Hollywood will then handle charset conversions automatically when reading
from or writing to the file using functions like ReadLine(), ReadString(),
WriteLine() or WriteString(). By default, Hollywood expects text files to
be in the UTF-8 charset because that’s Hollywood’s default charset. If you
want to read from or write to a file using the ISO 8859-1 encoding instead,
just set Encoding to #ENCODING_ISO8859_1 and Hollywood will handle all
conversions to and from ISO 8859-1 automatically. See Section 54.30 [Set-
DefaultEncoding], page 1138, for a list of available charsets. (V9.0)

460 Hollywood manual

WriteBOM:

Set this tag to True if you want OpenFile() to add the UTF-8 BOM (byte
order mark) to the beginning of the file. Obviously, OpenFile() will only do
this if the file has been opened in write mode (#MODE_WRITE) and the file’s
encoding has been set to #ENCODING_UTF8. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
file adapters. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

Although Hollywood will automatically close all open files when it quits, it is strongly
advised that you close an open file when you are done with it using the CloseFile()

function so that it becomes available to the operating system again.

Starting with Hollywood 9.0, filename$may also be one of the special constants #STDIN,
#STDOUT, and #STDERR. This is useful for advanced programmers who want to access the
stdin, stdout, and stderr file streams associated with each program.

This command is also available from the preprocessor: Use @FILE to preopen files.

INPUTS

id identifier of the file or Nil for auto id selection

filename$

name of the file to open

mode mode to open the file; can be #MODE_READ, #MODE_WRITE or #MODE_

READWRITE (defaults to #MODE_READ) (V2.0)

table optional: table containing further parameters (V6.0)

RESULTS

id optional: identifier of the file; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
OpenFile(1, "Highscores.txt")

While Not Eof(1) Do NPrint(ReadLine(1))

CloseFile(1)

This code opens the file "Highscores.txt" as file 1 and prints all of its lines to the screen.

26.49 PathPart

NAME
PathPart – return the path component of a path

SYNOPSIS
p$ = PathPart(path$)

Chapter 26: DOS library 461

FUNCTION
This function extracts the pathname from a path specified by path$ and returns it. The
returned path part will always end with a "/" or a ":" so that you can immediately add
a filename to it.

INPUTS

path$ source path

RESULTS

p$ path part

EXAMPLE
p$ = PathPart("Data/Gfx/Test.jpg")

Print(p$)

The above code prints "Data/Gfx" to the screen.

26.50 Protection flags

The functions GetFileAttributes(), FileAttributes() and SetFileAttributes() allow
you to get and set the protection flags of a file or directory. The flags are returned and set
in a single table item called flags. This item contains bitmask which is a combination of
the active flags.

As protection flags are dependent on the host file system, not all of the flags listed below are
supported on all platforms. See the brackets for information on which platform supports
which attributes.

The following flags are recognized by Hollywood:

#FILEATTR_READ_USR [AmigaOS, macOS, Linux, iOS, Android]

#FILEATTR_WRITE_USR [AmigaOS, macOS, Linux, iOS, Android]

#FILEATTR_DELETE_USR [AmigaOS]

#FILEATTR_EXECUTE_USR [AmigaOS, macOS, Linux, iOS, Android]

#FILEATTR_READ_GRP [macOS, Linux, iOS, Android]

#FILEATTR_WRITE_GRP [macOS, Linux, iOS, Android]

#FILEATTR_EXECUTE_GRP [macOS, Linux, iOS, Android]

#FILEATTR_READ_OTH [macOS, Linux, iOS, Android]

#FILEATTR_WRITE_OTH [macOS, Linux, iOS, Android]

#FILEATTR_EXECUTE_OTH [macOS, Linux, iOS, Android]

#FILEATTR_PURE [AmigaOS]

#FILEATTR_ARCHIVE [AmigaOS, Windows]

#FILEATTR_SCRIPT [AmigaOS]

#FILEATTR_HIDDEN [AmigaOS, Windows]

#FILEATTR_SYSTEM [Windows]

#FILEATTR_READONLY [Windows]

To set some of these attributes for a file, simply combine them using the bitwise Or operator.
For example:

t = {}

t.flags = #FILEATTR_READ_USR | #FILEATTR_WRITE_USR

462 Hollywood manual

SetFileAttributes("test.txt", t)

The code above will give read and write permission to the file "test.txt". But please note,
that this code would not work correctly under Windows because Windows does not know
these two attributes.

To check if a flag is set, use the bitwise And operator. For example:

t = GetFileAttributes("test.txt")

If (t.flags & #FILEATTR_READ_USR)

Print("#FILEATTR_READ_USR is set.")

EndIf

There is another flag named #FILEATTR_NORMAL. This flag has a special meaning and can
only be used with SetFileAttributes() and it cannot be combinated with other flags.
When you pass #FILEATTR_NORMAL to SetFileAttributes(), the file’s protection flags
will be reset to the operating system defaults, which differ from platform to platform.

26.51 ReadByte

NAME
ReadByte – read byte from file (V7.0)

SYNOPSIS
b = ReadByte(id[, flags])

FUNCTION
This function reads a single byte from the file specified by id and returns it. Reading
starts from the current file cursor position which you can modify using the Seek()

command. After reading, ReadByte() will advance the file cursor by one byte.

The flags parameter may be set to one of the following flags:

#IO_UNSIGNED:

The return value will be unsigned and will range from 0 to 255. This is the
default.

#IO_SIGNED:

The return value will be signed and will range from -128 to 127.

INPUTS

id file to read data from

flags optional: additional flags (see above) (defaults to #IO_UNSIGNED) (V9.0)

RESULTS

b byte read from file

26.52 ReadBytes

NAME
ReadBytes – read bytes from file (V7.0)

Chapter 26: DOS library 463

SYNOPSIS
data$ = ReadBytes(id[, len])

FUNCTION
This function reads len bytes from the file specified by id. If the len argument is
omitted, ReadBytes() will read all bytes from the current file cursor position until the
file end. ReadBytes() will advance the file cursor position by the number of bytes read.

This function is useful for reading binary data from a file. Since Hollywood strings can
store binary data as well as text, ReadBytes() can just copy all the bytes it has read
from the file in a Hollywood string and return it.

INPUTS

id file to read data from

len optional: number of bytes to read (defaults to 0 which means read until file
end)

RESULTS

data$ data read from file

EXAMPLE
See Section 26.74 [WriteBytes], page 479.

26.53 ReadChr

NAME
ReadChr – read a character from the specified file

SYNOPSIS
chr = ReadChr(id[, encoding])

FUNCTION
This reads a single character from the file specified by id and returns its code point
value. Note that depending on the character encoding, this might read up to 4 bytes
from the file since in UTF-8, characters can use up to 4 bytes. The file cursor position
is incremented by the number of bytes read.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

If you want to read a single byte from a file, use ReadByte() instead. See Section 26.51
[ReadByte], page 462, for details.

INPUTS

id identifier of file to use

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

chr next character from file stream

464 Hollywood manual

EXAMPLE
OpenFile(1, "test", #MODE_READWRITE)

WriteLine(1, "Hello People! How are you?")

Seek(1, 0)

test = ReadChr(1)

CloseFile(1)

test$ = Chr(test)

Print(test$)

The above code will print "H" to the screen.

26.54 ReadDirectory

NAME
ReadDirectory – read a directory into a string array

SYNOPSIS
fcount, dcount = ReadDirectory(dir$, files$, dirs$[, sort])

FUNCTION
This function examines the directory specified by dir$ and puts all filenames found in
the directory tree to the string array specified in files$ and all directory names to the
string array specified in dirs$. After the last item, this function will insert an empty
string into the array, so you know how many files/directories were found.

By default, all file and directory entries will be automatically sorted by this function. If
you do not want this behaviour, you can set the optional argument sort to False.

Starting with Hollywood 2.0 this function returns two values: The first return value
indicates how many files were in the directory and the second one indicates how many
subdirectories were in the directory.

INPUTS

dir$ directory to examine

files$ string array to put the filenames to

dirs$ string array to put the directory names to

sort optional: whether or not file and directory names shall be sorted (V4.5)

RESULTS

fcount number of files in dir$ (V2.0)

dcount number of subdirectories in dir$ (V2.0)

EXAMPLE
f$ = {}

d$ = {}

ReadDirectory("Data", f$, d$)

The above code reads the contents of the "Data" directory into the string arrays f$ and
d$.

Chapter 26: DOS library 465

26.55 ReadFloat

NAME
ReadFloat – read a float from a file (V2.0)

SYNOPSIS
float = ReadFloat(id[, width, le])

FUNCTION
This function reads a signed float value from the file specified by id and returns it.
Reading starts from the current file cursor position which you can modify using the
Seek() command. A float value takes up 8 bytes which is enough to store really big
integers and floats with many decimal places.

Starting with Hollywood 6.0 there is an optional argument which allows you to specify
the byte width of the floating point number. This can be 8 for a double-precision floating
point number or 4 for a single-precision floating point number. By default, ReadFloat()
reads double-precision floats.

By default, this function expects the data to be stored in big endian format (most
significant byte first). Starting with Hollywood 6.0 you can use the optional argument
le to explicitly request this function to use the little endian format instead.

INPUTS

id file to read data from

width optional: byte width of the float (defaults to 8) (V6.0)

le optional: True to read bytes in little endian order, False for big endian
order (defaults to False) (V6.0)

RESULTS

float float value

26.56 ReadFunction

NAME
ReadFunction – read a function from a file (V4.0)

SYNOPSIS
func = ReadFunction(id)

FUNCTION
This function reads a Hollywood function from the file specified by id and returns it.
Reading starts from the current file cursor position which you can modify using the
Seek() command.

The function must have been written to the file by the WriteFunction() command.

INPUTS

id file to read from

RESULTS

func the function read from the file

466 Hollywood manual

EXAMPLE
See Section 26.77 [WriteFunction], page 481.

26.57 ReadInt

NAME
ReadInt – read an integer from a file (V2.0)

SYNOPSIS
int = ReadInt(id[, flags])

FUNCTION
This function reads an integer from the file specified by id and returns it. Reading starts
from the current file cursor position which you can modify using the Seek() command.
By default, ReadInt() will read a 32-bit integer, advancing the file cursor by 4 bytes.

The flags parameter may be a combination of the following flags:

#IO_SIGNED:

The return value will be signed and will range from -2147483648 to
2147483647 (if #IO_FAKE64 isn’t set). This is the default.

#IO_UNSIGNED:

The return value will be unsigned and will range from 0 to 4294967295. This
cannot be combined with #IO_FAKE64.

#IO_LITTLEENDIAN:

By default, this function expects the data to be stored in big endian format
(most significant byte first). You can set this flag to request this function to
use the little endian format instead.

#IO_FAKE64:

Use 64-bit integers. This is called "fake 64" because Hollywood can’t use
the full 64-bit integer range because its numeric type is a 64-bit floating
point value which can’t represent exactly the same range as a true 64-bit
integer value. Still, Hollywood’s fake 64-bit integers should be large enough
for almost anything. Using #IO_FAKE64 you can read integers in the range
of -9007199254740992 to 9007199254740992. Note that #IO_UNSIGNED can’t
be used with #IO_FAKE64. Hollywood’s fake 64-bit integers will always be
signed. (V9.0)

INPUTS

id file to read data from

flags optional: additional flags (see above) (defaults to #IO_SIGNED) (V9.0)

RESULTS

int integer value

Chapter 26: DOS library 467

26.58 ReadLine

NAME
ReadLine – read a line from the specified file

SYNOPSIS
string$ = ReadLine(id[, lf])

FUNCTION
This command reads characters from the file specified by id until a line feed character
occurs. Neither line feed nor carriage return characters are included in the destination
string. This function also terminates when it reaches the end-of-file mark. The string
read is returned.

Starting with Hollywood 9.0, there is an optional lf argument. If this is set to True,
ReadLine() will also include newline characters (i.e. line feed and carriage return) if
present in the source file. Note that no platform adaptation will take place in that case.
If lf is set to True, ReadString() will return the exact newline characters that are in
the source file, i.e. you might get line feed, carriage return and line feed or just carriage
return, depending on the file’s contents.

INPUTS

id identifier an open file

lf optional: whether or not to include newline characters in the string (defaults
to False) (V9.0)

RESULTS

string$ receives the line read

EXAMPLE
See Section 26.48 [OpenFile], page 459.

26.59 ReadShort

NAME
ReadShort – read 16-bit integer from a file (V2.0)

SYNOPSIS
short = ReadShort(id[, flags])

FUNCTION
This function reads a 16-bit integer from the file specified by id and returns it. Reading
starts from the current file cursor position which you can modify using the Seek()

command. Since ReadShort() reads a 16-bit integer from the file, the file cursor will be
advanced by 2 bytes.

The flags parameter may be a combination of the following flags:

#IO_UNSIGNED:

The return value will be unsigned and will range from 0 to 65535. This is
the default.

468 Hollywood manual

#IO_SIGNED:

The return value will be signed and will range from -32768 to 32767.

#IO_LITTLEENDIAN:

By default, this function expects the data to be stored in big endian format
(most significant byte first). You can set this flag to request this function to
use the little endian format instead.

INPUTS

id file to read data from

flags optional: additional flags (see above) (defaults to #IO_UNSIGNED) (V9.0)

RESULTS

short short value read from file

26.60 ReadString

NAME
ReadString – read string from file

SYNOPSIS
s$ = ReadString(id[, length, encoding])

FUNCTION
This function reads a string from the file specified by id. The optional length argument
allows you to specify the number of characters to read from the file. If it is omitted, all
characters from the current file cursor position until the end will be read and returned.
The file cursor will be advanced by the number of bytes read from the file. This is not
necessarily the same as the character count passed in length because in UTF-8 a single
character may use up to 4 bytes.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

This function is used for reading text from files. If you need to read binary data from a
file, use the ReadBytes() function instead. See Section 26.52 [ReadBytes], page 462, for
details.

INPUTS

id file to read data from

length optional: characters to read or 0 to read all characters until the end of the
file (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

s$ string that contains the characters read

Chapter 26: DOS library 469

26.61 Rename

NAME
Rename – rename a file or directory (V2.0)

SYNOPSIS
Rename(oldname$, newname$[, t])

FUNCTION
This function renames a file or a directory. oldname$ is the name of the file or directory
to be renamed and can include a path specification. newname$ is just the desired new
name for the file/directory and must not contain any path specification.

Starting with Hollywood 10.0, this function accepts an optional table argument which
supports the following tags:

Adapter: This tag allows you to specify one or more filesystem adapters that should
be asked to handle the operation. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
filesystem adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

oldname$ file or directory to rename

newname$ new name for the file/directory

t optional: table argument containing further options (see above) (V10.0)

EXAMPLE
Rename("image1.png", "image2.png")

Renames the file "image1.png" to "image2.png".

26.62 RewindDirectory

NAME
RewindDirectory – rewind directory iteration (V8.0)

SYNOPSIS
RewindDirectory(id)

FUNCTION
This function can be used to rewind the iteration of a directory opened by the
OpenDirectory() function or the @DIRECTORY preprocessor command. This directory
must be passed to RewindDirectory() in the id argument and the iteration must have
been started using the NextDirectoryEntry() function before. After this function

470 Hollywood manual

returns, a call to NextDirectoryEntry() will return the first entry in the directory
again.

See Section 26.46 [NextDirectoryEntry], page 456, for details.

INPUTS

id identifier of the directory to rewind

26.63 Run

NAME
Run – asynchronously execute a program

SYNOPSIS
Run(file$[, args$, t])

DEPRECATED SYNTAX
Run(cmdline$[, resetkeys, userdata])

FUNCTION
This function executes the program specified by file$ asynchronously and passes the
arguments specified in args$ to it. If you need to execute a program synchronously, you
have to use the Execute() function. See Section 26.16 [Execute], page 430, for details.

If supported by the operating system, this command can also be used to view data files
like documents or images using their default viewer. In that case, file$ can also be a
non-executable file like a JPEG image or an MP3 file.

On Android file$ has to be either a data file like a JPEG image or a package name like
com.airsoftsoftwair.hollywood if you want this function to start another app.

If you want to be informed when the program started using Run() is terminated, you
can install a listener for the RunFinished event handler using InstallEventHandler().
See Section 29.13 [InstallEventHandler], page 553, for details.

There is also a listener called RunOutput which can be installed using
InstallEventHandler(). The RunOutput listener will redirect the program’s
output to your program which is useful when writing GUIs for console programs, for
example. See Section 29.13 [InstallEventHandler], page 553, for details.

Note that due to historical reasons, there are some pitfalls when using this function.
Before Hollywood 9.0 this command expected program and arguments combined in just
a single cmdline$ string. In that case, extra care has to be taken when dealing with
spaces (see below for details). Starting with Hollywood 9.0, there is a new syntax which
allows you to pass program and arguments as two separate arguments which makes
things much easier. However, to maintain compatibility with previous versions this new
syntax can only be used if you explicitly pass a string in the second argument. So if you
want to use the new syntax, make sure to pass a string in the second argument. If the
program you want to start doesn’t need any arguments, just pass an empty string ("")
just to signal Hollywood that you want to use the new syntax.

If you don’t pass a string in the second argument, the old syntax will be used which
means that you need to be very careful when passing program paths that contain spaces

Chapter 26: DOS library 471

since the very first space in cmdline$ is interpreted as the separator of program and
arguments. If you want to start a program whose path specification uses spaces, you
need to use double quotes around this path specification or it won’t work. You can easily
avoid these complications by simply passing a string in the second argument, even if it
is empty (see above for details).

Starting with Hollywood 9.0, it is possible to specify the program and its arguments in
two separate arguments, which makes things much more convenient. Also, there is a new
optional table argument now that can be used to specify further options.

The following options are currently supported by the optional table argument:

Directory:

This table argument allows you to set the current directory for the program
that is to be started. (V9.0)

ResetKeys:

This table argument is only interesting for advanced users. If this is set to
False, Run() won’t reset all internal key states after executing the program.
By default, all key states will be reset when Run() returns because programs
started using Run() often assume the keyboard focus and Hollywood might
be unable to reset its internal state flags because the new program started
via Run() takes over keyboard focus. That’s why by default Run() will reset
all internal key state flags when it returns. Disabling this behaviour can
make sense if you use Run() to start programs that don’t have a GUI and
don’t take away the keyboard focus. Defaults to True. (V5.1)

RawMode: This tag is only used when the RunOutput event handler is active. By default,
the RunOutput event handler expects programs to output text only. This is
why RunOutput will make sure to pass only properly UTF-8 encoded text to
your callback function. If you don’t want RunOutput to format the text as
UTF-8, you need to set the RawMode argument to True when calling Run().
In that case, RunOutput won’t do any preformatting and will just forward the
program’s raw output to you. This means that your event handler callback
has to be ready to process binary data as well. Defaults to False. (V9.0)

IgnoreHandlers:

If event handlers for RunFinished or RunOutput are installed, those handlers
will automatically trigger whenever Run() is called. If you only want those
event handlers to trigger for certain calls to Run(), you can use this tag to tell
Run() which event handlers to ignore. This must be set to a string containing
the event handlers that should be ignored. Multiple event handlers must be
separated by a vertical bar character. For example, setting IgnoreHandlers
to RunFinished|RunOutput would tell Run() to not throw events for both
event handlers, RunFinished and RunOutput. (V9.0)

ReturnCode:

If you have a RunFinished event handler installed, you can set this tag to
True to indicate that your event handler should also receive the program’s
return code when it terminates. Note that when setting this tag to True

on AmigaOS 4 and MorphOS, Hollywood can’t be quit before the program
started using Run() has terminated. Defaults to False. (V9.0)

472 Hollywood manual

ForceExe:

If this tag is set to True, Run() will always treat the file passed in file$ as
an executable. This is only useful on Linux and macOS because on those
platforms files that have an extension will be treated as data files so Holly-
wood will try to launch the corresponding viewer for the data file instead.
Thus, trying to use Run() on an executable named "test.exe" will not work
on Linux and macOS because of the *.exe extension. By setting ForceExe

to True, however, you can make it work. Defaults to False. (V9.0)

UserData:

This argument can be used to specify user data that should be passed
to the RunFinished and RunOutput event handlers that can be installed
via InstallEventHandler(). See Section 29.13 [InstallEventHandler],
page 553, for details. The user data you specify here can be of any type.
(V6.1)

Verb: On Windows, this can be set to a string telling Run() what to do with the
file. This can be one of the following verbs:

edit Opens the specified file in an editor.

explore Opens the specified folder in Explorer. When using this verb,
you must pass a folder instead of a file to Run().

find Opens the search dialog for the specified folder. When using this
verb, you must pass a folder instead of a file to Run().

open Opens the specified file.

print Prints the specified file.

runas Launches the specified file in administrator mode.

Note that the Verb tag is only supported on Windows. (V9.1)

INPUTS

file$ the program (or data file) to be started

args$ optional: arguments to pass to the program; note that you must pass this
parameter to signal Hollywood to use the new syntax; you can do so by just
passing an empty string (""); see above for a detailed discussion (V9.0)

t optional: table containing further arguments (see above) (V9.0)

EXAMPLE
Run("Sys:Prefs/Locale")

The above code executes the locale preferences on AmigaOS based systems. Your script’s
execution will go on immediately after executing the locale program (asynchronous exe-
cution).

Run("\"C:\\Program Files (x86)\\Hollywood\\ide.exe\"")

The code above runs the Hollywood IDE on Windows systems. Note that we’ve embed-
ded the program specification inside double quotes. This is absolutely necessary because

Chapter 26: DOS library 473

the first space in the string passed to Run() is normally interpreted as the separator
between program and arguments. If we didn’t use double quotes in the code above,
Run() would try to start the program "C:\Program" and pass the arguments "Files
(x86)\Hollywood\ide.exe" to it which we obviously don’t want. Note that since Hol-
lywood 9.0, it is now much easier to deal with spaces in paths. You just need to use
the new syntax which takes the program and its arguments in two separate arguments.
With Hollywood 9.0, you could simply use this code:

Run("C:\\Program Files (x86)\\Hollywood\\ide.exe", "")

Note that passing the empty string in the second argument is absolutely necessary here
to signal Hollywood that you want to use the new syntax. See above for a detailed
discussion on this.

26.64 Seek

NAME
Seek – set file cursor to a new position

SYNOPSIS
Seek(id, newpos[, mode])

FUNCTION
This function sets the file cursor (from which all read/write operations start) to newpos.
The beginning of the file is at position 0. If you want to seek to the end-of-file, set
newpos to the special constant #EOF.

To find out the cursor position of a specific file, you can use the FilePos() command.

Starting with Hollywood 6.0 you can use the optional mode argument to set the seek
mode which should be used. This can be one of the following mode constants:

#SEEK_BEGINNING:

The specified seeking position is relative to the beginning of the file. Negative
positions are not allowed. This is the default seek mode.

#SEEK_CURRENT:

The specified seeking position is relative to the current position of the file
cursor. You may also pass negative positions here to seek backwards from
the current file cursor position.

#SEEK_END:

The specified seeking position is relative to the file’s ending. You may only
pass 0 or negative positions here. To seek to the end of the file, simply pass
0.

INPUTS

id number specifying the file to use

newpos position to set the file cursor to

mode optional: seek mode to use (defaults to #SEEK_BEGINNING) (V6.0)

474 Hollywood manual

EXAMPLE
See Section 26.53 [ReadChr], page 463.

26.65 SetEnv

NAME
SetEnv – write environment variable (V5.0)

SYNOPSIS
SetEnv(var$, s$)

FUNCTION
This command can be used to set the environment variable specified in var$ to the
value specified in s$. Please note that the environment variable will be local to your
Hollywood script. You cannot modify global environment variables with this function.

INPUTS

var$ environment variable to set

s$ desired value for environment variable

26.66 SetFileAttributes

NAME
SetFileAttributes – set attributes of a file or directory (V3.0)

SYNOPSIS
SetFileAttributes(f$, t)

FUNCTION
This function can be used to change one or multiple attributes of a file or directory. This
includes information such as the file time, protection flags, and more, depending on the
host file system.

The file (or directory) whose attributes you want to change must be passed as parameter
f$. The second parameter is a table which contains all attributes you want to modify.
The following fields can be set in the table:

Flags: Use this field to change the protection flags of the file or directory. Set this
field to a combination of protection flags or to #FILEATTR_NORMAL to reset all
protection flags. See Section 26.50 [Protection flags], page 461, for details.

Time: Use this field to change the time stamp of the file or directory. This field
can be used to change the time when the file was last changed. You need
to set this field to a string in the format dd-mmm-yyyy hh:mm:ss. E.g.:
08-Nov-2004 14:32:13.

LastAccessTime:

Use this field to modify the time the file or directory was last accessed. The
string you specify here must be in the format dd-mmm-yyyy hh:mm:ss. This
attribute is not supported on AmigaOS.

Chapter 26: DOS library 475

CreationTime:

Use this field to modify the creation time of the file or directory. The string
you specify here must be in the format dd-mmm-yyyy hh:mm:ss. This at-
tributed is only supported on Windows.

Comment: Use this field to change the comment of a file. This is only supported by the
Amiga versions.

Adapter: This tag allows you to specify one or more filesystem adapters that should
be asked to handle the operation. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
filesystem adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

f$ name of file or directory whose attributes are to be changed

t a table containing the attributes to be set

EXAMPLE
t = {}

t.time = "15-Dec-2006 23:30:12"

t.flags = #FILEATTR_READ_USR | #FILEATTR_WRITE_USR

SetFileAttributes("test.txt", t)

The code above sets the time stamp of file "test.txt" to December 15th, 2006 at 11:30pm
and 12 seconds. Additionally it sets the protection flags #FILEATTR_READ_USR and
#FILEATTR_WRITE_USR.

26.67 SetFileEncoding

NAME
SetFileEncoding – set file charset (V9.0)

SYNOPSIS
SetFileEncoding(id, encoding)

FUNCTION
This function changes the charset used by the file specified by id to the charset specified
by encoding. All subsequent read and write operations will then be done using the new
charset.

This must only be used if the file is a text file. In that case, specifying the file’s charset
can be quite convenient because Hollywood will then handle all charset conversions
automatically when reading from or writing to the file using functions like ReadLine(),
ReadString(), WriteLine() or WriteString(). By default, Hollywood expects text

476 Hollywood manual

files to be in the UTF-8 charset because that’s Hollywood’s default charset. If you
want to read from or write to a file using the ISO 8859-1 encoding instead, just pass
#ENCODING_ISO8859_1 in encoding and Hollywood will handle all conversions to and
from ISO 8859-1 automatically.

See Section 54.30 [SetDefaultEncoding], page 1138, for a list of available charsets.

INPUTS

id identifier of file

encoding desired new charset to use

26.68 SetIOMode

NAME
SetIOMode – switch between buffered and unbuffered IO (V2.5)

SYNOPSIS
SetIOMode(mode)

FUNCTION
This function can be used to specify the IO mode the functions of the Hollywood DOS
library shall use. By default, all DOS functions use buffered IO. This is especially efficient
for small read and write operations. For some cases, however, buffered IO is not very
convenient and you might want to use unbuffered IO instead. For example, when you
write to the parallel device using the DOS library or you have opened a console window
using OpenFile(). In those cases unbuffered IO is to be preferred because the data is
passed directly to the file system.

The mode you set using this function is respected by all functions of the DOS library
but please note that if you switch between buffered and unbuffered IO on the same file,
you have to use FlushFile() to flush all pending buffers. If you forget to do this, you
might end up with data at the wrong positions in your file.

This function is meant for advanced users. Normally, you do not have to care about the
IO mode.

INPUTS

mode desired IO mode for the DOS library; this can be either #IO_BUFFERED or
#IO_UNBUFFERED (by default, Hollywood will always use #IO_BUFFERED)

26.69 StringToFile

NAME
StringToFile – save string to file (V5.0)

SYNOPSIS
StringToFile(s$, file$[, t])

Chapter 26: DOS library 477

FUNCTION
This command is a convenience function which simply saves the string specified in by s$

as the file specified by file$. Be warned that this function does not append the string
to the file. If the file specified by file$ already exists, it will be overwritten without
any warning. Note that since Hollywood strings can also contain binary data, you can
also use this function to write strings containing raw data to files.

Starting with Hollywood 10.0, StringToFile() accepts an optional table argument that
allows you to pass additional arguments to the function. The following tags are currently
supported by the optional table argument:

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to save the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
file adapters. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

s$ string to write to file

file$ destination file

t optional: table containing further options (see above)

26.70 UndefineVirtualStringFile

NAME
UndefineVirtualStringFile – undefine a string source virtual file (V5.0)

SYNOPSIS
UndefineVirtualStringFile(virtfile$)

FUNCTION
This function can be used to undefine a virtual file created by the function
DefineVirtualFileFromString(). It is important to call this function when you are
done with a virtual file because it will release memory occupied by the virtual file.

See Section 26.11 [DefineVirtualFileFromString], page 421, for more information on vir-
tual string files.

INPUTS

virtfile$

a virtual file created by DefineVirtualFileFromString()

EXAMPLE
See Section 26.11 [DefineVirtualFileFromString], page 421.

478 Hollywood manual

26.71 UnsetEnv

NAME
UnsetEnv – delete environment variable (V5.0)

SYNOPSIS
UnsetEnv(var$)

FUNCTION
This command can be used to delete the specified environment variable. Please note
that you cannot delete global environment variables with this function. You may only
delete environment variables that are local to your Hollywood script.

INPUTS

var$ environment variable to delete

26.72 UseCarriageReturn

NAME
UseCarriageReturn – configure line break behaviour (V7.1)

SYNOPSIS
UseCarriageReturn(enable)

FUNCTION
This function allows you to set whether or not WriteLine() will write a carriage return
character before the line feed character. MS-DOS and its successor Windows both use
carriage return and line feed characters to indicate a line break whereas Unix, Amiga,
and macOS just use a line feed character to force a line break.

If enable is set to True, WriteLine() will write a carriage return character before
each line feed character, otherwise it will only output a line feed character. By default,
UseCarriageReturn() is set to True on Windows systems and to False on all other
systems.

INPUTS

enable True or False indicating whether WriteLine() should output a carriage
return before a line feed character

26.73 WriteByte

NAME
WriteByte – write byte to file (V7.0)

SYNOPSIS
WriteByte(id, b[, flags])

FUNCTION
This function writes a single byte to the file specified by id at the current file cursor
position which you can modify by using the Seek() command. WriteByte() will advance
the file cursor position by one byte.

Chapter 26: DOS library 479

The flags parameter may be set to one of the following flags:

#IO_UNSIGNED:

Write an unsigned byte to the file. This means that b must be between 0
and 255. This is the default.

#IO_SIGNED:

Write a signed byte to the file. This means that b must be between -128 and
127.

INPUTS

id file to write to

b byte data to write to the file

flags optional: additional flags (see above) (defaults to #IO_UNSIGNED) (V9.0)

26.74 WriteBytes

NAME
WriteBytes – write bytes to file (V7.0)

SYNOPSIS
WriteBytes(id, data$[, len])

FUNCTION
This function writes len bytes from the string data$ to the file specified by id. If
the optional argument len is omitted, the complete string will be written to the file.
WriteBytes() will advance the file cursor position by the number of bytes written.

This function is useful for writing binary data to a file. The string specified by data$

will be treated as raw binary data instead of text.

INPUTS

id file to write to

data$ data to write to file

len optional: number of bytes to write (defaults to 0 which means write the
complete string)

EXAMPLE
size = FileSize("test")

OpenFile(1, "test")

OpenFile(2, "copy_of_test", #MODE_WRITE)

data$ = ReadBytes(1, size)

WriteBytes(2, data$, size)

CloseFile(2)

CloseFile(1)

The above code makes a copy of the file "test" and saves it as "copy of test".

480 Hollywood manual

26.75 WriteChr

NAME
WriteChr – write a character to a file

SYNOPSIS
WriteChr(id, chr[, encoding])

FUNCTION
Writes the character specified by chr to the file specified by id and increments the file
cursor by the number of bytes written. The character to be written has to be passed to
WriteChr() as a code point value. Note that depending on the encoding, this function
might write up to 4 bytes to the file because in UTF-8, a single character may use up to
4 bytes.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

If you need to write a single byte to a file, use the WriteByte() function instead. See
Section 26.73 [WriteByte], page 478, for details.

INPUTS

id identifier specifying the file to use

chr code point value of character to write to file

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

EXAMPLE
OpenFile(1, "Test", #MODE_WRITE)

WriteChr(1, 65)

CloseFile()

This code writes the character "A" to the file Test.

26.76 WriteFloat

NAME
WriteFloat – write a float to a file (V2.0)

SYNOPSIS
WriteFloat(id, float[, width, le])

FUNCTION
This function writes a signed float to the file specified by id at the current file cursor
position which you can modify by using the Seek() command. A float will use 8 bytes
of disk space which is enough to store really big integers and floats with many decimal
places.

Starting with Hollywood 6.0 there is an optional argument which allows you to specify
the byte width of the floating point number. This can be 8 for a double-precision floating

Chapter 26: DOS library 481

point number or 4 for a single-precision floating point number. By default, WriteFloat()
writes double-precision floats.

By default, this function stores the value in big endian format (most significant byte
first). Starting with Hollywood 6.0 you can use the optional argument le to explicitly
request this function to use the little endian format instead.

INPUTS

id file to write to

float float value to write to the file

width optional: byte width of the float to write (defaults to 8) (V6.0)

le optional: True to write bytes in little endian order, False for big endian
order (defaults to False) (V6.0)

26.77 WriteFunction

NAME
WriteFunction – write a function to a file (V4.0)

SYNOPSIS
WriteFunction(id, func[, txtmode, nobrk])

FUNCTION
This function writes the Hollywood function specified by func to the file specified by id

at the current file cursor position which you can modify by using the Seek() command.
The function will be written to the file as precompiled bytecode, i.e. it will not be human
readable.

You can load saved functions into other projects by using the ReadFunction() command.
The optional argument txtmode specifies whether or not the function shall be written
to the file as binary data or as base64 encoded data. The latter is useful for embedding
Hollywood functions in human readable text files, for instance XML files. In case you
enable text mode, WriteFunction() will automatically insert a line break after every
72 characters for better readability. If you don’t want that, set the optional argument
nobrk to True. In that case, no line breaks will be inserted.

INPUTS

id file to write to

func function to write to the file

txtmode optional: True to write the function in base64 notation or False to write
plain binary data (defaults to False)

nobrk optional: True if you don’t want to have line breaks inserted when in text
mode (defaults to False); this argument is ignored in binary mode (V6.1)

EXAMPLE
Function p_LittleTestFunc(a, b)

Return(a+b)

482 Hollywood manual

EndFunction

OpenFile(1, "func.bin", #MODE_WRITE)

WriteFunction(1, p_LittleTestFunc)

CloseFile(1)

OpenFile(1, "func.bin", #MODE_READ)

p_MyAdd = ReadFunction(1)

CloseFile(1)

Print(p_MyAdd(5, 6)) ; prints 11

The code above writes the function p LittleTestFunc() to file "func.bin". After that,
it opens file "func.bin" again and reads the function back into Hollywood. The im-
ported function will be stored in the variable p MyAdd(). Finally, we will call the newly
imported function p MyAdd() and it will add the numbers 5 and 6 for us.

26.78 WriteInt

NAME
WriteInt – write an integer to a file (V2.0)

SYNOPSIS
WriteInt(id, int[, flags])

FUNCTION
This function writes an integer to the file specified by id at the current file cursor position
which you can modify by using the Seek() command. By default, WriteInt() will write
a 32-bit integer, advancing the file cursor by 4 bytes.

The flags parameter may be a combination of the following flags:

#IO_SIGNED:

Use signed integers. This means that int must be in the range of
-2147483648 to 2147483647 (in case #IO_FAKE64 isn’t set). This is the
default.

#IO_UNSIGNED:

Use unsigned integers. This means that int must be in the range of 0
to 4294967295. Note that #IO_UNSIGNED cannot be combined with #IO_

FAKE64.

#IO_LITTLEENDIAN:

By default, this function stores the value in big endian format (most signif-
icant byte first). You can set this flag to request this function to use the
little endian format instead.

#IO_FAKE64:

Use 64-bit integers. This is called "fake 64" because Hollywood can’t use
the full 64-bit integer range because its numeric type is a 64-bit floating
point value which can’t represent exactly the same range as a true 64-bit

Chapter 26: DOS library 483

integer value. Still, Hollywood’s fake 64-bit integers should be large enough
for almost anything. Using #IO_FAKE64 you can write integers in the range
of -9007199254740992 to 9007199254740992. Note that #IO_UNSIGNED can’t
be used with #IO_FAKE64. Hollywood’s fake 64-bit integers will always be
signed. (V9.0)

INPUTS

id file to write to

int integer value to write to the file

flags optional: additional flags (see above) (defaults to #IO_SIGNED) (V9.0)

26.79 WriteLine

NAME
WriteLine – write a new line to a file

SYNOPSIS
WriteLine(id, line$)

FUNCTION
Writes the string specified by line$ to the file described by id and increases the file
cursor accordingly.

Note that on Windows systems WriteLine() appends both, carriage return and line
feed, to line$ whereas on all other systems only the line feed character is appended to
line$. This behaviour can be changed by calling the UseCarriageReturn() command.
See Section 26.72 [UseCarriageReturn], page 478, for details.

INPUTS

id number specifying the file to use

line$ string to write to file

EXAMPLE
See Section 26.53 [ReadChr], page 463.

26.80 WriteShort

NAME
WriteShort – write 16-bit integer to a file (V2.0)

SYNOPSIS
WriteShort(id, short[, flags])

FUNCTION
This function writes a 16-bit integer to the file specified by id at the current file cursor
position which you can modify by using the Seek() command. Since a short integer is
16-bit, the file cursor will be advanced by 2 bytes.

484 Hollywood manual

The flags parameter may be a combination of the following flags:

#IO_UNSIGNED:

Use an unsigned integer. This means that short must be in the range of 0
to 65535. This is the default.

#IO_SIGNED:

Use a signed integer. This means that short must be in the range of -32768
to 32767.

#IO_LITTLEENDIAN:

By default, this function stores the value in big endian format (most signif-
icant byte first). You can set this flag to request this function to use the
little endian format instead.

INPUTS

id file to write to

short short integer value to write to the file

flags optional: additional flags (see above) (defaults to #IO_UNSIGNED) (V9.0)

26.81 WriteString

NAME
WriteString – write string to file

SYNOPSIS
WriteString(id, s$[, len, encoding])

FUNCTION
This function writes the string s$ to the file specified by id. The optional argument len
can be used to set the number of characters that should be written to the file. If len
is omitted, the complete string is written. The file cursor position is advanced by the
number of bytes written to the file. Note that this is not necessarily the same as len

because in UTF-8 encoding a single character can use up to 4 bytes.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

This function is used for writing text to files. If you need to write binary data to a file,
use the WriteBytes() function instead. See Section 26.74 [WriteBytes], page 479, for
details.

INPUTS

id file to write to

s$ string to write to the file

len optional: number of characters to file or 0 to write the complete string
(defaults to 0)

485

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

487

27 Draw library

27.1 Arc

NAME
Arc – draw a partial ellipse (V2.0)

SYNOPSIS
Arc(x, y, xradius, yradius, start, end[[, color], table])

FUNCTION
This function draws a partial ellipse at the position specified by x and y using the
specified radii and color (RGB value) in the style configured using the SetFormStyle()
and SetFillStyle() commands. The arguments start and end specify the start and
end angles of the ellipse and must be specified in degrees. If you want to draw a closed
ellipse, the start argument needs to be 0 and the end argument needs to be 360. Using
the Ellipse() command is of course easier in this case.

The width of the partial ellipse will be xradius * 2 + 1 (center point) and the height
will be yradius * 2 + 1 (center point).

If layers are enabled, this command will add a new layer of the type #ARC to the layer
stack.

New in Hollywood 2.0: Color can also be an ARGB value for alpha-blended drawing.

Starting with Hollywood 4.5 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the style of the arc. The following
options are possible:

Clockwise:

You can use this tag to specify whether or not the elliptic arc shall be drawn
in clockwise direction. This tag defaults to True which means clockwise
drawing. If you set it to False, Arc() will connect the angles in anti-
clockwise direction. (V2.5)

Furthermore, the optional table argument can also contain one or more of the standard
tags for all drawing commands. See Section 27.17 [Standard drawing tags], page 501, for
more information about the standard tags that nearly all Hollywood drawing commands
support.

Please note that due to historical reasons the position that has to be passed to this
function in the first two arguments is really the top-left corner of the elliptical arc’s
bounding rectangle. This might be confusing since traditionally elliptical arcs are drawn
relative to their center point. Due to a design mistake in Hollywood 1.0, however,
Hollywood unfortunately deviates from this standard.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color passed to the function.

INPUTS

x x offset for the ellipse

488 Hollywood manual

y y offset for the ellipse

xradius x radius of your ellipse

yradius y radius of your ellipse

start start angle in degrees (must be positive)

end end angle in degrees (must be positive)

color optional: RGB or ARGB color (defaults to #BLACK) color is optional because
it is not required when you render to a mask or alpha channel

table optional: table containing further arguments; can be any from the ones listed
above and from the standard tags (V4.5)

EXAMPLE
Arc(0, 0, 183, 183, 45, 315, #WHITE)

Circle(164, 33, 16, #BLACK)

Draws a pac-man shape.

27.2 Box

NAME
Box – draw a rectangle

SYNOPSIS
Box(x, y, width, height[[, color], table])

FUNCTION
This function draws a rectangle at the position specified by x and y in the dimensions
specified by width and height using the specified color (RGB value). The rectangle will
be drawn in the form style specified using SetFormStyle() and will be filled according
to the configuration selected with SetFillStyle().

If layers are enabled, this command will add a new layer of the type #BOX to the layer
stack.

New in Hollywood 2.0: Color can also be an ARGB value for alpha-blended drawing.

Starting with Hollywood 4.5 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the style of the box. The following
options are possible:

RoundLevel:

You can specify this tag to create a rectangle with rounded corners. You need
to pass a round level in percentage which specifies how round the corners
will be (possible values are 0 to 100). Defaults to 0 which means no round
corners. (V1.9)

CornerA, CornerB, CornerC, CornerD:

These four tags allow you to fine-tune the corner rounding of the rectangle.
You can specify a rounding level (0 to 100) for every corner of the rectangle

Chapter 27: Draw library 489

thus allowing you to create a rectangle where not all corners are rounded,
or where the different corners use different rounding levels. These tags will
override any setting specified in the RoundLevel tag. (V5.0)

Furthermore, the optional table argument can also contain one or more of the standard
tags for all drawing commands. See Section 27.17 [Standard drawing tags], page 501, for
more information about the standard tags that nearly all Hollywood drawing commands
support.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color passed to the function.

INPUTS

x destination x offset

y destination y offset

width desired width

height desired height

color optional: RGB or ARGB color (defaults to #BLACK) color is optional because
it is not required when you render to a mask or alpha channel

table optional: table containing further arguments; can be any from the ones listed
above and from the standard tags (V4.5)

EXAMPLE
Box(0, 0, 640, 480, #YELLOW)

The above code draws a yellow box as a border of the 640x480 display.

Box(0, 0, 300, 200, #RED, {RoundLevel = 25})

The code above draws a red box with corners rounded by 25%.

27.3 Circle

NAME
Circle – draw a circle

SYNOPSIS
Circle(x, y, radius[[, color], table])

FUNCTION
This function draws a circle at the position specified by x and y using the specified
radius and color (RGB value). The circle will be drawn in the form style specified
using SetFormStyle() and will be filled according to the configuration selected with
SetFillStyle().

The width and height of circle will be radius * 2 + 1 (center point).

If layers are enabled, this command will add a new layer of the type #CIRCLE to the layer
stack.

490 Hollywood manual

New in Hollywood 2.0: Color can also be an ARGB value for alpha-blended drawing.

Starting with Hollywood 4.5, this function accepts a new optional table argument that
can be used to specify one or more of the standard tags for all of Hollywood’s draw
commands. See Section 27.17 [Standard drawing tags], page 501, for more information
about the standard tags that nearly all Hollywood drawing commands support.

Please note that due to historical reasons the position that has to be passed to this
function in the first two arguments is really the top-left corner of the circle’s bounding
rectangle. This might be confusing since traditionally circles are drawn relative to their
center point. Due to a design mistake in Hollywood 1.0, however, Hollywood unfortu-
nately deviates from this standard.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color passed to the function.

INPUTS

x x offset

y y offset

radius radius of your circle

color optional: RGB or ARGB color (defaults to #BLACK) color is optional because
it is not required when you render to a mask or alpha channel

table optional: table containing further arguments; can be any from the ones listed
above and from the standard tags (V4.5)

27.4 Cls

NAME
Cls – clear screen (V2.0)

SYNOPSIS
Cls([color])

FUNCTION
This function quickly clears the current output device. Its behaviour depends on what
is currently selected as the output device.

If the output device is the display, the current background picture will be restored and
all layers and sprites will be removed. The color argument is not used in this case.

If the output device is a brush, it will be cleared with the specified color.

If the output device is a background picture, i.e. SelectBGPic() with mode set to
#SELMODE_LAYERS is active, all layers of that picture will be removed. The color argument
is not used in this case.

If the output device is a mask, Cls() will clear the pixels using the mode that was
installed by SetMaskMode(). The color argument is not used in this case.

If the output device is an alpha channel, Cls() will fill the pixels with the intensity
specified using SetAlphaIntensity(). The color argument is not used in this case.

Chapter 27: Draw library 491

Note that when the current draw target is palette-based and the palette mode is
set to #PALETTEMODE_PEN, this function will clear the screen using the pen set via
SetDrawPen() instead of the color passed to the function.

INPUTS

color optional: RGB color (defaults to #BLACK); only required when used while
SelectBrush() is active

27.5 Directional constants

The directional constants are used by the SetFontStyle() and SetFormStyle() commands
to configure the direction of the shadow of the text or graphics object. There are eight
directional constants available and they correspond to the points of the compass:

#SHDWNORTH

#SHDWNORTHEAST

#SHDWEAST

#SHDWSOUTHEAST

#SHDWSOUTH

#SHDWSOUTHWEST

#SHDWWEST

#SHDWNORTHWEST

27.6 Ellipse

NAME
Ellipse – draw an ellipse

SYNOPSIS
Ellipse(x, y, xradius, yradius[[, color], table])

FUNCTION
This function draws an ellipse at the position specified by x and y using the specified
radii and color (RGB value). The ellipse will be drawn in the form style specified
using SetFormStyle() and will be filled according to the configuration selected with
SetFillStyle().

The width of the ellipse will be xradius * 2 + 1 (center point) and the height will be
yradius * 2 + 1 (center point).

If layers are enabled, this command will add a new layer of the type #ELLIPSE to the
layer stack.

New in Hollywood 2.0: Color can also be an ARGB value for alpha-blended drawing.

Starting with Hollywood 4.5, this function accepts a new optional table argument that
can be used to specify one or more of the standard tags for all of Hollywood’s draw
commands. See Section 27.17 [Standard drawing tags], page 501, for more information
about the standard tags that nearly all Hollywood drawing commands support.

Please note that due to historical reasons the position that has to be passed to this
function in the first two arguments is really the top-left corner of the ellipse’s bounding

492 Hollywood manual

rectangle. This might be confusing since traditionally ellipses are drawn relative to
their center point. Due to a design mistake in Hollywood 1.0, however, Hollywood
unfortunately deviates from this standard.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color passed to the function.

INPUTS

x x offset

y y offset

xradius x radius of your ellipse

yradius y radius of your ellipse

color optional: RGB or ARGB color (defaults to #BLACK) color is optional because
it is not required when you render to a mask or alpha channel

table optional: table containing further arguments; can be any from the ones listed
above and from the standard tags (V4.5)

27.7 GetFillStyle

NAME
GetFillStyle – get current fill style (V7.1)

SYNOPSIS
style[, t] = GetFillStyle()

FUNCTION
This function returns the current fill style set using SetFillStyle(). The return value
style is set to either #FILLNONE, #FILLCOLOR, #FILLGRADIENT, or #FILLTEXTURE. See
Section 27.14 [SetFillStyle], page 498, for details.

If style is #FILLNONE, GetFillStyle() will also return a table with the following fields:

Thickness:

The outline thickness in pixels.

If style is #FILLGRADIENT, the return table will contain the following fields:

Type: Gradient type. This will be either #LINEAR, #CONICAL, or #RADIAL.

StartColor:

Gradient start color.

EndColor:

Gradient end color.

Angle: Gradient angle. Only supported for types #LINEAR and #CONICAL.

CenterX, CenterY:

Gradient center point. Only supported for types #RADIAL and #CONICAL.

Chapter 27: Draw library 493

Balance: Gradient balance point. Only supported for #CONICAL.

Border: Gradient border. Only supported for #RADIAL.

Colors: If the gradient uses more than two colors, this field will contain a table with
all those colors and their stop points.

See Section 20.6 [CreateGradientBGPic], page 232, for more information on gradients.

If style is #FILLTEXTURE, the return table will contain the following fields:

Brush: Identifier of the brush used for texturing.

X, Y: Pixel offset inside the brush to use as a starting offset for texturing.

See Section 27.14 [SetFillStyle], page 498, for more information on fill styles.

INPUTS
none

RESULTS

style the current fill style

t optional: table containing additional style information (see above)

27.8 GetFormStyle

NAME
GetFormStyle – get current form style (V7.1)

SYNOPSIS
style[, t] = GetFormStyle()

FUNCTION
This function returns the current form style set using SetFormStyle(). The return
value style is set to a combination of the flags #ANTIALIAS, #SHADOW, and #BORDER. See
Section 27.15 [SetFormStyle], page 499, for details.

If #SHADOW is set, GetFormStyle() also returns a table as the second return value which
contains the following fields:

ShadowColor:

The shadow color.

ShadowSize:

The distance of the shadow from the main shape in pixels.

ShadowDir:

The direction of the shadow. This will be one of the directional constants.

If #BORDER is set, the return table will contain the following fields:

BorderColor:

The color of the border.

BorderSize:

The thickness of the border in pixels

494 Hollywood manual

See Section 27.15 [SetFormStyle], page 499, for more information on form styles.

INPUTS
none

RESULTS

style a combination of form style flags

t optional: table containing additional style information (see above)

27.9 GetLineWidth

NAME
GetLineWidth – get current outline thickness (V7.1)

SYNOPSIS
t = GetLineWidth()

FUNCTION
This function returns the current outline thickness set by SetLineWidth() or
SetFillStyle(). See Section 27.16 [SetLineWidth], page 501, for details.

INPUTS
none

RESULTS

t current outline thickness

27.10 Line

NAME
Line – draw a line

SYNOPSIS
Line(x1, y1, x2, y2[[, color], table])

FUNCTION
This function draws a line from the point defined by x1 and y1 to the point defined by
x2 and y2 in the specified color (RGB value).

If you want to have anti-aliased lines, use the SetFormStyle() command to enable anti-
aliased drawing.

If layers are enabled, this command will add a new layer of the type #LINE to the layer
stack.

New in Hollywood 2.0: Color can also be an ARGB value for alpha-blended drawing.

Starting with Hollywood 4.5 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The

Chapter 27: Draw library 495

optional table argument can be used to configure the style of the line. The following
options are possible:

Thickness:

This tag allows you to specify the thickness of the line you want to draw.
The minimum acceptable value here is 1 which will draw a normal line. This
is also the default if you do not specify this tag. (V2.5)

Arrowhead:

This tag allows you to turn the line into an arrow. It can be set to one of
the following tags:

#ARROWHEAD_NONE:

No arrowhead. This is the default mode.

#ARROWHEAD_SINGLE:

Add arrowhead to end of line.

#ARROWHEAD_DOUBLE:

Add arrowhead to start and end of line.

Defaults to #ARROWHEAD_NONE. (V9.1)

Furthermore, the optional table argument can also contain one or more of the standard
tags for all drawing commands. See Section 27.17 [Standard drawing tags], page 501, for
more information about the standard tags that nearly all Hollywood drawing commands
support.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color passed to the function.

INPUTS

x1 source x offset

y1 source y offset

x2 destination x offset

y2 destination y offset

color optional: RGB or ARGB color (defaults to #BLACK) color is optional because
it is not required when you render to a mask or alpha channel

table optional: table containing further arguments; can be any from the ones listed
above and from the standard tags (V4.5)

EXAMPLE
Line(0, 0, 639, 479, #WHITE)

Line(639, 0, 0, 479, #WHITE)

The above code draws a white cross on the display.

496 Hollywood manual

27.11 Plot

NAME
Plot – draw a pixel

SYNOPSIS
Plot(x, y[, color])

FUNCTION
This function draws a single pixel to the display in the specified color. Plot() works
only with disabled layers. If you want to have a 1x1 sized layer, you can use Box() to
achieve this result.

New in Hollywood 2.0: Color can also be an ARGB value for alpha-blended drawing.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color passed to the function.

INPUTS

x x offset

y y offset

color optional: RGB or ARGB color (defaults to #BLACK) color is optional because
it is not required when you render to a mask or alpha channel

EXAMPLE
Plot(#CENTER, #CENTER, #RED)

Plot a red pixel in the middle of your display.

27.12 Polygon

NAME
Polygon – draw a polygon (V1.9)

SYNOPSIS
Polygon(x, y, vertices, count[[, color], table])

FUNCTION
This function draws a polygon from a table of vertices. You have to pass a table of
x,y points that are used to draw the polygon in the vertices parameter. The count

parameter specifies how many vertices your polygon has. Additionally, you need to
specify the color for the polygon (in RGB format). The polygon will be drawn in the form
style specified using SetFormStyle() and will be filled according to the configuration
selected with SetFillStyle(). Also remember that the last vertex should close your
polygon, which means that it must be the same as the first vertex.

The vertices can also be negative and/or specified in floating point notation to achieve the
best precision. Hollywood will not round them off before it does the final rasterization.

If layers are enabled, this command will add a new layer of the type #POLYGON to the
layer stack.

Chapter 27: Draw library 497

New in Hollywood 2.0: Color can also be an ARGB value for alpha-blended drawing.

Starting with Hollywood 4.5, this function accepts a new optional table argument that
can be used to specify one or more of the standard tags for all of Hollywood’s draw
commands. See Section 27.17 [Standard drawing tags], page 501, for more information
about the standard tags that nearly all Hollywood drawing commands support.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color passed to the function.

INPUTS

x x offset for the polygon on the display

y y offset for the polygon on the display

vertices a table of vertices that describe the polygon

count number of vertices in the table

color optional: RGB or ARGB color (defaults to #BLACK) color is optional because
it is not required when you render to a mask or alpha channel

table optional: table containing further arguments; can be any from the ones listed
above and from the standard tags (V4.5)

EXAMPLE
v = {}

v[0] = 0 ;X1

v[1] = 100 ;Y1

v[2] = 50 ;X2

v[3] = 0 ;Y2

v[4] = 100 ;X3

v[5] = 100 ;Y3

v[6] = 0 ;X4

v[7] = 100 ;Y4

Polygon(#CENTER, #CENTER, v, 4, #RED)

The above code draws a red triangle in the center of the display.

Polygon(#CENTER, #CENTER, v, 4, #RED, {Rotate = 45})

The above code draws a triangle rotated by 45 degrees.

27.13 ReadPixel

NAME
ReadPixel – read a pixel from output device (V1.5)

SYNOPSIS
col = ReadPixel(x, y)

498 Hollywood manual

FUNCTION
This function reads a pixel from the position specified by x and y from the current output
device and returns its color.

Please note: The color returned by this function can slightly vary from the original color
at this position. For example, if you have a brush which is completely white (i.e. all
pixels have the color $FFFFFF). If you use ReadPixel() now to read the color of an
arbitrary pixel from this brush, you will receive the color $FFFFFF only if Hollywood
runs on a 24-bit or 32-bit screen. If Hollywood runs on a 16-bit screen, you will get the
color $FCF8FC, on a 15-bit screen you would receive $F8F8F8. This is because those
screens do not have 16.7 million colors but only 65536 (16-bit screens) or 32768 (15-bit
screens) respectively. You can use the function GetRealColor() to find out which color
represents the specified color on the current screen.

If the current output device is the mask of a brush, then ReadPixel() will return either
0 if the pixel is invisible or 1 if the pixel is visible.

If the current output device is an alpha channel of a brush, then ReadPixel() will return
the transparency level of the requested pixel which ranges from 0 (full transparency) to
255 (no transparency).

INPUTS

x x coordinate of the pixel

y y coordinate of the pixel

RESULTS

col color or transparency setting of the pixel at the specified position

EXAMPLE
CreateBrush(1, 320, 256)

SelectBrush(1)

SetFillStyle(#FILLCOLOR)

Box(0, 0, 320, 256, #GREEN)

a = ReadPixel(100, 100)

EndSelect()

The above code draws a green rectangle to brush 1 and reads the pixel at 100:100 from
it. The variable a will receive the value of #GREEN because the whole brush is filled with
green.

27.14 SetFillStyle

NAME
SetFillStyle – set filling style for draw commands (V1.5)

SYNOPSIS
SetFillStyle(style)

SetFillStyle(#FILLGRADIENT, type, startcol, endcol[, angle, t]) (V2.0)

SetFillStyle(#FILLTEXTURE, brush_id[, x, y]) (V2.0)

SetFillStyle(#FILLNONE[, thickness]) (V2.0)

Chapter 27: Draw library 499

FUNCTION
This function allows you to define the filling style for the Arc(), Box(), Circle(),
Ellipse() and Polygon() commands. By default, the filling style is set to #FILLNONE,
which means that just the outlines are drawn.

Currently the following styles are supported:

#FILLCOLOR:

Fill objects with color

#FILLNONE:

Do not fill object, just draw the outline. Starting with Hollywood 2.0, you
can also specify a line thickness. The default for thickness is 1 which means
an outline thickness of a single pixel. Note that #FILLNONE only supports
the #SHADOW and #BORDER form styles when layers are enabled. Otherwise
no shadow or border will be drawn.

#FILLGRADIENT:

Fills objects with a gradient. You have to specify three more arguments
which set the type of the gradient as well as its colors; additionally you
can specify the optional argument angle which will rotate the gradient, and
there is an optional table argument for even more options; See Section 20.6
[CreateGradientBGPic], page 232, for details. (V2.0)

#FILLTEXTURE:

Fills objects with a texture. You have to specify an additional argument
which specifies the identifier of the brush that shall be used for texturing.
Please note that any transparency channels that the brush may have (mask
or alpha channel) are currently not supported by texturing. The optional x
and y parameters are new in Hollywood 4.6. They allow you to specify an
offset into the texture brush. Texturing will then start from this offset in
the brush. The default for these arguments is 0/0 which means start at the
top-left corner inside the texture brush. (V2.0)

INPUTS

style a style id as listed above

... additional arguments depend on the chosen style

EXAMPLE
SetFillStyle(#FILLCOLOR)

Box(0, 0, 320, 256, #RED)

Draw a filled red rectangle at 0:0 with a dimension of 320x256.

27.15 SetFormStyle

NAME
SetFormStyle – set the form style for graphics primitives (V2.5)

SYNOPSIS
SetFormStyle(style[, t])

500 Hollywood manual

DEPRECATED SYNTAX
SetFormStyle(#SHADOW, color, distance, direction)

SetFormStyle(#BORDER, color, size)

FUNCTION
This function can be used to configure the drawing style for the commands of the graph-
ics primitives library. This function affects the look of the Arc(), Box(), Circle(),
Ellipse(), Line(), and Polygon() commands.

The style must be one of the following predefined constants:

#NORMAL This resets the form style to the default style.

#ANTIALIAS

This sets the form style to anti-alias; the graphics primitives will be drawn
with anti-aliasing.

#SHADOW This sets the form style to shadow. The forms will be drawn with a shadow
with this style. The color argument specifies the shadow color. This color
can be either in RGB or ARGB notation. Shadow transparency is fully sup-
ported. The distance argument specifies the distance of the shadow from
the main form in pixels. The direction argument specifies the direction of
the shadow. This must be one of the directional constants. Please note that
#SHADOW is not supported for the fill style #FILLNONE if layers are disabled.

#BORDER This sets the form style to bordered. A border of the specified size will be
drawn around the form with this style. The color argument specifies the
color for the border. This color can either be in RGB or ARGB notation.
Border transparency is fully supported. The size argument specifies the
desired thickness of the border in pixels. Please note that #BORDER is not
supported for the fill style #FILLNONE if layers are disabled. Before Holly-
wood 9.0, this style was called #EDGE.

To combine multiple form styles in a single call simply bit-or them with another, e.g. a
call to SetFormStyle(#SHADOW|#BORDER) will enable the shadow and border form styles.
Obviously, the style #NORMAL is mutually exclusive and cannot be combined with any
other style.

Starting with Hollywood 9.0, SetFormStyle() uses a new syntax that accepts an optional
table argument that supports the following tags:

ShadowDir:

Specifies the direction of the shadow. This must be set to one of Hollywood’s
directional constants. This tag is only handled when the #SHADOW style has
been set (see above). (V9.0)

ShadowColor:

Specifies the color of the shadow. This must be an ARGB value that can
contain a transparency setting. This tag is only handled when the #SHADOW
style has been set (see above). (V9.0)

ShadowSize:

Specifies the length of the shadow. This tag is only handled when the
#SHADOW style has been set (see above). (V9.0)

Chapter 27: Draw library 501

BorderColor:

Specifies the color of the border. This must be an ARGB value that can
contain a transparency setting. This tag is only handled when the #BORDER
style has been set (see above). (V9.0)

BorderSize:

Specifies the size of the border. This tag is only handled when the #BORDER
style has been set (see above). (V9.0)

Please note that the Line() command does not support the form styles #SHADOW and
#BORDER. It only recognizes the style #ANTIALIAS.

INPUTS

style special style constant (see list above)

t optional: table argument containing further options (see above) (V9.0)

EXAMPLE
SetFormStyle(#ANTIALIAS)

The function call above enables anti-aliased forms.

SetFormStyle(#SHADOW, {ShadowColor = ARGB(128, $939393),

ShadowSize = 16, ShadowDir = #SHDWSOUTHEAST})

The above code enables a half-transparent grey shadow which will be positioned 16 pixels
to the south-east of the main form.

27.16 SetLineWidth

NAME
SetLineWidth – set width for outline drawing (V5.0)

SYNOPSIS
SetLineWidth(width)

FUNCTION
This command can be used to change the line thickness when the fill style is set to
#FILLNONE. You can also change the line thickness by calling SetFillStyle() with fill
style set to #FILLNONE but using SetLineWidth() makes the code more readable.

INPUTS

width desired line thickness for outline drawing

27.17 Standard draw tags

Starting with Hollywood 4.0, most of the drawing functions accept an optional table ar-
gument now, which lets you configure further options. For example, you can specify tags
which will automatically scale or rotate the graphics before displaying it.

Many of the standard drawing tags only work when layers are enabled. Some, however, can
also be used when layers are off. Note that the graphics data of the source object will never

502 Hollywood manual

be changed. If layers are on Hollywood will insert the new layer and immediately apply
any transformation before the layer is made visible. If layers are off a copy of the original
graphics will be made. The original graphics data will never be changed (in contrast to
functions like ScaleBrush(), RotateBrush(), TransformBrush() etc. which modify the
brushes data). Thus, you can be sure that you will always get the best quality when using
the standard draw tags to apply transformations, because Hollywood will always use the
original graphics data.

For every standard draw tag there is a default value that is used when the tag is not specified.
You can modify this default setting using the new SetDrawTagsDefault() command which
allows you to define new default values for each tag. This is very useful if you would like to
permanently use a different default value for a certain tag; for example, if you permanently
want to use an anchor point of 0.5/0.5 instead of 0.0/0.0, or if you want to change the
default layer insert position from frontmost to backmost etc.

The following standard tags are currently defined:

Width, Height:

If you specify these tags, the object will be scaled to the specified dimension
and then displayed. (V4.0)

Rotate: This tag will rotate the graphics by the specified degrees and then display it.
(V4.0)

SmoothScale:

If this is set to True, scaling and/or rotation will be done using anti-aliased
interpolation. This looks better but is a lot slower. (V4.0)

ScaleX, ScaleY:

This is an alternative way of scaling the object. You have to pass a floating
point value here that indicates a scaling factor. For example, 0.5 means half
the size, 2.0 means twice the size. This is especially convenient if you would
like to keep the proportions of the object that you want to scale. If you use the
same factor for ScaleX and ScaleY, the proportions of the graphics will remain
intact. Please note that ScaleX/Y and Width/Height are mutually exclusive.
You must not mix both groups. Either use ScaleX/Y, or stick to Width/Height.
(V4.5)

Transform:

This tag allows you to specify a 2x2 transformation matrix. Transformation
matrices are useful if you want to apply scaling and rotation at the same time,
or if you want to mirror an object. You have to pass a table to Transform.
The table must contain the four constituents of a 2x2 transformation ma-
trix in the following order: sx, rx, ry, sy. See Section 21.78 [Transform-
Brush], page 314, for more information about transformation matrices. Please
note that the Transform tag is mutually exclusive with the following tags:
Width/Height/ScaleX/ScaleY/Rotate. You must not combine it with any of
these tags. (V4.5)

AnchorX, AnchorY:

You can use these two tags to specify the anchor point of the graphics object
(sometimes the anchor point is referred to as the ’hot spot’). The anchor point

Chapter 27: Draw library 503

can be any point between 0.0/0.0 (top left corner of the graphics object) and
1.0/1.0 (bottom right corner of the graphics object). The center of the graphics
object would be defined by anchor point of 0.5/0.5. All transformations (scaling,
rotation etc.) will be applied relative to the anchor point. Also, the position
of an object is always relative to the anchor point. For example, take a look at
the following code:

DisplayBrush(1, 0, 0, {AnchorX = 0.5, AnchorY = 0.5})

This call will make the brush’s center appear at 0:0 because the anchor point
is set to 0.5/0.5. If you want the brush’s top left corner to appear at 0:0, you
will have to use an anchor point of 0.0/0.0 (which is also the default anchor
point, so you do not have to specify it at all). Anchor points are most of the
time only used when layers are enabled. However, you can also use AnchorX/Y
if layers are off. See Section 34.40 [SetLayerAnchor], page 678, for some more
information about the anchor point concept. (V4.5)

Hidden: Allows you to create a layer that is initially hidden. If you set this tag to
True, the graphics will be inserted as a layer but nothing will be shown because
the layer is kept hidden. This function is only available with enabled layers.
Defaults to False. (V4.5)

InsertPos:

Allows you to specify the insert position for the new layer. The layer will be
inserted at this position with all other layers being shifted down in the hierarchy.
The first layer is at position 1. Specifying a position of 0 here will insert the
layer as the last layer. This is also the default setting. You can also specify
the name of a layer at whose position the new layer should be inserted. This
is perfectly allowed. Of course, this function only works with enabled layers.
(V4.5)

Name: This tag can be used to assign a name to the layer right at creation time. This
is pretty much the same as calling the SetLayerName() function on the layer
right after inserting it. Specifying the Name tag here just saves you some typing
and makes the code more readable. This tag is only handled when layers are
enabled. By default, no names are given to new layers. By default, they can
only be referred to using IDs. (V4.5)

Group: If layers are enabled, you can use this tag to attach the layer to a group right
at creation time. This is pretty much the same as calling the GroupLayer()

function on the layer right after creating it. Specifying the Group tag here just
saves you some typing and makes the code more readable. This tag is only
handled when layers are enabled. See Section 34.16 [GroupLayer], page 660, for
details. (V10.0)

Transparency:

You can use this tag to specify a global transparency setting for this graphics
object. This can be a value ranging from 0 (no transparency) to 255 (full
transparency), or alternatively, a string containing a percentage (e.g. "50%"

for half shine through transparency). Defaults to 0 which means no global
transparency. (V4.5)

504 Hollywood manual

GlobalTransparency:

This is only supported when layers are enabled. If it is set to True, the layer’s
transparency setting set using the Transparency tag or using functions like
SetLayerTransparency() will also be applied to the layer’s shadow. For some
reason Hollywood never did that by default and in order to maintain compat-
ibility with scripts which expect the old behaviour the functionality has been
added using a new tag. If you want to globally enable the new behaviour for all
your layers, just call SetDrawTagsDefault() with GlobalTransparency set to
True. (V9.1)

Tint: You can use this tag to specify a global color tinting setting for this graphics
object. This can be a value ranging from 0 (no tinting) to 255 (full color tinting),
or alternatively, a string containing a percentage (e.g. "50%" for medium color
tinting). If you set this tag to anything else than 0, you must also provide a
tint color in the TintColor tag (see below). Defaults to 0 which means no
tinting. Starting with Hollywood 5.0 this tag is directly mapped to the Tint

filter. Thus, specifying the Tint tag is the same as specifying a Tint filter in
the Filters table below. (V4.5)

TintColor:

Only required if you also specify Tint. In that case, you have to specify a RGB
color color here that will be used for tinting. (V4.5)

Shadow: If you set this tag to True, the graphics object will be drawn with a drop shadow.
You can configure the look of the shadow using the ShadowDir, ShadowSize,
ShadowColor, and ShadowRadius tags. See below for more information. This
tag is only supported when layers are turned on. See Section 34.47 [SetLayer-
Shadow], page 688, for details. (V5.0)

ShadowDir:

Specifies the direction of the shadow. This must be set to one of Hollywood’s
directional constants. This tag is only handled when Shadow is set to True (see
above). (V5.0)

ShadowColor:

Specifies the color of the shadow. This must be an ARGB value that can contain
a transparency setting. This tag is only handled when Shadow is set to True

(see above). (V5.0)

ShadowPen:

When palette mode is set to #PALETTEMODE_PEN and the drawing target uses a
palette, the shadow will be drawn using the pen specified here instead of the
color specified in the ShadowColor tag from above. (V9.0)

ShadowSize:

Specifies the size of the shadow. This tag is only handled when Shadow is set
to True (see above). (V5.0)

ShadowRadius:

Specifies the shadow radius. This tag is only handled when Shadow is set to
True (see above). (V5.0)

Chapter 27: Draw library 505

Border: This tag can be used to draw the graphics object with a border frame. You
can configure the look of the border using the BorderSize and BorderColor

tags. Please see below for more information. This tag is only supported when
layers are turned on. See Section 34.41 [SetLayerBorder], page 679, for details.
(V5.0)

BorderColor:

Specifies the color of the border. This must be an ARGB value that can contain
a transparency setting. This tag is only handled when Border is set to True

(see above). (V5.0)

BorderPen:

When palette mode is set to #PALETTEMODE_PEN and the drawing target uses
a palette, the border will be drawn using the pen specified here instead of the
color specified in the BorderColor tag from above. (V9.0)

BorderSize:

Specifies the size of the border. This tag is only handled when Border is set to
True (see above). (V5.0)

Filters: This tag can be used to apply filters to this graphics object. You have to pass
a table to this tag that describes the desired configuration of the single filters.
See Section 34.43 [SetLayerFilter], page 681, for more information on how this
table needs to be organized. Note that although the documentation points to
the layers library, the Filters tag actually also works when layers are disabled.
(V5.0)

507

28 Error management library

28.1 ERROR

NAME
ERROR – abort compilation with an error message (V6.1)

SYNOPSIS
@ERROR msg$

FUNCTION
Whenever the preprocessor reaches this command, compilation will be immediately
aborted and the specified error message will be shown. This is only useful for debugging
purposes.

INPUTS

msg$ error message to show

28.2 Error

NAME
Error – exit with custom error message (V2.0)

SYNOPSIS
Error(msg$)

FUNCTION
This function terminates the script and displays the message specified in msg$. This is
useful if your script shall be aborted because an unexpected condition occurred.

INPUTS

msg$ error message to show

EXAMPLE
If Exists("Game.dat") = False Then Error("Cannot read game data!")

The code above checks for the file "Game.dat" and exits with an error message if it does
not exist.

28.3 Error codes

By default, Hollywood will always exit when an error occurs. You can change this behaviour
by using the ExitOnError() and GetLastError() functions, or by installing a custom
error handler using RaiseOnError(). Both ways will supply you with an error code that
indicates the error that has just happened. Here is a list of all error codes currently defined
by Hollywood (some error codes are no longer used but have to be kept for compatibility
reasons):

#ERR_NONE

No error (0)

508 Hollywood manual

#ERR_MEM Out of memory! (1000)

#ERR_UNIMPLCMD

Unimplemented command! (1001)

#ERR_NORETVAL

No return value specified! (1002)

#ERR_USERABORT

User abort! (1003)

#ERR_SCREEN

Error opening screen! (1004)

#ERR_WRITE

Could not write all characters to file! Check if there is enough free space! (1005)

#ERR_UNTERMINTDSTR

Unterminated string! (1006)

#ERR_UNKNOWNCOND

Unknown condition! (1007)

#ERR_MISSINGSEPARTR

Multiple commands in one line have to be separated by a colon! (1008)

#ERR_READ

Could not read all characters from file! Check if it is read protected! (1009)

#ERR_WINDOW

Unable to open window! (1010)

#ERR_ELSEWOIF

ELSE without IF! (1011)

#ERR_ENDIFWOIF

ENDIF without IF! (1012)

#ERR_IFWOENDIF

IF without ENDIF! (1013)

#ERR_MISSINGPARAMTR

Not enough arguments! (1014)

#ERR_FORWONEXT

FOR without NEXT! (1015)

#ERR_NEXTWOFOR

NEXT without FOR! (1016)

#ERR_WHILEWOWEND

WHILE without WEND! (1017)

#ERR_SYNTAXERROR

General syntax error! (1018)

#ERR_WRONGDTYPE

Wrong data type specified! (1019)

Chapter 28: Error management library 509

#ERR_VARSYNTAX

Syntax error in variable name! (1020)

#ERR_WENDWOWHILE

WEND without WHILE! (1021)

#ERR_UNKNOWNCMD

Unknown command %s ! (1022)

#ERR_MISSINGBRACKET

You specified too many arguments or forgot a close bracket! (1023)

#ERR_VALUEEXPECTED

Value expected! (1024)

#ERR_OPENLIB

Cannot open %s ! (1025)

#ERR_VAREXPECTED

Variable expected! (1026)

#ERR_LABINFOR

Labels within a For() loop are not allowed! (1027)

#ERR_LABINIF

Labels inside If() conditions are not allowed! (1028)

#ERR_LABINWHILE

Labels within a While() loop are not allowed! (1029)

#ERR_WRONGOP

Wrong operator for this type! (1030)

#ERR_GETDISKOBJ

Cannot open icon! (1031)

#ERR_EVNTEXPCTED

You need to specify a Hollywood event! (1032)

#ERR_EMPTYOBJ

Cannot create empty text objects! (1033)

#ERR_EMPTYSCRIPT

Your script is empty! (1034)

#ERR_COMMENTSTRUCT

Incoherent comment structure! (1035)

#ERR_ALRDYDECLRD

This variable was already used and initialized! (1036)

#ERR_WRONGFLOAT

Illegal float number format! (1037)

#ERR_REQUIREFIELD

You need to specify an array field! (1038)

510 Hollywood manual

#ERR_OUTOFRANGE

Specified array field is out of range! (1039)

#ERR_RETWOGOSUB

Return without Gosub! (1040)

#ERR_FINDARRAY

Requested object not found! (1041)

#ERR_FINDCST

Constant not found! (1042)

#ERR_LOCK

Error locking directory! (1043)

#ERR_LOADPICTURE

Cannot load picture %s! Make sure that you have a datatype for this format!
(1044)

#ERR_READFILE

Cannot read file %s ! (1045)

#ERR_NOTPROTRACKER

Module is not in Protracker format! (1046)

#ERR_UNKNOWNSEQ

Unknown sequence character after backslash! (1047)

#ERR_DIRLOCK

Error locking directory %s ! (1048)

#ERR_KEYWORD

Unknown keyword! (1049)

#ERR_KICKSTART

You need at least Kickstart 3.0! (1050)

#ERR_FREEABGPIC

You cannot free the background picture that is currently displayed! (1051)

#ERR_WRITEFILE

Cannot write to file %s ! (1052)

#ERR_VERSION

This script requires at least Hollywood %s ! (1053)

#ERR_NOFUNCTION

This command does not return anything! (1054)

#ERR_WRONGUSAGE

Wrong usage/parameters for this command! Read the documentation! (1055)

#ERR_SELECTBG

This command cannot be used when SelectBGPic() is active! (1056)

#ERR_ARRAYDECLA

Array "%s[]" was not declared! (1057)

Chapter 28: Error management library 511

#ERR_CMDASVAR

This variable name is already used by a command! (1058)

#ERR_CONFIG

No script filename specified! (1059)

#ERR_ARGS

Wrong arguments specified! (1060)

#ERR_DOUBLEDECLA

Double declaration! Number already assigned previously! (1061)

#ERR_EQUALEXPECTED

Equal sign expected! (1062)

#ERR_OPENANIM

Cannot load animation! Make sure that you got at least version 40 of anima-
tion.datatype and realtime.library! Please note that MorphOS does not have a
datatype for IFF ANIM files currently. So if you want to use IFF ANIM files,
you need to install a datatype first, e.g. the IFF ANIM datatype of OS3.1!
(1063)

#ERR_OPENFONT

Undefined (1064)

#ERR_OPENSOUND

Cannot load sample %s ! Make sure you have a datatype for this sample
format! If you tried to load a 16-bit sample and get this error, you need
to install a sound.datatype replacement because the OS 3.x datatype does
only support 8-bit samples. You can get the sound.datatype replacement from
http://www.stephan-rupprecht.de/ or from the Hollywood CD-ROM. You do
NOT need the replacement on MorphOS 1.x because that already uses a new
sound.datatype which supports 16-bit samples! (1065)

#ERR_INTERNAL

Internal limit encountered! Contact the author... (1066)

#ERR_PUBSCREEN

Cannot find the specified public screen! (1067)

#ERR_BRUSHLINK

This command cannot handle linked brushes! (1068)

#ERR_WRONGID

Please use only positive integers for your objects! (1069)

#ERR_AHI General AHI error! Check your AHI installation and settings! (1070)

#ERR_VARLENGTH

Variable length is limited to 64 characters! (1071)

#ERR_LABELDECLA

Cannot find label "%s" ! (1072)

#ERR_LABELDOUBLE

Label "%s" was already defined! (1073)

512 Hollywood manual

#ERR_NOKEYWORDS

Keywords are not allowed here! (1074)

#ERR_NOCONSTANTS

Constants are not allowed here! (1075)

#ERR_SEEK

Invalid seek position specified! (1076)

#ERR_CSTDOUBLEDEF

Constant #%s was already declared! (1077)

#ERR_NOLAYERS

This function requires enabled layers! (1078)

#ERR_LAYERSUPPORT

This layer is not supported by GetBrushLink()! (1079)

#ERR_UNKNOWNATTR

Unknown attribute specified! (1080)

#ERR_LAYERRANGE

Specified layer is out of range! (1081)

#ERR_SELECTBRUSH

This command cannot be used when SelectBrush() is active! (1082)

#ERR_POINTERFORMAT

Pointer image must be in 4 colors and not wider than 16 pixels! (1083)

#ERR_CREATEDIR

Error creating directory %s ! (1084)

#ERR_DISPLAYSIZE

Unable to change display size to %s ! (1085)

#ERR_DISPLAYDESKTOP

You cannot specify an initial BGPic together with DISPLAYDESKTOP! (1086)

#ERR_GUIGFX

Cannot open guigfx.library version 20! Make sure that you have at least version
20 installed! (1087)

#ERR_RENDER

Cannot open render.library version 30! Make sure that you have at least version
30 installed! (1088)

#ERR_ZERODIVISION

Division by zero! (1089)

#ERR_WARPOS

You need at least WarpUP v5.1 for this program! (1090)

#ERR_UNKNOWN

Unknown error code! (1091)

#ERR_STRINGCST

You cannot specify string constants here! (1092)

Chapter 28: Error management library 513

#ERR_LABINFUNC

Labels are not allowed in functions! (1093)

#ERR_ANIMFRAME

Specified animation frame is out of range! (1094)

#ERR_REPEATWOUNTIL

REPEAT without UNTIL! (1095)

#ERR_UNTILWOREPEAT

UNTIL without REPEAT! (1096)

#ERR_FUNCWOENDFUNC

FUNCTION without ENDFUNCTION! (1097)

#ERR_ENDFUNCWOFUNC

ENDFUNCTION without FUNCTION! (1098)

#ERR_UNEXPECTEDSYM

Unexpected symbol! (1099)

#ERR_FUNCARGS

Variable, closing bracket or "..." expected! (1100)

#ERR_NOLOOP

No loop to break! (1101)

#ERR_TOKENEXPECTED

"%s" expected! (1102)

#ERR_BRACKETOPEN

Opening bracket expected! (1103)

#ERR_BRACKETCLOSE

Closing bracket expected! (1104)

#ERR_BRACEOPEN

Opening brace expected! (1105)

#ERR_BRACECLOSE

Closing brace expected! (1106)

#ERR_SQBRACKETOPEN

Opening square bracket expected! (1107)

#ERR_SQBRACKETCLOSE

Closing square bracket expected! (1108)

#ERR_NOCOMMA

Comma expected! (1109)

#ERR_SYNTAXLEVELS

Too many syntax levels! (1110)

#ERR_COMPLEXWHILE

WHILE condition too complex! (1111)

514 Hollywood manual

#ERR_NOCHAR

ASCII code specification is out of range! (1112)

#ERR_CHRCSTLEN

Character constant too long! (1113)

#ERR_CHRCSTEMPTY

Empty character constant not allowed! (1114)

#ERR_HEXPOINT

Decimal point used in hexadecimal value! (1115)

#ERR_NUMCONCAT

A space is necessary between number concatenations! (1116)

#ERR_MAXLOCALS

Too many local variables! (1117)

#ERR_MAXUPVALS

Too many upvalues! (1118)

#ERR_MAXPARAMS

Too many parameters! (1119)

#ERR_CONITEMS

Too many items in a constructor! (1120)

#ERR_MAXLINES

Too many lines in a chunk! (1121)

#ERR_COMPLEXEXPR

Expression or function too complex! (1122)

#ERR_CTRLSTRUCT

Control structure too long! (1123)

#ERR_NOCOLON

Colon expected! (1124)

#ERR_CASECST

Case expression must be constant! (1125)

#ERR_SWCHWOENDSWCH

SWITCH without ENDSWITCH! (1126)

#ERR_ENDSWCHWOSWCH

ENDSWITCH without SWITCH! (1127)

#ERR_BLKWOENDBLK

BLOCK without ENDBLOCK! (1128)

#ERR_ENDBLKWOBLK

ENDBLOCK without BLOCK! (1129)

#ERR_NUMSTRCMP

Attempt to compare a number with a string! (1130)

Chapter 28: Error management library 515

#ERR_CONCAT

Wrong data types for concatenation! (1131)

#ERR_TABLEDECLA

Table %s not found! (1132)

#ERR_FUNCDECLA

Function %s not found! (1133)

#ERR_INTERNAL1

Internal limit reached! Error code %s. (1134)

#ERR_STACK

Stack overflow! (1135)

#ERR_MEMCODE

Code size overflow! (1136)

#ERR_MEMCST

Constant table overflow! (1137)

#ERR_NUMEXPECTED

Number expected in argument %d! (1138)

#ERR_STREXPECTED

String expected in argument %d! (1139)

#ERR_TABEXPECTED

Table expected in argument %d! (1140)

#ERR_READONLY

File was opened in read-only mode! (1141)

#ERR_WRITEONLY

File was opened in write-only mode! (1142)

#ERR_DELETEFILE

Could not delete file! (1143)

#ERR_EXAMINE

Could not examine %s! (1144)

#ERR_RENAME

Could not rename file! (1145)

#ERR_MEMRANGE

Specified offset is out of range! (1146)

#ERR_SELECTMASK

This command cannot be used when SelectMask() is active! (1147)

#ERR_MODIFYABG

Attempt to modify the active background picture! (1148)

#ERR_MODIFYABR

Attempt to modify the active brush! (1149)

516 Hollywood manual

#ERR_FUNCJMP

You cannot use GOTO/GOSUB inside functions! (1150)

#ERR_REVDWORD

You cannot use this reserved word here! (1151)

#ERR_LOCKBMAP

Could not lock bitmap! (1152)

#ERR_PALSCREEN

Hollywood does not run on palette screens! Please switch to a high or true
color mode! (1153)

#ERR_NEGCOORDS

Negative coordinates are not allowed here! (1154)

#ERR_NOANMLAYER

Specified layer is not an anim layer! (1155)

#ERR_BRUSHSIZE

Brush size does not match specified arguments! (1156)

#ERR_ENDWITHWOWITH

ENDWITH without WITH! (1157)

#ERR_WITHWOENDWITH

WITH without ENDWITH! (1158)

#ERR_FIELDINIT

Table field %s was not initialized! (1159)

#ERR_LABMAINBLK

Labels are only allowed in the main script block! (1160)

#ERR_NAMEUSED

Layer name was already assigned! (1161)

#ERR_LAYERSOFF

Layers must be turned off when using this function! (1162)

#ERR_LAYERSON

Layers cannot be turned on/off while off-screen rendering is active! (1163)

#ERR_NOLOOPCONT

No loop to continue! (1164)

#ERR_LOOPRANGE

Loop number is out of range! (1165)

#ERR_INTEXPECTED

Integer value expected! (1166)

#ERR_SELECTALPHACHANNEL

This command cannot be used when SelectAlphaChannel() is active! (1167)

#ERR_PIXELRANGE

Specified pixel is out of range! (1168)

Chapter 28: Error management library 517

#ERR_DATATYPEALPHA

Your picture.datatype does not support alpha channel! (1169)

#ERR_NOALPHA

Image "%s" does not have an alpha channel! (1170)

#ERR_PIXELFORMAT

Unknown pixel format detected! Hollywood cannot run on this screen! (1171)

#ERR_NOMASKBRUSH

This brush does not have a mask! (1172)

#ERR_FOREVERWOREPEAT

FOREVER without REPEAT! (1173)

#ERR_FINDBRUSH

Could not find brush %d! (1174)

#ERR_FINDTEXTOBJECT

Could not find text object %d! (1175)

#ERR_FINDANIM

Could not find anim %d! (1176)

#ERR_FINDBGPIC

Could not find BGPic %d! (1177)

#ERR_FINDSAMPLE

Could not find sample %d! (1178)

#ERR_FINDFILE

Could not find file handle %d! (1179)

#ERR_FINDMEMBLK

Could not find memory block %d! (1180)

#ERR_FINDTIMER

Could not find timer %d! (1181)

#ERR_FINDMOVE

Could not find move queue %d! (1182)

#ERR_STRORNUM

String or number expected in argument %d! (1183)

#ERR_PERCENTFORMAT

Invalid percent format in argument %d! (1184)

#ERR_FUNCEXPECTED

Function expected in argument %d! (1185)

#ERR_UNMPARENTHESES

Unmatched parentheses! (1186)

#ERR_WRONGOPCST

This operator cannot be used here! (1187)

518 Hollywood manual

#ERR_FINDBUTTON

Could not find button %d! (1188)

#ERR_NUMTABLEARG

Number expected in table argument "%s"! (1189)

#ERR_NUMCALLBACK

Callback function was expected to return a number! (1190)

#ERR_BGPICBUTTON

A BGPic needs to be active while calling button functions! (1191)

#ERR_WRONGHEX

Invalid hexadecimal specification! (1192)

#ERR_TOOMANYARGS

Too many arguments for this function! (1193)

#ERR_FINDINTERVAL

Could not find interval function %d! (1194)

#ERR_FINDTIMEOUT

Could not find timeout function %d! (1195)

#ERR_LOADSOUND

Error loading sample to sound card! (1196)

#ERR_STRINGEXPECTED

String expected! (1197)

#ERR_UNEXPECTEDEOF

Unexpected end of file! (1198)

#ERR_VMMISMATCH

Virtual machine data type mismatch! (1199)

#ERR_BADINTEGER

Bad integer in bytecode! (1200)

#ERR_BADUPVALUES

Bad upvalues in bytecode! (1201)

#ERR_BADCONSTANT

Bad constant type in bytecode! (1202)

#ERR_BADBYTECODE

Bad bytecode! (1203)

#ERR_BADSIGNATURE

Bad bytecode signature! (1204)

#ERR_UNKNUMFMT

Unknown number format in bytecode! (1205)

#ERR_INVNEXTKEY

Invalid key for next table item! (1206)

Chapter 28: Error management library 519

#ERR_TABLEOVERFLOW

Table overflow! (1207)

#ERR_TABLEINDEX

Table index is NaN! (1208)

#ERR_APPLETVERSION

This applet requires at least Hollywood %s! (1209)

#ERR_UNKNOWNSEC

Unknown section in applet! (1210)

#ERR_NOAPPLET

%s is no Hollywood applet! (1211)

#ERR_PLAYERCOMP

Compilation is not possible with HollywoodPlayer! (1212)

#ERR_FILEEXIST

File %s does not exist! (1213)

#ERR_MAGICKEY

Cannot locate magic key in player file! (1214)

#ERR_FINDCLIPREGION

Could not find clip region %d! (1215)

#ERR_FUNCREMOVED

This function is not supported any longer! (1216)

#ERR_COORDSRANGE

Specified coordinates are out of range! (1217)

#ERR_BADDIMENSIONS

Width/height values must be greater than 0! (1218)

#ERR_FINDSPRITE

Could not find sprite %d! (1219)

#ERR_SPRITEONSCREEN

Sprite %d is not on screen! (1220)

#ERR_PREPROCSYM

Unknown preprocessor command @%s! (1221)

#ERR_UNKNOWNTAG

Unknown tag "%s"! (1222)

#ERR_MASKNALPHA

Mask and alpha channel are mutually exclusive! (1223)

#ERR_NOSPRITES

Please remove all sprites first! (1224)

#ERR_WRONGCLIPREG

Clip region does not fit into the output device’s dimensions! (1225)

520 Hollywood manual

#ERR_NOCLIPREG

Please remove clip region before enabling layers! (1226)

#ERR_MODIFYSPRITE

Cannot modify a sprite that is on screen! (1227)

#ERR_MODIFYSPRITE2

Cannot modify a linked sprite! (1228)

#ERR_ENDDOUBLEBUFFER

Please end double buffering first! (1229)

#ERR_DBTRANSWIN

Double buffering is currently not supported for transparent displays! (1230)

#ERR_FINDMUSIC

Could not find music %d! (1231)

#ERR_MUSNOTPLYNG

Music %d is not currently playing! (1232)

#ERR_SEEKRANGE

Specified seek position is out of range! (1233)

#ERR_MIXMUSMOD

Music and tracker modules cannot be played at the same time! (1234)

#ERR_UNKNOWNMUSFMT

Unknown music format! (1235)

#ERR_MUSFMTSUPPORT

Music format does not support this function! (1236)

#ERR_TABLEORNIL

Table or Nil expected! (1237)

#ERR_PROTMETATABLE

Cannot change a protected metatable! (1238)

#ERR_ERRORCALLED

Undefined (1239)

#ERR_ADDTASK

Error adding task to the system! (1240)

#ERR_TASKSETUP

Error setting up task! (%s) (1241)

#ERR_READRANGE

Cannot read beyond end of file! (1242)

#ERR_BACKFILL

Wrong backfill configuration! (1243)

#ERR_NODOUBLEBUFFER

Double buffering mode is not currently active! (1244)

Chapter 28: Error management library 521

#ERR_STRTOOSHORT

Specified length exceeds string length! (1245)

#ERR_CACHEERROR

An error occurred while processing the gfx cache! (1246)

#ERR_STRTABLEARG

String expected in table argument "%s"! (1247)

#ERR_APPLET

No applet filename specified! (1248)

#ERR_KEYFILE

Keyfile error! (1249)

#ERR_NOTADIR

%s is not a directory! (1250)

#ERR_UNKTEXTFMT

Text format tag after square bracket not recognized! (1251)

#ERR_TEXTSYNTAX

Syntax error in text format specification! (1252)

#ERR_TEXTARG

Not enough arguments to this text format tag! (1253)

#ERR_DEFFONT

Error opening default font! (1254)

#ERR_ANTIALIAS

This font type does not support anti-aliased output! (1255)

#ERR_CREATEPORT

Could not create message port! (1256)

#ERR_NOREXX

ARexx server is not running! (1257)

#ERR_REXXERR

Rexx interpreter returned an error! (%s) (1258)

#ERR_STRCALLBACK

Callback function was expected to return a string! (1259)

#ERR_PORTNOTAVAIL

There is already a port with the name %s! (1260)

#ERR_BAD8SVX

Bad data in IFF 8SVX or IFF 16SV file! (1261)

#ERR_CMPUNSUPPORTED

This sound file uses an unsupported compression format! (1262)

#ERR_BADWAVE

Bad data in RIFF WAVE file! (1263)

522 Hollywood manual

#ERR_MUSNOTPAUSED

This music is not in pause state! (1264)

#ERR_CONFIG2

Undefined (1265)

#ERR_EXETYPE

Unknown executable type specified! (1266)

#ERR_OPENAUDIO

Cannot open audio device! (1267)

#ERR_DATATYPESAVE

Cannot open specified datatype for saving! (1268)

#ERR_DATATYPESAVE2

Datatype used for saving returned an error code! (1269)

#ERR_LOADFRAME

Error loading animation frame! (1270)

#ERR_LAYERSUPPORT2

This function cannot be used with layers enabled! (1271)

#ERR_SHORTIF

Short IF statement must be on a single line! (1272)

#ERR_SYSTOOOLD

Your Hollywood.sys version is too old! (1273)

#ERR_KEYNOTFOUND

Key "%s" not found in system base! (1274)

#ERR_FINDPORT

Port "%s" could not be found! (1275)

#ERR_TOOSMALL2

The active screen is not large enough to hold a %s display! (1276)

#ERR_SAVEPNG

Error saving PNG picture! (1277)

#ERR_NOTIGER

Hollywood requires at least version 10.4 (Tiger) of macOS! (1278)

#ERR_STREAMASSAMPLE

Cannot load audio stream as a sample! (1279)

#ERR_AUDIOCONVERTER

Error creating an audio converter for this format! (1280)

#ERR_RENDERCALLBACK

Error installing render callback on mixer bus! (1281)

#ERR_SETFILEATTR

Error setting file attributes! (1282)

Chapter 28: Error management library 523

#ERR_SETFILEDATE

Error setting file date! (1283)

#ERR_SETFILECOMMENT

Error setting file comment! (1284)

#ERR_INVALIDDATE

Invalid date format specification! (1285)

#ERR_LOCK2

Error locking %s! (1286)

#ERR_THREAD

Error setting up thread! (1287)

#ERR_UNSUPPORTEDFEAT

This feature is currently not supported on this platform! (1288)

#ERR_NOCHANNEL

Could not allocate audio channel for this sound! (1289)

#ERR_CREATEEVENT

Error creating unnamed event object! (1290)

#ERR_DSOUNDNOTIFY

Error obtaining sound notification interface! (1291)

#ERR_DSOUNDNOTIPOS

Error setting sound buffer notification positions! (1292)

#ERR_DSOUNDPLAY

Error starting sound buffer playback! (1293)

#ERR_AFILEPROP

Error getting audio file properties! (1294)

#ERR_DIRECTSHOW

Error setting up DirectShow environment! (#%d) (1295)

#ERR_REGCLASS

Error registering window class! (1296)

#ERR_TIMER

Error setting up timer function! (1297)

#ERR_SEMAPHORE

Error allocating semaphore object! (1298)

#ERR_8OR16BITONLY

Hollywood currently only supports 8 or 16 bit sounds! (1299)

#ERR_DISPMINIMIZED

This function cannot be used with a minimized display! (1300)

#ERR_COMMODITY

Error creating commodity object! (1301)

524 Hollywood manual

#ERR_MSGPORT

Error setting up message port! (1302)

#ERR_TEXTCONVERT

Error converting text to Unicode! (1303)

#ERR_ATSUI

Error in text operation (ATSUI error)! (1304)

#ERR_LFSYNTAX

Syntax error in link file database! (1305)

#ERR_ZLIBIO

A zlib IO error occurred! (1306)

#ERR_ZLIBSTREAM

A zlib stream error occurred! (1307)

#ERR_ZLIBVERSION

Invalid zlib version detected! (1308)

#ERR_ZLIBDATA

Invalid or incomplete deflate data (zlib)! (1309)

#ERR_PAKFORMAT

Unknown compression format! (1310)

#ERR_NOTXTLAYER

Specified layer is not a text layer! (1311)

#ERR_DDAUTOSCALE

Autoscale cannot be used together with DisplayDesktop! (1312)

#ERR_NODISLAYERS

Layers cannot be disabled when the layer scaling engine is used! (1313)

#ERR_LOCKEDOBJ

Cannot modify object while it is locked! (1314)

#ERR_WRITEJPEG

Error writing JPEG image! (1315)

#ERR_DDRECVIDEO

Scripts using DisplayDesktop cannot be recorded! (1316)

#ERR_WRONGCMDRECVIDEO

This command cannot be used while in video recording mode! (1317)

#ERR_FINDDIR

Could not find directory handle %d! (1318)

#ERR_MUSNOTPLYNG2

Music is not currently playing! (1319)

#ERR_FINDPOINTER

Could not find pointer image %d! (1320)

Chapter 28: Error management library 525

#ERR_POINTERIMG

Error creating pointer from image! (1321)

#ERR_READFUNC

Cannot find Hollywood function at this offset! (1322)

#ERR_BADBASE64

Invalid Base64 encoding! (1323)

#ERR_NOHWFUNC

Specified function is not a user function! (1324)

#ERR_SPRITEONSCREEN2

Sprite is not on screen! (1325)

#ERR_FINDASYNCDRAW

Could not find async draw function %d! (1326)

#ERR_FREECURPOINTER

Cannot free currently active pointer! (1327)

#ERR_READTABLE

Cannot find Hollywood table at this offset! (1328)

#ERR_LAYERSWITCH

Cannot switch layer mode while async draw is active! (1329)

#ERR_VIDEOSTRATEGY

Unknown video strategy specified! (1330)

#ERR_WRONGVSTRATEGY

Invalid video strategy configuration! (1331)

#ERR_FINDFONT

Cannot find font %s on this system! (1332)

#ERR_LINKFONT

Font %s cannot be linked because it is of a wrong type! (1333)

#ERR_FINDFONT2

Could not find font %d! (1334)

#ERR_FONTPATH

Font specification must not be a file! (1335)

#ERR_FONTFORMAT

Font is in an unsupported format! (1336)

#ERR_NOCOORDCST

You cannot use coordinate constants here! (1337)

#ERR_ANIMDISK

This function cannot be used with disk-based animations! (1338)

#ERR_SELECTANIM

This command cannot be used when SelectAnim() is active! (1339)

526 Hollywood manual

#ERR_MODIFYAANIM

Attempt to modify the active anim! (1340)

#ERR_FINDANIMSTREAM

Could not find anim stream %d! (1341)

#ERR_NEEDMORPHOS2

This feature requires at least MorphOS 2.0! (1342)

#ERR_SMODEALPHA

Screen doesn’t support alpha transparent windows! (1343)

#ERR_FINDDISPLAY

Could not find display %d! (1344)

#ERR_MULTIBGPIC

Cannot use the a single BGPic for multiple displays! (1345)

#ERR_FREEADISPLAY

Cannot free the active display! (1346)

#ERR_CLOSEDDISPLAY

Cannot use this function while display is closed! (1347)

#ERR_ADDAPPICON

Error adding app icon to Workbench! (1348)

#ERR_SCREENSIZE

Screen size %s not supported by current monitor settings! (1349)

#ERR_DIFFDEPTH

Cannot switch display mode because of different color resolution! (1350)

#ERR_VIDRECMULTI

Cannot use multiple displays while in video recording mode! (1351)

#ERR_VIDRECTRANS

Cannot use transparent displays while in video recording mode! (1352)

#ERR_NEEDOS41

This feature requires at least AmigaOS 4.1! (1353)

#ERR_SYSIMAGE

Error obtaining system image! (1354)

#ERR_SYSBUTTON

Error creating system button! (1355)

#ERR_OPENANIM2

Animation file "%s" is in an unknown/unsupported format! (1356)

#ERR_OPENSOUND2

Sample file "%s" is in an unknown/unsupported format! (1357)

#ERR_LOADPICTURE2

Image file "%s" is in an unknown/unsupported format! (1358)

Chapter 28: Error management library 527

#ERR_SIGNAL

Error allocating signal! (1359)

#ERR_ADDAPPWIN

Error adding app window to Workbench! (1360)

#ERR_CLIPFORMAT

Unknown data format in clipboard! (1361)

#ERR_SORTFUNC

Invalid order function for sorting! (1362)

#ERR_INISYNTAX

Syntax error in configuration file! (1363)

#ERR_CLIPOPEN

Failed to open clipboard! (1364)

#ERR_CLIPREAD

Error reading from clipboard! (1365)

#ERR_SCALEBGPIC

Cannot change size of a BGPic that is selected into a display! (1366)

#ERR_SELECTBGPIC

You need to select the BGPic’s display before modifying the BGPic! (1367)

#ERR_CLIPWRITE

Error writing to clipboard! (1368)

#ERR_FINDLAYER

Cannot find layer "%s" in current BGPic! (1369)

#ERR_INVINSERT

Invalid insert position specified! (1370)

#ERR_ALREADYASYNC

Specified layer already has an async draw object attached! (1371)

#ERR_REMADLAYER

Cannot remove layer while it is used by an async draw object! (1372)

#ERR_NAMETOOLONG

Specified name is too long! (1373)

#ERR_GROUPNAMEUSED

Specified group name already assigned to a layer! (1374)

#ERR_REGISTRYREAD

Error reading from registry key %s! (1375)

#ERR_REGISTRYWRITE

Error writing to registry key %s! (1376)

#ERR_SELECTBGPIC2

Cannot modify the graphics of a BGPic associated with a display! (1377)

528 Hollywood manual

#ERR_MODIFYABGPIC

Attempt to modify the BGPic currently selected as output device! (1378)

#ERR_ADFWRONGDISP

Asynchronous drawing object is not associated with current display! (1379)

#ERR_ADFFREEDISP

Cannot free display before associated async draw objects have been freed!
(1380)

#ERR_SPRITELINK

Cannot create sprite link from sprite link! (1381)

#ERR_WRONGSPRITESIZE

Specified sprites must have the same dimensions! (1382)

#ERR_TRANSBRUSH

Cannot trim brush because it is fully transparent! (1383)

#ERR_DINPUT

Error opening DirectInput! (1384)

#ERR_JOYSTICK

Cannot acquire joystick! (1385)

#ERR_FT2 Error initializing freetype2! (1386)

#ERR_ICONDIMS

Specified image does not match required icon dimensions (%s)! (1387)

#ERR_BRUSHTYPE

This operation is not supported by the specified brush type! (1388)

#ERR_TFVBRUSH

Cannot insert a transformed vector brush as a layer! Use draw tags instead of
transforming the brush directly! (1389)

#ERR_BGPICTYPE

This operation is not supported by the specified BGPic type! (1390)

#ERR_TFVBRUSHBGPIC

Cannot convert a transformed vector brush into a BGPic! (1391)

#ERR_TFVBGPICBRUSH

Cannot convert a transformed vector BGPic into a brush! (1392)

#ERR_FINDPATH

Could not find path %d! (1393)

#ERR_EMPTYPATH

Cannot draw empty path! (1394)

#ERR_VFONTTYPE

You must use the inbuilt font engine for vector text! (1395)

#ERR_VFONT

Error setting up vector font! (1396)

Chapter 28: Error management library 529

#ERR_CREATESHORTCUT

Error creating shortcut! (1397)

#ERR_NOACCESS

Access denied! (1398)

#ERR_BADPLATFORM

Compiling for architecture "%s" not supported by this version! (1399)

#ERR_NEWHWPLUGIN

This plugin requires at least Hollywood %s! (1400)

#ERR_PLUGINVER

Version %s is required at minimum! (1401)

#ERR_PLUGINARCH

Plugin is incompatible with current platform! (%s) (1402)

#ERR_IMAGEERROR

Error in image data in file %s! (1403)

#ERR_RENDERADLAYER

Cannot render layer because it is attached to async draw object! (1404)

#ERR_NOJOYATPORT

No joystick found at specified game port! (1405)

#ERR_DEMO

This feature is not available in the demo version of Hollywood! (1406)

#ERR_DEMO2

Demo version script size is limited to 800 lines and/or 32 kilobyte! (1407)

#ERR_DEMO3

This demo version has expired! Please buy the full version! (1408)

#ERR_FINDCLIENT

Could not find connection %d! (1409)

#ERR_SOCKET

The following network error occurred: %s (1410)

#ERR_OPENSOCKET

Could not initialize base socket interface! (1411)

#ERR_FINDSERVER

Could not find server %d! (1412)

#ERR_SOCKOPT

Error setting socket options! (1413)

#ERR_PEERNAME

Error obtaining peer name! (1414)

#ERR_HOSTNAME

Error obtaining host name! (1415)

530 Hollywood manual

#ERR_UNKPROTOCOL

Unknown protocol in URL! (1416)

#ERR_BADURL

Invalid URL specified! (1417)

#ERR_HTTPERROR

HTTP error %d occurred! (1418)

#ERR_HTTPTE

Unsupported HTTP transfer mode! (1419)

#ERR_SENDDATA

An error occurred during data send! (1420)

#ERR_FTPERROR

FTP error %d occurred! (1421)

#ERR_RECVTIMEOUT

Receive timeout reached! (1422)

#ERR_RECVCLOSED

Remote server has closed the connection! (1423)

#ERR_RECVUNKNOWN

Unknown error occurred during data receive! (1424)

#ERR_FILENOTFOUND

File %s not found on this server! (1425)

#ERR_FTPAUTH

Access denied for specified user/password! (1426)

#ERR_UPLOADFORBIDDEN

No permission to upload file to %s! (1427)

#ERR_SOCKNAME

Error obtaining socket name! (1428)

#ERR_FINDUDPOBJECT

Could not find UDP object %d! (1429)

#ERR_BADIP

Invalid IP specified! (1430)

#ERR_XDISPLAY

Error opening connection to X server! (1431)

#ERR_CREATEGC

Error creating graphics context! (1432)

#ERR_PIPE

Error creating pipe! (1433)

#ERR_GTK Error opening GTK! (1434)

#ERR_NEEDCOMPOSITE

Compositing must be enabled for displays with alpha transparency! (1435)

Chapter 28: Error management library 531

#ERR_NOARGBVISUAL

Error obtaining a visual info that can handle ARGB graphics! (1436)

#ERR_XFIXES

The Xfixes extension is required for this feature! (1437)

#ERR_XCURSOR

The Xcursor extension is required for this feature! (1438)

#ERR_ALSAPCM

Error configuring ALSA PCM output stream! (#%d) (1439)

#ERR_SETENV

Error setting environment variable! (1440)

#ERR_UNSETENV

Error removing environment variable! (1441)

#ERR_XF86VIDMODEEXT

Screen mode switching requires the XFree86-VidModeExtension! (1442)

#ERR_NODISPMODES

No display modes found! (1443)

#ERR_UNKNOWNFILTER

Filter "%s" not recognized! (1444)

#ERR_NOFILTERNAME

Missing filter name in table field %s! (1445)

#ERR_TABEXPECTED2

Subtable expected in table "%s"! (1446)

#ERR_SMPRANGE

Specified sample value is out of range! (1447)

#ERR_NOTENOUGHPIXELS

Table does not contain enough pixels for specified size! (1448)

#ERR_FINDVIDEO

Could not find video %d! (1449)

#ERR_LOADVIDEO

File "%s" not recognized as a video stream! (1450)

#ERR_VIDNOTPLAYING

Cannot pause video because it is not playing! (1451)

#ERR_VIDNOTPAUSED

Cannot resume video because it is not paused! (1452)

#ERR_COLORSPACE

Error obtaining colorspace! (1453)

#ERR_QUICKTIME

This function requires QuickTime to be installed! (1454)

532 Hollywood manual

#ERR_VIDATTACHED

This functionality is not available while videos are attached to the display!
(1455)

#ERR_FGRABVIDSTATE

Cannot grab frame while video is playing or paused! (1456)

#ERR_VIDEOFRAME

Specified video frame is out of range! (1457)

#ERR_VIDEOTRANS

Videos cannot be played on top of transparent BGPics! (1458)

#ERR_LOADPLUGIN

Error loading plugin "%s"! (1459)

#ERR_VECGFXPLUGIN

This functionality requires a vectorgraphics plugin to be installed! (1460)

#ERR_INVCAPIDX

Invalid capture index! (1461)

#ERR_INVPATCAP

Invalid pattern capture! (1462)

#ERR_MALFORMPAT1

Malformed pattern! (ends with "%%") (1463)

#ERR_MALFORMPAT2

Malformed pattern! (missing "]") (1464)

#ERR_UNBALANCEDPAT

Unbalanced pattern! (1465)

#ERR_TOOMANYCAPTURES

Too many captures! (1466)

#ERR_MISSINGOPBRACK

Missing "[" after "%%f" in pattern! (1467)

#ERR_UNFINISHEDCAPTURE

Unfinished capture! (1468)

#ERR_TFIMAGE

Error transforming image! (1469)

#ERR_DRAWPATH

Error drawing path! (1470)

#ERR_MOBILE

This command is not available in the mobile version of Hollywood! (1471)

#ERR_DDMOBILE

Scripts using DisplayDesktop not supported on mobile devices! (1472)

#ERR_MULDISMOBILE

Multiple displays not supported in the mobile version of Hollywood! (1473)

Chapter 28: Error management library 533

#ERR_TRANSBGMOBILE

Transparent BGPics not supported in the mobile version of Hollywood! (1474)

#ERR_MODIFYPSMP

Cannot modify a sample that is currently playing! (1475)

#ERR_TABCALLBACK

Callback was expected to return a table! (1476)

#ERR_BADCALLBACKRET

Invalid callback return value! (1477)

#ERR_NOCALLBACK

This command must not be called from a callback function! (1478)

#ERR_LOWFREQ

Specified pitch value is too low! (1479)

#ERR_FINDLAYERDATA

Data item "%s" not found in specified layer! (1480)

#ERR_NODIRPATTERN

Filter patterns can only be used on directories! (1481)

#ERR_SEEKFORMAT

Source file format does not support seeking! (1482)

#ERR_PLUGINTYPE

Plugin type not recognized! (%s) (1483)

#ERR_NOMUSICCB

This command must only be called while in a music callback! (1484)

#ERR_NOFMBHANDLER

You have to install a "FillMusicBuffer" event handler first! (1485)

#ERR_UNKNOWNIMGOUT

Unknown image format specified! (1486)

#ERR_SAVEIMAGE

Error saving image! (1487)

#ERR_UNKNOWNANMOUT

Unknown anim format specified! (1488)

#ERR_SAVEANIM

Error saving anim! (1489)

#ERR_UNKNOWNSMPOUT

Unknown sample format specified! (1490)

#ERR_SAVESAMPLE

Error saving sample! (1491)

#ERR_UDEXPECTED

Userdata expected in argument %d! (1492)

534 Hollywood manual

#ERR_ASSERTFAILED

Assertion failed! (1493)

#ERR_REQUIREPLUGIN

This program requires %s! (1494)

#ERR_NOABSPATH

Absolute path specifications are not allowed here! (1495)

#ERR_FINDOBJECTDATA

Data item "%s" not found in specified object! (1496)

#ERR_HWBRUSH

Hardware brushes cannot be used here! (1497)

#ERR_HWBRUSHFUNC

This functionality is currently not supported for hardware brushes! (1498)

#ERR_SAVERALPHA

Format saver does not support alpha channel! (1499)

#ERR_VIDPAUSED

Video is paused. Use ResumeVideo() to resume playback! (1500)

#ERR_VIDPLAYING

Video is already playing! (1501)

#ERR_PERCENTFORMATSTR

Invalid percent format in table argument "%s"! (1502)

#ERR_SCRPIXFMT

Incompatible screen pixel format detected! (1503)

#ERR_SATFREEDISP

Cannot free display before attached satellites have been detached! (1504)

#ERR_CREATEICON

Error creating icon from image! (1505)

#ERR_GETSHORTCUT

Error retrieving full path from shortcut file! (1506)

#ERR_UNKNOWNMIMETYPE

Unknown MIME type for extension *.%s! (1507)

#ERR_NOMIMEVIEWER

Cannot find viewer for extension *.%s! (1508)

#ERR_JAVA

Cannot attach thread to Java VM! (1509)

#ERR_FINDACTIVITY

Cannot find activity "%s"! (1510)

#ERR_BEGINREFRESH

Cannot call this command while in BeginRefresh() mode! (1511)

Chapter 28: Error management library 535

#ERR_DBVIDEOLAYER

Video object is already in use as a layer on a BGPic! (1512)

#ERR_VIDEOLAYER

This functionality is not supported for video layers! (1513)

#ERR_VIDEOLAYERDRV

Video layers are only supported by Hollywood’s platform independent video
renderer! (1514)

#ERR_BADLAYERTYPE

Specified layer type does not support this functionality! (1515)

#ERR_VIDSTOPPED

Video is already stopped! (1516)

#ERR_VIDLAYERFUNC

Use functions from layers library to change attributes of video layers! (1517)

#ERR_SETADAPTER

Cannot set adapter! (1518)

#ERR_DISPLAYADAPTERSUPPORT

This functionality is not available with this display adapter! (1519)

#ERR_DLOPEN

Cannot load plugin: %s (1520)

#ERR_PLUGINSYMBOL

Error loading plugin symbol: %s (1521)

#ERR_BITMAP

Error allocating bitmap! (1522)

#ERR_SATELLITE

This functionality is not available when using display satellites! (1523)

#ERR_READVIDEOPIXELS

Error reading pixels from hardware bitmap! (1524)

#ERR_HWDBFREEDISP

Cannot free display while hardware double buffering is active! (1525)

#ERR_HWBMCLOSEDISP

Cannot allocate hardware bitmap while display has not been realized! (1526)

#ERR_INCOMPATBRUSH

Hardware brush is incompatible with the current display! (1527)

#ERR_ADDSYSEVENT

Error adding system event! (1528)

#ERR_SEEKFILE

This file adapter does not support seeking! (1529)

#ERR_CLOSEFILE

Error closing file handle! (1530)

536 Hollywood manual

#ERR_FINDPLUGIN

Cannot find plugin %s! (1531)

#ERR_PLUGINDOUBLET

Plugin %s has already been loaded! (1532)

#ERR_APPLICATION

Error registering application! (1533)

#ERR_NEEDAPPLICATION

This functionality is only available for system-registered applications! (1534)

#ERR_FINDAPPLICATION

Cannot find application %s! (1535)

#ERR_SENDMESSAGE

Error sending message! (1536)

#ERR_FINDMENU

Could not find menu %d! (1537)

#ERR_MENUCOMPLEXITY

Menu tree definition is too complex! (1538)

#ERR_CREATEMENU

Error creating menu! (1539)

#ERR_VISUALINFO

Error obtaining visual info! (1540)

#ERR_SETMENU

Error setting menu strip! (1541)

#ERR_MENUATTACHED

Cannot free menu while it is still attached to a display! (1542)

#ERR_FINDMENUITEM

Cannot find menu item %s! (1543)

#ERR_NOMENU

Specified display does not have a menu attached! (1544)

#ERR_EMPTYMENUTREE

Empty menu trees are not allowed! (1545)

#ERR_TAGEXPECTED

Tag expected! (1546)

#ERR_FULLSCREEN

This functionality is not supported in full screen mode! (1547)

#ERR_CREATEDOCKY

Error creating application docky! (1548)

#ERR_UPDATEICON

Error updating dock icon! (1549)

Chapter 28: Error management library 537

#ERR_DOUBLEMENU

Tree has already been defined for this menu! (1550)

#ERR_CONTEXTMENU

Context menus must only contain a single tree! (1551)

#ERR_VECTORBRUSH

This functionality is not available for vector brushes! (1552)

#ERR_NOCONTEXTMENU

Application does not expose a context menu! (1553)

#ERR_ACCELERATOR

Error creating accelerator table! (1554)

#ERR_FINDMONITOR

Cannot find monitor %d! (1555)

#ERR_MONITORFULLSCREEN

Monitor %d is already in fullscreen mode! (1556)

#ERR_MONITORRANGE

Specified monitor is out of range! (1557)

#ERR_GETMONITORINFO

Error obtaining monitor information! (1558)

#ERR_SCREENMODE

Cannot find an appropriate screen mode for this display! (1559)

#ERR_NOCOMPRESS

The Hollywood Player only supports compressed applets! (1560)

#ERR_GRABSCREEN

Error grabbing screen pixels! (1561)

#ERR_ALLOCCHANNEL

Error allocating audio channel! (1562)

#ERR_REQUIRETAGFMT

Syntax error in tag format! (1563)

#ERR_ALLOCALPHA

Error allocating alpha channel! (1564)

#ERR_ALLOCMASK

Error allocating mask! (1565)

#ERR_OLDAPPLET

This functionality is only available to applets compiled by Hollywood %s or
higher! (1566)

#ERR_MUSPAUSED

Music is paused. Use ResumeMusic() to resume playback! (1567)

#ERR_MUSPLAYING

Music is already playing! (1568)

538 Hollywood manual

#ERR_CONSOLEARG

Invalid parameter for console argument! (1569)

#ERR_FILESIZE

Error determining file size! (1570)

#ERR_STAT

Error examining file system object! (1571)

#ERR_REQAUTH

This server requires user authentification! (1572)

#ERR_MISSINGFIELD

Table field "%s" must be specified! (1573)

#ERR_NOTRANSPARENCY

Image "%s" does not have a transparent pen! (1574)

#ERR_LEGACYPTMOD

Legacy audio driver does not support playing multiple Protracker modules at
once! (1575)

#ERR_CHANNELRANGE

Specified audio channel is out of range! (1576)

#ERR_FILEFORMAT

File format error! (1577)

#ERR_LINKPLUGIN

Error linking plugin %s! (1578)

#ERR_EXECUTE

Failed to execute program! (1579)

#ERR_AMIGAGUIDE

Error opening AmigaGuide file %s! (1580)

#ERR_COMPLEXPATTERN

Pattern to complex! (1581)

#ERR_ESCREPLACE

Invalid use of escape character in replacement string! (1582)

#ERR_INVREPLACE

Invalid replacement value! (1583)

#ERR_BADENCODING

Encoding not recognized! (1584)

#ERR_INVALIDUTF8

Invalid UTF-8 sequence encountered! (1585)

#ERR_DIFFENCODING

Cannot include applet because it uses a different encoding than the current
script! (1586)

#ERR_DBLENCODING

Conflicting encodings specified! (1587)

Chapter 28: Error management library 539

#ERR_INVALIDUTF8ARG

Invalid UTF-8 string in argument %d! (1588)

#ERR_CORETEXT

Error drawing string using Core Text! (1589)

#ERR_COREFOUNDATION

A Core Foundation allocation error has occurred! (1590)

#ERR_FRAMEGRABBER

Error grabbing frame from video stream! (1591)

#ERR_FINDSELECTOR

Cannot find selector %s! (1592)

#ERR_FIRSTPREPROC

Conditional compile preprocessor commands must be first in line! (1593)

#ERR_ELSEIFAFTERELSE

ELSEIF after ELSE! (1594)

#ERR_ELSETWICE

ELSE used twice! (1595)

#ERR_NOBLOCKBREAK

No block to break! (1596)

#ERR_NOFALLTHROUGH

No block to fall through! (1597)

#ERR_TABEXPECTED3

Table expected! (1598)

#ERR_EMPTYTABLE

Table needs to have at least one item! (1599)

#ERR_MOVEFILE

Error moving file! (1600)

#ERR_RADIOTOGGLEMENU

Radio and toggle menu flags cannot be combined! (1601)

#ERR_RANDOMIZE

Error generating random number! (1602)

#ERR_TRIALCOMPILE

Compiling applets or executables isn’t supported in the trial version! (1603)

#ERR_TRIALSAVEVID

Video recording isn’t supported in the trial version! (1604)

#ERR_TRIALLIMIT

The trial version doesn’t support scripts bigger than 16kb! (1605)

#ERR_TRIALINCLUDE

Including files isn’t supported in the trial version! (1606)

540 Hollywood manual

#ERR_VIDEOINIT

Error initializing video device! (1607)

#ERR_FINDICON

Could not find icon %d! (1608)

#ERR_ICONPARMS

Selected image parameters don’t match normal image parameters! (1609)

#ERR_ICONSIZE

Icon size used twice! (1610)

#ERR_LOADICON

Icon file \"%s\" is in an unknown/unsupported format! (1611)

#ERR_ICONSTANDARD

There can be only one standard icon size! (1612)

#ERR_ICONENTRY

Specified icon entry is out of range! (1613)

#ERR_ICONVECTOR

Vector brushes must be the only icon entry! (1614)

#ERR_MULTIDISPLAYS

Hollywood only supports a single display on this platform! (1615)

#ERR_TEXTURE

Error creating texture! (1616)

#ERR_SURFACE

Error creating surface! (1617)

#ERR_RENDERER

Error creating renderer! (1618)

#ERR_FINDSERIAL

Could not find serial connection %d! (1619)

#ERR_INITSERIAL

Error initializing serial interface! (1620)

#ERR_OPENSERIAL

Error opening serial port %s! (1621)

#ERR_SERIALIO

Serial I/O error! (1622)

#ERR_SENDTIMEOUT

Send timeout reached! (1623)

#ERR_SENDUNKNOWN

Unknown error occurred during data send! (1624)

#ERR_PLUGINSUPPORT

Plugin doesn’t support this feature! (1625)

Chapter 28: Error management library 541

#ERR_REWINDDIR

Error rewinding directory! (1626)

#ERR_MONITORDIR

Error monitoring directory! (1627)

#ERR_JAVAMETHOD

Java method \"%s\" not found! (1628)

#ERR_NUMBEREXPECTED

Number expected! (1629)

#ERR_CHANGEDIR

Error changing directory to %s! (1630)

#ERR_FUNCTABLEARG

Function expected in table argument \"%s\"! (1631)

#ERR_BADYIELD

Attempt to yield across metamethod/C-call boundary! (1632)

#ERR_CYIELD

Cannot yield a C function! (1633)

#ERR_THREADEXPECTED

Coroutine expected in argument %d! (1634)

#ERR_YIELD

This error is for internal use only. (1635)

#ERR_DEADRESUME

Cannot resume dead coroutine! (1636)

#ERR_NONSUSPENDEDRESUME

Cannot resume non-suspended coroutine! (1637)

#ERR_FORBIDMODAL

This command has been disabled by a plugin! (1638)

#ERR_SERIALIZE

Error serializing item! (1639)

#ERR_SERIALIZETYPE

This data type cannot be serialized! (1640)

#ERR_DESERIALIZE

Error deserializing item! (1641)

#ERR_FINDASYNCOBJ

Could not find async operation %d! (1642)

#ERR_NOPALETTE

Image file \"%s\" does not have a palette! (1643)

#ERR_NEEDPALETTEIMAGE

Image data does not have a palette! (1644)

542 Hollywood manual

#ERR_NOPALETTEIMAGE

This function cannot be used with palette images! (1645)

#ERR_PENRANGE

Palette pen is out of range! (1646)

#ERR_DEPTHMISMATCH

Incompatible pixel color depth! (1647)

#ERR_ALLOCCHUNKY

Error allocating palette bitmap! (1648)

#ERR_FINDPALETTE

Could not find palette %d! (1649)

#ERR_DEPTHRANGE

Specified palette depth is out of range! (1650)

#ERR_BGPICPALETTE

Current BGPic does not have a palette! (1651)

#ERR_UNKNOWNPALETTE

Unknown standard palette type specified! (1652)

#ERR_PALETTEFILL

Specified fill style cannot be used with palette images! (1653)

#ERR_DISPLAYDESKTOPPAL

Palettes cannot be used together with a desktop display! (1654)

#ERR_DBPALETTE

Hardware double buffers cannot be used in palette mode! (1655)

#ERR_UNKNOWNICNOUT

Unknown icon format specified! (1656)

#ERR_SAVEICON

Error saving icon! (1657)

#ERR_PALETTEMODE

This function can only be used in palette mode! (1658)

#ERR_NOPALETTEMODE

This function cannot be used in palette mode! (1659)

#ERR_NORTG

Cannot find CyberGraphX or Picasso96! To use Hollywood without either
CyberGraphX or Picasso96, you need to install the Plananarama plugin! (1660)

#ERR_GETMENUATTR

Error getting menu attributes! (1661)

#ERR_SETMENUATTR

Error setting menu attributes! (1662)

#ERR_TRAYICON

Error setting tray icon! (1663)

Chapter 28: Error management library 543

#ERR_FONTPATH2

You must use the inbuilt font engine when specifying font files directly! (1664)

#ERR_MEDIAFOUNDATION

A Media Foundation error has occurred! (1665)

#ERR_GETIFADDRS

Error getting interface addresses! (1666)

#ERR_TFVANIM

Cannot insert a transformed vector anim as a layer! Use draw tags instead of
transforming the anim directly! (1667)

#ERR_VECTORANIM

This functionality is not available for vector anims! (1668)

#ERR_PLAYVIDEO

Error starting video playback! (1669)

#ERR_TEXTCONVERT2

Error during text conversion! (1670)

#ERR_TFVTEXTOBJ

Cannot insert a transformed vector text object as a layer! Use draw tags instead
of transforming the text object directly! (1671)

#ERR_GROUPNOTFOUND

Specified layer group doesn’t exist! (1672)

#ERR_MERGEDLAYER

This functionality isn’t supported for merged layers! (1673)

#ERR_REMMERGEDLAYER

Cannot remove layer that is part of a merged layer! (1674)

#ERR_ALLOCIMAGE

Error allocating image! (1675)

#ERR_ADVANCEDCONSOLE

This function is only available in advanced console mode! (1676)

#ERR_COLORTERMINAL

Terminal doesn’t support color mode! (1677)

#ERR_CONSOLE

A console error has occurred! (1678)

#ERR_FINDCONWIN

Could not find console window %d! (1679)

#ERR_CONWIN

Error creating console window! (1680)

#ERR_FREEPARENT

Attempt to free parent before child! (1681)

#ERR_AMIGAINPUT

Error initializing AmigaInput! (1682)

544 Hollywood manual

28.4 ExitOnError

NAME
ExitOnError – enable/disable Hollywood’s error handler

SYNOPSIS
ExitOnError(enable)

FUNCTION
This function enables or disables Hollywood’s error handler. If the error handler is
enabled and an error occurs, your script will either be stopped and Hollywood will display
the error message, or, in case you have installed a custom error handling callback using
RaiseOnError(), this custom error handling callback will be executed. See Section 7.7
[Error handling], page 90, for details.

It can be useful to disable the error handler for a very short time if you need to check
whether a certain command has succeeded or not. This can be done by enclosing the
command in an ExitOnError() block. See Section 7.7 [Error handling], page 90, for
details. It is not advised to disable the error handler for a longer time because errors
can easily accumulate so in general you should only keep the error handler enabled.

In Hollywood 7.1 and up the new question mark syntax to check for errors is preferable
to using ExitOnError() because it is much shorter and less prone to accidental mistakes.
See Section 7.7 [Error handling], page 90, for details.

INPUTS

enable True to enable the error handler; False to disable it

28.5 GetErrorName

NAME
GetErrorName – get string for an error code

SYNOPSIS
err$ = GetErrorName(code)

FUNCTION
This function returns a string for a specified error code. The string describes the error for
the passed code. This command should be called right after GetLastError() because
the error string might contain some information that will be trashed when the next
normal function is executed. Calling condition functions between GetLastError() and
GetErrorName() is no problem. Please see the example for more information.

Be sure to read also the documentation of GetLastError() for more detailed information
on manual error handling.

See Section 28.3 [Error codes], page 507, for a list of all error codes defined by Hollywood.

INPUTS

code an error code as returned by GetLastError()

RESULTS

err$ a string describing the error occurred

Chapter 28: Error management library 545

EXAMPLE
See Section 28.6 [GetLastError], page 545.

28.6 GetLastError

NAME
GetLastError – get error code for the last command

SYNOPSIS
code = GetLastError()

FUNCTION
This function queries Hollywood’s internal error flag and returns the result. This flag is
zero if the last command executed was successful. If the command failed, an error code
which is not zero will be returned. This error code can than be used to query Hollywood
for a name string that describes the error occurred. (use GetErrorName() then)

Important note: Hollywood’s internal error flag will be reset to zero before a command
is called. Therefore the error code you will get when you call GetLastError() is the
error code of the function that was called before GetLastError().

Important note #2: This function is only useful if the automatical error handler is dis-
abled. If it is enabled (which is the default), the error handler will break your script
immediately when an error occurs. So your script will never reach a GetLastError()

call if an error occurred and the automatic error handler is enabled. Therefore you will
have to call ExitOnError() with False as the flag to disable Hollywood’s error handler.

See Section 28.3 [Error codes], page 507, for a list of all error codes defined by Hollywood.

INPUTS
none

RESULTS

code non-zero if an error occurred, zero for success

EXAMPLE
ExitOnError(FALSE) ; disable automatic error handler

LoadBGPic(1,"blablabla") ; this command will fail!

code=GetLastError()

If code<>0

err$=GetErrorName(code)

SystemRequest("An error occurred!",err$,"OK")

End

EndIf

The above code shows how to handle the error that LoadBGPic() will produce. It
is important that there is no further command between the LoadBGPic() and the
GetLastError(). If there would be another command, it would trash the error results
of LoadBGPic().

546 Hollywood manual

28.7 RaiseOnError

NAME
RaiseOnError – install a custom error handler (V5.2)

SYNOPSIS
RaiseOnError(f)

FUNCTION
This function can be used to install a custom error handling function. Whenever an error
occurs, this function will be called with the following four arguments: An error code, a
string describing the error, the name of the last command, and the current line number.

This is useful if you do not want to use Hollywood’s inbuilt automatic error handler.
Please note that in certain situations the name of the last command and the current line
number can be wrong.

Also note that if an error occurs in your custom error handling function, Hollywood will
exit with a fatal error. Thus, you should keep the custom error handler as brief and
straight-forward as possible.

To uninstall your custom error handler, simply pass Nil in the f argument.

See Section 28.3 [Error codes], page 507, for a list of all error codes defined by Hollywood.

INPUTS

f function that shall be called whenever an error occurs

EXAMPLE
Function p_ErrorFunc(code, msg$, cmd$, line)

DebugPrint(code, msg$, cmd$, line)

EndFunction

RaiseOnError(p_ErrorFunc)

LoadBrush(1, "non_existing_brush.png")

The code above installs a custom error function and then tries to load a non-existing
brush. This leads to the error function being called and further information will be
printed to the debug device.

547

29 Event library

29.1 BreakEventHandler

NAME
BreakEventHandler – break current event handler cycle (V5.2)

SYNOPSIS
BreakEventHandler()

FUNCTION
This function can be used to break Hollywood’s internal current event handler cycle.
This is a lowlevel function and you normally will not need to use this. It is just here for
certain emergency situations and debugging purposes.

INPUTS
none

29.2 ChangeInterval

NAME
ChangeInterval – change interval frequency (V2.0)

SYNOPSIS
ChangeInterval(id, ms)

FUNCTION
This function can be used to change the frequency of a running interval. Just specify the
identifier of the interval and the new frequency. See Section 29.26 [SetInterval], page 582,
for everything you need to know about intervals.

INPUTS

id identifier of the interval function to modify

ms new interval frequency in milliseconds

29.3 CheckEvent

NAME
CheckEvent – check for event without blocking (V1.9)

SYNOPSIS
info = CheckEvent()

FUNCTION
This function checks if there is an event in the queue. If there is, CheckEvent() will
remove it from the queue and run its callback function. If there is no event in the queue,
CheckEvent() will return immediately.

548 Hollywood manual

CheckEvent() returns a table that contains information about whether or not it has
executed a callback. The following fields will be initialized in that table:

Action: Contains the name of the event that caused the callback execution (e.g.
OnMouseDown). If CheckEvent() returns without having ran a callback, this
field will be set to an empty string.

ID: Contains the identifier of the object that caused the callback execution (e.g.
a display identifier). ID can also be zero in case an event was caused that
has no ID associated.

Triggered:

Will be set to True if CheckEvent() has executed a callback.

NResults:

Contains the number of values that the user callback returned (e.g. 1). This
will be 0 if the user callback did not return any values or if no user callback
was ran at all.

Results: If NResults is greater than 0, this table will contain all values that the user
callback returned. Otherwise this table will not be present at all. You can
easily use this table to pass additional information from your callbacks back
to the main scope of the program.

CheckEvent() is similar to the popular WaitEvent() command with the difference that
WaitEvent() blocks the script execution until an event arrives whereas CheckEvent()
immediately exits if there is no event. By using this command you can do something
while waiting for an event which would not be possible with WaitEvent().

Note that CheckEvent() only handles a single event from the event queue. If you’d like
to handle all events that are currently in the event queue, you have to use CheckEvents()
instead. See Section 29.4 [CheckEvents], page 548, for details.

Please note that generally you should use CheckEvent() only if you really need it. Using
WaitEvent() is normally a much better idea than CheckEvent().

INPUTS
none

RESULTS

info table containing information about whether and event occurred or not, and
the return value(s) of the user callback in case it has been called

29.4 CheckEvents

NAME
CheckEvents – check for events without blocking (V6.1)

SYNOPSIS
CheckEvents()

Chapter 29: Event library 549

FUNCTION
This function does the same as CheckEvent() but handles all events that are currently
queued. CheckEvent(), on the other hand, only removes and handles a single event from
the queue.

Another difference is that CheckEvents() doesn’t return any information about the
events it has removed and handled. If you need this information, you have to use
CheckEvent() instead. See Section 29.3 [CheckEvent], page 547, for details.

Please note that you should use CheckEvents() only if you really need it. Using
WaitEvent() is generally a much better idea than CheckEvents().

INPUTS
none

29.5 ClearInterval

NAME
ClearInterval – remove an interval function (V2.0)

SYNOPSIS
ClearInterval(id)

FUNCTION
This function aborts the calling of the interval function specified by id. See Section 29.26
[SetInterval], page 582, for everything you need to know about intervals.

INPUTS

id identifier of the interval function to cancel

EXAMPLE
See Section 29.26 [SetInterval], page 582.

29.6 ClearTimeout

NAME
ClearTimeout – remove a timeout function (V2.0)

SYNOPSIS
ClearTimeout(id)

FUNCTION
This function stops the timeout specified by id. It is not necessary to stop timeout
functions that have already been called. Hollywood will clear them automatically after
it called them. See Section 29.27 [SetTimeout], page 583, for everything you need to
know about timeout functions.

INPUTS

id identifier of the timeout function to cancel

550 Hollywood manual

EXAMPLE
See Section 29.27 [SetTimeout], page 583.

29.7 CtrlCQuit

NAME
CtrlCQuit – enable/disable quit by control-c (V2.0)

SYNOPSIS
CtrlCQuit(enable)

FUNCTION
By default, all Hollywood scripts can be interrupted at any time just by pressing CTRL-
C. If you do not want this, use this function to disable the feature.

Please note: Think twice before disabling CTRL-C quit. For example, if your script runs
in a borderless window or full screen, there is no close box to click, so it is quite handy
to have CTRL-C quit enabled.

INPUTS

enable True to enable CTRL-C quit, False to disable it

29.8 DeleteButton

NAME
DeleteButton – delete a button (V2.0)

SYNOPSIS
DeleteButton(id)

FUNCTION
This function deletes the button specified by id from the current background picture.

INPUTS

id identifier of the button to delete

29.9 DisableButton

NAME
DisableButton – disable a button (V2.0)

SYNOPSIS
DisableButton(id)

FUNCTION
This function temporarily disables the button specified by id. You can enable it later
by using the EnableButton() function. If you want to remove a button completely, use
the DeleteButton() function.

Chapter 29: Event library 551

INPUTS

id identifier of the button to disable

29.10 EnableButton

NAME
EnableButton – enable a button (V2.0)

SYNOPSIS
EnableButton(id)

FUNCTION
This function enables the button specified by id. This is only necessary if you have
disabled it previously using DisableButton().

INPUTS

id identifier of the button to enable

29.11 EscapeQuit

NAME
EscapeQuit – enable/disable quit with escape (V1.5)

SYNOPSIS
EscapeQuit(enable)

FUNCTION
If you set enable to True, pressing the escape key will immediately terminate your script.

INPUTS

enable True to enable escape quit, False to disable it

EXAMPLE
EscapeQuit(TRUE)

Repeat

Wait(10)

Forever

The above code enters an endless loop which would normally block your program. But
using EscapeQuit(True) allows the user to terminate it.

29.12 InKeyStr

NAME
InKeyStr – query user input (V1.5)

SYNOPSIS
input$ = InKeyStr(type[, maxlen, password, cursor])

552 Hollywood manual

FUNCTION
This function allows you to easily read input from the user’s keyboard. type specifies the
characters that are allowed to be typed in. maxlen can be used to limit the maximum
length of the user input (default is 0 which means no limit). If password is set to True,
Hollywood will show an asterisk (*) for every character typed in.

The following types can be specified currently:

#ALL Will accept all visible characters

#ALPHABETICAL

Will accept only alphabetical characters; this is not necessarily limited to
characters a-z. The user may also type special alphabetical characters that
are only available in his language’s alphabet

#ALPHANUMERICAL

Will accept alphabetical and numerical characters

#HEXNUMERICAL

Will accept hexadecimal characters (0-9 and a-f)

#NUMERICAL

Will accept 0-9

If you have layers enabled while using this function, you will get a new layer of type
#PRINT which contains the string the user has typed in (since Hollywood 2.0; in previous
versions, layers for each character were added).

Starting with Hollywood 8.0, there is a new optional argument named cursor. If this
is set to True, InKeyStr() will show a cursor while the user is typing. In that case it
is also possible to use the cursor keys to navigate backwards and forwards and it is also
possible to delete characters using the DEL key. The cursor will be drawn in the same
color as the text.

Hollywood 8.0 also adds paste support to InKeyStr(). Just press CTRL+V (on Win-
dows) or CMD+V (on all other systems) to paste text from the clipboard into the current
insert position.

INPUTS

type specifies which characters the user is allowed to type in

maxlen optional: if you specify this argument, the user will only be able to type in
maxlen characters; otherwise he can input as many characters as he wants
and finish his input by pressing the RETURN key (defaults to 0 which means
that the user can input as many characters as he wants)

password optional: if set to True, Hollywood will display an asterisk (*) instead of the
actual character typed in (defaults to False)

cursor optional: if set to True, a cursor indicating the current insert and delete
position will be shown (defaults to False) (V8.0)

RESULTS

input$ the string that was typed in

Chapter 29: Event library 553

EXAMPLE
Print("What is your name? ")

name$ = InKeyStr(#ALPHABETICAL)

Print("Hello", name$, "!")

The code above asks the user to enter his name and then it will be output.

29.13 InstallEventHandler

NAME
InstallEventHandler – install/remove an event handler (V2.0)

SYNOPSIS
InstallEventHandler(table[, userdata])

FUNCTION
You can use this function to install your own event handlers for standard events. You
have to pass a table to this function, that tells Hollywood which event handlers you want
to install or remove. To install a new handler you need to initialize the corresponding
table field with your own function. If you want to remove an event handler, set the
corresponding table field to 0.

The following table fields are recognized by this function:

OnKeyDown:

The function you specify here will be called each time the user presses a
control key, a numerical key, or an English alphabetical key. The function
will receive a message as parameter 1 with the following fields:

Action: Initialized to OnKeyDown.

Key: Will be set to the key which has been pressed.

ID: Will be set to the identifier of the display that has received this
key stroke.

Note that officially, OnKeyDown only supports control keys, numerical
keys and English alphabet keys. To listen to non-English keys, use the
VanillaKey event handler instead. VanillaKey supports the complete
Unicode range of keys. Note that OnKeyDown supports certain non-English
keys on some platforms but this is unofficial behaviour and you shouldn’t
rely on it. If you need to listen to modifier keys like shift, alt, control, etc.
use the OnRawKeyDown event handler instead (see below).

OnKeyUp: The function you specify here will be called each time the user releases a
control key, a numerical key, or an English alphabetical key. The function
will receive a message as parameter 1 with the following fields:

Action: Initialized to OnKeyUp.

Key: Will be set to the key which has been released.

ID: Will be set to the identifier of the display that has received this
key release.

554 Hollywood manual

Note that officially, OnKeyUp only supports control keys, numerical keys and
English alphabet keys. To listen to non-English keys, use the VanillaKey

event handler instead. VanillaKey supports the complete Unicode range
of keys. Note that OnKeyUp supports certain non-English keys on some
platforms but this is unofficial behaviour and you shouldn’t rely on it. If you
need to listen to modifier keys like shift, alt, control, etc. use the OnRawKeyUp
event handler instead (see below).

OnRawKeyDown:

This event handler can be used to listen to raw key events. The difference
between raw key events and normal key events is that raw key events always
deliver the raw key without applying any potential modifier keys like shift,
alt, control, etc. that might be down as well. For example, when pressing
the shift key and the "1" key on an English keyboard, OnKeyDown will report
that the "!" key has been pressed whereas OnRawKeyDown will report two key
events: It will first report that the shift key has been pressed and then it
will report that the "1" key has been pressed. In contrast to OnKeyDown,
OnRawKeyDown will never combine the shift and the "1" key into the "!"
key. Instead, you will get the raw key events. Also, OnKeyDown will never
be triggered if a modifier key like shift, alt, control, etc. has been pressed
on its own. OnRawKeyDown, however, will also be triggered when the user
presses a modifier key. Thus, OnRawKeyDown is very useful for listening to
modifier keys or combinations of character keys and modifier keys, e.g. you
can use this event handler to find out if the right alt key and a character
key are both down. The function you pass to this event handler will receive
a message as parameter 1 with the following fields:

Action: Initialized to OnRawKeyDown.

Key: Will be set to the key which has been pressed. See Section 29.22
[Raw keys], page 579, for a list of raw keys supported by Holly-
wood.

Modifiers:

Will be set to a combination of modifier keys that are currently
down. The following modifier key flags may be set:

#MODLSHIFT

Left shift key

#MODRSHIFT

Right shift key

#MODLALT Left alt key

#MODRALT Right alt key

#MODLCOMMAND

Left command key

#MODRCOMMAND

Right command key

Chapter 29: Event library 555

#MODLCONTROL

Left control key

#MODRCONTROL

Right control key

ID: Will be set to the identifier of the display that has received this
key stroke.

(V7.1)

OnRawKeyUp:

This event handler will be triggered whenever a raw key has been released.
Please see the description of OnRawKeyDown above to find out more about
the difference between normal key events and raw key events. The function
you pass to this event handler will receive a message as parameter 1 with
the following fields:

Action: Initialized to OnRawKeyUp.

Key: Will be set to the key which has been released. See Section 29.22
[Raw keys], page 579, for a list of raw keys supported by Holly-
wood.

Modifiers:

Will be set to a combination of modifier keys that are currently
down. See above in OnRawKeyDown for a list of modifier key flags.

ID: Will be set to the identifier of the display that has received this
key release.

(V7.1)

VanillaKey:

The function you specify here will be called each time the user presses a
key or a key combination that results in character that has a graphical
representation, including the SPACE character. VanillaKey supports the
whole Unicode range of characters and it can also handle characters that
are generated by multiple key presses, e.g. diacritical characters. This is the
event handler to use if your application should be able to handle non-English
characters as well. The function will receive a message as parameter 1 with
the following fields:

Action: Initialized to VanillaKey.

Key: Will be set to the key which has been pressed.

ID: Will be set to the identifier of the display that has received this
key stroke.

Note that VanillaKey only reports key down and key repeat events. It can-
not report key up events because this isn’t possible for characters generated
by multiple key strokes. Additionally, it will only report printable characters
(including the SPACE character). If you need to listen to control keys like
ESC, backspace, cursor keys, etc., use the OnKeyDown and OnKeyUp event
handlers. (V7.0)

556 Hollywood manual

OnMouseMove:

The function you specify here will be called each time the user moves the
mouse. The function will receive a message as parameter 1 with the following
fields:

Action: Initialized to OnMouseMove.

X,Y: Will be set to the current mouse pointer position. If they are
negative, the mouse pointer is outside the display’s boundaries.

ID: Will be set to the identifier of the display that received this
mouse event.

OnMouseDown:

The function you specify here will be called each time the user presses the
left mouse button. The function will receive a message as parameter 1 with
the following fields:

Action: Initialized to OnMouseDown.

ID: Will be set to the identifier of the display that received this
mouse event.

(V3.1)

OnMouseUp:

The function you specify here will be called each time the user releases the
left mouse button. The function will receive a message as parameter 1 with
the following fields:

Action: Initialized to OnMouseUp.

ID: Will be set to the identifier of the display that received this
mouse event.

(V3.1)

OnRightMouseDown

The function you specify here will be called each time the user presses the
right mouse button. The function will receive a message as parameter 1 with
the following fields:

Action: Initialized to OnRightMouseDown.

ID: Will be set to the identifier of the display that received this
mouse event.

(V3.1)

OnRightMouseUp:

The function you specify here will be called each time the user releases the
right mouse button. The function will receive a message as parameter 1 with
the following fields:

Action: Initialized to OnRightMouseUp.

ID: Will be set to the identifier of the display that received this
mouse event.

Chapter 29: Event library 557

(V3.1)

OnWheelDown:

The function you specify here will be called each time the user moves the
mouse wheel in downward direction. The function will receive a message as
parameter 1 with the following fields:

Action: Initialized to OnWheelDown.

ID: Will be set to the identifier of the display that received this
mouse event.

(V4.0)

OnWheelUp:

The function you specify here will be called each time the user moves the
mouse wheel in upward direction. The function will receive a message as
parameter 1 with the following fields:

Action: Initialized to OnWheelUp.

ID: Will be set to the identifier of the display that received this
mouse event.

(V4.0)

OnMusicEnd:

The function you specify here will be called each time a music object has
finished playing. The function will receive a message as parameter 1 with
the following fields:

Action: Initialized to OnMusicEnd.

ID: Identifier of the music object that has stopped.

Please note that this event is only triggered when the music has finished
playing. It is not triggered when you call StopMusic().

OnSampleLoop:

The function you specify here will be called each time a sample is started. If
the sample is only played once, the function will only get called once. If the
sample is playing in loop mode, the function you specify will be called each
time Hollywood repeats the sample. The function will receive a message as
parameter 1 with the following fields:

Action: Initialized to OnSampleLoop.

ID: Identifier of the sample that was just started or repeated.

Time: The time in milliseconds that the sample has been playing now.

Starts: The number of times this sample was started. This field starts at
1 and will be increased each time Hollywood loops your sample.

Attention! Use this event handler with care. If you have a short sample that
is looped infinitely, your callback function will get called again and again
which will kill your script’s performance. This event handler allows you to
achieve exact timing with sample playback.

558 Hollywood manual

OnSampleEnd:

The function you specify here will be called each time a sample has fin-
ished playing. The function will receive a message as parameter 1 with the
following fields:

Action: Initialized to OnSampleEnd.

ID: Identifier of the sample that has stopped.

Time: The time in milliseconds that the sample was playing.

Starts: The number of times this sample was started. This field starts at
1 and will be increased each time Hollywood loops your sample.

Please note that this event is only triggered when the sample has finished
playing. It is not triggered when you call StopSample().

OnARexx: The function you specify here will be called each time a new ARexx message
arrives at the Rexx port created with CreateRexxPort(). The function will
receive a message as parameter 1 with the following fields:

Action: Initialized to OnARexx.

Command: A string with the command that shall be executed.

Args: A preparsed string which contains all the arguments for this
command delimited by NULL ("\0") characters. You can use the
SplitStr() function to extract the individual arguments.

ArgC: The number of arguments in the Args string.

RawArgs: The unparsed string containing all the arguments.

Please note that Hollywood might not always separate the arguments in the
way you want to have them. In that case, you can use the RawArgs field to
access the arguments in their original format just as Hollywood has received
them. The Args and ArgC fields are included just for your convenience but
some advanced users might sometimes prefer to use RawArgs instead.

See Section 16.3 [CreateRexxPort], page 166, for an example of this event
handler. (V2.5)

SizeWindow:

The function you specify here will be called each time the user resizes the
window. The function will receive a message as parameter 1 with the fol-
lowing fields:

Action: Initialized to SizeWindow.

Width: New width of the window

Height: New height of the window

ID: Will be set to the identifier of the display that has been sized.

MoveWindow:

The function you specify here will be called each time the user moves the
window. The function will receive a message as parameter 1 with the fol-
lowing fields:

Action: Initialized to MoveWindow.

Chapter 29: Event library 559

X,Y: New position of the window on the host screen.

ID: Will be set to the identifier of the display that has been moved.

CloseWindow:

This function will be called everytime the user presses the close box of the
window. You can use this to pop up a requester which asks the user if he
really wants to quit. Message fields:

Action: Initialized to CloseWindow.

ID: Will be set to the identifier of the display whose close box has
been clicked.

ActiveWindow:

The function you specify here will be called each time the Hollywood window
becomes active. Message fields:

Action: Initialized to ActiveWindow.

ID: Will be set to the identifier of the display that has been acti-
vated.

InactiveWindow:

This function will be called everytime the Hollywood window becomes inac-
tive. Message fields:

Action: Initialized to InactiveWindow.

ID: Will be set to the identifier of the display that has lost the focus.

ShowWindow:

The function you specify here will be called each time the user brings the
hidden Hollywood window back to the screen. Message fields:

Action: Initialized to ShowWindow.

ID: Will be set to the identifier of the display that has returned from
minimized mode.

(V3.0)

HideWindow:

This function will be called every time the Hollywood window is hidden by
the user. Message fields:

Action: Initialized to HideWindow.

ID: Will be set to the identifier of the display that has been mini-
mized.

(V3.0)

ModeSwitch:

This function is called every time the user switches the current display mode
by pressing the CMD+RETURN (LALT+RETURN on Windows) hotkey.
Message fields:

Action: Initialized to ModeSwitch.

560 Hollywood manual

Mode: Display mode that Hollywood switched into (can be #DISPMODE_
WINDOWED or #DISPMODE_FULLSCREEN)

ID: Display which handled the pressed hotkey.

Width: Display width. (V6.0)

Height: Display height. (V6.0)

(V4.5)

OnDropFile:

This function is called every time the user drops one or multiple icons onto
a display. The following fields will be available to your function:

Action: Initialized to OnDropFile.

ID: Identifier of the display over which the files were dropped.

NumDropFiles:

The number of files the user dropped over your display. This is
usually 1.

DropFiles:

A table containing the list of files that were dropped of the
display. This table will have exactly NumDropFiles entries.

X,Y: Contains the position relative to the top left corner of the re-
ceiving display over which the files have been dropped.

(V4.5)

ClipboardChange:

This function is called every time the contents of the clipboard changes. This
is useful to enable/disable paste functionality in your script. Message fields:

Action: Initialized to ClipboardChange.

ID: Display which received this event.

(V4.5)

OnMidMouseDown:

The function you specify here will be called each time the user presses the
middle mouse button. The function will receive a message as parameter 1
with the following fields:

Action: Initialized to OnMidMouseDown.

ID: Will be set to the identifier of the display that received this
mouse event.

(V4.5)

OnMidMouseUp:

The function you specify here will be called each time the user releases the
middle mouse button. The function will receive a message as parameter 1
with the following fields:

Action: Initialized to OnMidMouseUp.

Chapter 29: Event library 561

ID: Will be set to the identifier of the display that received this
mouse event.

(V4.5)

OnConnect:

The function you specify here will be called each time a new client connects
to a server created using the CreateServer() call. The function will receive
a message as parameter 1 with the following fields:

Action: Initialized to OnConnect.

ClientID:

Identifier of the client that has connected itself to the server.

ServerID:

Identifier of the server that the client has connected to.

The ClientID is important and you should store it somewhere because you
will need it to communicate with the client. You can also use this id to
find out the IP address and port number of the client using the commands
GetConnectionIP() and GetConnectionPort(). You can also send data to
the client by using SendData(). (V5.0)

OnDisconnect:

The function you specify here will be called each time a client disconnects
from a server created using the CreateServer() call. The function will
receive a message as parameter 1 with the following fields:

Action: Initialized to OnDisconnect.

ID: Identifier of the client that has disconnected from the server.
You need to call CloseConnection() on this ID to remove the
client from your server.

When you get this event, do not forget to call CloseConnection() on the
client ID to fully disconnect the client from your server. This is very impor-
tant. (V5.0)

OnReceiveData:

The function you specify here will be called each time new data is received
by an existing connection. The function will receive a message as parameter
1 with the following fields:

Action: Initialized to OnReceiveData.

ID: Identifier of the connection that has new data.

When you receive this message it means that there is new data available in
the connection specified by ID, and that you should call ReceiveData() now
to read this data from the network buffer. (V5.0)

OnReceiveUDPData:

The function you specify here will be called each time new data is received
by an existing UDP connection. The function will receive a message as
parameter 1 with the following fields:

Action: Initialized to OnReceiveUDPData.

562 Hollywood manual

ID: Identifier of the connection that has new data.

When you receive this message it means that there is new data available in
the connection specified by ID, and that you should call ReceiveUDPData()
now to read this data from the network buffer. (V5.0)

OnVideoEnd:

The function you specify here will be called each time a video has finished
playing. The function will receive a message as parameter 1 with the follow-
ing fields:

Action: Initialized to OnVideoEnd.

ID: Identifier of the video that has stopped.

Please note that this event is only triggered when the video has finished
playing. It is not triggered when you call StopVideo(). (V5.0)

FillMusicBuffer:

The function you specify here will be called each time the sound server
needs more audio data when a dynamic music created using CreateMusic()

is playing. Your callback will then have to call FillMusicBuffer() to feed
more audio data to the device. The function you specify here will receive a
message as parameter 1 with the following fields:

Action: Initialized to FillMusicBuffer.

ID: Identifier of the music object that has caused this event.

Samples: Contains the number of PCM frames Hollywood is requesting
from your callback. Your callback must provide this amount of
PCM frames to Hollywood so that it can forward this audio data
to the system’s audio device. See Section 49.7 [FillMusicBuffer],
page 978, for details.

Count: Contains a global count of how many PCM frames have been
sent to the audio device already. Useful for keeping track of how
many seconds the music has already been playing.

(V5.0)

OrientationChange:

The function you specify here will be called each time the user changes the
orientation of his mobile device. The function will receive a message as
parameter 1 with the following fields:

Action: Initialized to OrientationChange.

ID: Identifier of the display.

Orientation:

Constant specifying the new orientation of the device. This will
be one of the following constants:

#ORIENTATION_PORTRAIT

#ORIENTATION_LANDSCAPE

Chapter 29: Event library 563

#ORIENTATION_PORTRAITREV

#ORIENTATION_LANDSCAPEREV

Please note that this event handler is only supported in the mobile version
of Hollywood. (V5.0)

ShowKeyboard:

The function you specify here will be called each time the software keyboard
becomes visible on mobile devices. The function will receive a message as
parameter 1 with the following fields:

Action: Initialized to ShowKeyboard.

ID: Identifier of the display.

Please note that this event handler is only supported in the mobile version
of Hollywood. (V5.0)

HideKeyboard:

The function you specify here will be called each time the software keyboard
becomes invisible on mobile devices. The function will receive a message as
parameter 1 with the following fields:

Action: Initialized to HideKeyboard.

ID: Identifier of the display.

Please note that this event handler is only supported in the mobile version
of Hollywood. (V5.0)

OnUserMessage:

The function you specify here will be called each time a new user message
arrives at the message port created with CreatePort(). The function will
receive a message as parameter 1 with the following fields:

Action: Initialized to OnUserMessage.

Command: A string with the command that shall be executed.

Args: A preparsed string which contains all the arguments for this
command delimited by NULL ("\0") characters. You can use the
SplitStr() function to extract the individual arguments.

ArgC: The number of arguments in the Args string.

RawArgs: The unparsed string containing all the arguments.

Please note that Hollywood might not always separate the arguments in the
way you want to have them. In that case, you can use the RawArgs field to
access the arguments in their original format just as Hollywood has received
them. The Args and ArgC fields are included just for your convenience but
some advanced users might sometimes prefer to use RawArgs instead.

See Section 32.1 [CreatePort], page 639, for an example of this event handler.
(V5.0)

564 Hollywood manual

Hotkey: The function you specify here will be called each time the user presses the
key combination specified in the -cxkey argument. The function will receive
a message as parameter 1 with the following fields:

Action: Initialized to Hotkey.

ID: Identifier of the display.

Please note that this event handler is only supported in the AmigaOS com-
patible versions of Hollywood. (V5.2)

TrayIcon:

If you have called the SetTrayIcon() function to install an icon into the
system tray, the function you specify here will be called each time the user
clicks on that icon. The function will receive a message as parameter 1 with
the following fields:

Action: Initialized to TrayIcon.

ID: Identifier of the display.

Please note that this event handler is only supported in the Microsoft Win-
dows version of Hollywood. (V5.2)

OnTouch: The function you specify here will be called each time the touch screen
detects a user interaction such as putting a new finger on the touch screen,
lifting a finger, or moving it. This event is only required if you need fine-
tuned control over all touch events, e.g. for supporting multi-touch events
or gestures. If you only need simple control over the touch screen, it is
easier to use the OnMouseDown, OnMouseUp, and OnMouseMove event handlers.
Hollywood will always map the primary finger on the touch screen to the
left mouse button.

The function will receive a message as parameter 1 with the following fields:

Action: Initialized to OnTouch.

ID: Will be set to the identifier of the display that received this
mouse event.

Type: This is set to a string describing the type of the touch event.
This will be set to either Down, Up, or Move.

Finger: The finger number this event refers to.

X: The current X coordinate of the finger on the touch screen.

Y: The current Y coordinate of the finger on the touch screen.

Pressure:

Contains the current pressure of the finger. This generally ranges
from 0 (no pressure at all) to 1 (normal pressure). Values greater
than 1 are also possible, dependingt on the calibration of the
touch screen.

DownTime:

Contains the time when the finger was put down on the touch
screen.

Chapter 29: Event library 565

EventTime:

Contains the time when the event was generated.

Size: Contains the scaled value of the approximate size for the current
finger.

TouchMajor:

Contains the current length of the major axis of an ellipse de-
scribing the touch area for the current finger.

TouchMinor:

Contains the current length of the minor axis of an ellipse de-
scribing the touch area for the current finger.

ToolMajor:

Contains the current length of the major axis of an ellipse de-
scribing the tool area for the current finger.

ToolMinor:

Contains the current length of the minor axis of an ellipse de-
scribing the tool area for the current finger.

Orientation:

Contains the current orientation of the touch and tool areas in
radians running clockwise from vertical for the current finger.
The range is from -PI/2 radians (finger is fully left) to PI/2
radians (finger is fully right).

Please note that this event handler is only supported in the mobile version
of Hollywood. (V5.3)

OnApplicationMessage:

The function you specify here will be called each time a new message sent
through AmigaOS 4’s application.library messaging system arrives. If you
want to be able to receive application.library messages, you need to have set
the RegisterApplication tag in @OPTIONS to True first. The function you
specify here will be passed a table as parameter 1 with the following fields
initialized:

Action: Initialized to OnApplicationMessage.

Sender: The name of the application that has sent this message.

Message: The actual message.

Please note that this event handler is only available on AmigaOS 4. (V6.0)

OnDockyClick:

If you have set RegisterApplication to True in the @OPTIONS preprocessor
command, the function you specify here will be called every time the user
clicks on your application’s icon in AmiDock. The function will receive a
message as parameter 1 with the following fields:

Action: Initialized to OnDockyClick.

566 Hollywood manual

ID: Identifier of the display.

Please note that this event handler is only supported in the AmigaOS 4
version of Hollywood. (V6.0)

OnMenuSelect:

The function you specify here will be called each time the user selects a menu
item. The function will receive a message as parameter 1 with the following
fields:

Action: Initialized to OnMenuSelect.

ID: Identifier of the display that the menu strip has been attached
to.

Item: The identifier of the menu item that has been selected. See
Section 39.8 [MENU], page 804, for details.

Selected:

If the menu item that has been selected is a toggle menu item
(i.e. a menu item that can have two different states), this field
will contain the current toggle state. See Section 39.8 [MENU],
page 804, for details.

(V6.0)

RunFinished:

The function you specify here will be called whenever a program executed
asynchronously using the Run() command has terminated. The function will
receive a message as parameter 1 with the following fields initialized:

Action: Initialized to RunFinished.

Program: This is set to a string that contains the name of the program
that was launched using Run().

Args: This is set to a string that contains the arguments that were
passed to the program launched using Run().

RunUserData:

If custom user data is specified in the call to Run(), it will be
passed on to your callback in this message field. If you don’t
pass any custom user data, this field won’t be initialized at all.

ReturnCode:

This tag will only be set if the eponymous tag has been set to
True when calling Run(). In that case, ReturnCode will contain
the program’s return code when it terminates. (V9.0)

(V6.1)

DirectoryChanged:

If you are currently monitoring directories using the MonitorDirectory()

function, the function you specify here will be called whenever a change

Chapter 29: Event library 567

inside a monitored directory occurs. The function will receive a message as
parameter 1 with the following fields initialized:

Action: Initialized to DirectoryChanged.

ID: Identifier of the directory object in which the change occurred.

Directory:

This will be set to a string that contains a fully-qualified path
of the directory in which the change occurred.

MonitorUserData:

If custom user data was specified in the call to
MonitorDirectory(), it will be passed to your callback in this
message field. If you don’t pass any custom user data, this field
won’t be initialized at all.

Type: The type of change. This will only be set if the ReportChanges
tag has been set to True in the call to MonitorDirectory(). If
that is the case, this will be one of the following types:

#DIRMONITOR_ADD:

The file or directory in the Name tag has been added
to the directory.

#DIRMONITOR_REMOVE:

The file or directory in the Name tag has been re-
moved from the directory.

#DIRMONITOR_CHANGE:

The file or directory in the Name tag has been
changed in the directory.

(V9.0)

Name: This contains the name of the file or directory that has been
added, removed, or changed, depending on the value in the
Type tag (see above). Note that Name will only be set if
the ReportChanges tag has been set to True in the call to
MonitorDirectory(). (V9.0)

(V8.0)

OnAccelerometer:

The function you specify here will be called each time the device’s sensor
reports new accelerometer values. Note that this will typically happen all
the time so if you listen to this event, you will get lots of events that can
impact the performance of your script.

The function will receive a message as parameter 1 with the following fields:

Action: Initialized to OnAccelerometer.

ID: Will be set to the identifier of the display that received this
event.

568 Hollywood manual

X: X accelerometer value from sensor.

Y: Y accelerometer value from sensor.

Z: Z accelerometer value from sensor.

Please note that this event handler is only supported in the Android ver-
sion of Hollywood. To learn how to interpret the X, Y, and Z values pro-
vided by this event handler, please consult the Android documentation of
SensorEvent. (V8.0)

OnGyroscope:

The function you specify here will be called each time the device’s sensor
reports new gyroscope values. Note that this will typically happen all the
time so if you listen to this event, you will get lots of events that can impact
the performance of your script.

The function will receive a message as parameter 1 with the following fields:

Action: Initialized to OnGyroscope.

ID: Will be set to the identifier of the display that received this
event.

X: X gyroscope value from sensor.

Y: Y gyroscope value from sensor.

Z: Z gyroscope value from sensor.

Please note that this event handler is only supported in the Android ver-
sion of Hollywood. To learn how to interpret the X, Y, and Z values pro-
vided by this event handler, please consult the Android documentation of
SensorEvent. (V8.0)

RunOutput:

The function you specify here will be called whenever a program executed
asynchronously using the Run() command writes data to the console. This
data will be redirected to your program and you can process it using this
event handler. This makes it possible to capture a program’s output. The
function will receive a message as parameter 1 with the following fields ini-
tialized:

Action: Initialized to RunOutput.

Program: This is set to a string that contains the name of the program
that was launched using Run().

Args: This is set to a string that contains the arguments that were
passed to the program launched using Run().

Output: This is set to a string that contains the program’s output. Note
that this can be of any arbitrary length. Do not assume Output
to always be a complete line of the program’s output, it can
also be half a line with the other half delivered the next time
the event handler triggers. Depending on the way the program

Chapter 29: Event library 569

writes output to the console, it could even be delivered to you
character by character so make no assumptions on the actual
format of Output. The string passed in Output will be in UTF-
8 format by default. See below how this can be changed.

RunUserData:

If custom user data is specified in the call to Run(), it will be
passed on to your callback in this message field. If you don’t
pass any custom user data, this field won’t be initialized at all.

Note that by default, the RunOutput event handler expects programs to
output text only. This is why RunOutput will make sure to pass only properly
UTF-8 encoded text to your callback function. If you don’t want RunOutput
to format the text as UTF-8, you need to set the RawMode argument to True

when calling Run(). In that case, RunOutput won’t do any preformatting
and will just forward the program’s raw output to you. This means that
your event handler callback has to be ready to process binary data as well.

Also note that output will normally not be delivered in real-time because
console output is typically buffered. However, if the external program con-
tinually outputs text it will arrive pretty instantly at your RunOutput event
handler callback.

(V9.0)

ShowSystemBars:

The function you specify here will be called each time the system bars become
visible again when a display is in immersive mode. The function will receive
a message as parameter 1 with the following fields:

Action: Initialized to ShowSystemBars.

ID: Will be set to the identifier of the display that received this
event.

Please note that this event handler is only supported in the Android version
of Hollywood. (V9.0)

HideSystemBars:

The function you specify here will be called each time the system bars are
hidden when a display is in immersive mode. The function will receive a
message as parameter 1 with the following fields:

Action: Initialized to HideSystemBars.

ID: Will be set to the identifier of the display that received this
event.

Please note that this event handler is only supported in the Android version
of Hollywood. (V9.0)

If you want to remove an event handler, simply set the corresponding field in the table
to 0 instead of passing a function.

Starting with Hollywood 3.1 there is an optional argument called userdata. The value
you specify here is passed to your callback function whenever it is called. This is useful

570 Hollywood manual

if you want to avoid working with global variables. Using the userdata argument you
can easily pass data to your callback function. You can specify a value of any type in
userdata. Numbers, strings, tables, and even functions can be passed as user data.

Starting with Hollywood 7.0 all event messages will contain an additional field named
Timestamp. This field contains the time stamp when the event was generated. This time
stamp is passed in seconds as a fractional number. It is relative to the time Hollywood
was started. See Section 55.8 [GetTimestamp], page 1163, for details.

Please note that the event handler functions are only executed while the script is in a
WaitEvent() loop. You have to use WaitEvent() for them!

INPUTS

table table which contains information about which handlers to install or remove

userdata optional: user specific data that will be passed to the callback function
(V3.1)

EXAMPLE
Function p_HandlerFunc(msg)

Switch(msg.action)

Case "ActiveWindow":

DebugPrint("Window has become active again!")

Case "InactiveWindow":

DebugPrint("Window has become inactive!")

Case "MoveWindow":

DebugPrint("User has moved the window to", msg.x, msg.y)

Case "OnKeyDown":

If msg.key = "ESC" Then End

EndSwitch

EndFunction

InstallEventHandler({ActiveWindow = p_HandlerFunc,

InactiveWindow = p_HandlerFunc,

MoveWindow = p_HandlerFunc,

OnKeyDown = p_HandlerFunc})

Repeat

WaitEvent

Forever

The code above installs four event handlers for ActiveWindow, InactiveWindow,
MoveWindow and OnKeyDown. If the user presses escape, the program will quit. If you
want to remove e.g. the event handler MoveWindow, just call InstallEventHandler()
again with the parameter MoveWindow=0.

29.14 IsKeyDown

NAME
IsKeyDown – check if a key is pressed (V1.5)

Chapter 29: Event library 571

SYNOPSIS
state = IsKeyDown(key$[, rawkey])

FUNCTION
This function checks if the key specified by key$ is currently pressed. If it is, this function
will return True otherwise it will return False.

key$ is a string representing a key on your keyboard. This can be one of the following
control keys:

UP Cursor up

DOWN Cursor down

RIGHT Cursor right

LEFT Cursor left

HELP Help key

DEL Delete key

BACKSPACE

Backspace key

TAB Tab key

RETURN Return key

ENTER Enter key

ESC Escape

SPACE Space key

F1 - F16 Function keys

INSERT Insert key

HOME Home key

END End key

PAGEUP Page up key

PAGEDOWN Page down key

PRINT Print key

PAUSE Pause key

Alternatively, key$ can also be a character from the English alphabet, e.g. "A", or a
string containing a number from 0 to 9. Note that IsKeyDown() doesn’t support Unicode
keys.

Starting with Hollywood 4.0, you can check the status of the modifier keys, too. The
following modifier keys can be checked using IsKeyDown():

LSHIFT Left shift key

RSHIFT Right shift key

572 Hollywood manual

LALT Left alt key

RALT Right alt key

LCOMMAND Left command key

RCOMMAND Right command key

LCONTROL Left control key

RCONTROL Right control key

Starting with Hollywood 6.1 you can pass the special string ANY in key$ to check for an
arbitrary key to be pressed.

Starting with Hollywood 7.1 there is an optional argument rawkey. If this argument
is set to True, IsKeyDown() will treat key$ as a raw key and check if it is down. In
that case, key$ must be one of the raw keys defined by Hollywood. See Section 29.22
[Raw keys], page 579, for details. The difference between normal keys and raw keys is
described in the documentation of the OnRawKeyDown event handler. See Section 29.13
[InstallEventHandler], page 553, for details.

INPUTS

key$ key to check

rawkey optional: True if key$ is a raw key (defaults to False) (V7.1)

RESULTS

state True if key$ is pressed, False otherwise

EXAMPLE
Print("Press F1 please.")

Repeat

VWait

Until IsKeyDown("F1") = True

The above code waits until the F1 key is pressed. (you can have that easier by using
WaitKeyDown(); the one above is only useful if you want to do something while the key
is not pressed)

29.15 IsLeftMouse

NAME
IsLeftMouse – check if the left mouse button is pressed

SYNOPSIS
pressed = IsLeftMouse()

FUNCTION
This function returns True if the left mouse button is currently pressed, otherwise False.

INPUTS
none

Chapter 29: Event library 573

EXAMPLE
Repeat

Wait(2)

Until IsLeftMouse() = True

The above code waits until the left mouse button is pressed. (you can have that easier
by using WaitLeftMouse(); the one above is only useful if you want to do something
while the mouse button is not pressed)

29.16 IsMidMouse

NAME
IsMidMouse – check if the middle mouse button is pressed (V4.5)

SYNOPSIS
pressed = IsMidMouse()

FUNCTION
This function returns True if the middle mouse button is currently pressed, otherwise
False.

INPUTS
none

EXAMPLE
Repeat

Wait(1)

Until IsMidMouse() = True

The above code waits until the middle mouse button is pressed. (you can have that easier
by using WaitMidMouse(); the one above is only useful if you want to do something while
the mouse button is not pressed)

29.17 IsRightMouse

NAME
IsRightMouse – check if the right mouse button is pressed (V1.5)

SYNOPSIS
pressed = IsRightMouse()

FUNCTION
This function returns True if the right mouse button is currently pressed, otherwise
False.

INPUTS
none

EXAMPLE
Repeat

Wait(2)

574 Hollywood manual

Until IsRightMouse() = True

The above code waits until the right mouse button is pressed. (you can have that easier
by using WaitRightMouse(); the one above is only useful if you want to do something
while the mouse button is not pressed)

29.18 LeftMouseQuit

NAME
LeftMouseQuit – enable/disable left mouse quit

SYNOPSIS
LeftMouseQuit(enable)

FUNCTION
If you set enable to True, your script will be terminated as soon as the user presses the
left mouse button.

INPUTS

enable True to enable left mouse quit, False to disable it

EXAMPLE
LeftMouseQuit(TRUE)

Repeat

Wait(10)

Forever

The above code enters an endless loop which would normally block your program. But
using LeftMouseQuit(TRUE) allows the user to terminate it.

29.19 MakeButton

NAME
MakeButton – create a new button (V2.0)

SYNOPSIS
[id] = MakeButton(id, #LAYERBUTTON, layerid, t[, userdata])

[id] = MakeButton(id, #SIMPLEBUTTON, x, y, width, height, t[, userdata])

DEPRECATED SYNTAX
[id] = MakeButton(id, #LAYERBUTTON, layerid, exactcoll, noautohide, t

[, userdata]) (V2.5)

FUNCTION
This function creates a new button and attaches it to the current BGPic. The button
will be given the identifier specified by id, or, if you pass Nil as id, MakeButton() will
automatically choose an identifier for you. The argument type specifies the type of the
button. Currently, the following types are supported:

#SIMPLEBUTTON:

Creates a standard button. Note that this button is invisible. You need to
use graphics in your BGPic to show the user where your button is. The type

Chapter 29: Event library 575

#SIMPLEBUTTON requires you pass the position and dimensions for the button
in argument 3 to 6. The seventh argument is a table argument allowing you
to specify the callback functions to be invoked when the button receives an
event (see below).

#LAYERBUTTON:

This type is new in Hollywood 2.5. It will create a dynamic button which
will always share the position and size of the layer specified by layerid.
Note that layer buttons are closely tied to their layer. Thus, when the layer
is deleted, the button will also be deleted. Layer buttons also support some
additional options in the table argument accepted by MakeButton() (see
below for details).

The t argument must be a table which specifies the functions that shall be called when
a specific event occurs. It can also be used to configure some advanced button options.
The table can contain the following fields:

OnMouseOver:

The function specified here will be called when the user moves the mouse
over the button’s area.

OnMouseOut:

The function specified here will be called when the mouse pointer leaves the
area occupied by this button.

OnMouseDown:

The function specified here will be called when the user presses the left mouse
button while the pointer is over the button’s area.

OnMouseUp:

The function specified here will be called when the user releases the left
mouse button while the pointer is over the button’s area. This event will
only be triggered if the user also pressed the left mouse button while the
pointer was over the button’s area.

OnRightMouseDown:

Same as OnMouseDown but with the right mouse button.

OnRightMouseUp:

Same as OnMouseUp but with the right mouse button.

OnMidMouseDown:

Same as OnMouseDown but with the middle mouse button. (V4.5)

OnMidMouseUp:

Same as OnMouseUp but with the middle mouse button. (V4.5)

PixelExact:

This is only supported for #LAYERBUTTON. It specifies whether or not your
button should use pixel-exact or rectangular collision detection. If you pass
True here, events will only be triggered on a pixel-exact collision. This can
be useful for irregularly shaped buttons. Defaults to False.

576 Hollywood manual

NoAutoHide:

This is only supported for #LAYERBUTTON. It specifies whether or not the
button shall automatically be hidden when the layer is hidden. If you specify
True here, the button will not automatically disappear when you hide the
layer it is attached to. If NoAutoHide is False, the button will disappear as
soon as you hide the layer. Defaults to False.

ZOrder: This is only supported for #LAYERBUTTON. It specifies whether or not the
layer z-order should be respected when handling events of overlapping layer
buttons. Historically, overlapping layer button events were handled in the
order of their creation, i.e. if a layer button was created before another
layer button and both layers overlapped, the layer button created earlier
would receive the events even if it was below the other layer button. By
setting the ZOrder tag to True, you can force Hollywood to handle events
of overlapping layer buttons in their stacking order, i.e. layers on top of
other layers will receive their events first. For compatibility reasons, this tag
defaults to False. (V9.0)

If you just want to listen to mouse clicks on a button, it is enough to provide a callback
function for the OnMouseUp event type. OnMouseDown is only required, if you want to
highlight the button in some way while the user clicks on it.

Starting with Hollywood 3.1 there is an optional argument called userdata. The value
you specify here is passed to your callback function whenever it is called. This is useful
if you want to avoid working with global variables. Using the userdata argument you
can easily pass data to your callback function. You can specify a value of any type in
userdata. Numbers, strings, tables, and even functions can be passed as user data.

The callback functions you specify in the event table will be called by Hollywood with
one parameter. This parameter is a message table that contains some information about
the event. The following fields are provided:

Action: Contains the name of the event triggered, e.g. OnMouseUp, OnMouseOver or
OnMouseOut. This field is a string.

ID: Contains the identifier of the button that triggered this event. This field is
a number.

X, Y, Width, Height:

These fields contain the dimensions of the button that triggered this event.

MouseDown:

This field will be set to True if the left mouse button is currently pressed.
Useful in connection with the OnMouseOver event, so that you can display a
differently highlighted version of the button if the user moves the pointer of
the button while the left mouse button is pressed.

RightMouseDown:

Same as MouseDown but relating to the right mouse button.

MidMouseDown:

Same as MouseDown but relating to the middle mouse button. (V4.5)

Chapter 29: Event library 577

Layer: The identifier of the layer this button is bound to. This is only set for buttons
of type #LAYERBUTTON. (V4.5)

LayerName:

The name of the layer this button is bound to. This is only set for buttons
of type #LAYERBUTTON. (V4.5)

UserData:

Contains the value that you have passed in the userdata argument when
you created the button.

Timestamp:

Contains a time stamp that indicates when the event occurred. See
Section 55.8 [GetTimestamp], page 1163, for details. (V7.0)

The advantage of this message is that you can use one and the same function for all your
buttons and all events. Just check the fields Action and ID to find out which button
caused the event.

Please note: Buttons are always attached to BGPics. So if you call MakeButton() when
BGPic 1 is displayed, the button will be attached to BGPic 1. If you display BGPic 2
then, the buttons will go away. Once you switch back to BGPic 1, its buttons will also
be re-activated.

Also note that you can only create rectangularly shaped buttons with #SIMPLEBUTTON.
If you want to have irregularly shaped buttons, create a layer that has a transparency
setting (masked or alpha channelled transparency) and then use #LAYERBUTTON to attach
a button to this layer.

INPUTS

id identifier for the new button or Nil for auto id selection

type type of the new button

x x position of the new button

y y position of the new button

width width of the new button

height height of the new button

t table that contains callback functions that Hollywood shall call if a specific
event occurs and additional arguments (see above)

userdata optional: user specific data that will be passed to the callback function
(V3.1)

RESULTS

id optional: identifier of the button; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
Function p_MyFunc(msg)

Switch msg.action

Case "OnMouseUp":

578 Hollywood manual

DebugPrint("User left-clicked button", msg.id)

Case "OnMouseOver":

DebugPrint("User moved mouse over button", msg.id)

Case "OnRightMouseUp":

DebugPrint("User right-clicked button", msg.id)

EndSwitch

EndFunction

; draw the buttons

Box(0, 0, 100, 100, #RED)

Box(200, 200, 100, 100, #BLUE)

; install them

evtmatch = {OnMouseUp = p_MyFunc, OnMouseOver = p_MyFunc,

OnRightMouseUp = p_MyFunc}

MakeButton(1, #SIMPLEBUTTON, 0, 0, 100, 100, evtmatch)

MakeButton(2, #SIMPLEBUTTON, 200, 200, 100, 100, evtmatch)

Repeat

WaitEvent

Forever

29.20 MouseX

NAME
MouseX – return x-position of mouse (V1.5)

SYNOPSIS
pos = MouseX()

FUNCTION
This function returns the current x-position of the mouse pointer.

INPUTS
none

RESULTS

pos mouse pointer’s x-position

29.21 MouseY

NAME
MouseY – return y-position of mouse (V1.5)

SYNOPSIS
pos = MouseY()

FUNCTION
This function returns the current y-position of the mouse pointer.

Chapter 29: Event library 579

INPUTS
none

RESULTS

pos mouse pointer’s y-position

29.22 Raw keys

Starting with version 7.1 Hollywood supports raw key events. The following raw keys are
currently supported by Hollywood:

A-Z Alphabetical keys. Note that these will always be in upper case because they
are raw keys and no modifier keys are applied to raw keys.

0-9 Numerical keys

UP Cursor up

DOWN Cursor down

RIGHT Cursor right

LEFT Cursor left

HELP Help key

DEL Delete key

BACKSPACE

Backspace key

TAB Tab key

RETURN Return key

ENTER Enter key

ESC Escape

SPACE Space key

F1-F16 Function keys

INSERT Insert key

HOME Home key

END End key

PAGEUP Page up key

PAGEDOWN Page down key

PRINT Print key

PAUSE Pause key

NP0-NP9 Numpad numeric keys

NPDEC Numpad decimal key

580 Hollywood manual

NPADD Numpad addition key

NPSUB Numpad subtraction key

NPMUL Numpad multiplication key

NPDIV Numpad division key

LSHIFT Left shift key

RSHIFT Right shift key

LALT Left alt key

RALT Right alt key

LCOMMAND Left command key

RCOMMAND Right command key

LCONTROL Left control key

RCONTROL Right control key

29.23 ResetKeyStates

NAME
ResetKeyStates – reset internal key and mouse states (V4.6)

SYNOPSIS
ResetKeyStates()

FUNCTION
This function can be used to reset Hollywood’s internal key and mouse states. This is a
low-level function and you normally will not need to use this. It is just here for certain
emergency situations.

Please note that key states are cached per display. ResetKeyStates() will reset the key
states of the currently active display.

INPUTS
none

29.24 RunCallback

NAME
RunCallback – push callback into event queue (V9.0)

SYNOPSIS
RunCallback(func[, userdata])

FUNCTION
This function adds the function specified by func to the event queue. The function will
be run the next time Hollywood checks the event queue, i.e. when CheckEvent() or
WaitEvent() gets called.

Chapter 29: Event library 581

The optional userdata argument allows you to specify additional data that will be
passed to your callback function whenever it is called. This is useful if you want to avoid
working with global variables. Using the userdata argument you can easily pass data
to your callback function. You can specify a value of any type in userdata. Numbers,
strings, tables, and even functions can be passed as user data.

Your callback function will be called by Hollywood with a single parameter. The param-
eter is a message table which contains the following fields:

Action: Will be always set to RunCallback. This field is a string!

UserData:

Will be set to what you have specified in the userdata argument when
calling RunCallback(). Note that this field will only be there if you have
actually passed a value in userdata when calling RunCallback().

INPUTS

function function to be added to the event queue

userdata optional: user data to be passed to the function when running it

EXAMPLE
RunCallback(Function(msg) NPrint(msg.userdata) EndFunction, "Hello 2!")

NPrint("Hello 1!")

Repeat

WaitEvent

Forever

This will first print "Hello 1!" and then "Hello 2!" because the function that prints
"Hello 2!" won’t be called until Hollywood empties the event queue which happens on
WaitEvent().

29.25 SetEventTimeout

NAME
SetEventTimeout – define event cache duration (V1.9)

SYNOPSIS
SetEventTimeout(duration)

FUNCTION
You can use this function to tell Hollywood for how long it should cache input events.
The default value is currently 60000 which means that all events will be cached for 60
seconds. This function can be useful if you have a function that blocks the program flow
for some time, e.g. if you do some heavy computing that takes longer than 60 seconds,
all events that occurred more than 60 seconds ago will get lost. To prevent that, just
increase the event timeout.

Starting with Hollywood 7.0, it is also possible to set duration to -1 to disable event
timeouts completely. In that case, events will never get lost.

INPUTS

duration specifies for how long events will be cached (in milliseconds)

582 Hollywood manual

EXAMPLE
SetEventTimeout(5000)

Sets the event cache duration to 5 seconds (= 5000 milliseconds).

29.26 SetInterval

NAME
SetInterval – install a new interval function (V2.0)

SYNOPSIS
[id] = SetInterval(id, func, ms[, userdata])

FUNCTION
This function installs a new interval function and assigns the identifier id to it. If you
pass Nil in id, SetInterval() will automatically choose an identifier and return it. You
need to specify a Hollywood function in the func argument and the time in milliseconds
that defines the interval. The function you specified will then be called again and again
and again at the intervals of the specified time. For example if you specify 40 as the
interval, your function will be called every 40 milliseconds which corresponds to 25 times
a second (25 * 40ms = 1000ms = 1 second). This is enough for most games, intros etc.

The function you specify in func will be called for the first time when the time specified
in ms has elapsed. After that your function will be called repeatedly in intervals of ms
milliseconds.

You always need to use WaitEvent() in connection with this function! If you have an
interval function installed, the internal Hollywood timer scheduler will trigger interval
events and inform WaitEvent() to call your interval function. Intervals do not work
without WaitEvent()! If you do not use WaitEvent(), your interval function will never
be called. Interval functions are only called as long as you are in a WaitEvent() loop.

This function is very important because it helps you to make sure that your script runs
at the same speed on every system. See Section 15.3 [Script timing], page 161, for more
information on this issue and also for an example.

You can install as many intervals as you want. Hollywood’s internal scheduler will make
sure that all interval functions are called correctly.

Please remember that Hollywood does not support multithreading. Therefore your inter-
val functions must not block the script - otherwise the whole script will be blocked. For
example, if you have two interval functions installed and one of those functions executes
a Wait(100), then the whole script will be blocked for 2 seconds.

You can use the ClearInterval() call to stop an interval function.

Starting with Hollywood 3.1 there is an optional argument called userdata. The value
you specify here is passed to your callback function whenever it is called. This is useful
if you want to avoid working with global variables. Using the userdata argument you
can easily pass data to your callback function. You can specify a value of any type in
userdata. Numbers, strings, tables, and even functions can be passed as user data.

Your interval function will be called by Hollywood with one parameter. The parameter
is a message table which contains the following fields:

Chapter 29: Event library 583

Action: Will be always set to Interval. This field is a string.

ID: Will be set to the identifier of the interval that Hollywood has just called.

UserData:

Will be set to what you have specified in the userdata argument when you
installed the interval.

This message is useful if you want to handle two or more intervals in the same function.
The message tells you then which interval Hollywood executed. If you do not need this
message, simply disregard it. For example, the interval function of the code above does
not regard the message either.

Last but not least: You should really have a look at the examples that came with
Hollywood. Many of them use SetInterval() to manage the timing of the script!

INPUTS

id identifier for the new interval function or Nil for auto id selection; the
identifier is needed so that you can stop the interval later using the
ClearInterval() command

func Hollywood function that should be called at the intervals of the specified
time

ms intervals at which the function shall be called, e.g. 40 will call the function
25 times a second because 25 * 40ms = 1000ms = 1 second

userdata optional: user specific data to pass to callback function (V3.1)

RESULTS

id optional: identifier of the interval; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
See Section 15.3 [script timing], page 161.

29.27 SetTimeout

NAME
SetTimeout – install a new timeout function (V2.0)

SYNOPSIS
[id] = SetTimeout(id, func, timeout[, userdata])

FUNCTION
This function installs a new timeout function and assigns the identifier id to it. If
you pass Nil in id, SetTimeout() will automatically choose an identifier and return
it. You need to specify a Hollywood function in the func argument and a timeout in
milliseconds. After this time has elapsed, Hollywood will call your timeout function.
This is useful if you need exact timing, for example if you want to synchronize graphics
with music. Timeout functions are perfect for that.

You always need to use WaitEvent() in connection with this function! If you have a
timeout function installed, the internal Hollywood timer scheduler will trigger timeout

584 Hollywood manual

events and inform WaitEvent() to call your timeout function. Timeouts do not work
without WaitEvent()! If you do not use WaitEvent(), your timeout function will never
be called. Timeout functions are only called as long as you are in a WaitEvent() loop.

You can install as many timeouts as you want. Hollywood’s internal scheduler will make
sure that all timeout functions are called correctly.

You can use the ClearTimeout() call to stop a timeout function.

Starting with Hollywood 3.1 there is an optional argument called userdata. The value
you specify here is passed to your callback function whenever it is called. This is useful
if you want to avoid working with global variables. Using the userdata argument you
can easily pass data to your callback function. You can specify a value of any type in
userdata. Numbers, strings, tables, and even functions can be passed as user data.

Your timeout function will be called by Hollywood with one parameter. The parameter
is a message table which contains the following fields:

Action: Will be always set to Timeout. This field is a string!

ID: Will be set to the identifier of the timeout that Hollywood has just called.

UserData:

Will be set to what you have specified in the userdata argument when you
installed the timeout.

This message is useful if you want to handle two or more timeouts in the same function.
The message tells you then which timeout Hollywood executed. If you do not need this
message, simply disregard it.

INPUTS

id identifier for the new timeout function or Nil for auto id selection; the
identifier is needed so that you can stop the timeout later using the
ClearTimeout() command

func Hollywood function to be called after the specified time has elapsed

timeout time in milliseconds that specifies the timeout

userdata optional: user specific data to pass to callback function (V3.1)

RESULTS

id optional: identifier of the timeout; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
Function p_TenSeconds()

SystemRequest("Hollywood", "Ten seconds are over now!", "OK")

EndFunction

SystemRequest("Hollywood", "I will call the function TenSeconds()\n" ..

"after 10 seconds have elapsed!\nCheck your watch, then click Go!",

"Let’s go!")

SetTimeout(1, p_TenSeconds, 10000)

Chapter 29: Event library 585

Repeat

WaitEvent

Forever

The code above installs a timeout function that will be called after 10000 milliseconds
(= 10 seconds) have elapsed.

29.28 WaitEvent

NAME
WaitEvent – wait for an event to occur

SYNOPSIS
info = WaitEvent()

FUNCTION
The WaitEvent() function puts Hollywood in sleep state. The program will be woken
up when an event is triggered. In this case WaitEvent() will execute the function that
you installed for this event and then it will return. Therefore, you always need to use
WaitEvent() in a loop. For example:

While quit = False

WaitEvent

Wend

Or use an endless loop:

Repeat

WaitEvent

Forever

WaitEvent() is a core function of the Hollywood language and you should use one of the
loops presented above in every script as your main loop. WaitEvent() has the advantage
that it sleeps until an event is triggered. This is important in a multitasking environment
because it saves CPU time. Never use polling loops as they will consume all CPU time.
If you need to constantly execute code in your main loop, use SetInterval() to install
an interval function that gets called 25 times a second by WaitEvent().

The functions that WaitEvent() will call when an event is triggered can be installed with
the following functions of the Hollywood event library: MakeButton(), SetInterval(),
SetTimeout(), and InstallEventHandler()

Note that WaitEvent() must not be called from any callbacks executed by WaitEvent().
In general, you should use WaitEvent() only once in your script: in your main loop.
If you really have to check for events in a callback executed by WaitEvent(), use
CheckEvents() instead, but this should normally be unnecessary.

WaitEvent() returns a table that contains information about the callback function it
has just executed. The following fields will be initialized in that table:

Action: Contains the name of the event that caused the callback execution (e.g.
OnMouseDown). If WaitEvent() returns without having run a callback, this
field will be set to an empty string.

586 Hollywood manual

ID: Contains the identifier of the object that caused the callback execution (e.g.
a display identifier). ID can also be zero in case an event was caused that
has no identifier associated.

Triggered:

Will be set to True if WaitEvent() has executed a callback and then returned
control to the script. If this is set to False, then some other internal event
has caused WaitEvent() to return control to the script.

NResults:

Contains the number of values that the user callback returned (e.g. 1). This
will be 0 if the user callback did not return any values or if no user callback
was ran at all.

Results: If NResults is greater than 0, this table will contain all values that the user
callback returned. Otherwise this table will not be present at all. You can
easily use this table to pass additional information from your callbacks back
to the main scope of the program.

INPUTS
none

RESULTS

info return values from previously executed event function; normally you won’t
need this and you can ignore it

EXAMPLE
See Section 29.19 [MakeButton], page 574.

See Section 29.26 [SetInterval], page 582.

See Section 29.27 [SetTimeout], page 583.

See Section 29.13 [InstallEventHandler], page 553.

29.29 WaitKeyDown

NAME
WaitKeyDown – wait for the user to press a key (V1.5)

SYNOPSIS
WaitKeyDown(key$[, rawkey])

FUNCTION
This function halts the program flow until the user presses the key specified by key$.
See Section 29.14 [IsKeyDown], page 570, for the keys you can specify in key$. Please
note that WaitKeyDown() cannot be used for Unicode characters. Only characters from
the English alphabet are universally supported.

Starting with Hollywood 6.1 you can pass the special string ANY in key$ to wait for an
arbitrary key to be pressed.

Starting with Hollywood 7.1 there is an optional argument rawkey. If this argument is
set to True, WaitKeyDown() will treat key$ as a raw key and wait until it is down. In

Chapter 29: Event library 587

that case, key$ must be one of the raw keys defined by Hollywood. See Section 29.22
[Raw keys], page 579, for details. The difference between normal keys and raw keys is
described in the documentation of the OnRawKeyDown event handler. See Section 29.13
[InstallEventHandler], page 553, for details. Setting rawkey to True can be useful if you
need to wait for a modifier key like shift, alt, control, etc.

INPUTS

key$ key to wait for

rawkey optional: True if key$ should be treated as a raw key (defaults to False)
(V7.1)

EXAMPLE
Print("Press Return to continue.")

WaitKeyDown("Return")

The code aboves waits until the user presses the return key.

29.30 WaitLeftMouse

NAME
WaitLeftMouse – wait for the user to press the left mouse button

SYNOPSIS
WaitLeftMouse()

FUNCTION
This function halts the script’s execution until the left mouse button is pressed.

INPUTS
none

EXAMPLE
Print("Press left mouse to quit.")

WaitLeftMouse

End

Wait for the user to press left mouse button.

29.31 WaitMidMouse

NAME
WaitMidMouse – wait for the user to press the middle mouse button (V4.5)

SYNOPSIS
WaitMidMouse()

FUNCTION
This function halts the script’s execution until the middle mouse button is pressed.

INPUTS
none

588 Hollywood manual

EXAMPLE
Print("Press middle mouse to quit.")

WaitMidMouse

End

Wait for the user to press middle mouse button.

29.32 WaitRightMouse

NAME
WaitRightMouse – wait for the user to press the right mouse button (V1.5)

SYNOPSIS
WaitRightMouse()

FUNCTION
This function halts the script’s execution until the right mouse button is pressed.

INPUTS
none

EXAMPLE
Print("Press right mouse to quit.")

WaitRightMouse

End

Wait for the user to press right mouse button.

589

30 Graphics library

30.1 ARGB

NAME
ARGB – compose a color with alpha transparency (V2.0)

SYNOPSIS
color = ARGB(alpha, rgb)

FUNCTION
This function combines an alpha transparency value with a color in RGB notation. A
32-bit ARGB color in the format $AARRGGBB will be returned. This is useful in
connection with the commands of the drawing library because they can draw alpha-
blended graphics, too.

INPUTS

alpha desired alpha transparency (0-255)

rgb standard RGB color

RESULTS

color ARGB color

EXAMPLE
Box(#CENTER, #CENTER, 320, 240, ARGB(128, #WHITE))

The code above draws an alpha-blended white rectangle. The mixing ratio is 128 (50%).

30.2 ARGB colors

An ARGB color is a RGB color extended with alpha transparency information. This no-
tation is useful for the functions of the drawing library because they allow you to specify
an ARGB color. Hence, you can draw transparent graphics primitives with the Hollywood
drawing library.

A standard RGB color is a 24-bit value whereas an ARGB color uses 32 bits. The highest 8
bits are used for the alpha transparency information which can range from 0 to 255. Thus,
an ARGB color looks like the following:

$AARRGGBB

An alpha value of 0 means that there is no transparency at all. A value of 255 means full
transparency. This is an inversion of the format used in SetAlphaIntensity() where 255
means 0% transparency and 0 means 100% transparency. Please keep that in mind.

You can use the ARGB() function to easily combine an alpha transparency value with a
24-bit RGB color.

590 Hollywood manual

30.3 BeginDoubleBuffer

NAME
BeginDoubleBuffer – start double buffering for current display (V2.0)

SYNOPSIS
BeginDoubleBuffer([hardware])

FUNCTION
This command puts the current display in double buffering mode. The graphics that are
drawn after this command was called will not be visible until you call Flip(). Double
buffering is used to avoid that screen updates are visible to the user. As the name
implies, you have two buffers in double buffering mode: A front buffer (visible to the
user) and a back buffer (in memory). Your screen updates are always drawn to the back
(memory) buffer and when you are finished with that, you call the Flip() command
to bring the back buffer to the front. After that, you can draw the next update. This
technique ensures that no flickering will be visible because Flip() will always refresh
the whole display in one go.

Double buffers are extremely useful if many graphics have to be drawn in a screen
update. If you only need to move a little player image around, you should better use
sprites because that is faster. Remember that a double buffered display will always
refresh the whole screen. Thus, if you have an application running in 640x480 at 25fps,
it will be quite some work for Hollywood because it has to draw a screen of 640x480 25
times a second.

Double buffers are installed on a per display basis. Thus, when you call
BeginDoubleBuffer(), it will change the currently selected display into a double-
buffered one. It will not change all displays to double-buffered! If you want all your
displays to be double-buffered, you need to call BeginDoubleBuffer() for each of your
displays.

Some restrictions apply:

− You cannot use double buffering when layers are enabled.

− You cannot use sprites together with a double buffered display.

− The BGPic that is active when BeginDoubleBuffer() is called must not be trans-
parent.

Starting with Hollywood 5.0, there is a new optional argument hardware that allows you
to enable hardware double buffering. On supported systems, this is much faster than
software double buffering because it will completely operate in video memory which can
use the GPU for drawing. There are some restrictions, though: If you use a hardware
double buffer, you should draw to it using hardware brushes whenever this is possible.
All other drawing commands will be much slower! Only by using hardware brushes
can you get full hardware accelerated drawing. Using normal drawing functions with
a hardware double buffer can even be slower than using them on a software double
buffer. This is especially the case with graphics that use an alpha channel, e.g. anti-
aliased text or vector shapes, because for alpha channel drawing, Hollywood has to read
from the destination device which will be very slow for hardware double buffers because
reading from video memory is very slow. Thus, you should try to use hardware brushes

Chapter 30: Graphics library 591

whereever possible when you work with a hardware double buffer. See Section 21.37
[hardware brushes], page 280, for details.

Please note that currently hardware double buffering is only supported on AmigaOS
and Android by default. However, plugins that install a display adapter are also able to
support hardware double buffers for their display adapter. In that case you can also use
hardware double buffers on systems other than AmigaOS and Android. For example, the
GL Galore and RebelSDL plugins allow you to use hardware double buffers on Windows,
macOS, and Linux. See Section 5.4 [Obtaining plugins], page 66, for details.

Please note that Hollywood might also fall back to single buffering on some systems.
Therefore, it is not safe to assume that calling Flip() will really switch buffers. It could
also just draw the single buffer and then simply let you draw on it again.

INPUTS

hardware optional: whether or not to create a hardware double buffer (defaults to
False which means software double buffering) (V5.0)

EXAMPLE
BeginDoubleBuffer()

CreateBrush(1, 64, 64, #RED)

For k = -64 To 640

Cls

DisplayBrush(1, k, #CENTER)

Flip

Next

EndDoubleBuffer()

The code above moves a red rectangle from the outer left to the outer right without
any visible flickering. This is not a good example because we only move a little image
around. It is a lot of overhead to refresh the whole 640x480 pixels just for this little
image, so you should better use sprites in this case. Remember that double buffering is
only recommended when there are a lot of graphics to draw.

30.4 BeginRefresh

NAME
BeginRefresh – prepare display for optimized refresh (V5.3)

SYNOPSIS
BeginRefresh([force])

FUNCTION
This command prepares the active display for optimized refreshing. On platforms
supporting optimized refreshing, this means that all drawing commands that follow
BeginRefresh() will be queued until you call EndRefresh(). By caching all draw-
ing commands that are called between BeginRefresh() and EndRefresh(), the latter
will be able to refresh your whole display in a single frame which on many platforms
is the most efficient way of drawing besides using a double buffer. On platforms that
don’t support optimized refreshing, calling BeginRefresh() and EndRefresh() won’t

592 Hollywood manual

have any effect at all so it is safe to always use it in your scripts and Hollywood will
enable it automatically when needed.

Optimized refreshing is always supported on Windows (except when the software ren-
derer is active), macOS (except on PowerPC), iOS and Android. On all other plat-
forms optimized refreshing is only supported when the auto scaling engine is active. See
Section 25.18 [Scaling engines], page 401, for details.

To better understand the concept behind optimized refreshing, you need to understand
that on some systems all drawing operations will always result in a complete redraw of the
whole display, even if just a single pixel is changed. Now imagine the following situation:
For every new frame your game has to draw 48 sprites to the screen. On systems that
always refresh the whole display even if just a single pixel has changed this means that
Hollywood has to redraw the whole screen 48 times and this 50 times a second if your
game runs at 50fps. Thus, 2400 complete screen refreshes (48 * 50) would be necessary
per second (!). This of course will significantly kill your game’s performance. If you
encapsulate the drawing of the 48 sprites inside a BeginRefresh() and EndRefresh()

section instead, Hollywood will only have to refresh the screen once per frame (50 times
per second), which leads to a much smoother appearance. Thus, using BeginRefresh()

in this case is absolutely mandatory to ensure a good performance of your game.

Optimized refresh can also greatly enhance the performance of your script when au-
toscaling is active. If you use normal drawing with autoscaling, Hollywood will have to
scale its refresh buffer to the desired dimensions on every single command that draws
something. If you use a BeginRefresh() section here instead, Hollywood will just have
to scale its refresh buffer once EndRefresh() is called. This of course can also enhance
the performance significantly.

By default, BeginRefresh() will only use optimized refresh if its use is either encouraged
on the host platform or if autoscaling is enabled. You can change this behaviour by
passing True in the optional force argument. If force is set to True, BeginRefresh()
will always use optimized refresh but this is not recommended because optimized refresh
can also be slower than normal refresh in some cases. That is why you should leave the
decision whether to use optimized refresh or not to Hollywood.

Please note that you only need to use BeginRefresh() sections if your script does its
drawing without a double buffer. If your script uses a double-buffer, drawing is already
pipelined to one refresh per frame and thus using BeginRefresh() is not needed in this
case.

INPUTS

force optional: force the use of optimized refresh or leave the decision to Holly-
wood. See above for more information (defaults to False which means leave
the decision to Hollywood)

EXAMPLE
BeginRefresh()

For Local k = 1 To 48

DisplaySprite(k, sprites[k].x, sprites[k].y)

Next

EndRefresh()

Chapter 30: Graphics library 593

The code above updates the positions of 48 sprites using a BeginRefresh() section. This
means that on systems that always refresh the whole display (e.g. Android) Hollywood
just has to update the screen once to reposition all 48 sprites. Without BeginRefresh()
Hollywood would have to update the screen 48 times which is of course much slower.

30.5 Blue

NAME
Blue – return blue portion of a color (V1.9)

SYNOPSIS
b = Blue(color)

FUNCTION
This function returns the 8-bit blue component of a color in the RGB format.

INPUTS

color input color in RGB format

RESULTS

b blue component of the color

EXAMPLE
b = Red($C0C024)

The above code will return $24 which is the blue component of the color.

30.6 ClearScreen

NAME
ClearScreen – clear screen with a transition effect

SYNOPSIS
[handle] = ClearScreen(effect, color[, table])

FUNCTION
This function clears the screen with one of Hollywood’s transition effects. The color is a
RGB value specifying the color of the transition effect.

Note that this function will automatically create a new BGPic filled with the specified
color and switch to it.

Starting with Hollywood 5.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the transition effect. The following
options are possible:

Speed: Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter:

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

594 Hollywood manual

Async: You can use this field to create an asynchronous draw object for this tran-
sition. If you pass True here DisplayTransitionFX() will exit immediately,
returning a handle to an asynchronous draw object which you can then draw
using AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221,
for more information on asynchronous draw objects.

X: Specifies the new x-position for the display. If you want the display to keep
its current x-position, specify the special constant #KEEPPOSITION. Defaults
to #CENTER.

Y: Specifies the new y-position for the display. If you want the display to keep
its current y-position, specify the special constant #KEEPPOSITION. Defaults
to #CENTER.

Have a look at the documentation of DisplayTransitionFX() to see the list of all
transition effects that can be used.

INPUTS

effect special effect constant (see DisplayTransitionFX())

color color that shall be used for the effect

table optional: table configuring the transition effect

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
ClearScreen(#VBLINDS32, $000000, {Speed = 10})

The above code clears the screen with color black and the effect #VBLINDS32 and speed
of 10.

30.7 Collision

NAME
Collision – check if two objects collide (V2.0)

SYNOPSIS
bool = Collision(type, ...)

bool = Collision(#BOX, x1, y1, width1, height1, x2, y2, width2, height2)

bool = Collision(#BRUSH, id1, x1, y1, id2, x2, y2)

bool = Collision(#LAYER, id1, id2)

bool = Collision(#SPRITE, id1, id2)

bool = Collision(#BRUSH_VS_BOX, id, x, y, x2, y2, width2, height2) (V4.5)

bool = Collision(#LAYER_VS_BOX, id, x, y, width, height) (V4.5)

bool = Collision(#SPRITE_VS_BOX, id, x, y, width, height) (V4.5)

bool = Collision(#SPRITE_VS_BRUSH, id1, id2, x, y) (V7.1)

FUNCTION
This function checks if two objects collide. There are several possibilities how you can
use this function depending on the type you specify.

Chapter 30: Graphics library 595

The following collision types are currently supported:

#BOX: You have to specify the position and size of two rectangles and this function
will determine if they collide or not. This is a quick calculation but is
probably not exact enough for some purposes.

#BRUSH: Checks if the two brushes specified by id1 and id2 would collide if they were
shown at x1 and y1 and x2 and y2, respectively. Transparent areas (mask
or alpha channel) of the brushes will be fully respected so that you get an
exact result if pixels collide or not.

#LAYER: Checks if the two layers specified by id1 and id2 collide. If the layers have
transparent areas, they will be respected. If you use this type, layers must
be enabled of course.

#SPRITE: Checks if the two sprites specified by id1 and id2 collide. If the sprites have
transparent areas, they will be respected.

#BRUSH_VS_BOX:

Checks if the specified brush collides with the specified rectangular area. If
the brush has transparent areas, they will be taken into account. (V4.5)

#LAYER_VS_BOX:

Checks if the specified layer collides with the specified rectangular area. If
the layer has transparent areas, they will be taken into account. (V4.5)

#SPRITE_VS_BOX:

Checks if the specified sprite collides with the specified rectangular area. If
the sprite has transparent areas, they will be taken into account. (V4.5)

#SPRITE_VS_BRUSH:

Checks if the sprite specified by id1 collides with the brush specified by id2

in case the brush was displayed at the position specified by x and y. (V7.1)

INPUTS

type either #BOX, #BRUSH, #SPRITE, #LAYER, #BRUSH_VS_BOX, #LAYER_VS_BOX,
#SPRITE_VS_BOX, or #SPRITE_VS_BRUSH (see above)

... optional arguments depend on the type specified (see above)

RESULTS

bool True for collision, False otherwise

EXAMPLE
Box(10, 10, 100, 100, #RED)

Box(70, 70, 100, 100, #BLUE)

b = Collision(#BOX, 10, 10, 100, 100, 70, 70, 100, 100)

This returns True because the rectangles collide.

596 Hollywood manual

30.8 CreateClipRegion

NAME
CreateClipRegion – create a clip region (V2.0)

SYNOPSIS
[id] = CreateClipRegion(id, type, ...)

[id] = CreateClipRegion(id, #BOX, x, y, width, height)

[id] = CreateClipRegion(id, #SHAPE, id, x, y)

FUNCTION
This function can be used to create a clip region which all Hollywood graphics functions
will respect. CreateClipRegion() creates a new clip region and assigns the identifier id
to it. If you pass Nil in id, CreateClipRegion() will automatically choose an identifier
and return it. Note that CreateClipRegion() does not activate the clip region; this has
to be done using SetClipRegion().

Clip regions are useful to limit the area of your display, where graphics can be displayed,
e.g. if you have a game screen with two parts: The level area and the status bar (lifes,
ammo etc.) it can be useful to install a clip region which matches the bounds of the level
area so that sprites will never be drawn outside of this area. All Hollywood graphics
functions will respect the clip region you install using this function. No graphics will
ever be drawn outside the bounds of your clip region.

There are two different clip region types: Rectangular (#BOX) and custom shaped
(#SHAPE) clip regions. Drawing to rectangular clip regions is generally faster. If you
want to install a rectangular clip region, you have to specify its x and y position as well
as its width and height. A custom shaped clip region can be installed by specifying
a brush, whose mask is to be used as the clip region. Also, you need to specify x and
y offsets where the clip region shall be positioned on the display, e.g. if you have a
mask of size 320x240 but a display of size 640x480, you might want to center the clip
region on the display. If you install a custom shaped clip region using a brush’s mask,
Hollywood will be able to draw to all visible pixels of the mask and all invisible pixels
of the mask will be clipped.

See Section 30.31 [SetClipRegion], page 611, for information on how to install a clip
region created using CreateClipRegion().

To free a clip region created with CreateClipRegion(), use the FreeClipRegion()

function.

INPUTS

id identifier for the clip region or Nil for auto id selection

type type of clip region to install; #BOX, #SHAPE or #NONE

... the following arguments depend on the type; see above

RESULTS

id optional: identifier of the clip region; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
See Section 30.31 [SetClipRegion], page 611.

Chapter 30: Graphics library 597

30.9 DisablePrecalculation

NAME
DisablePrecalculation – disable precalculation (V1.5 only)

SYNOPSIS
DisablePrecalculation()

FUNCTION
Attention: This command was removed in Hollywood 1.9. Get a faster CPU.

This function disables precalculation of certain effects.

INPUTS
none

30.10 DisableVWait

NAME
DisableVWait – disable vertical refresh timing (V9.0)

SYNOPSIS
DisableVWait()

FUNCTION
This command disables internal vertical refresh timing. DisableVWait() is only useful
for debugging purposes. You should not use it in your scripts.

INPUTS
none

30.11 EnablePrecalculation

NAME
EnablePrecalculation – enable precalculation (V1.5 only)

SYNOPSIS
EnablePrecalculation()

FUNCTION
Attention: This command was removed in Hollywood 1.9. Get a faster CPU.

This function enables precalculation for certain cpu-intensive effects from the library of
DisplayTransitionFX(). Effects which support precalculation, will be precalculated
then. This is only useful on 68k systems. PPC systems should be able to display those
cpu-intensive effects in real time.

INPUTS
none

598 Hollywood manual

30.12 EnableVWait

NAME
EnableVWait – enable vertical refresh timing (V9.0)

SYNOPSIS
EnableVWait()

FUNCTION
This command enables internal vertical refresh timing. EnableVWait() is only useful for
debugging purposes. You should not use it in your scripts.

INPUTS
none

30.13 EndDoubleBuffer

NAME
EndDoubleBuffer – stop double buffering for current display (V2.0)

SYNOPSIS
EndDoubleBuffer()

FUNCTION
This command ends the double buffering mode in the current display. See Section 30.3
[BeginDoubleBuffer], page 590, for more information on double buffering and an example.

INPUTS
none

EXAMPLE
See Section 30.3 [BeginDoubleBuffer], page 590.

30.14 EndRefresh

NAME
EndRefresh – flush drawing queue (V5.3)

SYNOPSIS
EndRefresh()

FUNCTION
This command draws all graphics that have been queued since the last call to
BeginRefresh(). See Section 30.4 [BeginRefresh], page 591, for more information on
optimized refreshing and an example.

INPUTS
none

EXAMPLE
See Section 30.4 [BeginRefresh], page 591.

Chapter 30: Graphics library 599

30.15 Flip

NAME
Flip – flip front and back buffers (V2.0)

SYNOPSIS
Flip([sync])

FUNCTION
This command brings the back buffer to the front and makes the front buffer the back
buffer so that you can draw the next screen update.

Starting with Hollywood 5.0, there is an optional argument called sync. If this is set
to False, Flip() will not wait for the vertical refresh but will draw the back buffer
immediately. This is useful if you would like to refresh the double buffer more often than
the refresh rate of the monitor. If not specified, sync defaults to True which means that
Flip() will synchronize its double buffer with the monitor refresh.

Please note that Hollywood might also fall back to single buffering on some systems.
Therefore, it is not safe to assume that calling Flip() will really switch buffers. It could
also just draw the single buffer and then simply let you draw on it again.

See Section 30.3 [BeginDoubleBuffer], page 590, for more information on double buffering
and an example.

INPUTS

sync optional: whether or not to synchronize double buffer with monitor refresh
(defaults to True) (V5.0)

EXAMPLE
See Section 30.3 [BeginDoubleBuffer], page 590.

30.16 FreeClipRegion

NAME
FreeClipRegion – free a clip region (V2.0)

SYNOPSIS
FreeClipRegion(id)

FUNCTION
This function frees a clip region created by CreateClipRegion().

If there are sprites which are attached to this clip region, they will be let out and the
clip region is freed immediately.

The behaviour for layers is different: If there are layers which reference this clip region,
then Hollywood will keep the clip region until these layers are gone. As soon as there
are no more layers which reference this clip region, the Hollywood garbage collector will
free the clip region automatically if you have previously called FreeClipRegion() on it.

Please see also the documentation of CreateClipRegion() for more information on clip
regions.

600 Hollywood manual

INPUTS

id identifier of the clip region to be freed

EXAMPLE
See Section 30.31 [SetClipRegion], page 611.

30.17 GetFPSLimit

NAME
GetFPSLimit – get current frames per second limit (V1.5)

SYNOPSIS
fps = GetFPSLimit()

FUNCTION
This function returns the current fps limit set using SetFPSLimit(). If SetFPSLimit()
is not active, 0 will be returned. See Section 30.33 [SetFPSLimit], page 613, for details.

INPUTS
none

RESULTS

fps current fps limit or 0

30.18 GetRandomColor

NAME
GetRandomColor – choose a random color (V4.7)

SYNOPSIS
color = GetRandomColor()

FUNCTION
This function simply chooses a random color and returns it. The color will be returned
in RGB notation.

INPUTS
none

RESULTS

color a randomly chosen color

30.19 GetRandomFX

NAME
GetRandomFX – choose a random transition effect (V4.0)

SYNOPSIS
fx = GetRandomFX(objfx)

Chapter 30: Graphics library 601

FUNCTION
This function simply chooses a random transition effect from Hollywood’s palette of
transition effects. You need to specify in argument 1 whether or not the transition effect
shall be applicable for objects or only for background pictures. GetRandomFX() then
scans the available effects and returns a random effect for you which you can then pass
to the special effects functions like DisplayBrushFX() and DisplayTransitionFX().

Normally, you do not have to use this function because you can simply pass
#RANDOMEFFECT with all special effects functions. GetRandomFX() is only useful if you
want to filter effects, i.e. you want to choose a random effect but not #WATER1, for
example. In that case, you can call GetRandomFX() until it returns an effect that is
different from the ones you don’t want.

See Section 20.11 [DisplayTransitionFX], page 238, for the different types of Hollywood’s
transition effects.

INPUTS

objfx True if you want to have an object effect or False for a background picture
effect

RESULTS

fx a randomly chosen transition effect

EXAMPLE
Repeat

fx = GetRandomFX(FALSE)

Until fx <> #WATER1

DisplayTransitionFX(2, fx)

The code above chooses a random background picture effect but never the #WATER1 effect.
After having chosen the effect, background picture 2 is display with this effect.

30.20 GetRealColor

NAME
GetRealColor – return representation of a color on the current screen (V1.5)

SYNOPSIS
color = GetRealColor(col)

FUNCTION
This function returns the color which represents the specified color on the current screen.
On 24-bit and 32-bit screens, the returned color is always the same as the color you
specified. On 15-bit and 16-bit screens, the returned color is slightly different from the
original color in most cases because those screens do not have 16.7 million colors but
only 65536 (16-bit screens) respectively 32768 (15-bit screens).

This is command is mostly used in connection with ReadPixel().

INPUTS

col color to find the representation for

602 Hollywood manual

RESULTS

color color which represents the specified input color

EXAMPLE
color = GetRealColor($FFFFFF)

Color will get the following values on...

1) 24-bit and 32-bit screens: $FFFFFF 2) 16-bit screens: $F8FCF8 3) 15-bit screens:
$F8F8F8

30.21 GrabDesktop

NAME
GrabDesktop – create a brush of the desktop screen (V4.5)

SYNOPSIS
[id] = GrabDesktop(id[, table])

FUNCTION
This function can be used to copy the contents of desktop screen into a brush. You have
to pass an identifier for the new brush that shall be created by this function. If you pass
a Nil identifier, GrabDesktop() will return a handle to the new brush containing the
desktop screen to you.

The optional table argument is useful if you only want to grab a portion of the desktop
screen. In that case, you can use the optional table argument to define the portion that
shall be grabbed.

The optional table argument recognizes the following tags:

X, Y: Defines the top left corner of the rectangle on the desktop that shall be
grabbed by this function. Defaults to 0/0.

Width, Height:

Defines the size of the rectangle that shall be grabbed by this function.
Defaults to the size of the desktop.

PubScreen:

This tag is only supported in the Amiga versions of Hollywood. It allows
you to specify the name of the screen which GrabDesktop() should copy to
a brush. By default, GrabDesktop() will always grab the frontmost screen.
(V5.3)

INPUTS

id identifier of a brush that shall be created by this function or Nil for auto id
selection

table optional: table specifying the portion of the desktop screen that shall be
grabbed (see above)

RESULTS

id optional: handle to the newly created brush; this will only be returned if
you passed Nil in id

Chapter 30: Graphics library 603

EXAMPLE
desktop_brush = GrabDesktop(Nil)

BrushToGray(desktop_brush)

DisplayBrush(desktop_brush, 0, 0)

The code above grabs the whole desktop screen to a brush, converts the brush to gray,
and then displays it. The result will be a desktop screen that suddenly lost its color
information.

30.22 Green

NAME
Green – return green portion of a color (V1.9)

SYNOPSIS
g = Green(color)

FUNCTION
This function returns the 8-bit green component of a color in the RGB format.

INPUTS

color input color in RGB format

RESULTS

g green component of the color

EXAMPLE
g = Green($24C0C0)

The above code will return $C0 which is the green component of the color.

30.23 Intersection

NAME
Intersection – compute intersection of two rectangles (V6.1)

SYNOPSIS
ix, iy, iw, ih = Intersection(x1, y1, w1, h1, x2, y2, w2, h2)

FUNCTION
This function computes the intersection between the two rectangles whose positions and
dimensions are passed to it. If the two rectangles don’t intersect, the returned dimensions
will be 0.

INPUTS

x1 x position of first rectangle

y1 y position of first rectangle

w1 width of first rectangle

h1 height of first rectangle

604 Hollywood manual

x2 x position of second rectangle

y2 y position of second rectangle

w2 width of second rectangle

h2 height of second rectangle

RESULTS

ix x position of intersecting rectangle

iy y position of intersecting rectangle

iw width of intersecting rectangle

ih height of intersecting rectangle

EXAMPLE
SetFillStyle(#FILLCOLOR)

Box(100, 100, 80, 100, #RED)

Box(160, 120, 100, 40, #YELLOW)

ix, iy, iw, ih = Intersection(100, 100, 80, 100, 160, 120, 100, 40)

Box(ix, iy, iw, ih, #GREEN)

The code above computes the intersection of the red and yellow rectangles and visualizes
it by drawing a green rectangle.

30.24 IsPicture

NAME
IsPicture – determine if a picture is in a supported format

SYNOPSIS
ret, table = IsPicture(file$[, table])

FUNCTION
This function will check if the file specified by file$ is in a supported picture format. If
it is, this function will return True, otherwise False. If this function returns True, you
can load the picture by calling LoadBGPic() or LoadBrush().

New in Hollywood 4.5: This function returns a table now as the second return value. If
the specified file is an image, the table will contain some information about the image
file. The following fields of the return table will be initialized:

Width: Contains the width of the image in pixels.

Height: Contains the height of the image in pixels.

Depth: Contains the bit depth of the image. (V9.0)

Alpha: True if image has an alpha channel, False otherwise.

Vector: True if image is in a scalable vector format, False otherwise. (V5.0)

Chapter 30: Graphics library 605

Transparency:

True if image has a monochrome transparency channel, i.e. a transparent
pen in a palette-based image. (V6.0)

Format: This contains the image format type Hollywood has detected for this file. It
can be one of the following special constants:

#IMGFMT_BMP:

BMP image.

#IMGFMT_PNG:

PNG image.

#IMGFMT_JPEG:

JPEG image.

#IMGFMT_ILBM:

IFF ILBM image.

#IMGFMT_GIF:

GIF image.

#IMGFMT_TIFF:

TIFF image.

#IMGFMT_NATIVE:

The image is in a format that can be loaded by the host operating
system Hollywood is currently running on. For example, if there
is a datatype which can load the image on AmigaOS, you can
get #IMGFMT_NATIVE as the result.

#IMGFMT_PLUGIN:

The image is in a format supported by a Hollywood plugin that
is installed.

(V8.0)

This function is much faster than LoadBrush() or LoadBGPic() because it will not load
the picture. It will just check its format header and return whether or not Hollywood can
handle it. However, please note that image plugins you have installed might not be as
optimized as Hollywood’s inbuilt image loader and so they can slow down IsPicture()

significantly because by default IsPicture() will first ask all plugins if they can load the
picture and then Hollywood’s inbuilt image loader will be asked. Thus, you might want
to disable plugins for IsPicture() by setting the Loader tag (see below) to Inbuilt.
This means that IsPicture() will never ask any plugins if they can load the picture.
Only Hollywood’s very optimized inbuilt image loader will be asked in that case.

Starting with Hollywood 6.0 this function accepts an optional table argument which
allows you to configure further options:

Loader: This tag allows you to specify one or more format loaders that should be
asked to load this picture. This must be set to a string containing the
name(s) of one or more loader(s). You might want to set this to Inbuilt

for the best performance, but then only formats supported by Hollywood’s

606 Hollywood manual

inbuilt image loader will be recognized (see above for details). Defaults to
the loader set using SetDefaultLoader(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

See Section 21.42 [LoadBrush], page 283, for a list of supported image formats.

INPUTS

file$ file to check

table optional: table configuring further options (V6.0)

RESULTS

ret True if the picture is in a supported format, False otherwise

table table initialized with the fields listed above; only valid if first return argument
is True (V4.5)

30.25 Matrix2D

NAME
Matrix2D – construct 2x2 transformation matrix (V10.0)

SYNOPSIS
m = Matrix2D(sx, sy, angle)

FUNCTION
This function combines the scaling coefficients specified by sx and sy and the rotation
factor specified by angle into a 2x2 transformation matrix and returns it. The 2x2
transformation matrix is returned as a table which has the following fields initialized:

sx: Amount of scaling on the x axis.

rx: Amount of rotation on the x axis.

ry: Amount of rotation on the y axis.

sy: Amount of scaling on the y axis.

You could then pass the matrix to functions like TransformBox() or TransformPoint().

INPUTS

sx scale x coefficient

Chapter 30: Graphics library 607

sy scale y coefficient

angle rotation angle

RESULTS

m 2x2 transformation matrix returned as a table

30.26 MixRGB

NAME
MixRGB – mix two colors (V2.0)

SYNOPSIS
color = MixRGB(col1, col2, ratio)

FUNCTION
This function mixes the two specified colors at a specified ratio which must be in the
range of 0 to 255. The second color will be mixed with the first color at the specified
ratio, i.e. if ratio is 0, col1 will returned and if ratio is 255, col2 will be returned.

ratio can also be a string containing a percent specification, e.g. "50%".

INPUTS

col1 color 1 in RGB format

col2 color 2 in RGB format

ratio mixing ratio (0 to 255 or percent specification)

RESULTS

color mixed color

EXAMPLE
c = MixRGB(#RED, #BLUE, 128)

This will mix a pink sort of color.

30.27 Red

NAME
Red – return red portion of a color (V1.9)

SYNOPSIS
r = Red(color)

FUNCTION
This function returns the 8-bit red component of a color in the RGB format.

INPUTS

color input color in RGB format

RESULTS

r red component of the color

608 Hollywood manual

EXAMPLE
r = Red($24C0C0)

The above code will return $24 which is the red component of the color.

30.28 RGB

NAME
RGB – compose a color (V1.9)

SYNOPSIS
color = RGB(red, green, blue)

FUNCTION
This function composes a RGB color by mixing the three basic colors red, green and
blue. You must specify an intensity of 0 to 255 for each basic color.

INPUTS

red red intensity (0-255)

green green intensity (0-255)

blue blue intensity (0-255)

RESULTS

color RGB color

EXAMPLE
color = RGB(255, 255, 255) ; mix white

color = RGB(255, 0, 0) ; mix red

color = RGB(255, 255, 0) ; mix yellow (red + green)

color = RGB(255, 0, 255) ; mix magenta (green + blue)

30.29 RGB colors

Hollywood accepts colors in the 24-bit RGB format. This means that you have 8-bit per
color. RGB24 is the common format for specifying colors today, e.g. it is also used in
HTML.

You will usually specify RGB colors in hexadecimal notation starting with a ’$’ prefix. The
general syntax for a RGB color in hexadecimal notation is

$RRGGBB

RR: color intensity of red (maximum = 255 = $FF = 100% red)

GG: color intensity of green (maximum = 255 = $FF = 100% green)

BB: color intensity of blue (maximum = 255 = $FF = 100% blue)

Colors are generated by mixing the red, green and blue components together. Every color
component can have a maximum of 255.

Here are some example colors:

#BLACK = $000000 - black is just 0% of every component

Chapter 30: Graphics library 609

#WHITE = $FFFFFF - white is 100% of every component

#RED = $FF0000 - pure red is 100% of red

#GREEN = $00FF00 - 100% of green

#BLUE = $0000FF - 100% of blue

#YELLOW = $FFFF00 - yellow can be mixed with 100% of red and green

#FUCHSIA = $FF00FF - fuchsia is 100% of red and blue

#GRAY = $939393 - gray is a bit of everything

When Hollywood asks you for a RGB color, you can specify your individual color using
hexadecimal notation or also one of the special inbuilt color constants.

#BLACK $000000

#MAROON $800000

#GREEN $008000

#OLIVE $808000

#NAVY $000080

#PURPLE $800080

#TEAL $008080

#GRAY $808080

#SILVER $C0C0C0

#RED $FF0000

#LIME $00FF00

#YELLOW $FFFF00

#BLUE $0000FF

#FUCHSIA $FF00FF

#AQUA $00FFFF

#WHITE $FFFFFF

30.30 SaveSnapshot

NAME
SaveSnapshot – take a snapshot (V2.0)

SYNOPSIS
SaveSnapshot(f$[, mode, fmt, table])

FUNCTION
This function takes a snapshot and saves it as the file specified in f$. The mode argument
specifies the area to be grabbed. This can be one of the following constants:

#SNAPWINDOW:

Grabs the complete Hollywood display, i.e. with window decorations. This
is the default.

#SNAPDISPLAY:

Grabs the display’s contents only, i.e. without window decorations.

#SNAPDESKTOP:

Grabs the complete host screen.

610 Hollywood manual

Note that if the display is a palette mode display and you want the image file to be
palette-based as well, you need to use #SNAPDISPLAY as this is the only snap mode that
doesn’t contain any other graphics besides the display’s contents.

The fmt argument specifies the desired output image format. This can either be one of
the following constants or an image saver provided by a plugin:

#IMGFMT_BMP:

Windows bitmap. Hollywood’s BMP saver supports RGB and palette im-
ages. #IMGFMT_BMP is the default format used by SaveSnapshot().

#IMGFMT_PNG:

PNG format. Hollywood’s PNG saver supports RGB and palette images.
RGB images also can have an alpha channel, palette images can have a
transparent pen. (V2.5)

#IMGFMT_JPEG:

JPEG format. Note that the JPEG format does not support alpha channels
or palette-based graphics. The Quality field (see below) allows you to spec-
ify the quality level for the JPEG image (valid values are 0 to 100 where 100
is the best quality). (V4.0)

#IMGFMT_GIF:

GIF format. Because GIF images are always palette-based, RGB graphics
have to be quantized before they can be exported as GIF. You can use the
Colors and Dither tags (see below) to specify the number of palette entries
to allocate for the image and whether or not dithering shall be applied.
When using #IMGFMT_GIF with a palette display, no quantizing will be done.
#IMGFMT_GIF also supports palette images with a transparent pen. (V4.5)

#IMGFMT_ILBM:

IFF ILBM format. Hollywood’s IFF ILBM saver supports RGB and palette
images. Palette images can also have a transparent pen, alpha channels are
unsupported for this output format. (V4.5)

The optional table argument allows you to configure further parameters:

Dither: Set to True to enable dithering. This tag is only handled when the destina-
tion format is palette-based and the source data is RGB. Defaults to False

which means no dithering.

Depth: Specifies the desired image depth. This is only handled when the format is
palette-based and the source data is RGB. Valid values are between 1 (= 2
colors) and 8 (= 256 colors). Defaults to 8. (V9.0)

Colors: This is an alternative to the Depth tag. Instead of a bit depth, you can
pass how many colors the image shall use here. Again, this is only handled
for palette-based formats when the source data is RGB. Valid values are
between 1 and 256. Defaults to 256.

Quality: Here you can specify a value between 0 and 100 indicating the compression
quality for lossy compression formats. A value of 100 means best quality, 0
means worst quality. This is only available for image formats that support
lossy compression. Defaults to 90 which means pretty good quality.

Chapter 30: Graphics library 611

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to save the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Here is an overview that shows which formats support which tags:

 BMP PNG JPEG GIF ILBM

Dither No No No Yes No

Colors No No No Yes No

Quality No No Yes No No

INPUTS

f$ destination file

mode optional: specifies which area shall be grabbed (defaults to #SNAPWINDOW)

fmt optional: output format; either #IMGFMT_BMP, #IMGFMT_PNG, (V2.5)
#IMGFMT_JPEG, #IMGFMT_GIF or #IMGFMT_ILBM (V4.0) (defaults to
#IMGFMT_BMP)

table optional: table argument for configuring further options (V4.5)

EXAMPLE
SaveSnapshot("Snap.bmp")

Saves a snapshot of the Hollywood window to "Snap.bmp".

30.31 SetClipRegion

NAME
SetClipRegion – activate a clip region (V2.0)

SYNOPSIS
SetClipRegion(id)

FUNCTION
This function installs a clip region that has been previously created using the
CreateClipRegion() command. The clip region will be active until you call
SetClipRegion() with the special value #NONE - this will remove the clip region then.
Hollywood will automatically kill the clip region if you display a new background
picture.

612 Hollywood manual

If a clip region is installed, this will also affect Hollywood’s special coordinate constants,
e.g. #RIGHT means the right-side of the clip region then. Margin settings will also be
adapted.

You can also install a clip region while SelectBrush() is active. This clip region will
then be deactivated when EndSelect() is called.

If you have a clip region installed on your main display and call one of the off-screen
rendering functions (e.g. SelectBrush()), the clip region will be temporarily disabled
but restored when you call EndSelect().

If layers are active, every layer can have its private clip region. In case the layer is
transformed (scaled or rotated), its clip region will also be transformed. The default
clip region of a layer is the clip region that was active when the layer was created.
You can change the clip region of a layer by using the style element ClipRegion of the
SetLayerStyle() command.

Exceptions. You cannot use SetClipRegion() if...

− current output device is an alpha channel, i.e. SelectAlphaChannel() is active

− current output device is a mask, i.e. SelectMask() is active

See Section 30.8 [CreateClipRegion], page 596, for details.

INPUTS

id identifier of the clip region to install; use CreateClipRegion() to create clip
regions

EXAMPLE
CreateClipRegion(1, #BOX, #CENTER, #CENTER, 320, 240)

SetClipRegion(1)

Circle(0, 0, 100, #RED)

Circle(439, 0, 100, #RED)

Circle(439, 279, 100, #RED)

Circle(0, 279, 100, #RED)

Installs a clip region of size 320x240 in the center of a 640x480 display and draws four
circles in all corners. However, only parts of the circles will be visible because of the clip
region.

30.32 SetDrawTagsDefault

NAME
SetDrawTagsDefault – set default values for standard draw tags (V5.0)

SYNOPSIS
SetDrawTagsDefault(table)

FUNCTION
This command can be used to modify the default values of the standard draw tags.
The standard draw tags are generic options that are supported by most of Hollywood’s
drawing commands. The standard draw tags are always passed inside an optional table
that constitutes the last argument to a function. If a certain draw tag is not specified,

Chapter 30: Graphics library 613

Hollywood will fall back to an internal default setting. This default setting can be
modified using SetDrawTagsDefault().

For example, let’s assume that you always want to use an anchor point of 0.5/0.5 in-
stead of 0.0/0.0 which is Hollywood’s default anchor point. So instead of explicitly
passing your desired anchor point to all draw commands that you call, you can simply
define this anchor point as the new default anchor point that all drawing commands
should use when no other point is given. See below for an example. You could also use
SetDrawTagsDefault() to change the default insert position for layers from frontmost
to backmost position etc.

The table you need to pass to this function can contain all tags that are listed in the
documentation of the standard draw tags. For each tag that you specify, you have to
provide a default value that Hollywood should use if no other value is given.

See Section 27.17 [Standard drawing tags], page 501, for more information about the
standard tags that nearly all Hollywood drawing commands support.

INPUTS

table a table containing one or more of the standard draw tags and a default value
for each tag

EXAMPLE
SetDrawTagsDefault({AnchorX = 0.5, AnchorY = 0.5})

DisplayBrush(1, 0, 0)

Box(100, 100, 200, 150, #RED)

The code above sets 0.5/0.5 as the default anchor point. The calls to DisplayBrush()

and Box() will then use this anchor point because no other anchor point is given. In
that case, the drawing commands fall back to the default anchor point which has been
modified by the call to SetDrawTagsDefault().

30.33 SetFPSLimit

NAME
SetFPSLimit – limit frames per second (V1.5)

SYNOPSIS
SetFPSLimit(fps)

FUNCTION
This function restricts the number of frames per second of certain Hollywood com-
mands which call VWait(). These commands are: PlayAnim(), MoveBrush() etc.,
DisplayTransitionFX() etc., and Flip(). Under normal circumstances it is not neces-
sary to use this command because Hollywood automatically restricts the drawing speed
internally. By default, the commands listed above will never draw more frames per sec-
ond than the monitor refreshes. You can disable this behaviour with this command but
this is not suggested (unless you really know what you are doing).

The best thing is to use the default video synchronizer of Hollywood will should give you
the smoothest graphics. Use this command with care or better not at all.

If you pass 0 in fps, the default video synchronizer will be restored.

614 Hollywood manual

INPUTS

fps maximum allowed number of frames per second or 0 to bring back Holly-
wood’s default video synchronizer

30.34 TransformBox

NAME
TransformBox – apply affine transformation to rectangle (V10.0)

SYNOPSIS
tx, ty, tw, th = TransformBox(x, y, w, h, m[, origin, anchorx, anchory])

FUNCTION
This function applies the 2x2 transformation matrix specified by m to the rectangle
specified by x, y, w and h and returns the size and coordinates of the transformed
rectangle. The origin parameter is a boolean value which specifies whether or not
the rectangle should be moved to the origin before transforming it. The anchorx and
anchory values specify the anchor point to use for the transformation. This should be
a floating point value between 0.0 and 1.0 where 0.0 means the left/upper edge and 1.0
indicates the right/bottom edge. anchorx and anchory both default to 0 which means
the upper-left corner of the rectangle is the default anchor point.

The transformation matrix m must be passed as a table that has the following fields
initialized:

sx: Amount of scaling on the x axis.

rx: Amount of rotation on the x axis.

ry: Amount of rotation on the y axis.

sy: Amount of scaling on the y axis.

You can use the Matrix2D() function to construct such a matrix. See Section 30.25
[Matrix2D], page 606, for details.

INPUTS

x left edge of rectangle

y upper edge of rectangle

w rectangle width

h rectangle height

m table containing a 2x2 transformation matrix

origin optional: whether or not to move the rectangle to the origin before trans-
forming it (defaults to True)

anchorx optional: horizontal anchor point (defaults to 0 which means left edge)

anchory optional: vertical anchor point (defaults to 0 which means top edge)

RESULTS

tx transformed left edge

Chapter 30: Graphics library 615

ty transformed upper edge

tw transformed width

th transformed height

30.35 TransformPoint

NAME
TransformPoint – apply affine transformation to point (V10.0)

SYNOPSIS
tx, ty = TransformPoint(px, py, m)

FUNCTION
This function applies the 2x2 transformation matrix specified by m to the point specified
by px and py and returns the coordinates of the transformed point. The transformation
matrix m must be passed as a table that has the following fields initialized:

sx: Amount of scaling on the x axis.

rx: Amount of rotation on the x axis.

ry: Amount of rotation on the y axis.

sy: Amount of scaling on the y axis.

You can use the Matrix2D() function to construct such a matrix. See Section 30.25
[Matrix2D], page 606, for details.

INPUTS

px horizontal point coordinate

py vertical point coordinate

m table containing a 2x2 transformation matrix

RESULTS

tx transformed horizontal position

ty transformed vertical position

30.36 VWait

NAME
VWait – wait for vertical blank

SYNOPSIS
VWait()

FUNCTION
This command waits for the next vertical blank to begin.

INPUTS
none

617

31 Icon library

31.1 AddIconImage

NAME
idx = AddIconImage – add image to icon (V8.0)

SYNOPSIS
AddIconImage(id, table)

FUNCTION
This function can be used to add a new image to the icon specified by id. The image
must be specified in the table parameter which must be set to a table that recognizes
the following fields:

Type: This tag allows you to set the source type of the image you wish to add
to the icon. This can be #BRUSH if you want to add a brush, or #FILE if
you would like to add an image from an external file source. The default is
#BRUSH. Note that that default is different to the default used by the @ICON
preprocessor command, which is #FILE.

Image: This tag specifies the actual image source and must be set. If Type has been
set to #BRUSH, you have to set this tag to the identifier of a brush you want
to add to the icon. Otherwise, Image needs to be set to the path of an
image file that should be added to the icon. The image file may be in any
of the image file formats supported by Hollywood. Note that if the image
file specified here has an alpha channel, the alpha channel data is loaded
automatically. Also note that in every icon, each image size must only be
used once, i.e. it is not possible to add two 48x48 images to a single icon.
There can only be one image for each size in every icon. Also note that it’s
not possible to add a vector graphics image to an icon because vector icons
must only contain a single image. See Section 31.3 [CreateIcon], page 619,
for details.

SelImage:

This tag allows you to include an additional image that should be used as a
selected version of the image specified in Image. This tag is optional. If you
set it, the image specified here must be of exactly the same size as the one
specified in Image. Besides that, SelImage is used in the very same way as
Image, i.e. it depends on the image type set in Type what you have to pass
here, either a brush identifier or a path to an external image file.

Standard:

This tag allows you to set the image that is about to be added as the standard
size for the icon. Setting a standard size is important in some contexts, so
that Hollywood knows which image to pick for higher resolutions, e.g. if
you designate a 64x64 image inside an icon as the standard size, Hollywood
knows to pick the 128x128 image in case the monitor’s resolution uses a DPI
setting that is twice as high as the normal setting. Obviously, there can be

618 Hollywood manual

only one standard image inside every icon, so if there already is a standard
image in the icon, an error is generated.

AddIconImage() returns the index where the image has been added inside the icon.
Note that this isn’t necessarily the last index in the icon because the individual images
inside icons are sorted by their width in ascending the order. The indices returned by
AddIconImage() start at 1.

To remove an image from an icon, use the RemoveIconImage() function.

INPUTS

id identifier of the icon to use

table table describing the image to be added to the icon (see above)

RESULTS

idx index where the image has been added (starting at 1)

EXAMPLE
AddIconImage(1, {Image = "ic16x16.png"})

The code above adds the image file "ic16x16.png" to icon 1.

31.2 ChangeApplicationIcon

NAME
ChangeApplicationIcon – change docky icon (V6.0)

SYNOPSIS
ChangeApplicationIcon(id1[, id2, type])

PLATFORMS
AmigaOS 4 only

FUNCTION
This function can be used to change your application’s icon in AmiDock at runtime.
You have to pass at least one brush to this function. If you pass a second brush in the
optional argument, then this brush will be used as the icon’s second state. Both brushes
must have the same dimensions. For the best visual appearance, you should only use
brushes with alpha channel transparency with this function.

Please note that only standard dockies support two state icons in AmiDock. If your
application is represented by an app docky in AmiDock, you may only specify one image
here. See Section 16.1 [AmiDock information], page 165, for more information on the
difference between standard and app dockies.

Also note that changing the application icon of standard dockies causes a clearly visible
relayout of AmiDock and thus is not apt to display animations in AmiDock. If you want
to change the icon in a smooth way, you need to use an app docky. See Section 16.1
[AmiDock information], page 165, for details.

Starting with Hollywood 9.0, you can also use Hollywood icons with
ChangeApplicationIcon(). To do that, you have to pass #ICON in the op-
tional type argument. In that case, id1 needs to be the identifier of an icon that should

Chapter 31: Icon library 619

be used. If type has been set to #ICON, the id2 parameter will be ignored. In case of
#ICON, the id2 parameter is unnecessary because in contrast to brushes, Hollywood
icons can contain images for multiple states so ChangeApplicationIcon() can simply
use the selected image stored in the icon.

The initial icon for your application in AmiDock can be specified using the @APPICON

preprocessor command or the DockyBrush tag of the @OPTIONS preprocessor command.

Please note that this function can only be used if you have set the RegisterApplication
tag in @OPTIONS to True. See Section 52.25 [OPTIONS], page 1088, for details.

INPUTS

id1 brush or icon that should replace the current docky icon’s normal state

id2 optional: brush that should replace the current docky icon’s selected state

type optional: type of the object passed in id1 (must be either #BRUSH or #ICON,
defaults to #BRUSH) (V9.0)

31.3 CreateIcon

NAME
CreateIcon – create an icon (V8.0)

SYNOPSIS
[id] = CreateIcon(id, table)

FUNCTION
This function can be used to create an icon from a collection of individual image files or
brushes. You have to pass the desired identifier for the new icon in the id parameter.
If you specify Nil in the id argument, CreateIcon() will automatically choose an
identifier for this icon and return it to you. In Hollywood, an icon is a collection of the
same image in different sizes and color depths.

By using individually designed images for each size instead of just scaling one and the
same image to each size, a better quality is achieved, especially when it comes to smaller
image sizes, which look much better when they are specifically designed for their reso-
lution. Typical sizes for the individual images within an icon are 16x16, 24x24, 32x32,
48x48, 64x64, 96x96, 128x128, 256x256, and 512x512, but they can also be completely
arbitrary. The advantage of having the same image in different sizes in an icon is that
Hollywood can choose an appropriate size depending on the screen resolution.

Furthermore, images inside Hollywood icons can also be specifically designed for different
color depths. For example, you can provide 24x24 images in various color depths, e.g.
in 256 colors (8 bits) and in true color with alpha channel (32 bits). Thus, it is possible
to have images of the same size inside an icon as long as they differ in their color depth.
This once again gives Hollywood the advantage of choosing the best image from an icon
for a certain screen resolution and color depth.

Finally, each image inside an icon set can have two different states: normal and selected.
Normally, you only ever need the normal state, but on AmigaOS and compatibles the
selected state is sometimes used as well.

620 Hollywood manual

On top of the identifier for the new icon that is to be passed in id, you also have to pass
a table in the table parameter to CreateIcon(). This table must contain a number of
subtables, one for each image size you wish to add to the icon.

The individual subtables can use the following tags:

Type: This tag allows you to set the source type of the image you wish to add
to the icon. This can be #BRUSH if you want to add a brush, or #FILE if
you would like to add an image from an external file source. The default is
#BRUSH. Note that that default is different to the default used by the @ICON
preprocessor command, which is #FILE.

Image: This tag specifies the actual image source and must be set in every subtable.
If Type has been set to #BRUSH, you have to set this tag to the identifier of
a brush you want to add to the icon. The brush can be an RGB or palette
brush. Otherwise, Image needs to be set to the path of an image file that
should be added to the icon. The image file may be in any of the image file
formats supported by Hollywood. Note that if the image file specified here
has an alpha channel, the alpha channel data is loaded automatically. If it
is a palette image and the LoadPalette tag is set to True (see below), the
image’s transparent pen will also be loaded automatically. Also note that in
every icon, each image size must only be used once for each color depth, i.e.
it is not possible to add two 48x48 images that use the same color depth to
a single icon. There can only be one image for each size and color depth in
every icon. Note that if the image you specify here is in a vector graphics
format, i.e. either a vector brush or a file in a vector image format, you
mustn’t pass any other images because in the case of vector graphics, one
image is used for all sizes and Hollywood will automatically render it to all
sizes it needs. So if you use vector instead of raster graphics, there must
only be one subtable in the table you pass to CreateIcon().

SelImage:

This tag allows you to include an additional image that should be used as a
selected version of the image specified in Image. This tag is optional. If you
set it, the image specified here must be of exactly the same size as the one
specified in Image. Besides that, SelImage is used in the very same way as
Image, i.e. it depends on the image type set in Type what you have to pass
here, either a brush identifier or a path to an external image file.

Standard:

This tag allows you to set the image specified in this subtable as the standard
size for the icon. Setting a standard size is important in some contexts, so
that Hollywood knows which image to pick for higher resolutions, e.g. if
you designate a 64x64 image inside an icon as the standard size, Hollywood
knows to pick the 128x128 image in case the monitor’s resolution uses a DPI
setting that is twice as high as the normal setting. Obviously, there can
be only one standard image inside every icon, so setting this tag to True

twice will result in an error. Also note that it is not necessary to declare a
standard icon size, but for many use cases it is recommended to do it.

Chapter 31: Icon library 621

Loader: This tag allows you to specify one or more format loaders that should be
asked to load the image files specified in Image and SelImage. If specified,
this must be set to a string containing the name(s) of one or more loader(s).
Defaults to the loader set using SetDefaultLoader(). See Section 7.9 [Load-
ers and adapters], page 92, for details. Obviously, this tag is only used when
Type is set to #FILE.

Adapter: This tag allows you to specify one or more file adapters that should be asked
to open the files specified in Image and SelImage. If specified, this must be
set to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. Obviously, this tag is only used when Type

is set to #FILE.

LoadPalette:

If this tag is set to True and Type is set to #FILE, Hollywood will try to
load the image’s palette and store the image as a palette image within the
icon. If the image has a transparent pen, that transparent pen will be loaded
automatically. (V9.0)

This command is also available from the preprocessor: Use @ICON to create icons from
the preprocessor.

To add and remove individual images from an icon, use the AddIconImage() and
RemoveIconImage() functions.

INPUTS

id identifier for the icon or Nil for auto id selection

table table containing the individual images to be added to the icon (see above)

EXAMPLE
CreateIcon(1, {

{Image = "ic16x16.png", Type = #FILE},

{Image = "ic24x24.png", Type = #FILE},

{Image = "ic32x32.png", Type = #FILE},

{Image = "ic48x48.png", Type = #FILE},

{Image = "ic64x64.png", Type = #FILE},

{Image = "ic96x96.png", Type = #FILE},

{Image = "ic128x128.png", Type = #FILE},

{Image = "ic256x256.png", Type = #FILE},

{Image = "ic512x512.png", Type = #FILE},

{Image = "ic1024x1024.png", Type = #FILE}})

The code above creates icon 1 from a set of external images in different sizes ranging
from 16x16 pixels to 1024x1024 pixels.

CreateIcon(1, {{Image = "icon.svg", Type = #FILE}})

The code above creates icon 1 and uses just a single image because the image is in a
vector graphics format (SVG) and in that case only a single image must be specified (see
above).

622 Hollywood manual

31.4 FreeIcon

NAME
FreeIcon – free an icon (V8.0)

SYNOPSIS
FreeIcon(id)

FUNCTION
This function frees the memory of the icon specified by id. To save memory, you should
always free icons when you do not need them any longer.

INPUTS

id identifier of the icon to free

31.5 GetIconProperties

NAME
GetIconProperties – retrieve properties from an icon (V4.5)

SYNOPSIS
t = GetIconProperties(id)

type, tooltypes, deftool$ = GetIconProperties(file$)

FUNCTION
This function can be used to get the properties of an icon. This is mostly useful for
Amiga icons because they contain metadata besides the image data, e.g. icon type,
tooltypes, default tool, and so on.

There are two ways of using this function: You can either pass the identifier of an
icon in the first parameter or the filename of an icon file. Passing a filename to
GetIconProperties() is only supported on AmigaOS and compatibles, passing an icon
identifier is supported on all platforms however.

If you choose to pass the identifier of an icon in the first parameter,
GetIconProperties() will return a table that has the following fields initial-
ized:

Type: This tag will be set to the Amiga icon type of the icon. This will be one of
the following constants:

#AMIGAICON_DISK:

An icon of a drive (e.g. RAM, HD, CD-ROM, etc.)

#AMIGAICON_DRAWER:

An icon of a drawer.

#AMIGAICON_TOOL:

An icon of a program

#AMIGAICON_PROJECT:

An icon of a project. A project is a data file that can be
opened by an other program. The program that should be

Chapter 31: Icon library 623

used to open the project will be passed in DefaultTool, e.g.
SYS:Utilities/MultiView.

#AMIGAICON_GARBAGE:

A trashcan icon.

##AMIGAICON_DEVICE:

A device icon.

#AMIGAICON_KICKSTART:

A Kickstart icon.

(V9.0)

IconX: The icon’s x position relative to the top-left corner of the drawer it is stored
in. (V9.0)

IconY: The icon’s y position relative to the top-left corner of the drawer it is stored
in. (V9.0)

DrawerX: In case Type is set to a container type like #AMIGAICON_DRAWER, this tag
will be set to the x position of the new window that will be opened when
double-clicking the icon. (V9.0)

DrawerY: In case Type is set to a container type like #AMIGAICON_DRAWER, this tag
will be set to the y position of the new window that will be opened when
double-clicking the icon. (V9.0)

DrawerWidth:

In case Type is set to a container type like #AMIGAICON_DRAWER, this tag will
be set to the width of the new window that will be opened when double-
clicking the icon. (V9.0)

DrawerHeight:

In case Type is set to a container type like #AMIGAICON_DRAWER, this tag will
be set to the height of the new window that will be opened when double-
clicking the icon. (V9.0)

ViewAll: In case Type is set to a container type like #AMIGAICON_DRAWER, this tag will
be set to True if all files of the drawer should be shown instead of just the
ones that have an icon. (V9.0)

StackSize:

In case Type is set to #AMIGAICON_TOOL or #AMIGAICON_PROJECT, the desired
stack size for the program to be launched. (V9.0)

DefaultTool:

In case Type is set to #AMIGAICON_PROJECT, this will be set to a string
containing name (and optionally path) of the program to open the file with.
(V9.0)

ToolTypes:

If there are tooltypes in the icon, they will be returned in this tag. The
ToolTypes tag will contain a table that contains a list of subtables, one
subtable per tooltype entry. Each subtable will contain the following tags:

Key: This tag contains the name of the tooltype.

624 Hollywood manual

Value: This tag contains the tooltype’s value.

Enabled: This tag is a boolean that indicates whether or not the tooltype
is enabled.

Alternatively, you can also get the tooltypes by using the RawToolTypes tag
(see below).

(V9.0)

RawToolTypes:

If you don’t want to use the ToolTypes tag for some reason, you can also use
RawToolTypes to get them. In contrast to ToolTypes, the RawToolTypes

tag doesn’t divide tooltypes into their individual constituents (key, value,
enabled flag). Instead, the RawToolTypes tag will just return the tooltypes
as they are stored in the icon, i.e. without any additional processing.
This makes it possible to get custom data stored in tooltypes as well.
RawToolTypes will be set to a table that contains the tooltypes as strings.
(V9.0)

Images: This tag will be set to a table containing information about the individual
images within the icon. The table will contain a subtable for each image in
the icon. Each subtable will have the following fields:

Width: Image width in pixels.

Height: Image height in pixels.

Standard:

True if the image is the standard image, False otherwise.

Frames: Number of image frames. This can be either 1 or 2. If it is 1,
there is only a normal image, if it is 2, there is a selected state
image as well.

(V9.0)

To set the properties of an icon, use the SetIconProperties() command.

INPUTS

id syntax 1: identifier of an icon to examine

file$ syntax 2: the icon to examine

RESULTS

t syntax 1: table containing icon properties

type syntax 2: type of the icon; will be one of the constants from above

tooltypes

syntax 2: a table containing a list of all tooltypes; each list entry will have
the fields Key, Value, and Enabled initialized

deftool$ syntax 2: the default tool set for this icon; only set for icons of type
#AMIGAICON_PROJECT

Chapter 31: Icon library 625

EXAMPLE
t = GetIconProperties(1)

For k = 0 To ListItems(t.ToolTypes) - 1

DebugPrint("Item:", k, "Key:", t.ToolTypes[k].key,

"Value:", t.ToolTypes[k].value,

"Enabled:", t.ToolTypes[k].enabled)

Next

The code above gets the properties of icon 1 and then prints all information stored in
its tooltypes.

type, tt, deftool$ = GetIconProperties("MyIcon.info")

For k = 0 To ListItems(tt) - 1

DebugPrint("Item:", k, "Key:", tt[k].key, "Value:", tt[k].value,

"Enabled:", tt[k].enabled)

Next

The code above gets the properties of the icon "MyIcon.info" and then prints all infor-
mation stored in its tooltypes.

31.6 ICON

NAME
ICON – preload an icon for later use (V8.0)

SYNOPSIS
@ICON id, filename$[, table]

@ICON id, table

FUNCTION
This preprocessor command can be used to preload an icon for later use, either from
image file sources or from brush sources. In Hollywood, an icon is a collection of the
same image in different sizes and color depths.

By using individually designed images for each size instead of just scaling one and the
same image to each size, a better quality is achieved, especially when it comes to smaller
image sizes, which look much better when they are specifically designed for their reso-
lution. Typical sizes for the individual images within an icon are 16x16, 24x24, 32x32,
48x48, 64x64, 96x96, 128x128, 256x256, and 512x512, but they can also be completely
arbitrary. The advantage of having the same image in different sizes in an icon is that
Hollywood can choose an appropriate size depending on the screen resolution.

Furthermore, images inside Hollywood icons can also be specifically designed for different
color depths. For example, you can provide 24x24 images in various color depths, e.g.
in 256 colors (8 bits) and in true color with alpha channel (32 bits). Thus, it is possible
to have images of the same size inside an icon as long as they differ in their color depth.
This once again gives Hollywood the advantage of choosing the best image from an icon
for a certain screen resolution and color depth.

626 Hollywood manual

Finally, each image inside an icon set can have two different states: normal and selected.
Normally, you only ever need the normal state, but on AmigaOS and compatibles the
selected state is sometimes used as well.

This preprocessor command can be used in two different ways: You can either specify a
single file in filename$ to be loaded as a Hollywood icon or you can specify a table to
create a Hollywood icon from individual images which may be specified as either brushes
or external files.

In case you use the first syntax, i.e. you pass a single file in filename$, @ICON expects
the file to be in Hollywood’s custom PNG icon format and @ICON does the same as the
LoadIcon() command in that case, except that the icon is preloaded and will be linked
to the applet or executable on compiling. See Section 31.7 [LoadIcon], page 629, for
details.

The first syntax also accepts a table argument that follows the filename$ parameter.
The following fields in the table can be set in case you use the first syntax:

Link: Set this field to False if you do not want to have this icon linked to your
executable/applet when you compile your script. This field defaults to True

which means that the icon is linked to your executable/applet when Holly-
wood is in compile mode.

Loader: This tag allows you to specify one or more format loaders that should be
asked to load this icon. This must be set to a string containing the name(s) of
one or more loader(s). Defaults to the loader set using SetDefaultLoader().
See Section 7.9 [Loaders and adapters], page 92, for details.

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details.

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Alternatively, you can use the second syntax which allows you to create an icon from
a set of source images which may either be external files or Hollywood brushes. In
that case, you have to specify a single table argument which must contain a number of
subtables, one for each image size you wish to add to the icon. This is similar to the way
the CreateIcon() command works. See Section 31.3 [CreateIcon], page 619, for details.

The individual subtables can use the following tags:

Type: This tag allows you to set the source type of the image you wish to add to
the icon. This can be #BRUSH if you want to add a brush, or #FILE if you
would like to add an image from an external file source. The default is #FILE.
Note that that default is different to the default used by CreateIcon() and
AddIconImage(), which is #BRUSH.

Chapter 31: Icon library 627

Image: This tag specifies the actual image source and must be set in every subtable.
If Type has been set to #BRUSH, you have to set this tag to the identifier of
a brush you want to add to the icon. The brush can be an RGB or palette
brush. Otherwise, Image needs to be set to the path of an image file that
should be added to the icon. The image file may be in any of the image file
formats supported by Hollywood. Note that if the image file specified here
has an alpha channel, the alpha channel data is loaded automatically. If it
is a palette image and the LoadPalette tag is set to True (see below), the
image’s transparent pen will also be loaded automatically. Also note that in
every icon, each image size must only be used once for each color depth, i.e.
it is not possible to add two 48x48 images that use the same color depth to
a single icon. There can only be one image for each size and color depth in
every icon. Note that if the image you specify here is in a vector graphics
format, i.e. either a vector brush or a file in a vector image format, you
mustn’t pass any other images because in the case of vector graphics, one
image is used for all sizes and Hollywood will automatically render it to all
sizes it needs. So if you use vector instead of raster graphics, there must
only be one subtable in the table you pass to @ICON.

SelImage:

This tag allows you to include an additional image that should be used as a
selected version of the image specified in Image. This tag is optional. If you
set it, the image specified here must be of exactly the same size as the one
specified in Image. Besides that, SelImage is used in the very same way as
Image, i.e. it depends on the image type set in Type what you have to pass
here, either a brush identifier or a path to an external image file.

Standard:

This tag allows you to set the image specified in this subtable as the standard
size for the icon. Setting a standard size is important in some contexts, so
that Hollywood knows which image to pick for higher resolutions, e.g. if
you designate a 64x64 image inside an icon as the standard size, Hollywood
knows to pick the 128x128 image in case the monitor’s resolution uses a DPI
setting that is twice as high as the normal setting. Obviously, there can
be only one standard image inside every icon, so setting this tag to True

twice will result in an error. Also note that it is not necessary to declare a
standard icon size, but for many use cases it is recommended to do it.

Link: Set this field to False if you do not want to have the image files specified
in Image and SelImage linked to your executable/applet when you compile
your script. This field defaults to True which means that the image files
specified in Image and SelImage will be linked to your executable/applet
when Hollywood is in compile mode. Obviously, this tag is only used when
Type is set to #FILE.

Loader: This tag allows you to specify one or more format loaders that should be
asked to load the image files specified in Image and SelImage. If specified,
this must be set to a string containing the name(s) of one or more loader(s).
Defaults to the loader set using SetDefaultLoader(). See Section 7.9 [Load-

628 Hollywood manual

ers and adapters], page 92, for details. Obviously, this tag is only used when
Type is set to #FILE.

Adapter: This tag allows you to specify one or more file adapters that should be asked
to open the files specified in Image and SelImage. If specified, this must be
set to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. Obviously, this tag is only used when Type

is set to #FILE.

LoadPalette:

If this tag is set to True and Type is set to #FILE, Hollywood will try to
load the image’s palette and store the image as a palette image within the
icon. If the image has a transparent pen, that transparent pen will be loaded
automatically. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

To load or create icons at runtime, take a look at the LoadIcon() and CreateIcon()

commands.

To add and remove individual images from an icon, use the AddIconImage() and
RemoveIconImage() functions.

INPUTS

id a value that is used to identify this icon later in the code

filename$

optional: the icon file you want to load (see above)

table optional or mandatory, depending on which syntax you use (see above for a
discussion)

EXAMPLE
@ICON 1, "MyIcon.png"

Loads "MyIcon.png" as icon 1.

@ICON 1, {

{Image = "ic16x16.png"},

{Image = "ic24x24.png"},

{Image = "ic32x32.png"},

{Image = "ic48x48.png"},

{Image = "ic64x64.png"},

{Image = "ic96x96.png"},

{Image = "ic128x128.png"},

{Image = "ic256x256.png"},

{Image = "ic512x512.png"},

Chapter 31: Icon library 629

{Image = "ic1024x1024.png"}}

The code above creates icon 1 from a set of external images in different sizes ranging
from 16x16 pixels to 1024x1024 pixels.

@ICON 1, {{Image = "icon.svg"}}

The code above creates icon 1 and uses just a single image because the image is in a
vector graphics format (SVG) and in that case only a single image must be specified (see
above).

31.7 LoadIcon

NAME
LoadIcon – load an icon (V8.0)

SYNOPSIS
[id] = LoadIcon(id, filename$[, table])

FUNCTION
This function loads the icon specified by filename$ into memory and assigns the iden-
tifier id to it. If you pass Nil in id, LoadIcon() will automatically choose an identifier
and return it.

In Hollywood, an icon is a collection of the same image in different sizes. By using indi-
vidually designed images for each size instead of just scaling one and the same image to
each size, a better quality is achieved, especially when it comes to smaller image sizes,
which look much better when they are specifically designed for their resolution. Addi-
tionally, each image inside an icon set can have two different states: normal and selected.
Normally, you only ever need the normal state, but on AmigaOS and compatibles the
selected state is sometimes used as well. Typical sizes for the individual images within
an icon are 16x16, 24x24, 32x32, 48x48, 64x64, 96x96, 128x128, 256x256, and 512x512,
but they can also be completely arbitrary. The advantage of having the same image in
different sizes in an icon is that Hollywood can choose an appropriate size depending on
the screen resolution.

The icon passed in filename$ must be in Hollywood’s custom PNG icon format. You
can use SaveIcon() to create such icons. Note that although Hollywood icons are
normal PNG images, they contain additional metadata which is why you mustn’t edit
them with your favourite image manipulation tool because that might lead to the loss of
said metadata. Hollywood icons should only ever be created by using the SaveIcon()

function.

If you don’t want to use Hollywood’s custom icon format, you can also create icons from
brushes or normal images using the CreateIcon() function or the @ICON preprocessor
command. Those commands also have the advantage that you can use vector brushes,
which can be losslessly scaled to any size, leading to a perfectly crisp look in all kinds of
different resolutions.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

630 Hollywood manual

Loader: This tag allows you to specify one or more format loaders that should be
asked to load this icon. This must be set to a string containing the name(s) of
one or more loader(s). Defaults to the loader set using SetDefaultLoader().
See Section 7.9 [Loaders and adapters], page 92, for details.

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details.

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

This command is also available from the preprocessor: Use @ICON to preload icons.

INPUTS

id identifier for the icon or Nil for auto id selection

filename$

file to load

table optional: further options (see above)

RESULTS

id optional: identifier of the icon; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
LoadIcon(1, "test.png")

This loads "test.png" as icon 1.

31.8 RemoveIconImage

NAME
RemoveIconImage – remove image from icon (V8.0)

SYNOPSIS
RemoveIconImage(id, idx)

FUNCTION
This command can be used to remove a single image from the icon specified by id. The
image to be removed must be specified by its index using the idx parameter. Indices
start at 1 for the first image and run up to the number of images in the icon. You can
query the number of images in an icon by using the #ATTRNUMENTRIES attribute with
GetAttribute().

Note that the individual images inside icons are sorted by their width in ascending order.
This means that the indices passed to RemoveIconImage() aren’t necessarily the same

Chapter 31: Icon library 631

as the order of images passed to functions like CreateIcon() or the @ICON preprocessor
command.

Since icons must contain at least one image, it’s also not allowed to remove the very last
image from an icon.

To add images to icons, use the AddIconImage() function.

INPUTS

id identifier of the icon to use

idx index of the image to remove (starting at 1)

EXAMPLE
RemoveIconImage(1, 1)

The code above removes the first image from icon 1.

31.9 SaveIcon

NAME
SaveIcon – save icon to a file (V8.0)

SYNOPSIS
SaveIcon(id, f$[, fmt, t])

FUNCTION
This function saves the icon specified by id to the file specified by f$ in By default, the
icon will be saved in Hollywood’s custom icon format based on PNG. You can change
this by passing a different icon format constant in the fmt argument. The only icon
format supported internally by Hollywood is #ICNFMT_HOLLYWOOD, which is Hollywood’s
custom icon format based on PNG. Additional icon formats might be made available by
Hollywood plugins.

Note that although Hollywood’s custom icon format stores icons as seemingly normal
PNG images, they contain additional metadata which is why you mustn’t edit them
with your favourite image manipulation tool because that might lead to the loss of
said metadata. Hollywood icons should only ever be created by using the SaveIcon()

function.

Also note that when using Hollywood’s custom icon format the icon specified in id

mustn’t contain any vector graphics. Hollywood icons only support raster graphics
because they are based on PNG which is a raster graphics format. If you want to use
vector graphics in an icon, you can create such icons using the CreateIcon() function
and the @ICON preprocessor command.

Finally, icons in Hollywood’s custom icon format also mustn’t contain any palette graph-
ics. That is why SaveIcon() will fail if the icon specified by id contains palette images.

Starting with Hollywood 9.0, SaveIcon() accepts an optional table argument that can
contain the following options:

Compression:

For icon formats that support compression, you can set this tag to True or
False to enable or disable compression. Defaults to True. (V9.0)

632 Hollywood manual

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to save the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

id identifier of the icon to save

f$ destination file

fmt optional: desired output icon format (defaults to #ICNFMT_HOLLYWOOD)
(V9.0)

t optional: table containing further arguments (V9.0)

31.10 SetIconProperties

NAME
SetIconProperties – change properties of an icon (V4.5)

SYNOPSIS
SetIconProperties(id, table)

SetIconProperties(file$, type[, tooltypes, deftool$]) (Amiga only)

FUNCTION
This function can be used to change the properties of an icon. This is mostly
useful for Amiga icons because those contain metadata besides the image data, e.g.
icon type, tooltypes, default tool, and so on. This metadata can be modified using
SetIconProperties().

There are two ways of using this function: You can either pass the identifier of an icon in
the first parameter and a table in the second parameter or you can pass the filename of an
icon file in the first parameter and more arguments in the following parameters. Passing
a filename to SetIconProperties() is only supported on AmigaOS and compatibles,
passing an icon identifier is supported on all platforms however.

If you choose to pass an icon identifier to SetIconProperties(), you have to pass a
table in the second argument to specify the actual properties to modify. The following
icon properties can currently be modified:

Type: This tag allows you to set the desired Amiga icon type for the icon. This
must be one of the following constants:

#AMIGAICON_DISK:

An icon of a drive (e.g. RAM, HD, CD-ROM, etc.)

Chapter 31: Icon library 633

#AMIGAICON_DRAWER:

An icon of a drawer.

#AMIGAICON_TOOL:

An icon of a program

#AMIGAICON_PROJECT:

An icon of a project. A project is a data file that can be opened
by an other program. The program that should be used to open
the project should be passed in the DefaultTool tag (see below).

#AMIGAICON_GARBAGE:

A trashcan icon.

##AMIGAICON_DEVICE:

A device icon.

#AMIGAICON_KICKSTART:

A Kickstart icon.

(V9.0)

IconX: The icon’s x position relative to the top-left corner of the drawer it is stored
in. (V9.0)

IconY: The icon’s y position relative to the top-left corner of the drawer it is stored
in. (V9.0)

DrawerX: In case Type is set to a container type like #AMIGAICON_DRAWER, this tag can
be used to set the x position of the new window that will be opened when
double-clicking the icon. (V9.0)

DrawerY: In case Type is set to a container type like #AMIGAICON_DRAWER, this tag can
be used to set the y position of the new window that will be opened when
double-clicking the icon. (V9.0)

DrawerWidth:

In case Type is set to a container type like #AMIGAICON_DRAWER, this tag
can be used to set the width of the new window that will be opened when
double-clicking the icon. (V9.0)

DrawerHeight:

In case Type is set to a container type like #AMIGAICON_DRAWER, this tag
can be used to set the height of the new window that will be opened when
double-clicking the icon. (V9.0)

ViewAll: In case Type is set to a container type like #AMIGAICON_DRAWER, you can set
this tag to True to tell Workbench to show all files of the drawer, not just
the ones that have an icon. (V9.0)

StackSize:

In case Type is set to #AMIGAICON_TOOL or #AMIGAICON_PROJECT, the desired
stack size for the program to be launched. (V9.0)

634 Hollywood manual

DefaultTool:

In case Type is set to #AMIGAICON_PROJECT, this can be set to a string
containing name (and optionally path) of the program to open the file with.
(V9.0)

ToolTypes:

If you want to add tooltypes to the icon, you have to pass a table in the
ToolTypes tag. The table must contain a list of subtables, one subtable per
tooltype entry. Each subtable can contain the following tags:

Key: This tag is mandatory. It specifies the name of the tooltype.
Tooltype names should use letters of the English alphabet only.
They should always be in upper-case format and must not use
any SPACE characters. If you want a SPACE, use an underscore
instead (" "). Furthermore, numbers should not be used as the
initial characters of a tooltype name.

Value: This tag is optional. You can use it to assign a value to the
tooltype. If you do not set this value, the tooltype will be a
boolean one.

Enabled: This tag is optional. It defaults to True. If you want to add
tooltypes that are initially disabled, you can set this tag to
False. In that case, the tooltype will be enclosed by paren-
theses which means that it is disabled.

Alternatively, you can also set tooltypes by using the RawToolTypes tag (see
below).

(V9.0)

RawToolTypes:

If you don’t want to use the ToolTypes tag for some reason, you can also use
RawToolTypes to set them. In contrast to ToolTypes, the RawToolTypes

tag doesn’t divide tooltypes into their individual constituents (key, value,
enabled flag). Instead, the RawToolTypes tag will just copy the tooltypes
to the icon without any additional processing. This makes it possible to
store custom data in tooltypes as well. If you want to do that, just set
RawToolTypes to a table that contains all tooltypes that should be set as
simple strings. (V9.0)

To read the properties of an icon, use the GetIconProperties() command.

INPUTS

id syntax 1: identifier of icon to modify

table syntax 1: table containing icon properties to set

file$ syntax 2: the icon to modify

type syntax 2: new type for the icon; must be one of the constants from above

tooltypes

syntax 2, optional: a table containing a list of all tooltypes you want to set;
each list entry must have at least the Key field set; defaults to {} (empty
table)

Chapter 31: Icon library 635

deftool$ syntax 2, optional: the default tool to set for this icon; will only be set for
icons of type #AMIGAICON_PROJECT; defaults to ""

EXAMPLE
SetIconProperties(1, {

Type = #AMIGAICON_PROJECT,

DefaultTool = "Hollywood:System/Hollywood",

ToolTypes = {

{Key = "BORDERLESS"},

{Key = "BACKFILL", Value = "GRADIENT"},

{Key = "STARTCOLOR", Value = "$000000"},

{Key = "ENDCOLOR", Value = "$0000ff"},

{Key = "FIXED", Enabled = False}

}

})

The code above sets the type of icon 1 to #AMIGAICON_PROJECT, the default tool to
"Hollywood:System/Hollywood" and adds some tooltypes.

SetIconProperties("MyCoolScript.hws.info", #AMIGAICON_PROJECT, {

{Key = "BORDERLESS"},

{Key = "BACKFILL", Value = "GRADIENT"},

{Key = "STARTCOLOR", Value = "$000000"},

{Key = "ENDCOLOR", Value = "$0000ff"},

{Key = "FIXED", Enabled = False} }, "Hollywood:System/Hollywood")

The code above sets Hollywood as the default tool for "MyCoolScript.hws". Further-
more, it adds several tooltypes to the script’s icon that tell Hollywood what eye candy
it should add to the script (e.g. gradient backfill).

31.11 SetStandardIconImage

NAME
SetStandardIconImage – set icon’s standard image (V8.0)

SYNOPSIS
SetStandardIconImage(id, idx)

FUNCTION
This command can be used to set the standard image of the icon specified by id. The
image to be made the standard one must be specified by its index using the idx param-
eter. Indices start at 1 for the first image and run up to the number of images in the
icon. You can query the number of images in an icon by using the #ATTRNUMENTRIES

attribute with GetAttribute().

Note that the individual images inside icons are sorted by their width in ascending or-
der. This means that the indices passed to SetStandardIconImage() aren’t necessarily
the same as the order of images passed to functions like CreateIcon() or the @ICON

preprocessor command.

636 Hollywood manual

Setting an image inside the icon as the standard one can be important in some contexts
so that Hollywood knows which image to pick for higher resolutions, e.g. if you designate
a 64x64 image inside an icon as the standard size, Hollywood knows to pick the 128x128
image in case the monitor’s resolution uses a DPI setting that is twice as high as the
normal setting. Obviously, there can be only one standard image inside every icon, so
making one image the standard one will automatically clear the standard flag for any
image that was the standard one before. To make no image the standard one, pass 0 in
idx.

INPUTS

id identifier of the icon to use

idx index of the image to set as standard (starting at 1)

EXAMPLE
SetStandardIconImage(1, 1)

The code above makes the first image 1 in icon 1 the standard one.

31.12 SetTrayIcon

NAME
SetTrayIcon – install brush as a system tray icon (V5.2)

SYNOPSIS
SetTrayIcon(id[, tooltip$, type])

PLATFORMS
Microsoft Windows only

FUNCTION
This function can be used to install the image specified in id as an icon in the Windows
system tray. Whenever the user clicks on this icon, your script will get an event of
type TrayIcon which you can listen to using InstallEventHandler(). The optional
argument tooltip$ can be used to specify a string that should be displayed as a tooltip
whenever the mouse hovers over the system tray icon.

The image that you pass to this function should be 16x16 pixels and should use an alpha
channel for transparency.

In case you have already installed a system tray icon when you call this function, the
icon will be changed to the graphics of the specified brush. If you pass the special value
#NONE as the brush identifier, the system tray icon will be removed.

Another special value that you can pass to this function is #DEFAULTICON. If you pass
#DEFAULTICON in id, SetTrayIcon() will use the icon that has been declared using the
@APPICON preprocessor command, or, in case no @APPICON declaration has been made,
Hollywood’s default icon, the clapperboard.

Starting with Hollywood 8.0 there is an optional type argument which allows you to
specify the source image type for the tray icon. This defaults to #BRUSH which means
that you have to pass the identifier of a brush in the id argument. However, you can
also set the type argument to #ICON, in which case you have to pass the identifier of a

Chapter 31: Icon library 637

Hollywood icon in the id argument. This has the advantage that Hollywood can choose
different images depending on the resolution of the host system’s monitor. This is very
useful for systems using high DPI monitors. By using an icon that contains an image in
several resolutions, you can make sure that the tray icon looks perfectly crisp even on
high DPI monitors. See Section 31.3 [CreateIcon], page 619, for details.

Note that if you pass an icon in id, you have to make sure to set the 16x16 image as
the standard image inside the icon because 16x16 pixels is the default icon size for the
Windows system tray. See Section 31.11 [SetStandardIconImage], page 635, for details.

INPUTS

id identifier of the image to use as system tray icon or #NONE or #DEFAULTICON

tooltip$ optional: text to display as an icon tooltip

type optional: type of the image passed in id; this can be either #BRUSH or #ICON
(defaults to #BRUSH) (V8.0)

EXAMPLE
InstallEventHandler({TrayIcon = ...})

SetTrayIcon(1, "My program")

The code above enables the tray icon event handler and then installs brush number 1 as
a system tray icon.

31.13 SetWBIcon

NAME
SetWBIcon – change Hollywood’s iconify icon (V4.5)

SYNOPSIS
SetWBIcon(icon$[, ...])

PLATFORMS
AmigaOS and compatibles only

FUNCTION
This function can be used to specify your custom icon that Hollywood shall show on
the Workbench when it is in iconified state. You must specify an icon file here that is
in the *.info format. All icons that the currently installed Workbench can read are
supported. Thus, if you are on MorphOS or are using an appropriate patch, you could
also use PNG icons here.

For best compatibility, however, you should stick to standard icons in the GlowIcon
format.

The following special constants can be passed to icon$:

#AMIGAICON_NONE:

Pass this if you do not want Hollywood to add an appicon to the Workbench
when it is iconified. (V5.2)

638 Hollywood manual

#AMIGAICON_SHOW:

Show the app icon. This is useful if you want your app icon to be permanently
shown on Workbench screen and not only when your program is iconified.
(V6.1)

#AMIGAICON_HIDE:

Hide the app icon. (V6.1)

#AMIGAICON_SETTITLE:

Set text to show below the app icon. This defaults to what you specified in
the @APPTITLE preprocessor command. The text to show needs to be passed
as the second argument. (V6.1)

#AMIGAICON_SETPOSITION:

Change position of the app icon. You have to pass two additional arguments
specifying the new x and y position of the app icon. If you omit the two
additional arguments, the app icon’s position will be reset to the position
stored in the *.info file. (V6.1)

Note that you might need to call SetWBIcon() several times in order to achieve the
desired effect. For example, if you’d like to change the app icon and show it permanently,
you first have to call SetWBIcon() to set the *.info file to show and then you have to
call SetWBIcon() again and pass #AMIGAICON_SHOW to permanently show your app icon.

INPUTS

icon$ icon file to use when iconified or a special constant (see above)

... additional arguments depending on the special constant passed (see above)

EXAMPLE
SetWBIcon("MyCoolProg.info")

This code uses the program’s icon as its default WB icon.

639

32 IPC library

32.1 CreatePort

NAME
CreatePort – create a message port for your script (V5.0)

SYNOPSIS
CreatePort(name$)

FUNCTION
This function will create a message port for your script and assign the specified name to it.
In order to receive messages sent by SendMessage(), your script needs to have a message
port. Other Hollywood applications can then communicate with your script by sending
messages to this port. All messages that arrive at your message port will be forwarded
to the callback function which you need to install using the InstallEventHandler()

function (use the OnUserMessage event handler). If you do not install this event handler,
you will not get any notifications on incoming messages.

Please remember that message port names are always given in case sensitive notation.
Thus, "MYPORT" and "myport" denote two different message ports. For style reasons
it is suggested that you use only upper case characters for your port name. Furthermore,
each message port must be unique in the system. If you specify a port name which is
already in use, this function will fail. Thus, make sure that you use a unique name.

Please note that every Hollywood script can only have one message port. If you have
already created a message port and call this function again, the old message port will be
deleted.

See Section 29.13 [InstallEventHandler], page 553, for more information on how the user
callback function will be called.

INPUTS

name$ desired name for your message port

EXAMPLE
Function p_EventFunc(msg)

Switch msg.action

Case "OnUserMessage"

Switch msg.command

Case "EXIT"

DebugPrint("Exit received! Quitting now.")

End

Default

Local t = SplitStr(msg.args, "\0")

DebugPrint(msg.command, "called with", msg.argc, "argument(s)")

For Local k = 1 To msg.argc

DebugPrint("Argument", k .. ":", t[k - 1])

Next

EndSwitch

640 Hollywood manual

EndSwitch

EndFunction

CreatePort("MY_COOL_PORT_123")

InstallEventHandler({OnUserMessage = p_EventFunc})

Repeat

WaitEvent

Forever

Save the code above as a Hollywood script and run it with Hollywood. Then save the
following code as a new Hollywood script and run it:

SendMessage("MY_COOL_PORT_123", "INIT", "Value1", "Value2", "Value3")

SendMessage("MY_COOL_PORT_123", "DO_SOMETHING", "Argument1")

SendMessage("MY_COOL_PORT_123", "EXIT")

The code above will then communicate with the first script. You can see that the
messages are arriving from the debug output of script number one.

32.2 SendMessage

NAME
SendMessage – send message to a message port (V5.0)

SYNOPSIS
SendMessage(port$, cmd$[, ...])

FUNCTION
This function sends the command specified in cmd$ to the message port specified in
port$. The command specified in cmd$ must not contain any space characters. Addi-
tionally, you can send an unlimited number of arguments to the message port. Just pass
them as optional arguments after the command name. The optional arguments must be
passed as strings.

The port specified in port$must have been created previously by a call to CreatePort().
Please remember that port names are case sensitive, i.e. "MYPORT" and "myport"
denote two different message ports. For style guide reasons, port names are usually in
upper case only.

The message will be sent to the specified message port in form of a OnUserMessage event
that will be forwarded to the callback you specified when installing this event handler
using InstallEventHandler().

INPUTS

port$ name of the port you want to address

cmd$ the command(s) you want to send to that port

... optional: additional string arguments to send to the port

EXAMPLE
See Section 32.1 [CreatePort], page 639.

641

33 Joystick library

33.1 ConfigureJoystick

NAME
ConfigureJoystick – set joystick options (V10.0)

SYNOPSIS
ConfigureJoystick(t)

FUNCTION
This function can be used to configure several joystick options. You have to pass a table
as the sole function parameter t. This table can contain the following tags:

UseAmigaInput:

This tag is only supported on AmigaOS 4. If you set it to True, OS4’s
AmigaInput system will be used to query joystick states. The advantage of
using AmigaInput instead of lowlevel.library, which is the default on Amiga,
is that you can query more than 7 buttons and users don’t have to use the
AmigaInput prefs to map their controllers to lowlevel.library ports.

INPUTS

t table containing one or more options (see above)

33.2 CountJoysticks

NAME
CountJoysticks – return number of joysticks currently plugged in (V4.6)

SYNOPSIS
r = CountJoysticks()

FUNCTION
This function counts the number of joysticks currently plugged in. You can then query
the single joysticks using commands like JoyDir() and JoyButton(). This function is
useful to check if there is a joystick available at all. If it returns 0, then there is currently
no joystick that is recognized by Hollywood.

INPUTS
none

RESULTS

r number of joysticks available or 0 if none

642 Hollywood manual

33.3 JoyAxisX

NAME
JoyAxisX – return state of joystick’s x axis (V10.0)

SYNOPSIS
state = JoyAxisX(port[, idx])

FUNCTION
This function returns the current x axis state of the joystick at the port specified by
port. The x axis state is returned in the range of -1000 to 1000. The optional argument
idx can be used to specify the index of the joystick to use in case there are multiple
joysticks on a controller. Joystick indices start at 0.

port can range from 0 to the number of joysticks currently plugged in minus 1. You
can find out the number of joysticks currently available using the CountJoysticks()

function. Please note that under AmigaOS, port 0 addresses the standard joystick port
although this is port 1 on classic Amiga hardware. Hollywood switches these ports for
cross-platform consistency where port 0 shall always refer to the default joystick.

INPUTS

port port number (usually 0 for the standard Joystick port)

idx optional: joystick index to query (defaults to 0)

RESULTS

state state of the joystick x axis, ranging from -1000 to 1000

33.4 JoyAxisY

NAME
JoyAxisY – return state of joystick’s y axis (V10.0)

SYNOPSIS
state = JoyAxisY(port[, idx])

FUNCTION
This function returns the current y axis state of the joystick at the port specified by
port. The y axis state is returned in the range of -1000 to 1000. The optional argument
idx can be used to specify the index of the joystick to use in case there are multiple
joysticks on a controller. Joystick indices start at 0.

port can range from 0 to the number of joysticks currently plugged in minus 1. You
can find out the number of joysticks currently available using the CountJoysticks()

function. Please note that under AmigaOS, port 0 addresses the standard joystick port
although this is port 1 on classic Amiga hardware. Hollywood switches these ports for
cross-platform consistency where port 0 shall always refer to the default joystick.

INPUTS

port port number (usually 0 for the standard Joystick port)

idx optional: joystick index to query (defaults to 0)

Chapter 33: Joystick library 643

RESULTS

state state of the joystick y axis, ranging from -1000 to 1000

33.5 JoyAxisZ

NAME
JoyAxisZ – return state of joystick’s z axis (V10.0)

SYNOPSIS
state = JoyAxisZ(port[, idx])

FUNCTION
This function returns the current z axis state of the joystick at the port specified by
port. The z axis state is returned in the range of -1000 to 1000. The optional argument
idx can be used to specify the index of the joystick to use in case there are multiple
joysticks on a controller. Joystick indices start at 0.

port can range from 0 to the number of joysticks currently plugged in minus 1. You
can find out the number of joysticks currently available using the CountJoysticks()

function. Please note that under AmigaOS, port 0 addresses the standard joystick port
although this is port 1 on classic Amiga hardware. Hollywood switches these ports for
cross-platform consistency where port 0 shall always refer to the default joystick.

INPUTS

port port number (usually 0 for the standard Joystick port)

idx optional: joystick index to query (defaults to 0)

RESULTS

state state of the joystick z axis, ranging from -1000 to 1000

33.6 JoyButton

NAME
JoyButton – check if joystick button is pressed (V1.5)

FORMERLY KNOWN AS
JoyFire (V1.5 - V10.0)

SYNOPSIS
pressed = JoyButton(port[, button])

FUNCTION
This function returns True if a button of the Joystick plugged into the port specified by
port has been pressed. Otherwise False is returned. The optional argument button

specifies which button to look for. If you are looking for a specific button, specify the
number of this button (must be between 1 and 32). If you are looking for multiple
buttons, specify 0 and this function will return a 32-bit mask in which each of the 32
bits indicates the state of the button (pressed or not pressed).

644 Hollywood manual

port can range from 0 to the number of joysticks currently plugged in minus 1. You
can find out the number of joysticks currently available using the CountJoysticks()

function. Please note that under AmigaOS, port 0 addresses the standard joystick port
although this is port 1 on classic Amiga hardware. Hollywood switches these ports for
cross-platform consistency where port 0 shall always refer to the default joystick.

INPUTS

port port number (usually 0 for the standard Joystick port)

button optional: button to look for or 0 for all buttons (defaults to 1 which means
look for first, i.e. fire, button) (V4.6)

RESULTS

pressed True if button is pressed, otherwise FALSE; if you passed 0 for button, then
this will be a 32-bit mask indicating the states of all 32 buttons

EXAMPLE
While fire = FALSE

fire = JoyButton(0)

VWait

Wend

The above code waits until the user presses fire.

33.7 JoyDir

NAME
JoyDir – return direction of joystick (V1.5)

SYNOPSIS
dir = JoyDir(port[, idx])

FUNCTION
This function returns the direction of the Joystick plugged into the port specified by
port. The optional argument idx can be used to specify the index of the joystick to use
in case there are multiple joysticks on a controller. Joystick indices start at 0.

One of the following states will be returned:

#JOYUP Joystick direction is up

#JOYUPRIGHT

Joystick direction is up-right

#JOYRIGHT

Joystick direction is right

#JOYDOWNRIGHT

Joystick direction is down-right

#JOYDOWN Joystick direction is down

#JOYDOWNLEFT

Joystick direction is down-left

Chapter 33: Joystick library 645

#JOYLEFT Joystick direction is left

#JOYUPLEFT

Joystick direction is up-left

#JOYNODIR

no direction selected

port can range from 0 to the number of joysticks currently plugged in minus 1. You
can find out the number of joysticks currently available using the CountJoysticks()

function. Please note that under AmigaOS, port 0 addresses the standard joystick port
although this is port 1 on classic Amiga hardware. Hollywood switches these ports for
cross-platform consistency where port 0 shall always refer to the default joystick.

INPUTS

port port number (usually 0 for the standard Joystick port)

idx optional: joystick index to query (defaults to 0) (V10.0)

RESULTS

dir current Joystick state (one of the constants from above)

EXAMPLE
While state <> #JOYRIGHT

state = JoyDir(0)

VWait

Wend

The above code waits until the user moves the Joystick in port 0 to right.

33.8 JoyHat

NAME
JoyHat – return state of joystick hat (V10.0)

SYNOPSIS
state = JoyHat(port[, idx])

FUNCTION
This function returns the state of the hat of the joystick at the port specified by port.
Joystick hats are also known as point-of-view d-pads. The returned state will be -1 if
the hat is in the center, otherwise a value between 0 and 27000 will be returned. The
optional argument idx can be used to specify the index of the joystick hat to use in case
there are multiple hats on a controller. Indices start at 0.

port can range from 0 to the number of joysticks currently plugged in minus 1. You
can find out the number of joysticks currently available using the CountJoysticks()

function. Please note that under AmigaOS, port 0 addresses the standard joystick port
although this is port 1 on classic Amiga hardware. Hollywood switches these ports for
cross-platform consistency where port 0 shall always refer to the default joystick.

INPUTS

port port number (usually 0 for the standard Joystick port)

646 Hollywood manual

idx optional: joystick index to query (defaults to 0)

RESULTS

state state of the joystick hat, ranging from -1 (center) to 27000

647

34 Layers library

34.1 Overview

Hollywood offers you a powerful yet easy to use layer system which should be able to realize
everything you need for your application. Layers are children of a background picture. Every
background picture has its own attached layers. Hollywood’s layer system is not enabled
at startup. You have to enable it manually by calling the EnableLayers() command.
Alternatively, you can use the Layers tag in @DISPLAY or CreateDisplay(). Once layers
are enabled, every object displayed on the screen will be on its own layer.

Note that layers are enabled/disabled on a per display basis. Thus, it is absolutely possible
to mix layered and non-layered displays. For instance, if you have two displays, display 1
could use layers and display 2 could be non-layered. This is perfectly possible.

What you should try to avoid is disabling layers in a display in which they have been
enabled before. This is possible to do but it should be avoided in any case because layered
and non-layered modes are distinctly different.

Let’s have a look at a brief example now:

EnableLayers()

DisplayBGPic(2)

DisplayBrush(1, #CENTER, #CENTER)

Plot(100, 100, #RED)

Print("Hello World!")

Box(50, 50, 100, 100, #BLUE)

The above code displays 4 different object types and attaches at the same time 4 layers to
the background picture number 2 because layers were enabled. Every displayed object gets
its own layer now, therefore we have the following layers now for background picture 2:

Layer id 1: Brush 1 at coordinates #CENTER : #CENTER

Layer id 2: A red pixel at 100 : 100

Layer id 3: Text "Hello World!"

Layer id 4: A blue box at 50 : 50 with dimensions 100 : 100

Now you can do everything you like with those layers, e.g. you can hide them, move them,
swap foreground priorities or remove them. Hollywood offers many functions that can
handle layers.

Please note that layer ids are dynamic. For example if the above code would now call the
command

RemoveLayer(2)

then the layer ids would be changed. After this command returns we would have the
following layers for background picture 2:

Layer id 1: Brush 1 at coordinates #CENTER : #CENTER

Layer id 2: Text "Hello World!"

Layer id 3: A blue box at 50 : 50 with dimensions 100 : 100

You see that the text "Hello World!" has now layer id 2 and the box is now at layer 3.

Starting with Hollywood 2.0, there is a new command available: SetLayerName(). You can
use it to give your layers a unique name so you can simply address the layer through its

648 Hollywood manual

name a instead of its id. This is very useful if you have many layers and you do not want
to remember their ids. All functions that work with layers accept a name string in addition
to a numeric id now. Here is our example again:

Layer id 1: Brush 1 at coordinates #CENTER : #CENTER

Layer id 2: A red pixel at 100 : 100

Layer id 3: Text "Hello World!"

Layer id 4: A blue box at 50 : 50 with dimensions 100 : 100

Now we do the following:

SetLayerName(1, "brush: 1")

SetLayerName(2, "red pixel")

SetLayerName(3, "text: hello world")

SetLayerName(4, "blue box")

Now we could remove layer 2 by calling

RemoveLayer("red pixel")

We do not have to care about the fact that the layer ids have changed now because all
layers have names and so we can easily address them.

Please keep in mind that layers are always background picture private. For example if you
now call a

DisplayBGPic(3)

you will not have any layers you could access. If you call now

DisplayBGPic(2)

again, Hollywood will display your background picture 2 together with all layers attached
to it. So you can safely switch between background pictures and you do not have to display
all your data again. If you have layers enabled, Hollywood will display all layers attached
to a background picture automatically with DisplayBGPic().

To save memory it is advised however to call FreeLayers() when you do not need them
any longer.

Please also make sure that you call EnableLayers() before displaying the objects you want
to access as layers. For example, the following code will not work:

DisplayBrush(1, #CENTER, #CENTER)

EnableLayers()

Undo(#BRUSH, 1)

Every command that outputs graphics will check if layers are enabled and if they are, it
will add a layer. Therefore the above example cannot work because layers are enabled after
DisplayBrush() is called. So you have to use the following code:

EnableLayers()

DisplayBrush(1, #CENTER, #CENTER)

Undo(#BRUSH, 1)

This will work fine then.

If you plan to use layers in your whole application, it is recommended to call
EnableLayers() right at the start of your code. This ensures that layers are always
enabled.

Chapter 34: Layers library 649

Once a layer is on the display you can change its appearance very easily. Hollywood offers a
wide range of layer manipulation function. The most powerful of them is SetLayerStyle()
which can be used to change nearly all of the layer’s attributes with just a single call. It
can even change the attributes of multiple layers at once! Furthermore, you can rotate a
layer using RotateLayer() and scale it using ScaleLayer(). It is also possible to show
and hide layers with an effect from Hollywood’s wide range of transition effects using the
ShowLayerFX() and HideLayerFX() functions.

34.2 AddMove

NAME
AddMove – add object to move list (V1.5)

SYNOPSIS
[id] = AddMove(id, type, sourceid[, par1, par2, par3])

FUNCTION
This function adds an object to the move list specified by id. If the move list is not
existing yet, it is created by this function. You can also pass Nil in id which will cause
AddMove() to create a new move list in any case and return its id. Move lists are used
for optimized drawing using DoMove(). The optional parameters par1, par2 and par3

specify different things depending on which object type you passed over.

The following types are currently supported by AddMove():

#BRUSH Adds the brush with id sourceid to the move list; par1 specifies x-position
and par2 the y-position for the brush; par3 is not used

#HIDEBRUSH

Hides the brush with id specified by sourceid; optional parameters are not
used

#HIDELAYER

Hides the layer specified by sourceid; optional parameters are not used

#INSERTBRUSH

Inserts the brush specified by sourceid into the layer position specified by
par3; par1 specifies the x-position for the brush and par2 the y-position;
See Section 34.19 [InsertLayer], page 663, for more information on inserting
layers.

#LAYER Adds the layer specified by sourceid to the move list; par1 specifies the x-
position for the layer, par2 the y-position; new in Hollywood 4.0: par3 can
be used to specify a visibility mode: 0 means "show layer", 1 means "hide
layer", and 2 means "keep current visibility setting" (i.e. layer stays hidden
if it is currently hidden); par3 defaults to 0 which means always show the
layer even if it is currently hidden

#NEXTFRAME

Displays a new frame of an anim layer; par1 specifies the new x-position for
the layer, par2 the y-position; par3 specifies the frame to be displayed; spec-
ify 0 to display the next frame, -1 to display the last frame of the animation
(V2.0)

650 Hollywood manual

#NEXTFRAME2

Same as #NEXTFRAME but takes a layer id as sourceid; this makes it possible
to address anim layers directly; par1 specifies the new x-position for the
layer, par2 the y-position; par3 specifies the frame to be displayed; specify
0 to display the next frame, -1 to display the last frame of the animation
(V2.5)

#REMOVELAYER

Removes the layer specified by sourceid from the background picture’s layer
cache; optional parameters are not used

#TEXTOBJECT

Adds the text object specified by sourceid to the move list; par1 specifies
x-position and par2 the y-position; par3 is not used

#UNDO Adds an Undo() operation to the move list; sourceid specifies the type of
the object to be undone, par1 specifies the identifier of the object to be
undone, par2 specifies the undo level; See Section 34.60 [Undo], page 708,
for details.

After you have filled the move list with objects you can call DoMove() to draw the new
display.

Please note: It is not possible to have multiple objects of the same type and id in your
move list. For example, you cannot do the following:

DisplayBrush(1, #LEFT, #TOP)

DisplayBrush(1, #RIGHT, #BOTTOM)

/* This will not work */

AddMove(1, #BRUSH, 1, #CENTER, #CENTER)

AddMove(1, #BRUSH, 1, #LEFTOUT, #TOPOUT)

/* This will not work */

DoMove(1)

The above code will not work because you are using brush 1 two times in the same move
list. Hollywood does not know which brush to use then which leads to unpredictable
results.

See Section 34.7 [DoMove], page 654, for details.

INPUTS

id identifier of the move list or Nil to create a new move list

type type of the object to add (see list above)

sourceid depends on the specified type (see list above)

par1 depends on the specified type (see list above)

par2 depends on the specified type (see list above)

par3 depends on the specified type (see list above)

Chapter 34: Layers library 651

RESULTS

id optional: identifier of the move list; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
See Section 34.7 [DoMove], page 654.

34.3 ClearMove

NAME
ClearMove – clear move list (V1.5)

SYNOPSIS
ClearMove(id)

FUNCTION
This function clears all objects which are in the move list specified by id. After you have
called this command, your move list is empty again and can be filled with new objects.

See Section 34.7 [DoMove], page 654, for more information of Hollywood’s move lists.

INPUTS

id identifier of the move list to clear

EXAMPLE
See Section 34.7 [DoMove], page 654.

34.4 CopyLayer

NAME
CopyLayer – clone a layer (V9.1)

SYNOPSIS
CopyLayer(id, pos[, t])

FUNCTION
This command clones the layer specified by id and inserts the copy into the layer position
specified by pos. The special value 0 can be passed in pos to insert the cloned layer as
the last one. CopyLayer() will clone all layer attributes except the layer’s name because
that must be unique. You can use the optional table argument t to specify a name for
the cloned layer.

The optional table argument supports these tags:

Name: If you want to assign a name to the new layer, set this tag to a string
containing the desired name. By default, the new layer won’t be given a
name.

Hidden: This tag can be set to True to automatically hide the new layer after creation.
Defaults to False.

652 Hollywood manual

You need to enable layers before you can use this command. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier or name of the layer to clone

pos desired position for the new layer or 0 for last layer

t optional: table containing further parameters

EXAMPLE
EnableLayers

SetFillStyle(#FILLCOLOR)

Box(0, 0, 320, 480, #RED)

CopyLayer(1, 2, {Hidden = True})

SetLayerStyle(2, {X = 320, Color = #BLUE, Hidden = False})

The code above creates a filled red rectangle layer, clones it, changes the color of the
cloned layer to blue and positions it next to the red layer.

34.5 CreateLayer

NAME
CreateLayer – create a new layer (V4.7)

SYNOPSIS
CreateLayer(x, y, width, height[, table])

FUNCTION
This command can be used to insert a new layer to the current BGPic. The layer will be
of the dimensions specified in width / height and it will appear at the specified position.
This function will create either a layer of type #BRUSH or of type #ANIM. If you want to
create an anim layer, you will have to pass the desired number of frames in the Frames

tag in the optional table argument.

The optional table argument recognizes the following tags:

Frames Specifies the number of frames for this layer. If this is set to 1,
CreateLayer() will create a brush layer. Otherwise an anim layer
containing the specified number of frames will be created. Defaults to 1
(which means that by default, CreateLayer() will create a brush layer).

Color Specifies the initial RGB color of the layer. This defaults to $000000 (i.e.
black).

Mask Set this tag to True if CreateLayer() should attach a mask to the new
layer. If this is True, AlphaChannel must be False. Defaults to False.

AlphaChannel

Set this tag to True if CreateLayer() should attach an alpha channel to
the new layer. If this is set to True, Mask must be set to False. Defaults to
False.

Chapter 34: Layers library 653

Clear This tag is only handled if either AlphaChannel or Mask was set to True. If
that is the case, Clear specifies whether or not the mask or alpha channel
should be cleared (i.e. fully transparent) or not (i.e. opaque). This defaults
to False which means that by default, the new mask or alpha channel will
be opaque.

Additionally, you can pass one or more of the standard tags in the optional table ar-
gument. Using these tags you can for instance control the insert position of the layer,
assign a name to it, and modify the anchor point settings of this layer. See Section 27.17
[Standard draw tags], page 501, for details.

CreateLayer() is the preferred way of creating an empty layer that you later want
to modify using the SelectLayer() command. Of course, you could also create an
empty brush using CreateBrush() and then insert it as a layer using DisplayBrush()

or InsertLayer() but this is not as effective as using the new CreateLayer() function
because when you then call SelectLayer() on a layer that was created from an existing
brush source, Hollywood first has to create a copy of the layer because SelectLayer()

shall only modify the layer contents and not the contents of the brush that was used to
create the layer. This is not very critical with brush layers, but imagine an anim layer
with some dozens of frames! Using SelectLayer() on such an anim layer would be very
expensive and would take quite some time. In these cases, CreateLayer() is really much
more effective.

INPUTS

x desired x position for the new layer

y desired y position for the new layer

width desired layer width

height desired layer height

table optional: table configuring further options; can be one or more of the tags
listed above or from the standard tags

EXAMPLE
CreateLayer(#CENTER, #CENTER, 100, 100, {Color = #RED})

SelectLayer(1)

Circle(0, 0, 50, #WHITE)

EndSelect

The code above creates a new 100x100 red layer and then draws a white circle onto it.

34.6 DisableLayers

NAME
DisableLayers – disable layers for current display (V1.5)

SYNOPSIS
DisableLayers()

FUNCTION
This function disables layers in the currently selected display.

654 Hollywood manual

Please note that this function does not free any layers that are attached to a background
picture. They will be kept until you free them or until Hollywood is closed. So you can
also disable layers temporarily and enable them again later and you will not lose any
layers.

Please note though that it is generally not advised to switch between layered and non-
layered modes because both modes are not really compatible with each other. Thus,
the best idea is certainly to define whether or not a display should use layers at display
creation time (e.g. when calling @DISPLAY or CreateDisplay()) and then stick to this
decision. Mixing layered and non-layered sections in the same display is really only
recommended if you know exactly what you are doing.

See Section 34.1 [Layers introduction], page 647, for details.

INPUTS
none

34.7 DoMove

NAME
DoMove – draw a move list (V1.5)

SYNOPSIS
DoMove(id)

FUNCTION
This function draws all objects which have been added to the move list specified by id

(using AddMove()) at once. This is very useful if you want to display animated graphics
with different objects. If you painted every object with DisplayBrush() your display
would certainly flicker a lot. This can be prevented by updating the display with one
drawing operation. DoMove() lets you realize that: You add all objects that shall be
drawn to a move list (using AddMove()) and then you call DoMove() which will draw the
whole move list using just a single draw operation.

Implementation of DoMove() is that it scans the move list you specify and looks what
objects shall be drawn. For every object that is in the list Hollywood will check if the
object is already on the screen. If it is, Hollywood will move the object to the new
position. If it is not on the screen, it will be drawn on the screen. Therefore if all objects
that shall be drawn are already on the screen and shall just be moved with DoMove(), all
layer positions will be kept. If there are objects in the move list that are not currently
on the screen, they will be drawn and will get the top most layer position assigned.

After DoMove() is finished, you should call ClearMove(). This will clear the move list
you specify and you can use it again with new object positions.

This function requires enabled layers.

INPUTS

id identifier of the move list to draw

EXAMPLE
EnableLayers()

Chapter 34: Layers library 655

For x = 0 To 400

AddMove(1, #BRUSH, 1, x, 0)

AddMove(1, #BRUSH, 2, x, 100)

AddMove(1, #BRUSH, 3, x, 200)

AddMove(1, #BRUSH, 4, x, 300)

DoMove(1)

ClearMove(1)

Next

The code above scrolls brushes 1 to 4 from 0 to 400. You will see no flickering because
we use the move list technique.

34.8 DumpLayers

NAME
DumpLayers – print internal information about layers (V2.0)

SYNOPSIS
DumpLayers([what])

FUNCTION
This function prints internal information about the layers in the current BGPic to the
debug device. This is mostly useful for debugging purposes. The information that is
printed by DumpLayers() includes position and size information, the layer’s visibility
flag as well as the internal storage size of a basic Hollywood layer.

The what argument can be used to control the information that should be printed. In-
ternally, Hollywood layers can have up to three different representations. A normal rep-
resentation without any transformations, a transformed representation and a layerscale-
transformed representation. The transformed representation is created by functions such
as RotateLayer() and ScaleLayer() whereas the layerscale-transformed manifestation
of a layer represents either the normal or the transformed layer with additional transfor-
mations added by the layer scaling engine.

The following values are currently accepted by the what argument:

0: Print information about the normal representation of the layer. This is the
default.

1: Print information about the transformed representation of the layer.

2: Print information about the layerscale-transformed representation of the
layer.

Note that even if no layerscale-transformation is currently active, level 2 always represents
the physical appearance of a layer. So if you need to know details about the physical
appearance of a layer, always pass 2 in the what parameter, even if no transformation
are currently active.

Also note that the position and size information printed by this function is separated
into the real physical position and size and the position and size as maintained by the
script. The real physical position and size information is printed in brackets.

656 Hollywood manual

All this information, however, is probably of not much use for normal programmers. This
function is mainly here for debugging purposes. If you need to query layer attributes for
your script, use the GetLayerStyle() or the GetAttribute() function using the #LAYER
source type. See Section 34.15 [GetLayerStyle], page 659, for details. See Section 43.4
[GetAttribute], page 858, for details.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

what flag to control which information should be printed (see above); defaults to
0

34.9 EnableLayers

NAME
EnableLayers – enable layers for current display (V1.5)

SYNOPSIS
EnableLayers()

FUNCTION
This function enables layers in the currently selected display. In order to use any of the
layer functions in this display, you need to call this function first. Alternatively, you
could enable layers already at display creation time by using the Layers tag in either
the @DISPLAY or CreateDisplay() commands.

Please note also that it is generally not advised to switch between layered and non-layered
modes because both modes are not really compatible with each other. Thus, the best
idea is certainly to define whether or not a display should use layers at display creation
time (e.g. when calling @DISPLAY or CreateDisplay()) and then stick to this decision.
Mixing layered and non-layered sections in the same display is really only recommended
if you know exactly what you are doing.

See Section 34.1 [Layers introduction], page 647, for details.

INPUTS
none

34.10 FreeLayers

NAME
FreeLayers – free background picture’s layers (V1.5)

SYNOPSIS
FreeLayers([keep])

FUNCTION
This function frees all layers associated with the current background picture. You should
call this command when you are finished with layers on a background picture because it
releases quite some memory.

Chapter 34: Layers library 657

By default, FreeLayers() will free all layers but it will also draw them into the back-
ground picture. This means that there will be no visible change after you have called
FreeLayers(). The layers will be gone but it will look as if they were still there because
they will be drawn into the background picture. If you don’t want that, set the keep

parameter to False. In that case, the layers will be removed and they won’t be drawn
into the background. This is the same as calling RemoveLayers().

Please note: Layers will not be freed when you display a new background picture. You
have to free them on your own.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

keep optional: whether to draw the layers into the background picture or not
(defaults to True) (V4.0)

34.11 GetLayerAtPos

NAME
GetLayerAtPos – return topmost layer at specified position (V4.7)

SYNOPSIS
id, name$ = GetLayerAtPos(x, y)

FUNCTION
This function returns the topmost layer at the specified position. This is useful when
creating some interactive user interface where layers can be moved with the mouse or
hovering over a layer changes the style of that very layer. The position passed to this
function is relative to the top-left corner of the display, i.e. a position of (0,0) means the
top-left corner.

GetLayerAtPos() returns the identifier of the topmost layer at the specified position as
well as the name of that layer. If the layer does not have a name, an empty string is
returned as the second return value. If there is no layer at the specified position at all,
0 is returned as the identifier and an empty string as the name.

INPUTS

x x position to query

y y position to query

RESULTS

id identifier of the topmost layer at this position or 0 if there is no layer at this
position

name$ name of the topmost layer or empty string ("") if the layer does not have a
name or no layer was found

658 Hollywood manual

34.12 GetLayerGroupMembers

NAME
GetLayerGroupMembers – return all members of a layer group (V10.0)

SYNOPSIS
t = GetLayerGroupMembers(group$)

FUNCTION
This function finds all members of the layer group specified by group$ and returns them
in a table. The order in which the group members are returned in the table is arbitrary.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

group$ name of layer group to use

RESULTS

t table containing all group members

EXAMPLE
t = GetLayerGroupMembers("mygroup")

For Local k = 0 To ListItems(t) - 1 Do DebugPrint(t[k])

The code above gets all members of the layer group "mygroup" and prints them.

34.13 GetLayerGroups

NAME
GetLayerGroups – return layer groups in current BGPic (V10.0)

SYNOPSIS
t = GetLayerGroups()

FUNCTION
This function collects all layer groups in the current BGPic and returns them in a table.
The order in which the groups are returned in the table is arbitrary.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS
none

RESULTS

t table containing all layer groups

EXAMPLE
t = GetLayerGroups()

For Local k = 0 To ListItems(t) - 1 Do DebugPrint(t[k])

The code above gets all layer groups and prints them.

Chapter 34: Layers library 659

34.14 GetLayerPen

NAME
GetLayerPen – get pen color from layer’s palette (V9.0)

SYNOPSIS
color = GetLayerPen(id, pen)

FUNCTION
This function gets the color of the pen specified by pen from the palette of the layer
specified by id. The color will be returned as an RGB color.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of layer to use

pen pen you want to get (starting from 0)

RESULTS

color color of the pen, specified as an RGB color

EXAMPLE
color = GetLayerPen(1, 0)

The code gets the color of the first pen of layer 1.

34.15 GetLayerStyle

NAME
GetLayerStyle – get the style of a layer (V4.0)

SYNOPSIS
t = GetLayerStyle(id)

FUNCTION
This function returns all style attributes of the specified layer. The different attributes
are returned in a table which you can then examine. The contents of the style table
returned by this function depend on the type of the layer that you specified. For a
complete overview of all style elements that will be returned by this function, please
have a look at the documentation of the SetLayerStyle() command which contains a
list of the layer style elements and to which layer types they apply. See Section 34.48
[SetLayerStyle], page 689, for details.

Please note that this command always queries all attributes so it can sometimes get quite
slow. If you need only some basic information about a layer, it could be faster to use
GetAttribute() instead.

INPUTS

id identifier of the layer to examine

RESULTS

t a table containing all style attributes for this layer

660 Hollywood manual

EXAMPLE
t = GetLayerStyle(1)

Print("This layer is at position", t.x, ":", t.y, "!")

The code above queries the style of layer 1 and displays its position then.

34.16 GroupLayer

NAME
GroupLayer – add layer(s) to group (V10.0)

SYNOPSIS
GroupLayer(group$, layer1[, layer2, ...])

FUNCTION
This function can be used to add one or more layers to the layer group specified by
group$. If the layer group specified by group$ doesn’t exist yet, it will be automatically
created by GroupLayer(). Layer groups are simply referenced by a name string that can
contain any characters as long as the group’s name isn’t already used by a layer. The
layer(s) that should be added to the group must be specified by their id in the parameters
after group$. You can pass an unlimited number of layers to this function.

Once you have finished grouping your layers, you can then pass the group’s name to
most functions that deal with layers, e.g. you could show a group of layers by simply
passing the name of your layer group to ShowLayer(). You could also move all layers of
a layer group at once by passing the layer group to MoveLayer() etc.

Note that when passing groups instead of single layers to functions of the layer library,
those functions won’t treat the layer group as an own entity but will simply apply the
respective operation on all layers that are part of the group. For example, if you call
MoveLayer() on a layer group and pass 100:100 as the new position, Hollywood won’t
move the group as a whole to position 100:100 but all group members individually will be
moved to 100:100 so that after the call all layers that are part of the group will appear at
100:100, i.e. they all will be at the same position which might not be what you expected.
If you want to move layers that are part of a group and preserve their individual position
within the group, you need to call TranslateLayer() instead because that allows moving
layers relative to their current position. See Section 34.59 [TranslateLayer], page 708,
for details.

Layers can also be added to a group right when they are created by passing the group’s
name in the Group tag of the standard drawing tags accepted by all Hollywood functions
that add a layer. See Section 27.17 [Standard drawing tags], page 501, for details.

To remove a layer from a group, use the UngroupLayer() function. See Section 34.62
[UngroupLayer], page 711, for details. As soon as a group doesn’t have any more layers
attached, it will be automatically deleted.

Another way of grouping layers is to merge them. In comparison to grouping layers,
merging layers means to turn them into a single layer. One advantage of merged layers
is that they are treated as a whole, for example when showing or hiding them using tran-
sition effects. Grouped layers, on the other hand, will show transition effects individually
for each group member. See Section 34.24 [MergeLayers], page 666, for details.

Chapter 34: Layers library 661

You need to enable layers before you can use GroupLayer(). See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

group$ name of the group to add the layer(s) to

layer1 first layer to add to the group

... further layers to add to the group

EXAMPLE
EnableLayers

SetFillStyle(#FILLCOLOR)

Box(0, 0, 100, 100, #RED, {Hidden = True})

Box(100, 0, 100, 100, #GREEN, {Hidden = True})

Box(200, 0, 100, 100, #BLUE, {Hidden = True})

GroupLayer("mygroup", 1, 2, 3)

TranslateLayer("mygroup", 170, 190)

ShowLayerFX("mygroup", #SCROLLSOUTH)

The code above creates three hidden 100x100 rectangles, groups them and then moves
the group to the center of the 640x480 display and scrolls them in from the south.

34.17 HideLayer

NAME
HideLayer – hide a layer (V1.5)

SYNOPSIS
HideLayer(id)

FUNCTION
This function hides the layer or layer group specified by id. The layer will not be
removed. It will just be hidden. You can make it visible again, by calling ShowLayer().
If you want to remove it completely, use RemoveLayer() or Undo().

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of the layer or layer group to hide

EXAMPLE
EnableLayers()

NPrint("Hello World!")

WaitLeftMouse

HideLayer(1)

WaitLeftMouse

ShowLayer(1)

The code above prints "Hello World!" to the display, then hides this text and displays
it again.

662 Hollywood manual

34.18 HideLayerFX

NAME
HideLayerFX – hide a layer with transition effects (V1.9)

SYNOPSIS
[handle] = HideLayerFX(id[, table])

FUNCTION
This function is an extended version of the HideLayer() command. It hides the layer or
layer group specified by id and uses one of the many Hollywood transition effects. You
can also specify the speed for the transition and an optional argument.

Starting with Hollywood 4.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the transition effect. The following
options are possible:

Type Specifies the desired effect for the transition. See Section 20.11 [DisplayTran-
sitionFX], page 238, for a list of all supported transition effects. (defaults to
#RANDOMEFFECT)

Speed Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

Async You can use this field to create an asynchronous draw object for this transi-
tion. If you pass True here HideLayerFX() will exit immediately, returning
a handle to an asynchronous draw object which you can then draw using
AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221, for more
information on asynchronous draw objects.

NoBorderFade

If the layer to be hidden has a border, do not gradually fade out the border
but remove it in one go at the end of the transition effect. (V5.0)

BorderFX:

If the layer to be hidden has a border, Hollywood will only apply the transi-
tion effect to the border if the layer is a transparent layer with text or pixel
graphics. For non-transparent and vector graphics layers a generic fade ef-
fect will be used instead because otherwise there would be visual glitches
between the penultimate and final effect frame because of differences in the
border algorithms. If you don’t care about this glitch and want to force
Hollywood to always apply the transition effect to the border, set this tag
to True. To force Hollywood to always use the generic fade mode, set this
tag to False. (V9.0)

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

Chapter 34: Layers library 663

INPUTS

id identifier of the layer or layer group to hide

table optional: table configuring the transition

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
HideLayerFX(5, {Type = #CROSSFADE}) ; new syntax

OR

HideLayerFX(5, #CROSSFADE) ; old syntax

The above code hides layer 5 with a nice crossfade transition.

34.19 InsertLayer

NAME
InsertLayer – insert a new layer (V1.5)

SYNOPSIS
InsertLayer(pos, type, id, x, y[, hidden])

FUNCTION
This function inserts a new layer of the object type specified by type and the object id
specified by id into layer position pos. All the following layers will be moved downwards
and therefore they will get a new id. The new layer will also be displayed at the position
specified by x and y. If you specify 0 as pos, the layer will be inserted as the last layer.

The following object types are currently supported:

#BRUSH Inserts the brush specified by id at x, y

#TEXTOBJECT

Inserts the text object specified by id at x, y

#ANIM Inserts the anim specified by id at x, y (V2.0)

#VIDEO Inserts the video specified by id at x, y (V6.0)

Starting with Hollywood 1.9 you can specify the optional argument hidden, which will
insert a hidden layer which you can bring to front using ShowLayer() or ShowLayerFX().

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

pos desired position for the layer or 0 for last layer

type type of the object to be inserted (see list above)

id identifier of the object to be inserted

664 Hollywood manual

x x-position for the new layer

y y-position for the new layer

hidden optional: True if the layer shall be hidden (defaults to False) (V1.9)

EXAMPLE
EnableLayers()

SetFillStyle(#FILLCOLOR)

Box(0, 0, 100, 100, #RED)

Circle(#CENTER, #CENTER, 50, #BLUE)

TextOut(#RIGHT, #BOTTOM, "Hello World")

InsertLayer(1, #BRUSH, 1, #CENTER, #CENTER)

The code above inserts brush 1 as the first layer. This means that all the other layers
will be re-positioned. The red rectangle will get layer position 2 now (was layer 1), the
blue circle will be layer 3 (was layer 2) and the "Hello World" text will be layer 4 (was
layer 3).

34.20 LayerExists

NAME
LayerExists – check if specified layer exists (V4.6)

SYNOPSIS
ret = LayerExists(layer$)

FUNCTION
This command simply checks whether or not the specified layer exists. Obviously, you
must pass a layer name here, not a layer id as layer ids are per se existent.

INPUTS

layer$ layer name to check

RESULTS

ret True if the layer exists, False otherwise

34.21 LayerGroupExists

NAME
LayerGroupExists – check if group exists (V10.0)

SYNOPSIS
ok = LayerGroupExists(group$)

FUNCTION
This function checks if the layer group specified by group$ exists. If it does, True is
returned, False otherwise.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

Chapter 34: Layers library 665

INPUTS

group$ name of the layer group

RESULTS

ok True if the group exists, False if it doesn’t

34.22 LayerToBack

NAME
LayerToBack – move layer to backmost z-position (V5.0)

SYNOPSIS
LayerToBack(layer[, swap])

FUNCTION
This command moves the specified layer all the way to the background. LayerToBack()
is a convenience function. The same could be achieved by using SwapLayers() or
SetLayerZPos().

If the optional argument swap is set to False, the layer is brought to the back by simply
moving it to the back. This is different from the default behaviour which simply swaps
the positions of the back layer and the layer specified by layer. If swap is set to False,
layer can also be the name of a layer group.

INPUTS

layer layer to move to the background

swap set this to False if the layers shouldn’t swap positions but the specified layer
should just be moved to the back (defaults to True) (V7.1)

34.23 LayerToFront

NAME
LayerToFront – move layer to frontmost z-position (V5.0)

SYNOPSIS
LayerToFront(layer[, swap])

FUNCTION
This command moves the specified layer all the way to the front. LayerToFront()

is a convenience function. The same could be achieved by using SwapLayers() or
SetLayerZPos().

If the optional argument swap is set to False, the layer is brought to the front by simply
moving it to the front. This is different from the default behaviour which simply swaps
the positions of the front layer and the layer specified by layer. If swap is set to False,
layer can also be the name of a layer group.

INPUTS

layer layer to move to the front

666 Hollywood manual

swap set this to False if the layers shouldn’t swap positions but the specified layer
should just be moved to the front (defaults to True) (V7.1)

34.24 MergeLayers

NAME
MergeLayers – merge layers into new layer (V10.0)

SYNOPSIS
MergeLayers(layer1[, layer2, ..., t])

FUNCTION
This function merges the layers specified by layer1, layer2, etc. into a new layer while
preserving the source layers. By default, MergeLayers() will automatically hide the
source layers, but this behaviour can be changed by setting the AutoHide tag to False

in the optional table argument. Instead of single layers, you can also pass layer groups
that should be merged to this function.

The new layer that is created by MergeLayers() will use the special #MERGED layer type.
Layers of type #MERGED can’t be transformed (except by the layer scaling engine) and
they’ll typically contain all settings of their child layers, e.g. shadow, border, filters,
transparency settings etc. rendered into the layer, although this can be changed using
certain tags in the optional table argument. In comparison to layer groups created
using GroupLayer(), one advantage of merged layers is that when showing them using
transition effects they will be treated as a whole whereas showing layers that are part
of a group created by GroupLayer() using transition effects would apply the transitions
to each group member individually which might not always look as good as when the
transitions are applied to the layers as a whole. This limitation of GroupLayer() can
thus be overcome by using MergeLayers().

The optional table argument t can contain the following tags:

AutoHide:

Specifies whether or not the source layers should be automatically hidden
by MergeLayers(). By default, MergeLayers() will automatically hide the
layers that are merged into a new one. If you don’t want that, set this tag
to False. Defaults to True.

MergeShadow:

Specifies whether or not any potential layer shadow should be merged into
the new layer as well. This defaults to True. If you set this to False, no
shadow effect from any of the source layers will be merged into the new layer
so the new layer will appear without any shadow. Of course, it’s possible
to add a shadow to the new layer using SetLayerShadow() or the standard
drawing tags.

MergeBorder:

Specifies whether or not any potential layer border effect should be merged
into the new layer as well. This defaults to True. If you set this to False,
no border effect from any of the source layers will be merged into the new

Chapter 34: Layers library 667

layer so the new layer will appear without any border effect. Of course, it’s
possible to add a border effect to the new layer using SetLayerBorder() or
the standard drawing tags.

MergeFilter:

Specifies whether or not any potential layer filter should be merged into the
new layer as well. This defaults to True. If you set this to False, no filter
from any of the source layers will be merged into the new layer so the new
layer will appear without any filters. Of course, it’s possible to add filters to
the new layer using SetLayerFilter() or the standard drawing tags.

MergeTransparency:

Specifies whether or not any potential layer transparency should be merged
into the new layer as well. This defaults to True. If you set this to
False, no transparency from any of the source layers will be merged into
the new layer so the new layer will appear without any transparency set-
ting. Of course, it’s possible to set the transparency of the new layer using
SetLayerTransparency() or the standard drawing tags.

MergeFX: Specifies whether or not any potential layer transition effect should be
merged into the new layer as well. This defaults to True. If you set this to
False, no transition effect from any of the source layers will be merged into
the new layer so the new layer will appear without any transition effects.

Furthermore, the optional table argument also supports Hollywood’s standard drawing
tags. See Section 27.17 [Standard drawing tags], page 501, for more information about
the standard tags that nearly all Hollywood drawing commands support.

Note that merged layers aren’t updated automatically when their source layers change
their graphics. You need to use the RefreshLayer() function to force an update of a
merged layer. See Section 34.30 [RefreshLayer], page 671, for details. Also note that
only visible layers will be merged. Hidden layers will be ignored by MergeLayers().

You need to enable layers before you can use GroupLayer(). See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

layer1 first layer or layer group to merge

... further layers or layer groups to merge

t optional: table containing further options (see above)

EXAMPLE
EnableLayers

SetFillStyle(#FILLCOLOR)

SelectBGPic(1)

Box(0, 0, 100, 100, #RED)

Box(100, 0, 100, 100, #GREEN)

Box(200, 0, 100, 100, #BLUE)

MergeLayers(1, 2, 3, {Name = "newlayer", Hidden = True})

MoveLayer("newlayer", #CENTER, #CENTER)

EndSelect

668 Hollywood manual

ShowLayerFX("newlayer", #ZOOMCENTER)

The code above creates three hidden 100x100 rectangles, merges them to a new layer,
moves this new layer to the center and then shows the merged layer with a transition
effect. Note that we use SelectBGPic() to make sure nothing is drawn before our call
to ShowLayerFX().

34.25 ModifyLayerFrames

NAME
ModifyLayerFrames – change number of anim layer frames (V4.7)

SYNOPSIS
ModifyLayerFrames(id, frames[, pos])

FUNCTION
This function can be used to extend or shrink the frames of an anim layer. If you specify
a positive value in frames, then the anim layer is extended by this number of frames. If
you specify a negative value, the number of frames specified are removed from the anim
layer.

The optional argument pos can be used to specify where the new frames shall be inserted
or from where the frames shall be removed, respectively. If you do not specify the optional
argument or set it to 0, frames are added at the end of the anim layer or removed from
the end of the anim layer, respectively.

This command works only with anim layers that have their frames buffered entirely in
memory. You cannot use it for anim layers that load their frames dynamically from disk.

INPUTS

id identifier of the anim layer to modify

frames number of frames to insert (if value is positive) or number of frames to
remove (if value is negative)

pos optional: where to insert or remove frames (defaults to 0 which means insert
at/remove from the end)

EXAMPLE
ModifyLayerFrames(1, -5, 1)

The code above removes the first five frames from anim layer number 1.

34.26 MoveLayer

NAME
MoveLayer – move layer to a new position (V1.9)

SYNOPSIS
MoveLayer(id, xa, ya, xb, yb[, table])

MoveLayer(id, x, y) (V9.1)

Chapter 34: Layers library 669

FUNCTION
This function can be used to either scroll the layer specified by id to a new position or
simply move it to a new position without scrolling.

If you pass the xa, ya, xb and yb arguments, MoveLayer() will scroll the layer specified
by id softly from the position specified by xa and ya to the position specified by xb

and yb. Further configuration options are possible using the optional argument table.
You can specify the move speed, special effect, and whether or not the move shall be
asynchronous. See Section 21.46 [MoveBrush], page 287, for more information on the
optional table argument.

If you just pass the x and y arguments, MoveLayer() will simply move the layer to the
position specified by x and y. In that case, id can also be the name of a layer group.

For all coordinates you can specify the special constant #USELAYERPOSITION. Hollywood
will use the current position of the layer then.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id id or name of the layer to use

xa source x position

ya source y position

xb destination x position

yb destination y position

table optional: further configuration for this move

EXAMPLE
MoveLayer(5, #LEFTOUT, #CENTER, #RIGHTOUT, #CENTER)

Scrolls layer 5 from the outside left to the outside right of the display and centers it
vertically.

MoveLayer(4, #USELAYERPOSITION, #USELAYERPOSITION, #LEFTOUT, #CENTER)

Scrolls layer 4 from its current position out of the screen.

MoveLayer(5, #CENTER, #CENTER)

Moves layer 5 to the screen center.

34.27 NextFrame

NAME
NextFrame – display a new frame of an anim layer (V2.0)

SYNOPSIS
NextFrame(id[, x, y, frame])

670 Hollywood manual

FUNCTION
This function displays a new frame of an anim layer. If you omit the optional frame
argument or set it to 0, NextFrame() will show the next frame of the anim layer. If you
pass -1 in the frame argument, the last frame will be displayed. The x and y arguments
can be used to move the layer to a new position while changing the frame. If you do not
need them, pass #USELAYERPOSITION which will keep the layer where it is.

Starting with Hollywood 9.0, this function can also be used with text layers that are in
list mode to show the next list items. See Section 54.39 [TextOut], page 1149, for details.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier or name of the anim layer

x optional: new x-position for the layer (defaults to #USELAYERPOSITION)

y optional: new y-position for the layer (defaults to #USELAYERPOSITON)

frame optional: which frame to show (defaults to 0 which means that the next
frame shall be shown)

EXAMPLE
EnableLayers

InsertLayer(1, #ANIM, 1, 0, #CENTER)

For k = 0 To 400 Step 3

NextFrame(1, k, #USELAYERPOSITION)

Wait(5)

Next

Plays the anim number 1 while moving it from x-position 0 to 400.

34.28 PauseLayer

NAME
PauseLayer – pause a playing video layer (V6.0)

SYNOPSIS
PauseLayer(id)

FUNCTION
This function pauses the video layer specified by id. This video layer must be playing
when you call this command. You can resume playback later by using the ResumeLayer()
command.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier or name of the video layer to pause

Chapter 34: Layers library 671

34.29 PlayLayer

NAME
PlayLayer – play a currently stopped video layer (V6.0)

SYNOPSIS
PlayLayer(id)

FUNCTION
This function starts playback of the video layer specified by id. You can stop playback
by calling StopLayer().

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier or name of the video layer to be played

34.30 RefreshLayer

NAME
RefreshLayer – refresh a layer (V10.0)

SYNOPSIS
RefreshLayer(id)

FUNCTION
This function refreshes the layer or layer group specified by id. This is normally not
needed because Hollywood will refresh layers automatically whenever it is needed. There
is one exception, though: Due to performance reasons, merged layers created using
MergeLayers() won’t be refreshed automatically when the graphics of one of their
source layers change. Thus, you must manually tell merged layers to refresh by call-
ing RefreshLayer() on them whenever you want them to refresh their graphics and
that’s the reason why this function exists.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of the layer or layer group to be refreshed

34.31 RemoveLayer

NAME
RemoveLayer – remove a layer (V1.5)

SYNOPSIS
RemoveLayer(id)

672 Hollywood manual

FUNCTION
This function removes the layer or layer group specified by id. This is basically the same
as the Undo() command with the exception that this function accepts layer ids directly.
With Undo() you would have to specify a type, an id and maybe also an undo-level, now
you can just specify the layer id which should be much more convenient.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of layer or layer group to be removed

34.32 RemoveLayerFX

NAME
RemoveLayerFX – remove a layer with transition effects (V3.0)

SYNOPSIS
[handle] = RemoveLayerFX(id[, table])

FUNCTION
This function is an extended version of the RemoveLayer() command. It removes the
layer or layer group specified by id and uses one of the many Hollywood transition
effects. You can also specify the speed for the transition and an optional argument.

Starting with Hollywood 4.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the transition effect. The following
options are possible:

Type Specifies the desired effect for the transition. See Section 20.11 [Display-
TransitionFX], page 238, for a list of supported transition effects. (defaults
to #RANDOMEFFECT)

Speed Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

Async You can use this field to create an asynchronous draw object for this tran-
sition. If you pass True here RemoveLayerFX() will exit immediately, re-
turning a handle to an asynchronous draw object which you can then draw
using AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221,
for more information on asynchronous draw objects.

NoBorderFade

If the layer to be removed has a border, do not gradually fade out the border
but remove it in one go at the end of the transition effect. (V5.0)

Chapter 34: Layers library 673

BorderFX:

If the layer to be removed has a border, Hollywood will only apply the
transition effect to the border if the layer is a transparent layer with text or
pixel graphics. For non-transparent and vector graphics layers a generic fade
effect will be used instead because otherwise there would be visual glitches
between the penultimate and final effect frame because of differences in the
border algorithms. If you don’t care about this glitch and want to force
Hollywood to always apply the transition effect to the border, set this tag
to True. To force Hollywood to always use the generic fade mode, set this
tag to False. (V9.0)

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of the layer or layer group to remove

table optional: table configuring the transition

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
RemoveLayerFX(5, #CROSSFADE) ; old syntax

OR

RemoveLayerFX(5, {Type = #CROSSFADE}) ; new syntax

The above code removes layer 5 with a nice crossfade transition.

34.33 RemoveLayers

NAME
RemoveLayers – remove all layers (V8.0)

SYNOPSIS
RemoveLayers()

FUNCTION
This function removes all layers in the current background picture. When this function
returns, they will no longer be visible. If you want to remove all layers but still keep
their graphics on screen, use FreeLayers() instead.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS
none

674 Hollywood manual

34.34 RenderLayer

NAME
RenderLayer – render layer to brush layer (V10.0)

SYNOPSIS
RenderLayer(id)

FUNCTION
This function converts the layer specified by id to a brush layer. This usually means sac-
rificing quality because brushes are rasterized and thus cannot be scaled or transformed
without losses in quality which is why this function is probably of not much use.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of the layer to be rendered

34.35 ResumeLayer

NAME
ResumeLayer – resume a paused video layer (V6.0)

SYNOPSIS
ResumeLayer(id)

FUNCTION
This function resumes the playback of the paused video layer specified by id. You can
pause the playback of a video layer using the PauseLayer() command.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier or name of the video layer to be resumed

34.36 RotateLayer

NAME
RotateLayer – rotate a layer (V4.0)

SYNOPSIS
RotateLayer(id, angle[, smooth])

FUNCTION
This function rotates the layer or layer group specified by id by the specified angle (in
degrees). A positive angle rotates anti-clockwise, a negative angle rotates clockwise.
Additionally, you can choose to have the rotated graphics interpolated by passing True

in the smooth argument. The graphics will then be rotated using anti-alias.

Chapter 34: Layers library 675

If the specified layer is a vector layer (e.g. circle, polygon, TrueType text or a rectangle)
Hollywood will rotate the layer without any loss in quality because vector graphics can
be freely transformed. Thus, the smooth argument does not have any function if the
specified layer is a vector layer. If the layer uses raster graphics, however, normal raster-
based rotation will be used.

In contrast to rotating brushes using RotateBrush() layers always keep their original
data so there will not be any loss in quality if you rotate a layer forth by some degrees
and then back by the same degrees. This is perfectly possible and does not generate any
quality losses with RotateLayer().

INPUTS

id layer or layer group to rotate

angle rotation angle in degrees

smooth optional: whether or not anti-aliased rotation shall be used (only applicable
if the layer is not a vector layer)

34.37 ScaleLayer

NAME
ScaleLayer – scale a layer (V4.0)

SYNOPSIS
ScaleLayer(id, width, height[, smooth])

FUNCTION
This command scales the layer or layer group specified by id to the specified width and
height. Optionally, you can choose to have the scaled graphics interpolated by passing
True in the smooth argument. The graphics will then be scaled using anti-alias.

If the specified layer is a vector layer (e.g. circle, polygon, TrueType text or a rectangle),
Hollywood will scale the layer without any loss in quality because vector graphics can
be freely transformed. Thus, the smooth argument does not have any function if the
specified layer is a vector layer. If the layer uses raster graphics, however, normal raster-
based rotation will be used.

In contrast to scaling brushes using ScaleBrush() layers always keep their original data
so there will not be any loss in quality if you scale a layer to (20,15) and then back to
(640,480). This is perfectly possible.

The width and height arguments can also be a string containing a percent specification,
e.g. "50%".

If you prefer to work with relative scaling factors instead of absolute pixel values, then
you should use the ScaleX and ScaleY tags of the SetLayerStyle() function instead.

INPUTS

id identifier of the layer to scale

width desired new width for the layer

height desired new height for the layer

676 Hollywood manual

smooth optional: whether or not anti-aliased scaling shall be used (only applicable
if the layer is not a vector layer)

EXAMPLE
ScaleLayer(1,640,480)

Scales layer 1 to a resolution of 640x480.

34.38 SeekLayer

NAME
SeekLayer – seek to a certain position in a video layer (V6.0)

SYNOPSIS
SeekLayer(id, pos)

FUNCTION
You can use this function to seek to the specified position in the video layer specified
by id. The video layer does not have to be playing. If the video layer is playing and
you call SeekLayer(), it will immediately skip to the specified position. The position is
specified in milliseconds. Thus, if you want to skip to the position 3:24, you would have
to pass the value 204000 because 3 * 60 * 1000 + 24 * 1000 = 204000.

Please note that video seeking is a complex operation. There are video formats which
do not have any position lookup tables so that Hollywood first has to approximate the
seeking position and then do some fine- tuning and keyframe seeking so that the final
position can always be a bit off from the position you specified in SeekLayer(). It
can also happen that Hollywood will not seek directly to a keyframe so there might be
artefacts from previous frames left on the screen.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier or name of the video layer to seek

pos new position for the video (in milliseconds)

34.39 SelectLayer

NAME
SelectLayer – select layer as output device (V4.7)

SYNOPSIS
SelectLayer(id, [, mode, frame, combomode])

FUNCTION
This function selects the specified layer as the current output device. This means that
all graphics data that is rendered by Hollywood will be written to this layer. When
EndSelect() is called, the layer will be refreshed automatically to reflect the changes
you made to it. You have to specify a layer identifier in the first argument. If that layer

Chapter 34: Layers library 677

is an anim layer, you will also have to specify the frame you would like to select in the
third argument.

The optional mode argument defaults to #SELMODE_NORMAL which means that only the
color channels of the layer will be altered when you draw to it. The transparency channel
of the layer (can be either a mask or an alpha channel) will never be altered. You can
change this behaviour by using #SELMODE_COMBO in the optional mode argument. If you
use this mode, every Hollywood graphics command that is called after SelectLayer()
will draw into the color and transparency channel of the layer. If the layer does not have
a transparency channel, #SELMODE_COMBO behaves the same as #SELMODE_NORMAL.

Starting with Hollywood 5.0 you can use the optional combomode argument to specify
how #SELMODE_COMBO should behave. If combomode is set to 0, the color and transparency
information of all pixels in the source image are copied to the destination image in any
case - even if the pixels are invisible. This is the default behaviour. If combomode is set
to 1, only the visible pixels are copied to the destination image. This means that if the
alpha value of a pixel in the source image is 0, i.e. invisible, it will not be copied to the
destination image. Hollywood 6.0 introduces the new combomode 2. If you pass 2 in
combomode, Hollywood will blend color channels and alpha channel of the source image
into the destination image’s color and alpha channels. When you draw the destination
image later, it will look as if the two images had been drawn on top of each other
consecutively. Please note that the combomode argument is only supported together with
#SELMODE_COMBO. It doesn’t have any effect when used with the other modes. Please
note that the combomode argument is only supported together with #SELMODE_COMBO. It
doesn’t have any effect when used with the other modes.

An alternative way to draw into the transparency channels of a layer is to do this sepa-
rately using SelectMask() or SelectAlphaChannel(). These two commands, however,
will write data to the transparency channel only. They will not touch the color channel.
So if you want both channels, color and transparency, to be affected, you need to use
SelectLayer() with mode set to #SELMODE_COMBO.

When you are finished with rendering to your layer and want to use your display as
output device again, just call EndSelect(). If your layer is visible, Hollywood will
refresh it automatically now to reflect the changes you made to it. It is important to
take into account that your changes won’t be visible before you call EndSelect().

Note that you must not call any commands which modify your layer while it is selected as
the output device. For example, you must not call SetLayerStyle() or RemoveLayer()
while it is the output device.

Only commands that output graphics directly can be used after SelectLayer().
You may not call animated functions like MoveAnim() or DisplayBrushFX() while
SelectLayer() is active.

Please note that if you use this command on a vector layer (for example a polygon or
text layer), the layer will get rasterized automatically. This means that, effectively, the
former vector layer will now be a brush layer. The difference between the two is only
visible when it comes to transforming the layer: A vector layer can be freely transformed
without any losses in quality. A rasterized brush layer, on the other hand, will always
have losses in quality when it is transformed.

678 Hollywood manual

INPUTS

id layer which shall be used as output device

mode optional: rendering mode to use (see above); this can be either #SELMODE_
NORMAL or #SELMODE_COMBO; defaults to #SELMODE_NORMAL

frame optional: in case the specified layer is an anim layer, this argument specifies
which frame to select (first frame=1)

combomode

optional: mode to use when #SELMODE_COMBO is active (see above); defaults
to 0 (V5.0)

EXAMPLE
SelectLayer(1)

SetFillStyle(#FILLCOLOR)

Box(0, 0, 320, 256, #RED)

EndSelect()

The code above draws a 320x256 rectangle to layer 1.

34.40 SetLayerAnchor

NAME
SetLayerAnchor – change anchor point of layer (V4.5)

SYNOPSIS
SetLayerAnchor(id, ax, ay)

FUNCTION
This function can be used to change the anchor point of a layer. The anchor point is
a point inside the layer that is used as the origin for all layer transformations (scale,
rotate) and also the position of a layer is always relative to the anchor point. Sometimes
the anchor point is also referred to as the ’hot spot’ of a layer.

The anchor point can be any point inside the layer ranging from 0.0/0.0 (top left corner
of the layer) to 1.0/1.0 (bottom right corner of the layer). The center of the layer would
be defined by an anchor point of 0.5/0.5.

For example, if you want to have a layer that shall be rotated around its center point,
then you need to set this layer’s anchor point to 0.5/ 0.5. If it shall be rotated around
its top left corner, you have to use 0.0/0.0 as the anchor point. To rotate around the
layer’s bottom right corner, use 1.0/1.0 as the anchor point. The usual setting is to
rotate around the center, so you should normally set the anchor point to 0.5/0.5.

When using an anchor point different than 0.0/0.0, keep in mind that all position spec-
ifications will be relative to the anchor point now. This means that a position of 0:0
does not necessarily mean that the layer will appear at the top-left display corner. For
example, if you have a layer with an anchor point of 1.0/1.0, moving this layer to position
0:0 (top left corner of display) would make the layer pretty much invisible because its
anchor point is set to the bottom-right corner of the layer. Thus, if you move a layer
with a bottom-right anchor point to position 0:0, it means that the bottom-right corner

Chapter 34: Layers library 679

of the layer will actually appear at 0:0. This obviously means that only a single pixel of
the layer will be visible. The rest will be off-screen.

By default, all layers use an anchor point of 0.0/0.0.

Starting with Hollywood 10.0, this function can also operate on layer groups so you can
also pass the name of a layer group to this function.

INPUTS

id identifier of a layer

ax x coordinate of anchor point; must be between 0.0 and 1.0

ay y coordinate of anchor point; must be between 0.0 and 1.0

EXAMPLE
EnableLayers

SetFillStyle(#FILLCOLOR)

Box(300, 200, 300, 200, #RED)

WaitLeftMouse

SetLayerAnchor(1, 0.5, 0.5)

WaitLeftMouse

SetLayerAnchor(1, 1.0, 1.0)

WaitLeftMouse

The code above demonstrates three different anchor points: First, at 0.0/0.0, then at
0.5/0.5, finally at 1.0/1.0. You can see that the layer will move with every call to
SetLayerAnchor(). That is because the position of a layer is always relative to its
anchor point. Thus, the layer will move although its position will always be 300:200.

34.41 SetLayerBorder

NAME
SetLayerBorder – enable/disable border for layer (V5.0)

SYNOPSIS
SetLayerBorder(layer, enable[, color, size])

FUNCTION
This command can be used to enable or disable a border effect for the specified layer or
layer group depending on whether the enable argument is set to True or False. In the
third argument you can specify the color of the border as an ARGB color value. The
optional size argument can be used to control the size of the border. The size value
specifies the desired border size on each side of the layer.

You can also use the SetLayerStyle() function to enable/disable the border frame of
a layer, or to modify the border’s parameters.

INPUTS

layer layer or layer group to use

enable whether to enable or disable the layer border frame (True means enable,
False means disable)

680 Hollywood manual

color optional: color that shall be used by the border in ARGB notation (defaults
to #BLACK)

size optional: size of border on each side (defaults to 2)

EXAMPLE
EnableLayers

SetFillStyle(#FILLCOLOR)

Box(#CENTER, #CENTER, 320, 240, #RED)

SetLayerBorder(1, True, #WHITE, 10)

The code above draws a red box to the center of the display and then adds a 10 pixel
white border frame to it.

34.42 SetLayerDepth

NAME
SetLayerDepth – set layer palette depth (V9.0)

SYNOPSIS
SetLayerDepth(id, depth[, t])

FUNCTION
This function sets the depth of the palette of the layer specified by id to the depth
specified in depth. depth must be a bit depth ranging from 1 (= 2 colors) to 8 (=
256 colors). See Section 44.1 [Palette overview], page 889, for details. Note that if the
specified depth is less than that of the pixel data attached to the palette, the pixel data
will be remapped to match the new depth.

The following tags are supported by the optional table argument t:

Frame: If the layer is an anim layer, you can set this tag to specify the frame whose
depth should be set. Frames are counted from 1. Defaults to the anim layer’s
current frame.

Remap: If this tag is set to False, out-of-range pens will not be remapped to existing
pens but instead they will simply be set to the pen specified in the ClipPen
tag (see below), i.e. no remapping will take place. Note that Remap is only
effective when reducing colors. If the new depth has more pens than the old
depth, Remap won’t do anything. (V10.0)

ClipPen: This is only used in case the Remap tag is set to False (see above). In
that case, out-of-range pens will not be remapped to existing pens but will
simply be set to the pen specified in the ClipPen tag, i.e. no remapping will
take place. Note that ClipPen is only effective when reducing colors. If the
new depth has more pens than the old depth, ClipPen won’t do anything.
(V10.0)

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of layer to modify

Chapter 34: Layers library 681

depth desired new palette depth (ranging from 1 to 8)

t optional: table argument containing further options (see above)

EXAMPLE
SetLayerDepth(1, 8)

The code above changes the depth of layer 1’s palette to 8 (= 256 colors).

34.43 SetLayerFilter

NAME
SetLayerFilter – enable/disable filters for layer (V5.0)

SYNOPSIS
SetLayerFilter(layer, table)

FUNCTION
This command can be used to control which filters are applied to a layer, and in what
order they will be applied to the layer. You have to pass a table to this function that
contains a number of subtables, each of which contains information for a single layer
filter. The following tags are supported for each subtable:

Name Contains the name of the filter that this subtable element shall configure.
This tag is mandatory and must always be specified in every subtable so
that SetLayerFilter() knows the filter the subtable is addressing. Please
see below for a list of supported filter types.

Args Contains an array of arguments for the filter specified in the Name tag. The
values passed here depend on the filter specified. Some filters like XFlip or
Gray do not require any arguments at all. In that case, you do not have to
pass the Args table. Please see below to learn about the arguments required
by the single filters. Also note that SetLayerFilter() has fallback argu-
ments for every filter it supports. Thus, you can also leave out arguments. In
that case, SetLayerFilter() will use its default settings for the respective
filter.

Disable This tag can be used to enable or disable a filter. Pass False here to enable
the filter, or True to disable it. This tag is optional. If it is not specified,
the filter will get enabled by default.

Priority This tag allows you to specify a priority level for the current filter. A priority
level is simply a numeric value which is then used by SetLayerFilter() to
find out the order in which the filters should be applied. The priority level
must be between 0 (= lowest priority) and 255 (= highest priority). As an
example, if you assign a priority of 10 to the Blur filter, and a priority of 9
to the Tint filter, the blur filter will be applied before the tint filter. This
tag will default to 0 if not specified.

A list of supported layer filters follows below. Please note that the arguments must not
be passed to the filter as a named table tag but sequentially in the Args array. I.e.
for the Modulate filter, you would put the brightness setting in array element 0, the

682 Hollywood manual

saturation setting in array element 1, and the hue setting in element 2. The order in
which the single arguments are listed below corresponds to the order in which they are
expected in the Args table. Here is the list now:

Blur This filter will apply a Gaussian blur to the layer. The following arguments
need to be passed:

Radius: Specifies the blur radius. The greater the value you specify here,
the longer the blurring will take.

Charcoal This filter will apply a charcoal filter to the layer. The following arguments
need to be passed:

Radius: Specifies the effect radius. The greater the value you specify
here, the longer the calculation will take.

Contrast This filter will enhance or reduce color contrast in the layer. The following
arguments need to be passed:

Inc: Pass True here to enhance the color contrast, or False to de-
crease the color contrast.

Repeat: Specifies how many times the effect should be repeated. This
is useful for a more pronounced effect. By default this is set
to 1 which means that the effect is only applied once. If you
would like to have two passes, specify 2 here, etc. Remember
that the greater the number you specify here is, the longer the
computation of the result will take.

Edge This filter will apply an edge detection filter to the layer. The following
arguments need to be passed:

Radius: Specifies the effect radius. The greater the value you specify
here, the longer the calculation will take.

Emboss This filter will apply an emboss filter to the layer. The following arguments
need to be passed:

Radius: Specifies the effect radius. The greater the value you specify
here, the longer the calculation will take.

Gamma This filter can be used to apply gamma correction to the layer. The following
arguments need to be passed:

Red: Gamma correction for red color channel.

Green: Gamma correction for green color channel.

Blue: Gamma correction for blue color channel.

Each value must be floating point value. A value of 1.0 means no change, a
value smaller than 1.0 darkens the channel, a value greater than 1.0 lightens
it. See Section 21.34 [GammaBrush], page 278, for details.

Grayscale

This filter will map the layer to gray. There are no arguments for this filter.

Chapter 34: Layers library 683

Invert This filter will invert the colors of the layer. There are no arguments for this
filter.

Modulate This filter can be used to modulate brightness, saturation, and hue values
of a layer. The following arguments need to be passed:

Brightness:

Desired brightness modulation.

Saturation:

Desired saturation modulation.

Hue: Desired hue modulation.

Each value must be floating point value. A value of 1.0 means no change, a
value smaller than 1.0 reduces the brightness/saturation/hue, while a value
greater than 1.0 enhances it. See Section 21.45 [ModulateBrush], page 286,
for details.

Monochrome

This filter will apply a black and white filter to this layer. The following
arguments need to be passed:

Dither: Specifies whether or not dithering should be used. Pass True or
False here. Dithering looks better, but is of course slower.

OilPaint This filter will apply an oil paint filter to the layer. The following arguments
need to be passed:

Radius: Specifies the effect radius. The greater the value you specify
here, the longer the calculation will take.

Pixelate This filter will zoom the pixel cells of the layer to the specified size. The
following arguments need to be passed:

CellSize:

Specifies the desired zoom size. Every pixel of the layer will be
zoomed to this size, starting from the top-left corner of the layer.

See Section 21.50 [PixelateBrush], page 291, for details.

Quantize This filter will reduce the number of colors in the layer. The following
arguments need to be passed:

Colors: Desired number of colors. This must be between 1 and 256.

Dither: True to enable dithering, False to disable it.

See Section 21.52 [QuantizeBrush], page 292, for details. (V6.0)

SepiaTone

Applies a sepia-tone filter to the layer. The following arguments need to be
passed:

Level: Desired sepia-toning level. This must be between 0 and 255, or
alternatively it can be a string containing a percentage specifi-
cation. The usual setting is "80%" (i.e. a level of about 204).

684 Hollywood manual

See Section 21.66 [SepiaToneBrush], page 306, for details.

Sharpen Applies a sharpening filter to the layer. The following arguments need to be
passed:

Radius: Specifies the sharpen radius. The greater the value you specify
here, the longer the calculation will take.

Solarize Applies a solarization effect to the layer. The following arguments need to
be passed:

Level: Desired solarization level (must be between 0 and 255).

See Section 21.75 [SolarizeBrush], page 312, for details.

Swirl Swirls the layer by the specified number of degrees. The following arguments
need to be passed:

Degrees: Specifies the desired swirling amount. This can be between 0
(no swirling) and 360 (full swirl).

Tint This filter will tint the layer with the specified color at the specified ratio.
The following arguments need to be passed:

Color: Specifies the tinting color in RGB format.

Ratio: Specifies the tinting ratio. This can be a value between 0 (=
no tinting) and 255 (= full tinting), or a string containing a
percentage specification (e.g. "50%" corresponds to a ratio of
128).

WaterRipple

This filter will apply water ripples to the layer. The following arguments
need to be passed:

Wavelength:

Desired wavelength for the effect.

Ampltiude:

Desired ripple amplitude.

Phase: Desired ripple phase.

CX: X center point of water ripple.

CY: Y center point of water ripple.

See Section 21.81 [WaterRippleBrush], page 316, for details.

XFlip This will mirror the layer on the x-axis. There are no arguments for this
filter.

YFlip This will mirror the layer on the y-axis. There are no arguments for this
filter.

To disable all layer filters, you can pass the special value 0 instead of a table in the
second argument. SetLayerFilter() will then cancel all filters that are currently active
on the specified layer.

Chapter 34: Layers library 685

Please note that this command will not reset any existing filter settings when it is called.
Instead, all existing filters settings will be kept and the new settings will merely be
merged with the old ones. So if you have a layer that has several filters attached and
you only want to change the configuration of one of these filters, it is sufficient to just
pass a subtable for this single filter to SetLayerFilter(). It is not necessary to pass all
the other filters to SetLayerFilter() again.

Also note that layer filters can get quite heavy on the CPU; especially when using
transition effects on a layer that has filters attached. In that case, the filters have to be
recalculated for each new frame of the transition effect. Depending on the complexity of
the filter, this can take some time.

You can also use the SetLayerStyle() command to change the configuration of one or
more layer filters.

Starting with Hollywood 10.0, this function can also operate on layer groups so you can
also pass the name of a layer group to this function.

INPUTS

layer layer or layer group to use

table a table containing one or more subtables that contain a description of filters
to apply to or remove from the layer; see above for more information; to
remove all filters from a layer, pass 0 here instead of a table

EXAMPLE
table = {

{Name = "YFlip"},

{Name = "Modulate", Args = {1.0, 2.0, 1.0}, Priority = 10},

{Name = "Swirl", Args = {128}, Priority = 9} }

SetLayerFilter(1, table)

The code above increases the saturation of layer 1 by 200%, swirls the layer by 180
degrees and then mirrors it on the y-axis.

SetLayerFilter(1, {{Name = "YFlip", Disable = True}})

The code above removes the "YFlip" filter from layer 1 but keeps the other two filters
(modulate and swirl).

34.44 SetLayerName

NAME
SetLayerName – assign a layer name (V2.0)

SYNOPSIS
SetLayerName(id, name$)

FUNCTION
You can use this function to assign a name to the layer specified by id. This is very
useful if you have multiple layers whose identifiers change constantly (e.g. because you
frequently remove and add layers). If you give your layers names, you do not have to

686 Hollywood manual

worry about on which position the layer currently resides. You can easily access it by
just using its name. All functions which accept layer id’s, will also accept names.

Please note that the name for the layer must be unique within the current background
picture’s layer cache. Layer names are case insensitive, i.e. "layer1" is the same layer as
"LAYER1".

To find out which id a named layer currently occupies, you can use the #ATTRLAYERID

attribute with the GetAttribute() command.

If you want to assign a name to the newest layer, simply pass 0 and Hollywood will
automatically use the top layer. To remove a layer’s name, pass an empty string in
name$.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of the layer to be named or 0 for the last layer added

name$ desired name for the layer

EXAMPLE
EnableLayers()

SetFillStyle(#FILLCOLOR)

Box(0, 0, 100, 100, #RED) ; create layer 1

Box(50, 50, 100, 100, #GREEN) ; create layer 2

SetLayerName(1, "redbox") ; give them names

SetLayerName(2, "greenbox") ; give them names

SwapLayers("redbox", "greenbox") ; swap ’em! Now greenbox is layer 1

; and redbox is layer 2!

ShowLayer("redbox", #RIGHT, #BOTTOM) ; move layer 2 to bottom-right

ShowLayer("greenbox", #LEFT, #TOP) ; move layer 1 to top-left

You see that it is much easier to work with string names for layers instead of layer id’s
which are relative to the layer’s position.

34.45 SetLayerPalette

NAME
SetLayerPalette – change layer palette (V9.0)

SYNOPSIS
SetLayerPalette(id, palid[, t])

FUNCTION
This function replaces the palette of the layer specified by id with the palette specified
by palid. The optional table argument t allows you to specify some further options.
The following tags are currently supported by the optional table argument t:

Chapter 34: Layers library 687

Remap: If this is set to True, the pixels of the layer will be remapped to match the
colors of the new palette as closely as possible. By default, there will be no
remapping and the actual pixel data of the layer will remain untouched. If
you want remapping, set this tag to True but be warned that remapping all
pixels will of course take much more time than just setting a new palette
without remapping. Defaults to False.

Dither: If the Remap tag (see above) has been set to True, you can use the Dither

tag to specify whether or not dithering should be used. Defaults to True

which means dithering should be used.

CopyCycleTable:

Palettes can have a table containing color cycling information. If you set
this tag to True, this cycle table will be copied to the layer as well. Defaults
to False.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of layer to use

palid identifier of palette to copy to layer

t optional: table for specifying further options (see above)

34.46 SetLayerPen

NAME
SetLayerPen – change layer palette pen (V9.0)

SYNOPSIS
SetLayerPen(id, pen, color)

FUNCTION
This function sets the color of the pen specified by pen to the color specified by color

in the palette of the layer specified by id.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of layer

pen pen you want to modify (starting from 0)

color new color for the pen, must be specified as an RGB color

EXAMPLE
SetLayerPen(1, 0, #RED)

The code above sets pen 0 to red in the palette of layer 1.

688 Hollywood manual

34.47 SetLayerShadow

NAME
SetLayerShadow – enable/disable drop shadow for layer (V5.0)

SYNOPSIS
SetLayerShadow(layer, enable[, color, radius, size, dir])

FUNCTION
This command can be used to enable or disable a shadow effect for the specified layer
or layer group depending on whether the enable argument is set to True or False. In
the third argument you can specify the color of the shadow. This will usually be #BLACK
but combined with a transparency value because simple opaque black does not look too
good as a shadow. You can use the ARGB() function to combine a transparency value
and a color into an ARGB color. The optional arguments radius and size can be used
to control the shadow’s smoothness and size. Usually, both values are set to about the
same value. Finally, the dir argument can be used to control the shadow’s direction.
This argument must be set to one of Hollywood’s directional constants. See Section 27.5
[Directional constants], page 491, for details.

Please note that drop shadows can become quite heavy on the CPU because Hollywood
has to recalculate them whenever the layer’s contents change. Normally, this does not
happen too often. There is one prominent exception, though: When you run a transition
effect on a layer that has a drop shadow. In that case, Hollywood has to remake the drop
shadow for every new frame of the transition effect. On slower systems this can quite
possibly kill the show so that you might want to turn off drop shadows before running a
transition effect on a layer.

You can also use the SetLayerStyle() function to enable/disable the drop shadow of a
layer, or to modify the drop shadow’s parameters.

INPUTS

layer layer or layer group to use

enable whether to enable or disable the layer drop shadow (True means enable,
False means disable)

color optional: color that shall be used by the drop shadow inARGB notation
(defaults to $80000000 which means black with 50% transparency)

radius optional: radius for shadow smoothing (defaults to 5)

size optional: size of shadow shift from main layer (defaults to 4)

dir optional: light direction of drop shadow (defaults to #SHDWSOUTHEAST)

EXAMPLE
EnableLayers

SetFillStyle(#FILLCOLOR)

Box(#CENTER, #CENTER, 320, 240, #RED)

SetLayerShadow(1, True)

The code above draws a red box to the center of the display and then adds a shadow to
it.

Chapter 34: Layers library 689

34.48 SetLayerStyle

NAME
SetLayerStyle – change the style of one or more layers (V4.0)

SYNOPSIS
SetLayerStyle(id1, style1, ...)

FUNCTION
This command can be used to modify nearly all attributes of one or more layers or layer
groups with a single call. It is a very powerful command which can be used to realize
complex animation mechanisms in a very easy and straightforward way. For each layer
or layer group whose style you want to modify, you always have to pass the layer or group
id followed by a table containing the attributes you want to change. You can repeat this
pattern as many times as you need it.

The configuration of the style table depends on the type of layer specified. However,
some style elements can be used with all layer types. These generic layer styles will be
covered first. The specific layer styles dependent on layer type will be dealt with below.

The following style elements are generic and can thus be used with every layer:

X,Y Specifies the position for the layer. If not specified the layer will keep its
current position.

Width,Height

Can be used to scale the layer to new dimensions. This can either be a
numerical value specifying a new pixel size or a string containing a percent
specification (e.g. "50%"). See Section 34.37 [ScaleLayer], page 675, for
details.

Rotate This style element can be used to control layer rotation. You have to pass a
value in degrees here. A positive value means anti-clockwise rotation, neg-
ative values rotate in clockwise direction. See Section 34.36 [RotateLayer],
page 674, for details..

SmoothScale

Specifies whether or not smooth scaling and rotation shall be used on this
layer. This is only applicable for non-vector layers and of course it only
makes sense when the layer is scaled or rotated.

Transparency

Use this style element to modify the transparency setting of a layer. This
can be either a value ranging from 0 (= no transparency) to 255 (= full
transparency) or a string containing a percent specification (e.g. "50%"

which means half transparency). See Section 34.50 [SetLayerTransparency],
page 702, for details.

Tint Use this style element to modify the tint setting of a layer. This can be either
a value ranging from 0 (= no tinting) to 255 (= opaque tinting) or a string
containing a percent specification (e.g. "50%" which means half tinting).
If this is set to non zero, the layer will be tinted with the color specified in
TintColor at the specified level. See Section 34.49 [SetLayerTint], page 701,
for details.

690 Hollywood manual

TintColor

Specifies the color to use for tinting. Can only be used in union with the
Tint style element.

Hidden You can use this style element to show or hide the specified layer. Set it to
True to hide the layer or to False to show it. See Section 34.17 [HideLayer],
page 661, for details.

Type This style element allows you to change the layer type. Please note that if
you change the type of a layer, you will most likely need to provide further
information to SetLayerStyle(). For instance, if you choose to convert a
#ELLIPSE layer into a #BRUSH layer, it is mandatory that you also specify the
ID style element to tell Hollywood which brush shall replace the ellipse layer.
Hollywood will try to inherit general style elements like color, position, size
from the previous layer type, but for certain type conversions you need to
specify additional elements. If Type is specified, only style elements that are
supported by the newly set type will be handled. (V4.5)

ClipRegion

Use this style to change the clipping region of this layer. Every layer can
have its private clip region. See Section 30.31 [SetClipRegion], page 611, for
details.

ScaleX, ScaleY

This is an alternative way of scaling the layer. You have to pass a floating
point value here that indicates a scaling factor. For example, 0.5 means half
the size, 2.0 means twice the size. This is especially convenient if you would
like to keep the proportions of the layer that you want to scale. If you use
the same factor for ScaleX and ScaleY, the proportions of the layer will
remain intact. Please note that ScaleX / ScaleY and Width / Height are
mutually exclusive. You must not mix both groups. Either use ScaleX /
ScaleY or stick to Width / Height. (V4.5)

Transform

This tag allows you to apply a 2x2 transformation matrix to this layer.
Transformation matrices are useful if you want to apply scaling and rotation
at the same time, or if you want to mirror a layer. You have to pass a table
to Transform. The table must contain the four constituents of a 2x2 trans-
formation matrix in the following order: sx, rx, ry, sy. See Section 21.78
[TransformBrush], page 314, for more about transformation matrices. Please
note that the Transform tag is mutually exclusive with the following tags:
Width / Height / ScaleX / ScaleY / Rotate. You must not combine it with
any of these tags. (V4.5)

AnchorX, AnchorY

You can use these two tags to change the anchor point of this layer. The an-
chor point can be any point between 0.0/ 0.0 (top left corner of the layer) and
1.0/1.0 (bottom right corner of the layer). The center of the layer would be
defined by an anchor point of 0.5/0.5. All transformations (scaling, rotation
etc.) will be applied relative to the anchor point. Also, the position of a layer

Chapter 34: Layers library 691

is always relative to its anchor point. See Section 34.40 [SetLayerAnchor],
page 678, for details. (V4.5)

NoClipTransform

This tag can be used to disable automatic clip region transformation. By
default, when you transform a layer, its clip region will be transformed in
the same vein. To forbid this behaviour, set NoClipTransform to True.

TextureX, TextureY

These tags only work with graphics primitives that are filled using
#FILLTEXTURE style. If that is the case, you can use these tags to control
the start offset inside the texture brush. See Section 27.14 [SetFillStyle],
page 498, for details. (V4.6)

Z This tag can be used to change the z-position of this layer. The z-position
of a layer is its position in the hierarchy of layers. The first (i.e. backmost
layer) has a z-position of 1, the last (i.e. frontmost) layer’s z-position is equal
to the number of layers currently present. You need to pass the new desired
z-position for the specified layer in this tag. The layer will then assume
exactly this z-position, existing layers that are on or after this z-position
will be shifted down. To move a layer all the way to the front (i.e. highest
z-position), you can pass the special value 0; to move a layer all the way to
the back, specify 1. See Section 34.53 [SetLayerZPos], page 704, for details.
(V4.7)

TranslateX, TranslateY

These two can be used to translate a layer by a specified delta x and delta y
offset. A layer translation means moving the layer relative by the specified
delta offsets relative to its current position. Thus, a translation of (1,1)
would move the layer one pixel to the right, and one pixel to the bottom.
See Section 34.59 [TranslateLayer], page 708, for details. Please note: These
two tags and the X / Y tags are mutually exclusive. You cannot use them
together. (V4.7)

Shadow This tag can be used to turn the drop shadow of a layer on and off. If you
set this tag to True, the drop shadow will be turned on, else it will be turned
off. If you are turning it on, you can configure the look of the shadow using
the ShadowDir, ShadowSize, ShadowColor, and ShadowRadius tags. See
below for more information. See Section 34.47 [SetLayerShadow], page 688,
for details. (V5.0)

ShadowDir

Specifies the direction of the shadow for this layer. This must be one of
Hollywood’s directional constants. This tag is only handled when the shadow
is currently turned on. (V5.0)

ShadowColor

Specifies the color of the shadow for this layer. This must be an ARGB value
that can contain a transparency setting. This tag is only handled when the
shadow is currently turned on. (V5.0)

692 Hollywood manual

ShadowPen

Specifies the pen to use for drawing the layer’s shadow when palette is
#PALETTEMODE_PEN. See Section 44.35 [SetShadowPen], page 918, for de-
tails. (V9.0)

ShadowSize

Specifies the size of the shadow for this layer. This tag is only handled when
the shadow is currently turned on. (V5.0)

ShadowRadius

Specifies the shadow radius for this layer. This tag is only handled when the
shadow is currently turned on. (V5.0)

Border This tag can be used to turn the border frame of a layer on and off. If you
set this tag to True, the border frame will be turned on, else it will be turned
off. If you are turning it on, you can configure the look of the border using
the BorderSize and BorderColor tags. See below for more information.
See Section 34.41 [SetLayerBorder], page 679, for details. (V5.0)

BorderColor

Specifies the color of the border for this layer. This must be an ARGB value
that can contain a transparency setting. This tag is only handled when the
border is currently turned on. (V5.0)

BorderPen

Specifies the pen to use for drawing the layer’s border when palette mode is
#PALETTEMODE_PEN. See Section 44.22 [SetBorderPen], page 907, for details.
(V9.0)

BorderSize

Specifies the size of the border for this layer. This tag is only handled when
the border is currently turned on. (V5.0)

Filters This tag can be used to apply filters to a layer, remove filters from a layer,
or modify the parameters of already applied filters. You have to pass a table
to this tag that describes the desired configuration of the single filters. See
Section 34.43 [SetLayerFilter], page 681, for details. (V5.0)

ClearFilters

This tag can be used to remove all filters from a layer. Simply specify True

here and SetLayerStyle() will remove all filters that are currently active
from this layer.

PaletteMode

Specifies the palette mode to use for the layer when Hollywood is in
palette mode. This must be one of the palette modes supported by
SetPaletteMode(). See Section 44.31 [SetPaletteMode], page 914, for
details. (V9.0)

DitherMode

Specifies the dither mode to use for the layer when Hollywood is in
palette mode. This must be one of the dither modes supported by

Chapter 34: Layers library 693

SetDitherMode(). See Section 44.26 [SetDitherMode], page 910, for
details. (V9.0)

IgnoreAnchor

If this tag is set to True, Hollywood will ignore the layer’s anchor point
when changing its position or style. This means that the anchor point will
be treated as 0/0. This can be useful e.g. if you’d like to change the text of
a layer whose anchor point is not 0/0. In such cases changing the text would
also re-position the layer. This can be prevented by setting IgnoreAnchor to
True. IgnoreAnchor can also be useful in case you want to position layers,
whose anchor point is not 0/0, relative to their top-left corner. (V9.1)

Refresh Force a layer refresh. This is only useful for merged layers created by
MergeLayers() because they don’t refresh automatically when the graphics
of one or more of its source layers are changed. See Section 34.24 [Merge-
Layers], page 666, for details. (V10.0)

The following style elements are dependent on a specific layer type:

#ANIM layers can use the following elements:

ID This table element can be used to assign a new animation to the specified
layer. The old animation will then be replaced with the animation specified
in ID.

Frame You can use this style element to display a specific frame of the animation
that sits on this layer. Frames are counted from 1. You can pass the spe-
cial value 0 to display the next frame in the animation. See Section 34.27
[NextFrame], page 669, for details.

#BRUSH, #BRUSHPART and #BGPICPART layers recognize the following elements:

ID This table element can be used to assign a new brush/bgpic to the specified
layer. The old brush/bgpic will then be replaced with the new one specified
by ID. This is useful for example for a slideshow in which a layer shall display
a new picture every n seconds.

PartX, PartY, PartWidth, PartHeight

These four elements allow you to configure the visible portion of the brush
or bgpic. PartX and PartY specify the x and y coordinates inside the
brush/bgpic and PartWidth and PartHeight specifies the size of the tile
that shall be visible. This is useful for displaying only a part of a brush or
bgpic. For more information please read the notes on DisplayBrushPart()

and DisplayBGPicPart(). Please note that these elements are not restricted
to layer types #BRUSHPART and #BGPICPART only but they can also be used
with layers of type #BRUSH. If you use one of the PartXXX elements on #BRUSH

layer, the layer will automatically be changed into a #BRUSHPART layer.

The following elements are generic for layer types #ARC, #BOX, #CIRCLE, #ELLIPSE,
#POLYGON, and #VECTORPATH:

694 Hollywood manual

Color Specifies the color of the layer in ARGB notation.

DrawPen: When palette mode is #PALETTEMODE_PEN, DrawPen specifies the pen that
should be used to draw this layer. See Section 44.27 [SetDrawPen], page 911,
for details. (V9.0)

FormStyle

This allows you to change the form style of the layer. You can pass one or
more styles here. If you pass multiple form styles, you need to use the bitwise
Or operator (|). See Section 27.15 [SetFormStyle], page 499, for possible
combinations. If you want to remove a form style from a layer, use the
FormStyleClear element. Note: As of Hollywood 5.0 the only reasonable
style to set using this tag is #ANTIALIAS because the shadow and border
settings are now better controlled using their separate tags (see above).

FormStyleClear

All form styles which you set in this element will be removed from the layer.
Multiple form styles have to be separated by the bitwise Or operator (|).
This is the counterpart to the FormStyle element. Note: As of Hollywood
5.0 the only reasonable style to unset using this tag is #ANTIALIAS because
the shadow and border settings are now better controlled using their separate
tags (see above).

FillStyle

You can use this style element to change the filling style for this layer. See
Section 27.14 [SetFillStyle], page 498, for details.

GradientStyle

Specifies the style of the gradient if filling style is set to #FILLGRADIENT.
This can be #LINEAR, #RADIAL, or #CONICAL.

GradientAngle

Specifies the orientation of the gradient if filling style is set to
#FILLGRADIENT. The angle is expressed in degrees. Only possible for
#LINEAR and #CONICAL gradients.

GradientStartColor, GradientEndColor

Use these two to configure the colors of the gradient if filling style is set to
#FILLGRADIENT.

GradientCenterX, GradientCenterX

Sets the center point for gradients of type #RADIAL or #CONICAL. Must be a
floating point value between 0.0 and 1.0. See Section 20.6 [CreateGradient-
BGPic], page 232, for details. (V5.0)

GradientBalance

This tag controls the balance point for gradients of type #CONICAL. Must be
a floating point value between 0.0 and 1.0. See Section 20.6 [CreateGradi-
entBGPic], page 232, for details. (V5.0)

Chapter 34: Layers library 695

GradientBorder

This tag controls the border size for gradients of type #RADIAL. Must be a
floating point value between 0.0 and and 1.0. See Section 20.6 [CreateGra-
dientBGPic], page 232, for details. (V5.0)

GradientColors

This tag can be used to create a gradient between more than two colors.
This has to be set to a table that contains sequences of alternating color and
stop values. See Section 20.6 [CreateGradientBGPic], page 232, for details.
If this tag is used, the GradientStartColor and GradientEndColor tags
are ignored. (V5.0)

OutlineThickness

If filling style is set to #FILLNONE this value can be used to configure the
thickness of the outline. See Section 27.14 [SetFillStyle], page 498, for details.

TextureBrush

If filling style is set to #FILLTEXTURE you can change the currently used
texture with this style element. Simply pass the identifier of a brush in this
style element to switch to a new texture.

In addition to the elements above, layers of type #ARC accept the following style elements:

RadiusA, RadiusB

These two values specify the x and y radii of the partial ellipse.

StartAngle, EndAngle

These two values specify the start and end angles of the partial ellipse. See
Section 27.1 [Arc], page 487, for details.

Clockwise

Specifies whether or not elliptic arc shall be drawn in clockwise direction.
See Section 27.1 [Arc], page 487, for details. (V4.5)

Layers of type #BOX accept the following additional style elements:

SizeX, SizeY

You can use these two values to change the dimensions of the rectangle.
SizeX specifies the rectangle width and SizeY specifies its height.

RoundLevel

Specifies the rounding levels for the four corners of the rectangle. A value of
0 means no rounding. A value of 100 means completely round corners. See
Section 27.2 [Box], page 488, for details.

CornerA, CornerB, CornerC, CornerD

These four tags allow you to fine-tune the corner rounding of the rectangle.
You can specify a rounding level (0 to 100) for every corner of the rectangle
thus allowing you to create a rectangle where not all corners are rounded,
or where the different corners use different rounding levels. These tags will
override any setting specified in the RoundLevel tag. (V5.0)

696 Hollywood manual

Layers of type #CIRCLE accept the following additional style elements:

Radius Specifies the radius of the circle. See Section 27.3 [Circle], page 489, for
details.

Layers of type #ELLIPSE accept the following additional style elements:

RadiusA, RadiusB

These two values specify the x and y radii of the ellipse. See Section 27.6
[Ellipse], page 491, for details.

Layers of type #LINE accept the following additional style elements:

Thickness

Specifies the thickness of the line. See Section 27.10 [Line], page 494, for
details.

X1,Y1,X2,Y2

Use these tags to change the line orientation. Please note that these tags
are mutually exclusive with the generic X / Y tags. If you use those tags, you
must not use these tags and vice versa. (V4.6)

Arrowhead

This tag allows you to turn the line into an arrow. It can be set to one of
the following tags:

#ARROWHEAD_NONE

No arrowhead. This is the default mode.

#ARROWHEAD_SINGLE

Add arrowhead to end of line.

#ARROWHEAD_DOUBLE

Add arrowhead to start and end of line.

(V9.1)

Layers of type #POLYGON accept the following additional style elements:

Vertices This style element can be used to change the look of the polygon by passing
a new set of vertices to it. You have to set this style element to a table of
vertices containing a sequence of x and y coordinates where both coordinates
define one vertex. It uses the same format as with the Polygon() command
except that you do not have to specify the number of vertices in the table.
SetLayerStyle() will determine this automatically.

#PRINT and #TEXTOUT layers recognize the following style elements:

Color Specifies the color of the text in ARGB notation.

Chapter 34: Layers library 697

DrawPen: When palette mode is #PALETTEMODE_PEN, DrawPen specifies the pen that
should be used to draw the text. See Section 44.27 [SetDrawPen], page 911,
for details. (V9.0)

FontStyle

This allows you to change the font style of the layer. You can pass one
or more styles here. If you pass multiple font styles, you need to use the
bitwise Or operator (|). See Section 54.33 [SetFontStyle], page 1143, for
possible combinations. If you want to remove a font style from a layer, use
the FontStyleClear element. Note: As of Hollywood 5.0 this tag should no
longer be used to set shadow and border styles. For these styles, you should
better use their new separate tags (see above).

FontStyleClear

All font styles which you set in this element will be removed from the layer.
Multiple font styles have to be separated by the bitwise Or operator (|).
This is the counterpart to the FontStyle element. Note: As of Hollywood
5.0 this tag should no longer be used to unset shadow and border styles. For
these styles, you should better use their new separate tags (see above).

Font You can use this style element to change the font of the text layer. See
Section 54.31 [SetFont], page 1139, for details. Alternatively, you can also
specify the new font by setting the ID tag (see below).

FontSize You can use this style element to change the font size of the specified text
layer. See Section 54.31 [SetFont], page 1139, for details.

ID You can use this style element to change the font of the text layer. Just
set this tag to the ID of the new font and the font will be changed. See
Section 54.41 [UseFont], page 1156, for details. Alternatively, you can also
specify the new font by name by setting the Font tag (see above). (V10.0)

Text This style element allows you to change the contents of the text layer. You
can replace the whole old contents of the layer with some new text.

Align Allows you to change the text alignment after a newline characters. Possible
values are #LEFT, #RIGHT, #CENTER, and #JUSTIFIED. The default alignment
is #CENTER.

LeftMargin, RightMargin

Allows you to change the margin settings of the current text layer.
LeftMargin is only used for layers of type #PRINT but RightMargin can
also be used for text objects and #TEXTOUT layers. See Section 54.34
[SetMargins], page 1144, for details.

CursorX, CursorY

Allows you to change the cursor position of this layer. This is only possible
with layers of type #PRINT. Also note that if you specify CursorX / CursorY

you must not specify X / Y. CursorX / CursorY and X / Y are mutually
exclusive and hence must not be used together. (V4.5)

698 Hollywood manual

Tabs Allows you to modify the tabulator positions for this layer. This is only
possible with layers of type #PRINT. Tabs takes a table of tabulator positions.
See Section 54.3 [AddTab], page 1118, for details. (V4.5)

Encoding Allows you to change the character encoding of this text layer. See
Section 54.30 [SetDefaultEncoding], page 1138, for details. (V4.7)

Linespacing:

Allows you to adjust the space between lines. You can set this to a positive
or negative value. A positive value will increase the space between lines, a
negative value will decrease it. (V9.0)

Charspacing:

Allows you to adjust the space between characters. You can set this to a
positive or negative value. A positive value will increase the space between
characters, a negative value will decrease it. (V10.0)

Tabs: Allows you to modify the tab stops for this layer. See Section 54.39
[TextOut], page 1149, for details. (V9.0)

ListMode:

Allows you to enable or disable list mode for this text layer. See Section 54.39
[TextOut], page 1149, for details. (V9.0)

DefListBullet:

Use this tag to set the default bullet to use when the text layer is in list
mode. See Section 54.39 [TextOut], page 1149, for a list of available bullets.
(V9.0)

ListBullet:

Use this tag to specify a custom set of bullets to use when the text layer is
in list mode. See Section 54.39 [TextOut], page 1149, for details. (V9.0)

DefListIndent:

This tag can be used to specify the number of spaces to use for indenting
list items when the text layer is in list mode. See Section 54.39 [TextOut],
page 1149, for details. (V9.0)

ListIndent:

Use this tag to specify a custom set of indentation levels to use when the
text layer is in list mode. See Section 54.39 [TextOut], page 1149, for details.
(V9.0)

DefListOffset:

When the text layer is in list mode and uses a numbered bullet type you can
use this tag to specify a starting offset for the numbering. See Section 54.39
[TextOut], page 1149, for details. (V9.0)

ListOffset:

When the text layer is in list mode and uses a numbered bullet type you can
use this tag to specify a custom set of starting offsets for the individual list
numbering. See Section 54.39 [TextOut], page 1149, for details. (V9.0)

Chapter 34: Layers library 699

DefListSpacing:

This tag can be used to specify the line spacing between the list items when
the text layer is in list mode. See Section 54.39 [TextOut], page 1149, for
details. (V9.1)

ListSpacing:

Use this tag to specify a custom set of line spacings to use when the text
layer is in list mode. See Section 54.39 [TextOut], page 1149, for details.
(V9.1)

Frame: When the text layer is in list mode, you can use this tag to display a specific
frame of the list. Frames are counted from 1. To show the next frame,
you can pass the special value 0 to Frame. See Section 54.39 [TextOut],
page 1149, for details. (V9.0)

FrameMode:

When the text layer is in list mode, you can use this tag configure the frame
mode that the list should use. See Section 54.39 [TextOut], page 1149, for
details. (V9.0)

BulletColor:

When the text layer is in list mode, you can use this tag to change the bullet
color. See Section 54.39 [TextOut], page 1149, for details. (V9.0)

BulletPen:

When the text layer is in list mode, you can use this tag to change the bullet
pen. See Section 54.39 [TextOut], page 1149, for details. (V9.0)

Wordwrap:

This tag can be used to set a wordwrapping width for the text layer. When-
ever a word exceeds the specified width, it will be wrapped to the next line.
Set Wordwrap to 0 to disable wordwrapping. (V9.0)

Layers of type #TEXTOBJECT accept the following additional style elements:

ID This style element can be used to associate a new text object with this layer.
Just pass the identifier of the desired text object here and it will replace the
current text object of this layer. (V4.5)

Layers of type #VECTORPATH accept the following additional style elements:

ID This style element can be used to associate a new vector path object with
this layer. Just pass the identifier of the desired vector path object here and
it will replace the current path of this layer. (V5.0)

LineJoin Allows you to change the line join style of this layer. See Section 56.33
[SetLineJoin], page 1195, for details. (V5.0)

LineCap Allows you to change the line cap style of this layer. See Section 56.32
[SetLineCap], page 1195, for details. (V5.0)

FillRule Allows you to change the fill rule style of this layer. See Section 56.31
[SetFillRule], page 1194, for details. (V5.0)

700 Hollywood manual

Dashes This style element can be used to change the dash pattern for outline vector
drawing. You have to pass a table here that contains a dash pattern in the
same format as described in the documentation of the SetDash() command.
When passing the Dashes tag, you should also pass the DashOffset tag (see
below) to define the starting offset of the dash pattern. (V5.0)

DashOffset

This tag can be used to modify the starting offset of the dash pattern of this
layer. This tag is usually specified together with the Dashes tag (see above).
See Section 56.30 [SetDash], page 1193, for details. (V5.0)

VectorEngine:

This tag can be used to set the vectorgraphics renderer that should be used to
draw this layer. See Section 56.35 [SetVectorEngine], page 1196, for details.
(V6.0)

#VIDEO layers recognize the following elements:

ID This tag can only be queried by using GetLayerStyle(). It contains the
identifier of the video that has been assigned to this layer. You cannot cur-
rently assign a new video object to a layer using SetLayerStyle(). (V6.0)

PartX, PartY, PartWidth, PartHeight

These four elements allow you to configure the visible portion of the video
layer. PartX and PartY specify the x and y coordinates inside the video and
PartWidth and PartHeight specifies the size of the tile that shall be visible.
This is useful for displaying only a part of a video. (V6.0)

INPUTS

id1 identifier of the layer or layer group whose style you want to change

style1 table containing one or more style elements from the lists above

... optional: you can repeat the id/style sequence as often as you need so you
can modify the styles of many layers with just a single call

EXAMPLE
SetLayerStyle(1, {x = #LEFT, y = #TOP}, 4, {x = #CENTER, y = #CENTER},

5, {x = #RIGHT, y = #BOTTOM}, "mylayer", {x = 100, y = 100})

The call above changes the position of several layers. Layer 1 is moved to the top left
corner, layer 4 to the center, layer 5 to the bottom right corner, and layer "mylayer" is
moved to 100:100.

Box(0, 0, 100, 100, #BLUE)

WaitLeftMouse

SetLayerStyle(1, {Color = #RED})

The code above draws a blue box on the screen, waits for the left mouse button and then
changes the color of the box to red.

SetLayerStyle(1, {Frame = 0})

Chapter 34: Layers library 701

The code above displays the next frame of layer 1 (which must be of type #ANIM).

Polygon(#CENTER, #CENTER, {0, 0, 319, 0, 319, 159, 0, 159}, 4, #RED)

WaitLeftMouse

SetLayerStyle(1, {Vertices = {0, 159, 160, 0, 319, 159}, Color = #YELLOW})

The code above draws a red rectangular polygon, waits for left mouse and then changes
the rectangular polygon into a yellow triangular polygon.

Box(0, 0, 100, 100, #RED)

WaitLeftMouse

SetLayerStyle(1, {Type = #BRUSH, ID = 1})

The code above draws a red box on the screen, waits for the left mouse button and then
replaces the red rectangle by brush number 1. The layer type is changed from #BOX to
#BRUSH.

34.49 SetLayerTint

NAME
SetLayerTint – set layer tinting (V2.0)

FORMERLY KNOWN AS
SetLayerLight (V1.5)

SYNOPSIS
SetLayerTint(id, tintcolor, tintlevel)

FUNCTION
This function can be used to tint a layer or layer group with a specified color at a given
level. This is useful if you want to lighten the layer or layer group (use #WHITE as
tintcolor) or darken it (use #BLACK as tintcolor). Of course you can also use other
colors. Level ranges from 0 to 255 where 0 means no tinting (layer default setting) and
255 means full tinting which will make the layer appear fully in the specified color.

Starting with Hollywood 2.0, tintlevel can also be a string containing a percent specifi-
cation, e.g. "50%".

Starting with Hollywood 5.0, this function will simply install a filter of type Tint in the
specified layer. See Section 34.43 [SetLayerFilter], page 681, for details.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of the layer or layer group to use

tintcolor

RGB color to use for tinting

tintlevel

tint level to apply (0 to 255 or percent specification)

702 Hollywood manual

EXAMPLE
EnableLayers()

DisplayBrush(1, #CENTER, #CENTER)

SetLayerTint(1, #BLACK, 128)

The code above darkens layer 1 (= brush 1) with ratio 50% (= 128).

34.50 SetLayerTransparency

NAME
SetLayerTransparency – set transparency of a layer (V1.5)

SYNOPSIS
SetLayerTransparency(id, level)

FUNCTION
This function can be used to set the transpareny level of a layer or layer group. The
transparency level must be between 0 and 255, where 0 means no transparency (layer de-
fault setting) and 255 is full transparency which means that you will not see the layer any
more (in that case it is of course more efficient to just hide the layer using HideLayer().
Please note that this is just the other way round from SetAlphaIntensity() where 255
means no transparency and 0 means full transparency.

Starting with Hollywood 2.0, level can also be a string containing a percent specification,
e.g. "50%".

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of the layer or layer group to use

level transparency level to apply (0 to 255 or percent specification)

EXAMPLE
EnableLayers()

; do not display the text, just add the layer

SelectBGPic(1)

TextOut(#RIGHT, #BOTTOM, "Hello World")

EndSelect

; now it will be displayed!

SetLayerTransparency(1, 128)

The code above creates layer 1 (text "Hello World") and makes it appear with a trans-
parency of 50% (= 128).

Chapter 34: Layers library 703

34.51 SetLayerTransparentPen

NAME
SetLayerTransparentPen – set transparent pen of layer palette (V9.0)

SYNOPSIS
SetLayerTransparentPen(id, pen)

FUNCTION
This function sets the transparent pen of the palette of the layer specified by id to the
pen specified in pen. Pens are counted from 0.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of layer to use

pen desired transparent pen (starting from 0)

EXAMPLE
SetLayerTransparentPen(1, 4)

The code makes pen 4 in the palette of layer 1 transparent.

34.52 SetLayerVolume

NAME
SetLayerVolume – modify volume of a video layer (V6.0)

SYNOPSIS
SetLayerVolume(id, volume)

FUNCTION
This function modifies the volume of the video layer specified by id. If the video layer
is currently playing, the volume will be modified on-the-fly which can be used for sound
fades etc. The volume argument can also be a string containing a percent specification,
e.g. "50%".

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier or name of the video layer

volume new volume for the video (range: 0=mute until 64=full volume or percent
specification)

704 Hollywood manual

34.53 SetLayerZPos

NAME
SetLayerZPos – change the z-position of a layer (V4.6)

SYNOPSIS
SetLayerZPos(layer, zpos)

FUNCTION
This command can be used to change a layer’s z-position. The z-position of the layer is
its position in the hierarchy of layers. The first (i.e. backmost) layer has a z-position of
1, the last (i.e. frontmost) layer’s z-position is equal to the number of layers currently
present. You need to pass the new desired z-position for the specified layer to this
function. The layer will then assume exactly this z-position, existing layers that are on
or after this z-position will be shifted down. To move a layer all the way to the front (i.e.
highest z-position), you can pass the special value 0 for the zpos argument. To move a
layer all the way to the back, specify 1 in the zpos argument.

You can also pass a layer name in the zpos argument. In that case, the layer specified
in the first argument will assume the z-position of the layer in the second argument.

INPUTS

layer layer whose z position shall be changed

zpos new z position for the layer or 0 to move the layer to the highest z position

34.54 ShowLayer

NAME
ShowLayer – show or move a layer (V1.5)

SYNOPSIS
ShowLayer(id[, x, y])

FUNCTION
This function shows the hidden layer or layer group specified by id. You can hide layers
and layer groups by calling HideLayer().

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

Starting with Hollywood 2.0 there are two optional arguments x and y. You can use
these two arguments to re-position the specified layer. So you can move a layer to a
new position using this function. Both arguments default to #USELAYERPOSITION which
means that the layer will not be moved if you do not specify these arguments.

INPUTS

id identifier of the layer or layer group to show

x optional: new x-position for the layer (defaults to #USELAYERPOSITION)

y optional: new y-position for the layer (defaults to #USELAYERPOSITION)

Chapter 34: Layers library 705

EXAMPLE
See Section 34.17 [HideLayer], page 661.

34.55 ShowLayerFX

NAME
ShowLayerFX – display a hidden layer with transition effects (V1.9)

SYNOPSIS
[handle] = ShowLayerFX(id[, table])

FUNCTION
This function is an extended version of the ShowLayer() command. It shows the hidden
layer or layer group specified by id using one of the many transition effects supported by
Hollywood. You can also specify the speed for the transition and an optional argument.

Starting with Hollywood 4.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the transition effect. The following
options are possible:

Type Specifies the desired effect for the transition. See Section 20.11 [DisplayTran-
sitionFX], page 238, for a list of all supported transition effects. (defaults to
#RANDOMEFFECT)

Speed Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

Async You can use this field to create an asynchronous draw object for this transi-
tion. If you pass True here ShowLayerFX() will exit immediately, returning
a handle to an asynchronous draw object which you can then draw using
AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221, for more
information on asynchronous draw objects.

NoBorderFade

If the layer to be shown has a border, do not gradually fade in the border
but display it in one go at the end of the transition effect. (V5.0)

BorderFX:

If the layer to be shown has a border, Hollywood will only apply the transi-
tion effect to the border if the layer is a transparent layer with text or pixel
graphics. For non-transparent and vector graphics layers a generic fade ef-
fect will be used instead because otherwise there would be visual glitches
between the penultimate and final effect frame because of differences in the
border algorithms. If you don’t care about this glitch and want to force
Hollywood to always apply the transition effect to the border, set this tag
to True. To force Hollywood to always use the generic fade mode, set this
tag to False. (V9.0)

706 Hollywood manual

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier of the layer or layer group to show

table optional: table configuring the transition effects

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
ShowLayerFX(5, #CROSSFADE) ; old syntax

OR

ShowLayerFX(5, {Type = #CROSSFADE}) ; new syntax

The above code shows layer 5 with a nice crossfade transition.

34.56 StopLayer

NAME
StopLayer – stop a currently playing video layer (V6.0)

SYNOPSIS
StopLayer(id)

FUNCTION
This function stops the video layer specified by id. You can restart playback by calling
PlayLayer().

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

id identifier or name of the video layer to be stopped

34.57 SwapLayers

NAME
SwapLayers – swap two layers (V1.5)

SYNOPSIS
SwapLayers(a, b)

FUNCTION
This function swaps the positions of the layer id’s a and b. This can be very useful if
you need to re-position your layers.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

Chapter 34: Layers library 707

INPUTS

a identifier or name of layer 1

b identifier or name of layer 2

EXAMPLE
EnableLayers()

SetFillStyle(#FILLCOLOR)

Box(0, 0, 150, 150, #RED)

Box(0, 0, 100, 100, #GREEN)

WaitLeftMouse

SwapLayers(1, 2)

The code above draws a red and a green filled box and then swaps layers which means
that the smaller green box is suddenly not visible any more. Before the swapping, the
red box was layer 1 and the green box layer 2. After the swapping, the green box is layer
1 and the red box is layer 2.

34.58 TransformLayer

NAME
TransformLayer – apply affine transformation to a layer (V4.5)

SYNOPSIS
TransformLayer(id, sx, rx, ry, sy[, smooth])

FUNCTION
This function can be used to apply affine transformation to a layer or layer group. You
have to pass a 2x2 transformation matrix to this function that will define how each point
in the layer will be transformed. This function is useful if you want to apply rotation and
scaling at the same time. The optional argument smooth can be set to True if Hollywood
should use interpolation during the transformation. This yields results that look better
but interpolation is quite slow.

If the specified layer is a vector layer (e.g. circle, polygon, TrueType text or a rectangle)
Hollywood will be able to transform the layer without any loss in quality because vector
graphics can be freely transformed. Thus, the smooth argument does not have any
function if the specified layer is a vector layer. If the layer uses raster graphics, however,
normal raster-based rotation will be used.

In contrast to transforming brushes using TransformBrush() layers always keep their
original data so there will not be any loss in quality if you transform a layer to (20,15)
and then back to (640,480). This is perfectly possible.

See Section 21.78 [TransformBrush], page 314, for more information about how to set
up a transformation matrix.

INPUTS

id identifier of the layer or layer group to transform

sx scale x factor; must never be 0

rx rotate x factor

708 Hollywood manual

ry rotate y factor

sy scale y factor; must never be 0

smooth optional: whether or not affine transformation should use interpolation

EXAMPLE
angle = Rad(45) ; convert degrees to radians

TransformLayer(1, Cos(angle), Sin(angle), -Sin(angle), Cos(angle))

The code above rotates layer number 1 by 45 degrees using a 2x2 transformation matrix.

34.59 TranslateLayer

NAME
TranslateLayer – translate a layer (V4.7)

SYNOPSIS
TranslateLayer(id, dx, dy)

FUNCTION
This command will translate a layer or layer group by the delta offsets specified by dx

and dy. A translation means that the layer is moved relative to its current position by
the specified offset. Thus, a translation of (100,-100) would move the layer 100 pixels
towards the right and 100 pixels towards the top. A translation of (0,0) would not move
the layer at all. Translations are very useful for moving layers independent of its current
position.

Alternatively, you can also use the TranslateX and TranslateY tags of the powerful
SetLayerStyle() command.

INPUTS

id identifier of the layer or layer group to translate

dx delta x offset (0 means no x translation)

dy delta y offset (0 means no y translation)

EXAMPLE
TranslateLayer(1, -50, -50)

The code above moves the first layer 50 pixels in top-left direction.

34.60 Undo

NAME
Undo – undo a graphics operation

SYNOPSIS
Undo(type[, id, level, quiet])

FUNCTION
This function undoes the graphics operation specified by type and optionally id. You
need to enable layers in order to use this function. Hollywood keeps an internal buffer of

Chapter 34: Layers library 709

all graphics operations it performs, e.g. displaying brush 2. If you want to remove brush
2 now from the display, just call Undo(#BRUSH,2). The following types are possible:

#ANIM Remove anim specified by id from the display

#ARC Remove arc drawn with Arc()

#BGPICPART

Remove graphics displayed with DisplayBGPicPart()

#BOX Remove rectangle drawn with Box()

#BRUSH Remove brush specified by id from the display

#BRUSHPART

Remove graphics displayed with DisplayBrushPart()

#CIRCLE Remove circle drawn with Circle()

#ELLIPSE Remove ellipse drawn with Ellipse()

#LINE Remove line drawn with Line()

#MERGED: Remove merged layer created by MergeLayers().

#PLOT Remove a pixel displayed with Plot()

#POLYGON Remove polygon drawn with Polygon()

#PRINT Remove text printed with Print() or NPrint()

#TEXTOBJECT

Remove text object specified by id from the display

#TEXTOUT Undo the last TextOut() command; id is not required

#VECTORPATH

Undo the last DrawPath() command; id is not required

#VIDEO Remove video specified by id from the display

The optional argument id is only required for types which use an identifier (#ANIM,
#BGPICPART, #BRUSH, #BRUSHPART, #TEXTOBJECT, #VIDEO). The other types do not re-
quire the id argument. Please set id to 0 for the commands.

The level argument specifies the undo level to use. The argument is optional and
defaults to 1. Undo level defines on which level the object to undo is. For example, if
you display brush 3 four times on the display and now you want to remove the first one
of all brushes 3, you will have to specify a level of 4. To remove the last one you have to
set undo level to 1, which is also the default. Therefore if level is not explicitly specified
or set to 1, Hollywood will undo the object last displayed of the specified type.

The quiet argument is also optional. If you set it to True, Hollywood will only remove
the specified object from it is internal object lists but will leave it on the display. If set
to False, Hollywood will also remove it from the screen.

INPUTS

type one of the type constants (see list above)

710 Hollywood manual

id optional: only required for types which require an associated id (defaults to
0)

level optional: undo level (defaults to 1)

quiet optional: True if object shall only be removed internally but not from the
display (defaults to False)

EXAMPLE
EnableLayers()

DisplayBrush(1, #CENTER, #CENTER)

WaitLeftMouse

Undo(#BRUSH, 1)

The above code displays brush 1 in the center of the display, waits for a mouse click and
then removes it.

EnableLayers()

Print("Hello ")

Print("This ")

Print("Is ")

Print("An ")

Print("Undo ")

Print("Test!")

WaitLeftMouse

Undo(#PRINT, 0, 6)

Undo(#PRINT, 0, 5)

Undo(#PRINT, 0, 4)

The above code prints "Hello This Is An Undo Test!" on the display, waits for a mouse
click and then removes the texts "Hello", "This" and "Is" by using the optional level
argument of the Undo() command.

34.61 UndoFX

NAME
UndoFX – undo a graphics operation with transition fx

SYNOPSIS
[handle] = UndoFX(type, id[, table])

FUNCTION
This function is like the Undo() command but it uses a transition effect to undo the
operation. See Section 34.60 [Undo], page 708, for details.

Remember to have layers turned on when using this command!

Starting with Hollywood 4.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the transition effect. The following
options are possible:

Chapter 34: Layers library 711

Type Specifies the desired effect for the transition. See Section 20.11 [DisplayTran-
sitionFX], page 238, for a list of all supported transition effects. (defaults to
#RANDOMEFFECT)

Speed Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

Async You can use this field to create an asynchronous draw object for this tran-
sition. If you pass True here UndoFX() will exit immediately, returning
a handle to an asynchronous draw object which you can then draw using
AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221, for more
information on asynchronous draw objects.

UndoLevel

Specifies the undo level for this operation. See Section 34.60 [Undo],
page 708, for information on the undo level.

NoBorderFade

If the layer to be removed has a border, do not gradually fade out the border
but remove it in one go at the end of the transition effect. (V5.0)

BorderFX:

If the layer to be removed has a border, Hollywood will only apply the
transition effect to the border if the layer is a transparent layer with text or
pixel graphics. For non-transparent and vector graphics layers a generic fade
effect will be used instead because otherwise there would be visual glitches
between the penultimate and final effect frame because of differences in the
border algorithms. If you don’t care about this glitch and want to force
Hollywood to always apply the transition effect to the border, set this tag
to True. To force Hollywood to always use the generic fade mode, set this
tag to False. (V9.0)

INPUTS

type one of the type constants (See Section 34.60 [Undo], page 708, for details.)

id identifier of the object

table optional: transition effect configuration

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

34.62 UngroupLayer

NAME
UngroupLayer – remove layer(s) from group (V10.0)

712 Hollywood manual

SYNOPSIS
UngroupLayer(layer1[, layer2, ...])

FUNCTION
This function removes the specified layer(s) from their layer group. The layers you pass
to this function don’t have to part of the same group. They are ungrouped from whatever
group they belong to. You can pass as many layers as you want to this function. Note
that as soon as a group doesn’t have any more layers attached, it will be automatically
deleted.

To add layers to a group, use the GroupLayer() function. See Section 34.16 [Grou-
pLayer], page 660, for details.

You need to enable layers before you can use this function. See Section 34.1 [Layers
introduction], page 647, for details.

INPUTS

layer1 first layer to ungroup

... further layers to ungroup

713

35 Legacy library

35.1 ACTIVEWINDOW

NAME
ACTIVEWINDOW – window got active / OBSOLETE

SYNOPSIS
Label(ACTIVEWINDOW)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use InstallEventHandler() instead of it.

Hollywood will Gosub() to this label whenever the window becomes active again. You
normally do not need this event but if you want to do something when your window
becomes active again, use this event.

INPUTS
none

35.2 BreakWhileMouseOn

NAME
BreakWhileMouseOn – break next WhileMouseOn() command (V1.9) / OBSOLETE

SYNOPSIS
BreakWhileMouseOn()

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function breaks the next WhileMouseOn() command that will be executed. You
usually use this function if your ONBUTTONCLICK label shall return immediately to
your event loop instead of the WhileMouseOn() command in your ONBUTTONOVER
label.

Normally, if you have an ONBUTTONCLICK and an ONBUTTONOVER label, Holly-
wood will return to your ONBUTTONOVER label after the mouse button was released
because the mouse is still over your button after the user clicked the mouse. If you want
Hollywood to return to your main event loop after a mouse click, use this command.

Note: This command is only required in rare cases.

INPUTS
none

EXAMPLE
While(quit = FALSE)

WaitEvent

714 Hollywood manual

Wend

Label(ONBUTTONOVER1)

Print("Mouse over button 1")

WhileMouseOn

Print("Mouse no longer over button 1")

Return

Label(ONBUTTONCLICK1)

Print("Mouse click on button 1")

WhileMouseDown

Print("Mouse button released")

BreakWhileMouseOn

Return

Have a look at the above code. The BreakWhileMouseOn() causes Hollywood to return
immediately to the WaitEvent() loop. If there was no BreakWhileMouseOn() in the
code above, Hollywood would return to the WhileMouseOn() command and wait until
the user moves the mouse out of the button area.

35.3 ClearEvents

NAME
ClearEvents – clear user events (V1.5) / OBSOLETE

SYNOPSIS
ClearEvents()

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function clears all events.

INPUTS
none

EXAMPLE
CreateButton(1,10,10,110,110)

CreateButton(2,130,130,230,230)

CreateKeyDown(1,"ESC")

ClearEvents

End

Label(SIZEWINDOW)

Return

Label(ONJOYFIRE1)

Return

Chapter 35: Legacy library 715

Label(CLOSEWINDOW)

Return

The above code defines some events and calls ClearEvents(). This function will now
clear the following events: Button 1, Button 2 and Keydown 1. The events SIZEWIN-
DOW, ONJOYFIRE1 and CLOSEWINDOW will not be cleared because they are only
declared as labels. If you want to get rid of them, you can disable them.

35.4 CLOSEWINDOW

NAME
CLOSEWINDOW – user clicked the window’s close box / OBSOLETE

SYNOPSIS
Label(CLOSEWINDOW)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use InstallEventHandler() instead of it.

Hollywood will Gosub() to this label when the user clicks the close box of the window.
This is useful if you want to pop up a requester and ask if he really wants to quit, for
example.

INPUTS
none

35.5 CreateButton

NAME
CreateButton – create a new button / OBSOLETE

SYNOPSIS
CreateButton(id,x1,y1,x2,y2)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use MakeButton() instead.

Use this command to declare a button on your display. The button is defined by the
coordinates x1:y1 to x2:y2. If the user moves the mouse over the button, Hollywood will
Gosub() to the label with the name ONBUTTONOVER and the number you specified
for the button. If the user clicks the button, Hollywood will jump to the label with the
name ONBUTTONCLICK and the number of your button.

INPUTS

id desired identifier for the button

x1 source left edge

716 Hollywood manual

y1 source top edge

x2 destination left edge

y2 destination top edge

EXAMPLE
CreateButton(1,0,0,200,200)

CreateButton(2,201,0,400,200)

CreateKeyDown(1,"ESC")

While(quit=FALSE)

WaitEvent

Wend

End

Label(ONBUTTONOVER1)

Print("Mouse over button 1")

WhileMouseOn

Print("Mouse out of button 1")

Return

Label(ONBUTTONCLICK1)

Print("User clicked button 1")

WhileMouseDown

Print("User released left mouse button")

Return

Label(ONBUTTONRIGHTCLICK1) ; requires Hollywood 1.5

Print("User right-clicked button 1")

WhileRightMouseDown

Print("User released right mouse button")

Return

Label(ONBUTTONOVER2)

Print("Mouse over button 2")

WhileMouseOn

Print("Mouse out of button 2")

Return

Label(ONBUTTONCLICK2)

Print("User clicked button 2")

WhileMouseDown

Print("User released left mouse button")

Return

Label(ONBUTTONRIGHTCLICK2)

Print("User right-clicked button 2") ; requires Hollywood 1.5

WhileRightMouseDown

Chapter 35: Legacy library 717

Print("User released right mouse button")

Return

Label(ONKEYDOWN1)

quit=TRUE

Return

The above code creates two buttons on the screen and monitors the user activity. If he
presses the escape key, this demo will quit. This example shows a good way of handling
the user input: It is advised that you use a loop like

While(quit=False)

WaitEvent

Wend

to handle the user’s input. However you have to make sure that you always return to
the WaitEvent() in the loop.

35.6 CreateKeyDown

NAME
CreateKeyDown – create a new keydown object / OBSOLETE

SYNOPSIS
CreateKeyDown(id,key$)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

Use this command to declare a key to monitor. If the user presses this key, Hollywood
will Gosub() to the label called ONKEYDOWN with the number as specified in this
command.

Key$ is a string representing a key on your keyboard. This can be one of the following
control keys:

UP Cursor up

DOWN Cursor down

RIGHT Cursor right

LEFT Cursor left

HELP Help key

DEL Delete key

BACKSPACE

Backspace key

TAB Tab key

RETURN Return/enter key

718 Hollywood manual

ESC Escape

SPACE Space key

F1 - F10 Function keys

The other keys can be accessed by just specifying the character of the key in the string,
e.g. "A", "!" or "-".

The following keys cannot be monitored: Alt keys, command keys and the control key.

INPUTS

id desired identifier for the button

key$ key to monitor

EXAMPLE
CreateKeydown(1,"ESC")

While(quit=FALSE)

WaitEvent

Wend

End

Label(ONKEYDOWN1)

quit=TRUE

Return

The above code waits for the user to press the escape key. Then it quits. A code structure
like above is recommended for your applications.

35.7 DisableEvent

NAME
DisableEvent – disable an event / OBSOLETE

SYNOPSIS
DisableEvent(type,id)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use DisableButton() instead.

This function disables the event specified by type and id. Once an event is disabled, it
will not be monitored any longer. However, you can enable it again later by using the
EnableEvent().

Do not forget to specify the ’#’ prefix for all events because you are passing constants!

INPUTS

type event type (e.g. #ONBUTTONOVER, #ONBUTTONCLICK, #CLOSEWINDOW)

id event number to disable

EXAMPLE
DisableEvent(#ONBUTTONOVER,1)

Chapter 35: Legacy library 719

DisableEvent(#ONBUTTONCLICK,1)

DisableEvent(#ONBUTTONRIGHTCLICK,1)

The above code completely disables the monitoring of button 1 (every button has three
events #ONBUTTONOVER, #ONBUTTONCLICK and #ONBUTTONRIGHTCLICK). Therefore if you
want to disable a button completely you will have to call DisableEvent() thrice.

35.8 DisableEventHandler

NAME
DisableEventHandler – disable Hollywood’s event handler / OBSOLETE

SYNOPSIS
DisableEventHandler()

FUNCTION
Attention: This function is no longer supported as of Hollywood 1.9. Please use
CheckEvent() instead.

This function disables the internal event handler of Hollywood. See Section 35.9 [En-
ableEventHandler], page 719, for more information about the internal event handler.

INPUTS
none

EXAMPLE
See Section 35.9 [EnableEventHandler], page 719.

35.9 EnableEventHandler

NAME
EnableEventHandler – enable Hollywood’s event handler / OBSOLETE

SYNOPSIS
EnableEventHandler()

FUNCTION
Attention: This function is no longer supported as of Hollywood 1.9. Please use
CheckEvent() instead.

This function enables the internal event handler of Hollywood. This means, that you do
not have to call WaitEvent() any longer because Hollywood will always check if there
are any events that occurred. Using the internal event handler is useful if you want to
call some functions when there is no input but also monitor user input, e.g. if you are
doing a slide show with some effects you cannot call WaitEvent() every second but you
still want that the user can quit the show by pressing some button on your screen. Then
it would be wise to call EnableEventHandler(). Once it is enabled, you can do what
you want but all events are still monitored.

Please note: Use this function only when you really need it. It has major disadvan-
tages compared to an input loop together with WaitEvent() because you will never

720 Hollywood manual

know when an event was raised and from where. If Hollywood’s event handler is en-
abled, events can be raised always. It could even happen, that an event breaks com-
mands that are still busy, e.g. DisplayTransitionFX(). It is not a good idea to use
EnableEventHandler() in your projects because you will lose the control of your ap-
plication. EnableEventHandler() is also very likely to be removed from Hollywood in
future versions. So you should stay on the safe side, which means: Use an input loop
with WaitEvent().

INPUTS
none

EXAMPLE
EnableEventHandler

DisplayBGPic(1)

Wait(200)

DisplayBGPic(2)

...

Label(ONBUTTONCLICK1)

End

The above code enables the event handler and then starts a slide show but the user will
always be able to press a button although you do not call WaitEvent().

35.10 EnableEvent

NAME
EnableEvent – enable an event / OBSOLETE

SYNOPSIS
EnableEvent(type,id)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use EnableButton() instead.

This function enables the event specified by type and id. Once an event is enabled, it
will be monitored by Hollywood. You will only have to call this function if you disabled
the event before because by default, all events are enabled.

Do not forget to specify the ’#’ prefix for all events because you are passing constants!

INPUTS

type event type (e.g. #ONBUTTONOVER, #ONBUTTONCLICK, #CLOSEWINDOW)

id event number to enable

EXAMPLE
EnableEvent(#ONBUTTONOVER,1)

EnableEvent(#ONBUTTONCLICK,1)

EnableEvent(#ONBUTTONRIGHTCLICK,1)

Chapter 35: Legacy library 721

The above code completely enables the monitoring of button 1 (every button has three
events #ONBUTTONOVER, #ONBUTTONCLICK and #ONBUTTONRIGHTCLICK). Therefore if you
want to enable a button completely you will have to call EnableEvent() thrice.

35.11 GetEventCode

NAME
GetEventCode – get event specific code (V1.5) / OBSOLETE

SYNOPSIS
code = GetEventCode()

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function is used right after Hollywood jumped to an event label. If an event has to
tell you additional information, you can get this information through this function.

For example, ONBUTTONCLICKALL returns the identifier of the button that caused
Hollywood to jump to the label.

INPUTS
none

RESULTS

code event specific code

EXAMPLE
See Section 35.20 [ONBUTTONCLICKALL], page 725.

35.12 Gosub

NAME
Gosub – call a subroutine / OBSOLETE

SYNOPSIS
Gosub(label)

FUNCTION
Attention: This function is part of the Hollywood 1.x library. You should not use it any
longer. Please use functions instead of labels.

This function jumps to the subroutine specified by label. The subroutine can call
Return() to return to the point from where it was called.

INPUTS

label identifier of a label (defined with Label())

EXAMPLE
a$="Hello World"

722 Hollywood manual

Gosub(PRINTTEXT)

WaitLeftMouse

End

Label(PRINTTEXT)

Print(a$)

Return

The above code prints the text "Hello World" on the screen and waits for the left mouse.
Then quits.

35.13 Goto

NAME
Goto – jump to a new location / OBSOLETE

SYNOPSIS
Goto(label)

FUNCTION
Attention: This function is part of the Hollywood 1.x library. You should not use it any
longer. Please use functions instead of labels.

This function jumps to the location specified by label. Execution will continue there and
it is not possible to get back to the point from where the label was called. If you need
this, use the Gosub() command.

INPUTS

label identifier of a label (defined with Label())

EXAMPLE
a$="Hello World"

Goto(PRINTTEXT)

WaitLeftMouse ; this code will never be reached

End ; !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Label(PRINTTEXT)

Print(a$)

WaitLeftMouse

End

The above code prints the text "Hello World" on the screen and waits for the left mouse.
Then quits.

35.14 INACTIVEWINDOW

NAME
INACTIVEWINDOW – window got inactive / OBSOLETE

Chapter 35: Legacy library 723

SYNOPSIS
Label(INACTIVEWINDOW)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use InstallEventHandler() instead of it.

Hollywood will Gosub() to this label whenever the window becomes inactive. You nor-
mally do not need this event but if you want to do something when your window becomes
inactive, use this event.

INPUTS
none

35.15 Label

NAME
Label – declare a new label / OBSOLETE

SYNOPSIS
Label(name)

FUNCTION
Attention: This function is part of the Hollywood 1.x library. You should not use it any
longer. Please use functions instead of labels.

This function declares a new label with the specified name. You can jump to this label
with the Gosub() and Goto() commands then. Please note that name is not a string!
You need to specify a variable name that will be used as the reference for this label.

INPUTS

name identifier to use

EXAMPLE
See Section 35.12 [Gosub], page 721.

See Section 35.13 [Goto], page 722.

35.16 ModifyButton

NAME
ModifyButton – modify button data / OBSOLETE

SYNOPSIS
ModifyButton(id,x1,y1,x2,y2)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function changes the configuration of the button specified by id.

724 Hollywood manual

INPUTS

id identifier of the button

x1 desired new left edge position

y1 desired new top edge position

x2 desired new destination left edge position

y2 desired new destination top edge position

35.17 ModifyKeyDown

NAME
ModifyKeyDown – modify keydown object data / OBSOLETE

SYNOPSIS
ModifyKeyDown(id,key$)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function changes the configuration of the keydown specified by id.

See Section 35.6 [CreateKeyDown], page 717, for the keys you can specify in key$.

INPUTS

id identifier of the button

key$ desired new key to monitor

35.18 MOVEWINDOW

NAME
MOVEWINDOW – user moved the window / OBSOLETE

SYNOPSIS
Label(MOVEWINDOW)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use InstallEventHandler() instead of it.

Hollywood will Gosub() to this label whenever the window is moved. This is useful to
know when your window is transparent. Those windows will be closed and reopened
when they are moved, therefore you may need to redraw somethings after the window
was moved.

INPUTS
none

Chapter 35: Legacy library 725

35.19 ONBUTTONCLICK

NAME
ONBUTTONCLICK – user clicked a button / OBSOLETE

SYNOPSIS
Label(ONBUTTONCLICKx)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This event is raised when the user clicks on a declared button. Hollywood will Gosub()
then to the label with the name ONBUTTONCLICKx where x is the identifier of the
button. For example, Hollywood will Gosub() to the label called ONBUTTONCLICK15
when the user clicks on the button with the number 15.

INPUTS

x button number

EXAMPLE
See Section 35.5 [CreateButton], page 715.

35.20 ONBUTTONCLICKALL

NAME
ONBUTTONCLICKALL – user clicked any button (V1.5) / OBSOLETE

SYNOPSIS
Label(ONBUTTONCLICKALL)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

If you specify this event and it is enabled, Hollywood will always jump to this label when
it gets an ONBUTTONCLICK event. If you want to know, which button caused the
label jump, just call GetEventCode(). It will return which button caused the event.

This event is very useful if you have e.g. 100 or more buttons and every button just
does a Gosub() to a sub-routine which receives an id which button was pressed. Instead
of defining 100 labels now, you can just use ONBUTTONCLICKALL together with
GetEventCode().

For example, if you have 3 buttons with id’s from 1 to 3, Hollywood would normally jump
to ONBUTTONCLICK1, ONBUTTONCLICK2 or ONBUTTONCLICK3 if one of those
buttons was clicked. But if you define an ONBUTTONCLICKALL event, Hollywood
will always jump to this label.

INPUTS
none

726 Hollywood manual

EXAMPLE
CreateButton(1,10,10,100,100)

CreateButton(2,130,130,230,230)

CreateButton(3,260,260,360,360)

CreateKeyDown(1,"F1")

CreateKeyDown(2,"F2")

CreateKeyDown(3,"F3")

While(quit = FALSE)

WaitEvent

Wend

Label(ONBUTTONCLICKALL)

WhileMouseDown

id = GetEventCode()

Print("User left-clicked button # ")

Print(id)

Return

Label(ONBUTTONRIGHTCLICKALL)

WhileRightMouseDown

id = GetEventCode()

Print("User right-clicked button # ")

Print(id)

Return

Label(ONBUTTONOVERALL)

WhileMouseOn

id = GetEventCode()

Print("User moved mouse over button # ")

Print(id)

Return

Label(ONKEYDOWNALL)

WhileKeyDown

id = GetEventCode()

Print("User invoked keydown # ")

Print(id)

Return

The above code uses the ALL special events together with GetEventCode() to find out
button events that occurred.

35.21 ONBUTTONOVER

NAME
ONBUTTONOVER – user moved the mouse over a button / OBSOLETE

Chapter 35: Legacy library 727

SYNOPSIS
Label(ONBUTTONOVERx)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This event is raised when the user moves the mouse over a declared button. Holly-
wood will Gosub() then to the label with the name ONBUTTONOVERx where x is
the identifier of the button. For example, Hollywood will Gosub() to the label called
ONBUTTONOVER15 when the user moves the mouse over the button with the number
15.

INPUTS

x button number

EXAMPLE
See Section 35.5 [CreateButton], page 715.

35.22 ONBUTTONOVERALL

NAME
ONBUTTONOVERALL – user moved mouse over any button (V1.5) / OBSOLETE

SYNOPSIS
Label(ONBUTTONOVERALL)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

If you specify this event and it is enabled, Hollywood will always jump to this label
when it gets an ONBUTTONOVER event. If you want to know, which button caused
the label jump, just call GetEventCode(). It will return which button caused the event.

This event is very useful if you have e.g. 100 or more buttons and every button just
does a Gosub() to a sub-routine which receives an id which button was pressed. Instead
of defining 100 labels now, you can just use ONBUTTONOVERALL together with
GetEventCode().

INPUTS
none

EXAMPLE
See Section 35.20 [ONBUTTONCLICKALL], page 725.

728 Hollywood manual

35.23 ONBUTTONRIGHTCLICK

NAME
ONBUTTONRIGHTCLICK – user right-clicked a button (V1.5) / OBSOLETE

SYNOPSIS
Label(ONBUTTONRIGHTCLICKx)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This event is raised when the user right-clicks on a declared button. Hollywood will
Gosub() then to the label with the name ONBUTTONRIGHTCLICKx where x is the
identifier of the button. For example, Hollywood will Gosub() to the label called ON-
BUTTONRIGHTCLICK15 when the user clicks on the button with the number 15.

INPUTS

x button number

EXAMPLE
See Section 35.5 [CreateButton], page 715.

35.24 ONBUTTONRIGHTCLICKALL

NAME
ONBUTTONRIGHTCLICKALL – user right-clicked any button (V1.5) / OBSOLETE

SYNOPSIS
Label(ONBUTTONRIGHTCLICKALL)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

If you specify this event and it is enabled, Hollywood will always jump to this label when
it gets an ONBUTTONRIGHTCLICK event. If you want to know, which button caused
the label jump, just call GetEventCode(). It will return which button caused the event.

This event is very useful if you have e.g. 100 or more buttons and every button just
does a Gosub() to a sub-routine which receives an id which button was pressed. Instead
of defining 100 labels now, you can just use ONBUTTONRIGHTCLICKALL together
with GetEventCode().

INPUTS
none

EXAMPLE
See Section 35.20 [ONBUTTONCLICKALL], page 725.

Chapter 35: Legacy library 729

35.25 ONJOYDOWN

NAME
ONJOYDOWN – user moved Joystick down (V1.5)

SYNOPSIS
Label(ONJOYDOWNx)

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user moves the Joystick plugged in port x down.

INPUTS

x port number (usually 1 for the standard Joystick port)

EXAMPLE
See Section 35.31 [ONJOYUP], page 731.

35.26 ONJOYDOWNLEFT

NAME
ONJOYDOWNLEFT – user moved Joystick down left (V1.5)

SYNOPSIS
Label(ONJOYDOWNLEFTx)

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user moves the Joystick plugged in port x down left.

INPUTS

x port number (usually 1 for the standard Joystick port)

EXAMPLE
See Section 35.31 [ONJOYUP], page 731.

35.27 ONJOYDOWNRIGHT

NAME
ONJOYDOWNRIGHT – user moved Joystick down right (V1.5)

SYNOPSIS
Label(ONJOYDOWNRIGHTx)

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user moves the Joystick plugged in port x down right.

INPUTS

x port number (usually 1 for the standard Joystick port)

730 Hollywood manual

EXAMPLE
See Section 35.31 [ONJOYUP], page 731.

35.28 ONJOYFIRE

NAME
ONJOYFIRE – user pressed Joystick button (V1.5)

SYNOPSIS
Label(ONJOYFIREx)

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user presses the fire button of the Joystick that is plugged
in port x.

INPUTS

x port number (usually 1 for the standard Joystick port)

EXAMPLE
See Section 35.31 [ONJOYUP], page 731.

35.29 ONJOYLEFT

NAME
ONJOYLEFT – user moved Joystick up right (V1.5)

SYNOPSIS
Label(ONJOYLEFTx)

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user moves the Joystick plugged in port x up left.

INPUTS

x port number (usually 1 for the standard Joystick port)

EXAMPLE
See Section 35.31 [ONJOYUP], page 731.

35.30 ONJOYRIGHT

NAME
ONJOYRIGHT – user moved Joystick right (V1.5)

SYNOPSIS
Label(ONJOYRIGHTx)

Chapter 35: Legacy library 731

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user moves the Joystick plugged in port x right.

INPUTS

x port number (usually 1 for the standard Joystick port)

EXAMPLE
See Section 35.31 [ONJOYUP], page 731.

35.31 ONJOYUP

NAME
ONJOYUP – user moved Joystick up (V1.5)

SYNOPSIS
Label(ONJOYUPx)

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user moves the Joystick plugged in port x up.

INPUTS

x port number (usually 1 for the standard Joystick port)

EXAMPLE
While(quit = FALSE)

WaitEvent

Wend

Label(ONJOYUP1)

NPrint("Joy up")

Return

Label(ONJOYUPRIGHT1)

NPrint("Joy up right")

Return

Label(ONJOYRIGHT1)

NPrint("Joy right")

Return

Label(ONJOYDOWNRIGHT1)

NPrint("Joy down right")

Return

Label(ONJOYDOWN1)

NPrint("Joy down")

732 Hollywood manual

Return

Label(ONJOYDOWNLEFT1)

NPrint("Joy down left")

Return

Label(ONJOYLEFT1)

NPrint("Joy left")

Return

Label(ONJOYUPLEFT1)

NPrint("Joy up left")

Return

Label(ONJOYFIRE1)

NPrint("Joy fire")

Return

The above code shows how to query input from the Joystick.

35.32 ONJOYUPLEFT

NAME
ONJOYUPLEFT – user moved Joystick up right (V1.5)

SYNOPSIS
Label(ONJOYUPLEFTx)

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user moves the Joystick plugged in port x up left.

INPUTS

x port number (usually 1 for the standard Joystick port)

EXAMPLE
See Section 35.31 [ONJOYUP], page 731.

35.33 ONJOYUPRIGHT

NAME
ONJOYUPRIGHT – user moved Joystick up right (V1.5)

SYNOPSIS
Label(ONJOYUPRIGHTx)

FUNCTION
Attention: This label is no longer supported in Hollywood 2.0.

This event is raised when the user moves the Joystick plugged in port x up right.

Chapter 35: Legacy library 733

INPUTS

x port number (usually 1 for the standard Joystick port)

EXAMPLE
See Section 35.31 [ONJOYUP], page 731.

35.34 ONKEYDOWN

NAME
ONKEYDOWN – user pressed a key / OBSOLETE

SYNOPSIS
Label(ONKEYDOWNx)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This event is raised when the user presses a monitored key. Hollywood will Gosub() then
to the label with the name ONKEYDOWNx where x is the identifier of the keydown.
For example, Hollywood will Gosub() to the label called ONKEYDOWN15 when the
user presses the key with the number 15.

INPUTS

x key number

EXAMPLE
See Section 35.6 [CreateKeyDown], page 717.

35.35 ONKEYDOWNALL

NAME
ONKEYDOWNALL – user invoked any keydown (V1.5) / OBSOLETE

SYNOPSIS
Label(ONKEYDOWNALL)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

If you specify this event and it is enabled, Hollywood will always jump to this label when
it gets an ONKEYDOWN event. If you want to know, which keydown caused the label
jump, just call GetEventCode(). It will return which keydown caused the event.

This event is very useful if you have e.g. 100 or more keydown’s and every keydown
just does a Gosub() to a sub-routine which receives an id which key was pressed. In-
stead of defining 100 labels now, you can just use ONKEYDOWNALL together with
GetEventCode().

734 Hollywood manual

INPUTS
none

EXAMPLE
See Section 35.20 [ONBUTTONCLICKALL], page 725.

35.36 RemoveButton

NAME
RemoveButton – remove a button / OBSOLETE

SYNOPSIS
RemoveButton(id)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use DeleteButton() instead.

This function will remove the button specified by id from Hollywood’s button database.
Events of this button will no longer be received.

INPUTS

id button to delete

EXAMPLE
RemoveButton(1)

Deletes button 1.

35.37 RemoveKeyDown

NAME
RemoveKeyDown – remove a keydown object / OBSOLETE

SYNOPSIS
RemoveKeyDown(id)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function will remove the keydown object specified by id from Hollywood’s keydown
database. Events of this keydown will no longer be received.

INPUTS

id keydown to delete

EXAMPLE
RemoveKeydown(1)

Deletes keydown object 1.

Chapter 35: Legacy library 735

35.38 Return

NAME
Return – return to last Gosub() / OBSOLETE

SYNOPSIS
Return()

FUNCTION
Attention: This function is part of the Hollywood 1.x library. You should not use it any
longer. Please use functions instead of labels.

This function will return to the point where the last routine was gosub’ed from.

INPUTS
none

EXAMPLE
See Section 35.12 [Gosub], page 721.

35.39 SIZEWINDOW

NAME
SIZEWINDOW – user changed the window size / OBSOLETE

SYNOPSIS
Label(SIZEWINDOW)

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use InstallEventHandler() instead of it.

Hollywood will Gosub() to this label when the user changes the window size. If your
application shall support resizable windows, you must place some code after this label
which redraws/repositions your objects.

INPUTS
none

35.40 WhileKeyDown

NAME
WhileKeyDown – halt until key is up (V1.5) / OBSOLETE

SYNOPSIS
WhileKeyDown()

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

736 Hollywood manual

This function can be used after an ONKEYDOWN event occurred. If you call this
function, Hollywood will wait until the user releases the key which caused the event.

If you do not call this function after your Label(ONKEYDOWNx) you may receive
several events if the user holds down the key a bit longer.

INPUTS
none

35.41 WhileMouseDown

NAME
WhileMouseDown – halt until the mouse button is up / OBSOLETE

SYNOPSIS
WhileMouseDown()

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function must be called after a ONBUTTONCLICK event occurred. If you call
this function, Hollywood will wait until the user has finished his mouse button click. It
is absolutely necessary to call this function right after the ONBUTTONCLICK event
occurred because even if the user clicks the mouse only once, several events may be gen-
erated. To prevent this, call this function right after the ONBUTTONCLICK occurred.

INPUTS
none

EXAMPLE
See Section 35.5 [CreateButton], page 715.

35.42 WhileMouseOn

NAME
WhileMouseOn – halt until the user moves mouse out of a button / OBSOLETE

SYNOPSIS
WhileMouseOn()

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function can be called after a ONBUTTONOVER event occurred. If you call this
function, Hollywood will wait until the user moves the mouse out of the button it is
currently over. This is useful when you want to display a brush when the mouse is over
a button (hover effect).

Chapter 35: Legacy library 737

This function is optional after an ONBUTTONOVER event (other than the
WhileMouseDown() function which is required after a ONBUTTONCLICK event!)

INPUTS
none

EXAMPLE
See Section 35.5 [CreateButton], page 715.

35.43 WhileRightMouseDown

NAME
WhileRightMouseDown – halt until the right mouse button is up (V1.5) / OBSOLETE

SYNOPSIS
WhileRightMouseDown()

FUNCTION
Attention: This function is part of the Hollywood 1.x event library. You should not use
it any longer. Please use the functions of the new library from Hollywood 2.0 which is
much better.

This function must be called after a ONBUTTONRIGHTCLICK event occurred. If you
call this function, Hollywood will wait until the user has finished his mouse button click.
It is absolutely necessary to call this function right after the ONBUTTONRIGHTCLICK
event occurred because even if the user clicks the mouse only once, several events may be
generated. To prevent this, call this function right after the ONBUTTONRIGHTCLICK
occurred.

INPUTS
none

EXAMPLE
See Section 35.5 [CreateButton], page 715.

739

36 Locale library

36.1 Overview

Hollywood allows you to localize your programs by importing text strings from so-called
catalog files which you open using the OpenCatalog() function or the @CATALOG prepro-
cessor command. For compatibility reasons, these catalogs can be in the IFF CTLG format
established by Commodore in the early 1990s but this isn’t recommended because IFF CTLG

has no proper Unicode support and will only work correctly if the system’s locale matches
the catalog’s locale.

Thus, it is recommended to use Hollywood’s own catalog format instead. This alternative
catalog format is simply a plain text file that contains a list of catalog strings, one per line,
in the UTF-8 character encoding. If newline characters occur in a catalog string, you must
write them as "\n". Backslashes must be written as "\\". If you need to split a string
across multiple lines, append a single backslash at the end of the respective line. Such a
single backslash at the end of the line signals Hollywood that the string continues in the
next line. If there is no backslash at the end of the line, Hollywood knows that this is the
end of the string. Empty lines are ignored completely and can be included for readability
reasons.

The text file must be in the UTF-8 character encoding, with or without BOM. Comments
can be included by using a semicolon as the very first character in the line. This makes
Hollywood ignore the rest of the line. Semicolons at other positions in the line don’t have
any significance for the parser. If the first character of your string needs to be a semicolon,
you need to prefix it with a backslash to tell the parser that this is not a comment.

Here is a simple example of a catalog definition in Hollywood’s own catalog format:

; this is a comment

This is the first string!

;

This is the second string!

;

This is the third string\nand it has two lines!

;

This is the fourth string \

and it has only one line \

but it is split across four lines \

in the catalog file!

;

This is the fifth and last string!

To get a string from the catalog file, just call GetCatalogString() and pass the index of
the string you want to retrieve. For example, to get the fifth string from the catalog file
shown above, you’d have to do the following:

Print(GetCatalogString(4, "default string"))

The string passed in the second argument to GetCatalogString() is the default string and
it will be returned only if the requested string index could not be found in the catalog file.

740 Hollywood manual

36.2 CATALOG

NAME
CATALOG – preload a catalog for later use (V9.0)

SYNOPSIS
@CATALOG name$[, table]

FUNCTION
This preprocessor command can be used to preload the specified catalog in the user’s
language. If a catalog in the user’s language does not exist, this preprocessor com-
mand will not show an error. This is normal behaviour because you always have to
provide default English strings for every entry you try to get from a catalog using the
GetCatalogString() function. Thus, it’s not a problem if @CATALOG specifies a catalog
that doesn’t exist. In that case, GetCatalogString() will simply fall back to the default
English strings without throwing an error.

Note that there currently can only be a single catalog per application. Thus, @CATALOG
should only be used once per script. Also note that name$ must not be a filename but
the name of a catalog that is stored within a Hollywood catalog directory structure.
See Section 36.11 [OpenCatalog], page 755, for details on how such a Hollywood catalog
structure is organized.

The advantage of using @CATALOG instead of OpenCatalog() is that if you use @CATALOG,
the catalogs for all available languages will be linked into your executable or applet
when you compile your script. This makes it easier to distribute your project because
you don’t have to include the catalog directory structure with your application. Also,
when compiling Hollywood applets for mobile systems like Android or iOS, it’s much
better to have all external files linked into the applet.

In addition to the name$ parameter, @CATALOG also accepts an optional table argument.
The following fields in the table argument are currently available:

Link: Set this field to False if you do not want to have this catalog linked to your
executable/applet when you compile your script. This field defaults to True

which means that the catalog will be linked to your executable/applet when
Hollywood is in compile mode.

To load a catalog at runtime, use the OpenCatalog() function. See Section 36.11 [Open-
Catalog], page 755, for details.

INPUTS

name$ name of the catalog to open

table optional: table containing further options

EXAMPLE
@CATALOG "Hollywood.catalog"

; this is our default English catalog

def$ = {}

def$[0] = "Welcome to Hollywood!"

def$[1] = "Written by Andreas Falkenhahn"

Chapter 36: Locale library 741

def$[2] = "What do you wanna do?"

; if Hollywood.catalog is not available in the

; user’s language; the English strings will be

; used

For k = 0 To 2

c$[k] = GetCatalogString(k, def$[k])

Next

The code above opens "Hollywood.catalog" and prints the first three entries from that
catalog.

36.3 CloseCatalog

NAME
CloseCatalog – close an open catalog

SYNOPSIS
CloseCatalog()

FUNCTION
This function will close the currently opened catalog. You do not really have to call this
function, because Hollywood will close the catalog by itself when it terminates.

INPUTS
none

EXAMPLE
See Section 36.11 [OpenCatalog], page 755.

36.4 FormatDate

NAME
FormatDate – format date template (V10.0)

SYNOPSIS
d$ = FormatDate(fmt$, date$[, isdst])

FUNCTION
This function formats the date passed in date$ according to the format template passed
in fmt$ and returns the result. This allows you to convert date and time format templates
returned by GetLocaleInfo() to human-readable dates. The date string passed in date$

must be in the default date and time notation used by Hollywood:

dd-mmm-yyyy hh:mm:ss

The dd part is a two digit date specification (with leading zeros) and the mmm constituent
is a string with three characters identifying the month. This can be Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec. The yyyy is a four digit year specification
whereas hh specifies the hours, mm the minutes and ss the seconds.

742 Hollywood manual

The date template passed in date$ can contain string literals as well the following tokens:

%a Abbreviated weekday name

%A Weekday name

%b Abbreviated month name

%B Month name

%d Day number with leading zeros

%-d Day number without leading zeros

%H Hour using 24-hour style with leading zeros

%-H Hour using 24-hour style without leading zeros

%I Hour using 12-hour style with leading zeros

%-I Hour using 12-hour style without leading zeros

%m Month number with leading zeros

%-m Month number without leading zeros

%M Number of minutes with leading zeros

%-M Number of minutes without leading zeros

%S Number of seconds with leading zeros

%-S Number of seconds without leading zeros

%y Year using two digits with leading zeros

%-y Year using two digits without leading zeros

%Y Year using four digits with leading zeros

Note that depending on the platform Hollywood is running on some more tokens might
be supported but only the ones listed above are guaranteed to work on all platforms.

Only the tokens listed above will be replaced in fmt$. All other characters won’t be
replaced and will remain as string literals in the returned string. If you want to have a
percent character as a string literal in the date template string, you need to escape it by
using two percent characters (%%).

The optional argument isdst specifies whether or not daylight saving time is active at the
specified date. Normally, you don’t have to specify this argument because Hollywood will
automatically query this information from the timezone database. It is only necessary to
pass this information in case the specified time is ambiguous, i.e. when switching from
daylight saving time back to standard time, a certain period of time (typically an hour)
is repeated in the night. In Germany, for example, clocks are set back from 3am to 2am
when switching from daylight saving time to standard time. This means that the hour
between 2am and 3am happens twice: Once in daylight saving time, once in standard
time. The isdst argument allows you to specify which hour you are referring to.

INPUTS

fmt$ date template string

Chapter 36: Locale library 743

date$ date string in the Hollywood date notation

isdst optional: whether or not daylight saving time is active at the specified date
(defaults to -1 which means that this information should be retrieved from
the local timezone database)

RESULTS

d$ formatted date

EXAMPLE
d$ = FormatDate(GetLocaleInfo().DateTimeFormat, GetDate(#DATELOCAL))

DebugPrint(d$)

The code above prints the date and time formatted according to the rules of the current
locale.

36.5 GetCatalogString

NAME
GetCatalogString – get a string from a catalog

SYNOPSIS
s$ = GetCatalogString(id, default$)

FUNCTION
This function extracts the string with the number id from the currently opened catalog
file. If there is no open catalog, the string specified in default$ is returned.

INPUTS

id specifies which string to return (starting from 0)

default$ string to return if there is no open catalog or if there is no string with the
specified id

EXAMPLE
See Section 36.11 [OpenCatalog], page 755.

36.6 GetCountryInfo

NAME
GetCountryInfo – get information about country (V7.1)

SYNOPSIS
t = GetCountryInfo(ctry)

FUNCTION
This function can be used to retrieve additional information about a country. You have
to pass one of Hollywood’s country constants in the ctry argument. See Section 36.9
[GetSystemCountry], page 746, for a list of countries.

GetCountryInfo() will then return a table with the following fields initialized:

Alpha2: Alpha-2 country code as defined by ISO 3166-1.

744 Hollywood manual

Alpha3: Alpha-3 country code as defined by ISO 3166-1.

INPUTS

ctry one of the country constants defined by Hollywood (see above)

RESULTS

t table containing country information

EXAMPLE
t = GetCountryInfo(GetSystemCountry())

Print(t.Alpha2, t.Alpha3)

On a German system, this will print "DE" and "DEU".

36.7 GetLanguageInfo

NAME
GetLanguageInfo – get information about language (V7.1)

SYNOPSIS
t = GetLanguageInfo(lang)

FUNCTION
This function can be used to retrieve additional information about a language. You have
to pass one of Hollywood’s language constants in the lang argument. See Section 36.10
[GetSystemLanguage], page 751, for a list of languages.

GetLanguageInfo() will then return a table with the following fields initialized:

Code: Two letter language code as defined by ISO 639.

Name: The language’s ISO name.

INPUTS

lang one of the language constants defined by Hollywood (see above)

RESULTS

t table containing language information

EXAMPLE
t = GetLanguageInfo(GetSystemLanguage())

Print(t.Code, t.Name)

On a German system, this will print "DE" and "german".

36.8 GetLocaleInfo

NAME
GetLocaleInfo – get information about locale (V10.0)

SYNOPSIS
t = GetLocaleInfo()

Chapter 36: Locale library 745

FUNCTION
This function can be used to retrieve information about the currently active locale.
GetLocaleInfo() will then return a table with the following fields initialized:

DecimalPoint:

Contains the locale’s decimal point, e.g. "." on an English and "," on a
German system.

ThousandSeparator:

Contains the locale’s thousand separator, e.g. "," on an English and "." on
a German system.

Currency:

Contains the locale’s default currency symbol, e.g. "e" on a German system.

DateFormat:

Contains the long date format template for the current locale. See
Section 36.4 [FormatDate], page 741, for a description of the individual
template constituents.

ShortDateFormat:

Contains the short date format template for the current locale. See
Section 36.4 [FormatDate], page 741, for a description of the individual
template constituents.

TimeFormat:

Contains the time format template for the current locale. See Section 36.4
[FormatDate], page 741, for a description of the individual template con-
stituents.

DateTimeFormat:

Contains the combined date and time format template for the current locale.
See Section 36.4 [FormatDate], page 741, for a description of the individual
template constituents.

Days: Contains an array of the weekday names in the current locale, e.g. "Mon-
day", "Tuesday", etc.

AbDays: Contains an array of the abbreviated weekday names in the current locale,
e.g. "Mon", "Tue", etc.

Months: Contains an array of the month names in the current locale, e.g. "January",
"February", etc.

AbMonths:

Contains an array of the abbreviated month names in the current locale, e.g.
"Jan", "Feb", etc.

Language:

The language name in the locale’s language, e.g. "deutsch" on a German
system. Note that the exact string you get here depends on the host OS so
this is not really portable.

INPUTS
none

746 Hollywood manual

RESULTS

t table containing locale information

EXAMPLE
d$ = FormatDate(GetLocaleInfo().DateTimeFormat, GetDate(#DATELOCAL))

DebugPrint(d$)

The code above prints the date and time formatted according to the rules of the current
locale.

36.9 GetSystemCountry

NAME
GetSystemCountry – retrieve current user’s country (V5.0)

SYNOPSIS
ctry = GetSystemCountry()

FUNCTION
This function can be used to retrieve the country setting of the current system. The
following countries are currently supported:

#COUNTRY_UK (0)

#COUNTRY_USA (1)

#COUNTRY_AUSTRALIA (2)

#COUNTRY_BELGIUM (3)

#COUNTRY_BULGARIA (4)

#COUNTRY_BRAZIL (5)

#COUNTRY_CANADA (6)

#COUNTRY_CZECHREPUBLIC (7)

#COUNTRY_DENMARK (8)

#COUNTRY_GERMANY (9)

#COUNTRY_SPAIN (10)

#COUNTRY_FRANCE (11)

#COUNTRY_GREECE (12)

#COUNTRY_ITALY (13)

#COUNTRY_LIECHTENSTEIN (14)

#COUNTRY_LITHUANIA (15)

#COUNTRY_LUXEMBOURG (16)

#COUNTRY_HUNGARY (17)

#COUNTRY_MALTA (18)

#COUNTRY_MONACO (19)

#COUNTRY_NETHERLANDS (20)

#COUNTRY_NORWAY (21)

#COUNTRY_POLAND (22)

#COUNTRY_PORTUGAL (23)

#COUNTRY_ROMANIA (24)

#COUNTRY_RUSSIA (25)

#COUNTRY_SANMARINO (26)

Chapter 36: Locale library 747

#COUNTRY_SLOVAKIA (27)

#COUNTRY_SLOVENIA (28)

#COUNTRY_SWITZERLAND (29)

#COUNTRY_FINLAND (30)

#COUNTRY_SWEDEN (31)

#COUNTRY_TURKEY (32)

#COUNTRY_IRELAND (33)

#COUNTRY_AUSTRIA (34)

#COUNTRY_ICELAND (35)

#COUNTRY_ANDORRA (36)

#COUNTRY_UKRAINE (37)

#COUNTRY_UNKNOWN (38)

#COUNTRY_AFGHANISTAN (39)

#COUNTRY_ALANDISLANDS (40)

#COUNTRY_ALBANIA (41)

#COUNTRY_ALGERIA (42)

#COUNTRY_AMERICANSAMOA (43)

#COUNTRY_ANGOLA (44)

#COUNTRY_ANGUILLA (45)

#COUNTRY_ANTARCTICA (46)

#COUNTRY_ANTIGUAANDBARBUDA (47)

#COUNTRY_ARGENTINA (48)

#COUNTRY_ARMENIA (49)

#COUNTRY_ARUBA (50)

#COUNTRY_AZERBAIJAN (51)

#COUNTRY_BAHAMAS (52)

#COUNTRY_BAHRAIN (53)

#COUNTRY_BANGLADESH (54)

#COUNTRY_BARBADOS (55)

#COUNTRY_BELARUS (56)

#COUNTRY_BELIZE (57)

#COUNTRY_BENIN (58)

#COUNTRY_BERMUDA (59)

#COUNTRY_BHUTAN (60)

#COUNTRY_BOLIVIA (61)

#COUNTRY_BESISLANDS (62)

#COUNTRY_BOSNIAANDHERZEGOVINA (63)

#COUNTRY_BOTSWANA (64)

#COUNTRY_BOUVETISLAND (65)

#COUNTRY_BRUNEI (66)

#COUNTRY_BURKINAFASO (67)

#COUNTRY_BURUNDI (68)

#COUNTRY_CAMBODIA (69)

#COUNTRY_CAMEROON (70)

#COUNTRY_CAPEVERDE (71)

#COUNTRY_CAYMANISLANDS (72)

#COUNTRY_CENTRALAFRICANREPUBLIC (73)

748 Hollywood manual

#COUNTRY_CHAD (74)

#COUNTRY_CHILE (75)

#COUNTRY_CHINA (76)

#COUNTRY_CHRISTMASISLAND (77)

#COUNTRY_COCOSISLANDS (78)

#COUNTRY_COLOMBIA (79)

#COUNTRY_COMOROS (80)

#COUNTRY_CONGO (81)

#COUNTRY_COOKISLANDS (82)

#COUNTRY_COSTARICA (83)

#COUNTRY_IVORYCOAST (84)

#COUNTRY_CROATIA (85)

#COUNTRY_CUBA (86)

#COUNTRY_CURACAO (87)

#COUNTRY_CYPRUS (88)

#COUNTRY_DJIBOUTI (89)

#COUNTRY_DOMINICA (90)

#COUNTRY_DOMINICANREPUBLIC (91)

#COUNTRY_DRCONGO (92)

#COUNTRY_ECUADOR (93)

#COUNTRY_EGYPT (94)

#COUNTRY_ELSALVADOR (95)

#COUNTRY_EQUATORIALGUINEA (96)

#COUNTRY_ERITREA (97)

#COUNTRY_ESTONIA (98)

#COUNTRY_ETHIOPIA (99)

#COUNTRY_FALKLANDISLANDS (100)

#COUNTRY_FAROEISLANDS (101)

#COUNTRY_FIJI (102)

#COUNTRY_FRENCHGUIANA (103)

#COUNTRY_FRENCHPOLYNESIA (104)

#COUNTRY_GABON (105)

#COUNTRY_GAMBIA (106)

#COUNTRY_GEORGIA (107)

#COUNTRY_GHANA (108)

#COUNTRY_GIBRALTAR (109)

#COUNTRY_GREENLAND (110)

#COUNTRY_GRENADA (111)

#COUNTRY_GUADELOUPE (112)

#COUNTRY_GUAM (113)

#COUNTRY_GUATEMALA (114)

#COUNTRY_GUERNSEY (115)

#COUNTRY_GUINEA (116)

#COUNTRY_GUINEABISSAU (117)

#COUNTRY_GUYANA (118)

#COUNTRY_HAITI (119)

#COUNTRY_HOLYSEE (120)

Chapter 36: Locale library 749

#COUNTRY_HONDURAS (121)

#COUNTRY_HONGKONG (122)

#COUNTRY_INDIA (123)

#COUNTRY_INDONESIA (124)

#COUNTRY_IRAN (125)

#COUNTRY_IRAQ (126)

#COUNTRY_ISLEOFMAN (127)

#COUNTRY_ISRAEL (128)

#COUNTRY_JAMAICA (129)

#COUNTRY_JAPAN (130)

#COUNTRY_JERSEY (131)

#COUNTRY_JORDAN (132)

#COUNTRY_KAZAKHSTAN (133)

#COUNTRY_KENYA (134)

#COUNTRY_KIRIBATI (135)

#COUNTRY_NORTHKOREA (136)

#COUNTRY_SOUTHKOREA (137)

#COUNTRY_KUWAIT (138)

#COUNTRY_KYRGYZSTAN (139)

#COUNTRY_LAOS (140)

#COUNTRY_LATVIA (141)

#COUNTRY_LEBANON (142)

#COUNTRY_LESOTHO (143)

#COUNTRY_LIBERIA (144)

#COUNTRY_LIBYA (145)

#COUNTRY_MACAO (146)

#COUNTRY_MACEDONIA (147)

#COUNTRY_MADAGASCAR (148)

#COUNTRY_MALAWI (149)

#COUNTRY_MALAYSIA (150)

#COUNTRY_MALDIVES (151)

#COUNTRY_MALI (152)

#COUNTRY_MARSHALLISLANDS (153)

#COUNTRY_MARTINIQUE (154)

#COUNTRY_MAURITANIA (155)

#COUNTRY_MAURITIUS (156)

#COUNTRY_MAYOTTE (157)

#COUNTRY_MEXICO (158)

#COUNTRY_MICRONESIA (159)

#COUNTRY_MOLDOVA (160)

#COUNTRY_MONGOLIA (161)

#COUNTRY_MONTENEGRO (162)

#COUNTRY_MONTSERRAT (163)

#COUNTRY_MOROCCO (164)

#COUNTRY_MOZAMBIQUE (165)

#COUNTRY_MYANMAR (166)

#COUNTRY_NAMIBIA (167)

750 Hollywood manual

#COUNTRY_NAURU (168)

#COUNTRY_NEPAL (169)

#COUNTRY_NEWCALEDONIA (170)

#COUNTRY_NEWZEALAND (171)

#COUNTRY_NICARAGUA (172)

#COUNTRY_NIGER (173)

#COUNTRY_NIGERIA (174)

#COUNTRY_NIUE (175)

#COUNTRY_NORFOLKISLAND (176)

#COUNTRY_OMAN (177)

#COUNTRY_PAKISTAN (178)

#COUNTRY_PALAU (179)

#COUNTRY_PALESTINE (180)

#COUNTRY_PANAMA (181)

#COUNTRY_PAPUANEWGUINEA (182)

#COUNTRY_PARAGUAY (183)

#COUNTRY_PERU (184)

#COUNTRY_PHILIPPINES (185)

#COUNTRY_PITCAIRN (186)

#COUNTRY_PUERTORICO (187)

#COUNTRY_QATAR (188)

#COUNTRY_REUNION (189)

#COUNTRY_RWANDA (190)

#COUNTRY_SAINTBARTHELEMY (191)

#COUNTRY_SAINTHELENA (192)

#COUNTRY_SAINTKITTSANDNEVIS (193)

#COUNTRY_SAINTLUCIA (194)

#COUNTRY_SAINTVINCENT (195)

#COUNTRY_SAMOA (196)

#COUNTRY_SAOTOMEANDPRINCIPE (197)

#COUNTRY_SAUDIARABIA (198)

#COUNTRY_SENEGAL (199)

#COUNTRY_SERBIA (200)

#COUNTRY_SEYCHELLES (201)

#COUNTRY_SIERRALEONE (202)

#COUNTRY_SINGAPORE (203)

#COUNTRY_SOLOMONISLANDS (204)

#COUNTRY_SOMALIA (205)

#COUNTRY_SOUTHAFRICA (206)

#COUNTRY_SOUTHSUDAN (207)

#COUNTRY_SRILANKA (208)

#COUNTRY_SUDAN (209)

#COUNTRY_SURINAME (210)

#COUNTRY_SWAZILAND (211)

#COUNTRY_SYRIA (212)

#COUNTRY_TAIWAN (213)

#COUNTRY_TAJIKISTAN (214)

Chapter 36: Locale library 751

#COUNTRY_TANZANIA (215)

#COUNTRY_THAILAND (216)

#COUNTRY_TIMOR (217)

#COUNTRY_TOGO (218)

#COUNTRY_TONGA (219)

#COUNTRY_TRINIDADANDTOBAGO (220)

#COUNTRY_TUNISIA (221)

#COUNTRY_TURKMENISTAN (222)

#COUNTRY_TUVALU (223)

#COUNTRY_UGANDA (224)

#COUNTRY_UAE (225)

#COUNTRY_URUGUAY (226)

#COUNTRY_UZBEKISTAN (227)

#COUNTRY_VANUATU (228)

#COUNTRY_VENEZUELA (229)

#COUNTRY_VIETNAM (230)

#COUNTRY_YEMEN (231)

#COUNTRY_ZAMBIA (232)

INPUTS
none

RESULTS

ctry country setting of current user

36.10 GetSystemLanguage

NAME
GetSystemLanguage – retrieve current user’s language (V5.0)

SYNOPSIS
lang = GetSystemLanguage()

FUNCTION
This function can be used to retrieve the default language of the current user. The
following languages are currently supported:

#LANGUAGE_ENGLISH (0)

#LANGUAGE_GERMAN (1)

#LANGUAGE_DUTCH (2)

#LANGUAGE_ITALIAN (3)

#LANGUAGE_FRENCH (4)

#LANGUAGE_SPANISH (5)

#LANGUAGE_PORTUGUESE (6)

#LANGUAGE_SWEDISH (7)

#LANGUAGE_DANISH (8)

#LANGUAGE_FINNISH (9)

#LANGUAGE_NORWEGIAN (10)

#LANGUAGE_POLISH (11)

752 Hollywood manual

#LANGUAGE_HUNGARIAN (12)

#LANGUAGE_GREEK (13)

#LANGUAGE_CZECH (14)

#LANGUAGE_TURKISH (15)

#LANGUAGE_CROATIAN (16)

#LANGUAGE_RUSSIAN (17)

#LANGUAGE_UNKNOWN (18)

#LANGUAGE_ABKHAZIAN (19)

#LANGUAGE_AFAR (20)

#LANGUAGE_AFRIKAANS (21)

#LANGUAGE_AKAN (22)

#LANGUAGE_ALBANIAN (23)

#LANGUAGE_AMHARIC (24)

#LANGUAGE_ARABIC (25)

#LANGUAGE_ARAGONESE (26)

#LANGUAGE_ARMENIAN (27)

#LANGUAGE_ASSAMESE (28)

#LANGUAGE_AVARIC (29)

#LANGUAGE_AVESTAN (30)

#LANGUAGE_AYMARA (31)

#LANGUAGE_AZERBAIJANI (32)

#LANGUAGE_BAMBARA (33)

#LANGUAGE_BASHKIR (34)

#LANGUAGE_BASQUE (35)

#LANGUAGE_BELARUSIAN (36)

#LANGUAGE_BENGALI (37)

#LANGUAGE_BIHARI (38)

#LANGUAGE_BISLAMA (39)

#LANGUAGE_BOSNIAN (40)

#LANGUAGE_BRETON (41)

#LANGUAGE_BULGARIAN (42)

#LANGUAGE_BURMESE (43)

#LANGUAGE_CATALAN (44)

#LANGUAGE_CHAMORRO (45)

#LANGUAGE_CHECHEN (46)

#LANGUAGE_CHICHEWA (47)

#LANGUAGE_CHINESE (48)

#LANGUAGE_CHUVASH (49)

#LANGUAGE_CORNISH (50)

#LANGUAGE_CORSICAN (51)

#LANGUAGE_CREE (52)

#LANGUAGE_DIVEHI (53)

#LANGUAGE_DZONGKHA (54)

#LANGUAGE_ESPERANTO (55)

#LANGUAGE_ESTONIAN (56)

#LANGUAGE_EWE (57)

#LANGUAGE_FAROESE (58)

Chapter 36: Locale library 753

#LANGUAGE_FIJIAN (59)

#LANGUAGE_FULAH (60)

#LANGUAGE_GALICIAN (61)

#LANGUAGE_GEORGIAN (62)

#LANGUAGE_GREENLANDIC (63)

#LANGUAGE_GUARANI (64)

#LANGUAGE_GUJARATI (65)

#LANGUAGE_HAITIAN (66)

#LANGUAGE_HAUSA (67)

#LANGUAGE_HEBREW (68)

#LANGUAGE_HERERO (69)

#LANGUAGE_HINDI (70)

#LANGUAGE_HIRIMOTU (71)

#LANGUAGE_INTERLINGUA (72)

#LANGUAGE_INDONESIAN (73)

#LANGUAGE_INTERLINGUE (74)

#LANGUAGE_IRISH (75)

#LANGUAGE_IGBO (76)

#LANGUAGE_INUPIAQ (77)

#LANGUAGE_IDO (78)

#LANGUAGE_ICELANDIC (79)

#LANGUAGE_INUKTITUT (80)

#LANGUAGE_JAPANESE (81)

#LANGUAGE_JAVANESE (82)

#LANGUAGE_KANNADA (83)

#LANGUAGE_KANURI (84)

#LANGUAGE_KASHMIRI (85)

#LANGUAGE_KAZAKH (86)

#LANGUAGE_CENTRALKHMER (87)

#LANGUAGE_KIKUYU (88)

#LANGUAGE_KINYARWANDA (89)

#LANGUAGE_KIRGHIZ (90)

#LANGUAGE_KOMI (91)

#LANGUAGE_KONGO (92)

#LANGUAGE_KOREAN (93)

#LANGUAGE_KURDISH (94)

#LANGUAGE_KUANYAMA (95)

#LANGUAGE_LATIN (96)

#LANGUAGE_LUXEMBOURGISH (97)

#LANGUAGE_GANDA (98)

#LANGUAGE_LIMBURGAN (99)

#LANGUAGE_LINGALA (100)

#LANGUAGE_LAO (101)

#LANGUAGE_LITHUANIAN (102)

#LANGUAGE_LUBAKATANGA (103)

#LANGUAGE_LATVIAN (104)

#LANGUAGE_MANX (105)

754 Hollywood manual

#LANGUAGE_MACEDONIAN (106)

#LANGUAGE_MALAGASY (107)

#LANGUAGE_MALAY (108)

#LANGUAGE_MALAYALAM (109)

#LANGUAGE_MALTESE (110)

#LANGUAGE_MAORI (111)

#LANGUAGE_MARATHI (112)

#LANGUAGE_MARSHALLESE (113)

#LANGUAGE_MONGOLIAN (114)

#LANGUAGE_NAURU (115)

#LANGUAGE_NAVAJO (116)

#LANGUAGE_NORTHNDEBELE (117)

#LANGUAGE_NEPALI (118)

#LANGUAGE_NDONGA (119)

#LANGUAGE_NORWEGIANBOKMAL (120)

#LANGUAGE_NORWEGIANNYNORSK (121)

#LANGUAGE_SICHUANYI (122)

#LANGUAGE_SOUTHNDEBELE (123)

#LANGUAGE_OCCITAN (124)

#LANGUAGE_OJIBWA (125)

#LANGUAGE_CHURCHSLAVIC (126)

#LANGUAGE_OROMO (127)

#LANGUAGE_ORIYA (128)

#LANGUAGE_OSSETIAN (129)

#LANGUAGE_PANJABI (130)

#LANGUAGE_PALI (131)

#LANGUAGE_PERSIAN (132)

#LANGUAGE_PASHTO (133)

#LANGUAGE_QUECHUA (134)

#LANGUAGE_ROMANSH (135)

#LANGUAGE_RUNDI (136)

#LANGUAGE_ROMANIAN (137)

#LANGUAGE_SANSKRIT (138)

#LANGUAGE_SARDINIAN (139)

#LANGUAGE_SINDHI (140)

#LANGUAGE_NORTHERNSAMI (141)

#LANGUAGE_SAMOAN (142)

#LANGUAGE_SANGO (143)

#LANGUAGE_SERBIAN (144)

#LANGUAGE_GAELIC (145)

#LANGUAGE_SHONA (146)

#LANGUAGE_SINHALA (147)

#LANGUAGE_SLOVAK (148)

#LANGUAGE_SLOVENIAN (149)

#LANGUAGE_SOMALI (150)

#LANGUAGE_SOUTHERNSOTHO (151)

#LANGUAGE_SUNDANESE (152)

Chapter 36: Locale library 755

#LANGUAGE_SWAHILI (153)

#LANGUAGE_SWATI (154)

#LANGUAGE_TAMIL (155)

#LANGUAGE_TELUGU (156)

#LANGUAGE_TAJIK (157)

#LANGUAGE_THAI (158)

#LANGUAGE_TIGRINYA (159)

#LANGUAGE_TIBETAN (160)

#LANGUAGE_TURKMEN (161)

#LANGUAGE_TAGALOG (162)

#LANGUAGE_TSWANA (163)

#LANGUAGE_TONGA (164)

#LANGUAGE_TSONGA (165)

#LANGUAGE_TATAR (166)

#LANGUAGE_TWI (167)

#LANGUAGE_TAHITIAN (168)

#LANGUAGE_UIGHUR (169)

#LANGUAGE_UKRAINIAN (170)

#LANGUAGE_URDU (171)

#LANGUAGE_UZBEK (172)

#LANGUAGE_VENDA (173)

#LANGUAGE_VIETNAMESE (174)

#LANGUAGE_WALLOON (175)

#LANGUAGE_WELSH (176)

#LANGUAGE_WOLOF (177)

#LANGUAGE_WESTERNFRISIAN (178)

#LANGUAGE_XHOSA (179)

#LANGUAGE_YIDDISH (180)

#LANGUAGE_YORUBA (181)

#LANGUAGE_ZHUANG (182)

#LANGUAGE_ZULU (183)

INPUTS
none

RESULTS

lang default language of current user

36.11 OpenCatalog

NAME
OpenCatalog – open a locale catalog

SYNOPSIS
OpenCatalog(name$[, version])

756 Hollywood manual

FUNCTION
This function tries to open the catalog specified by name$ in the user’s language. If
a catalog in the user’s language does not exist, this function will not fail. You have to
specify alternative English strings in the GetCatalogString() function that will be used
if there is no catalog in the user’s language.

By default, Hollywood will search for catalogs inside a sub-directory named "Catalogs"
inside the current directory. For example, if the current user’s language is #LANGUAGE_
GERMAN and you try to open "MyProgram.catalog" using OpenCatalog(), Hollywood
will look in the following places for the catalog:

<current-directory>/Catalogs/deutsch/MyProgram.catalog

<current-directory>/Catalogs/german/MyProgram.catalog

If the current user’s language is #LANGUAGE_FRENCH, Hollywood will look in these places
for the catalog:

<current-directory>/Catalogs/français/MyProgram.catalog

<current-directory>/Catalogs/french/MyProgram.catalog

Note that on AmigaOS and compatibles, Hollywood will also scan Locale:Catalogs for
the catalog.

Note that it is recommended to use international names for the language sub-directory,
i.e. "german" instead of "deutsch" and "french" instead of "français". The native names
are only supported for compatibility reasons with AmigaOS-based systems.

The catalog specified in name$ can be either in the IFF CTLG format developed by Com-
modore, or it can be in a platform-neutral format defined by Hollywood. It is rec-
ommended to use Hollywood’s platform-neutral format because IFF CTLG doesn’t sup-
port Unicode and has some other restrictions and potential compatibility issues. See
Section 36.1 [Catalog format], page 739, for details.

This command is also available from the preprocessor. Use @CATALOG to load catalogs
from the preprocessor.

INPUTS

name$ catalog to open

version optional: version that the catalog must have at least; if omitted this function
will accept any version

EXAMPLE
OpenCatalog("Hollywood.catalog")

; this is our default English catalog

def$ = {}

def$[0] = "Welcome to Hollywood!"

def$[1] = "Written by Andreas Falkenhahn"

def$[2] = "What do you want to do?"

; if Hollywood.catalog is not available in the

; user’s language; the English strings will be

; used

For k = 0 To 2

757

c$[k] = GetCatalogString(k, def$[k])

Next

CloseCatalog()

The code above opens "Hollywood.catalog" and prints the first three entries from that
catalog.

759

37 Math library

37.1 Abs

NAME
Abs – return absolute value (V1.5)

SYNOPSIS
result = Abs(val)

FUNCTION
This function returns the absolute value of val.

INPUTS

val source value

RESULTS

result absolute value of val

37.2 ACos

NAME
ACos – calculate arccosine (V2.0)

SYNOPSIS
result = ACos(x)

FUNCTION
Calculates the arccosine of x.

INPUTS

x value whose arccosine is to be calculated

RESULTS

result arccossine of x

37.3 Add

NAME
Add – add two values

SYNOPSIS
result = Add(value1, value2)

FUNCTION
Adds value2 to value1 and returns the result.

INPUTS

value1 base value

760 Hollywood manual

value2 number to add

RESULTS

result result of the addition

EXAMPLE
a=99

a=Add(a,1)

Print(a)

This will print "100" to the screen.

37.4 ASin

NAME
ASin – calculate arcsine (V2.0)

SYNOPSIS
result = ASin(x)

FUNCTION
Calculates the arcsine of x.

INPUTS

x value whose arcsine is to be calculated

RESULTS

result arcsine of x

37.5 ATan

NAME
ATan – calculate arctangent (V2.0)

SYNOPSIS
result = ATan(x)

FUNCTION
Calculates the arctangent of x.

INPUTS

x value whose arctangent is to be calculated

RESULTS

result arctangent of x

Chapter 37: Math library 761

37.6 ATan2

NAME
ATan2 – calculate arctangent of y/x (V2.0)

SYNOPSIS
result = ATan2(y, x)

FUNCTION
Calculates the arctangent of y/x. If x is 0, ATan2() returns 0.

INPUTS

y denominator

x numerator

RESULTS

result arctangent of y/x

37.7 BitClear

NAME
BitClear – clear a bit (V2.0)

SYNOPSIS
n = BitClear(x, b)

FUNCTION
Clears bit number b in x.

INPUTS

x source value

b bit to clear (0-31)

RESULTS

n cleared value

EXAMPLE
Print(BinStr(BitClear(Val("%11111111"), 2)))

The code above clears bit number 2 in the value %11111111 which results in the value
%11111011.

37.8 BitComplement

NAME
BitComplement – complement a value (V2.0)

SYNOPSIS
n = BitComplement(x)

762 Hollywood manual

FUNCTION
This function inverts all bits in x. x is treated as a 32-bit integer.

INPUTS

x source value

RESULTS

n inverted value

EXAMPLE
Print(BinStr(BitComplement(Val("%11110000"))))

The code above inverts the value %11110000 and returns it to you as a 32-bit integer
value (%11111111111111111111111100001111)

37.9 BitSet

NAME
BitSet – set a bit (V2.0)

SYNOPSIS
n = BitSet(x, b)

FUNCTION
Sets bit number b in x and returns the result.

INPUTS

x source value

b bit to set

RESULTS

n result of operation

EXAMPLE
Print(BinStr(BitSet(Val("%10111111"), 6)))

The code above sets bit 6 in the value %10111111 and returns the result which is
%11111111.

37.10 BitTest

NAME
BitTest – test if a bit is set (V2.0)

SYNOPSIS
bool = BitTest(x, b)

FUNCTION
Tests if bit number b is set in x and returns True if this is the case, False otherwise.

INPUTS

x source value

Chapter 37: Math library 763

b bit to test

RESULTS

bool True if the bit is set, else False

EXAMPLE
Print(BitTest(Val("%10101111"), 4))

Returns False because bit number 4 is not set in %10101111.

37.11 BitXor

NAME
BitXor – bitwise xor two values (V2.0)

SYNOPSIS
r = BitXor(a, b)

FUNCTION
Performs a bitwise xor operation on a and b and returns the result. The exclusive-or
operation will set each bit in the resulting value only if the corresponding bit is set in
one of the source values. If the bit is set in both source values, it will not be set in the
resulting value.

INPUTS

a source value 1

b source value 2

RESULTS

r result of the bitwise xor

EXAMPLE
Print(BinStr(BitXor(Val("%11010001"), Val("%10110010")))

Performs exclusive-or on the values %11010001 and %10110010 which results in the value
%01100011.

37.12 Cast

NAME
Cast – cast a number to a new signed/unsigned type (V3.0)

SYNOPSIS
result = Cast(val, sign, type)

FUNCTION
This function can be used to cast a value to a different type. This is normally not
needed in Hollywood because Hollywood only knows one variable type for numbers (all
numbers in Hollywood are stored as signed 64-bit floating point values; Hollywood does
not differentiate between byte, short, integer, and floating point types internally). Thus,

764 Hollywood manual

what you receive in result will not really be a variable of the type you have cast it to,
but it will just be clipped to the boundaries of the variable type you specify.

However, this function can come in quite handy when it comes to do signed and unsigned
conversions. You might want to know which number you get when you want to convert
41234 to a signed short value. You can use this function to do that.

Cast() accepts three arguments: The first argument is the value that shall be cast, the
second argument specifies whether or not you want a signed value and must be either
True (= cast to signed) or False (= cast to unsigned). The last argument finally specifies
the type the value shall be cast to. This can be #INTEGER (32-bit), #SHORT (16-bit) or
#BYTE (8-bit).

INPUTS

val source value to be cast

sign True (signed cast) or False (unsigned cast)

type destination type for the value (#INTEGER, #SHORT or #BYTE)

RESULTS

result result of the cast operation

EXAMPLE
Print(Cast(41234, TRUE, #SHORT))

The code above casts the number 41234 to a signed short (16-bit) value and prints the
result which is -(2^16-41234) = -24302.

37.13 Ceil

NAME
Ceil – calculate ceiling of a value (V2.0)

SYNOPSIS
result = Ceil(x)

FUNCTION
Calculates the ceiling of x. The ceiling of a value is the smallest integer that is greater
than or equal to it, e.g. the ceiling of 1.5 is 2, the ceiling of -1.5 is -1.

INPUTS

x value whose ceiling is to be calculated

RESULTS

result ceiling of x

37.14 Cos

NAME
Cos – calculate cosine (V1.5)

Chapter 37: Math library 765

SYNOPSIS
result = Cos(x)

FUNCTION
Calculates the cosine of the angle x.

INPUTS

x angle in radians

RESULTS

result cosine of x

37.15 Deg

NAME
Deg – convert radians to degrees (V2.0)

SYNOPSIS
result = Deg(x)

FUNCTION
Converts the radians specified in x to degrees.

INPUTS

x radian value which should be converted to degrees

RESULTS

result degrees of x

37.16 Div

NAME
Div – divide value by a factor

SYNOPSIS
result = Div(value1, value2)

FUNCTION
Divides value1 by value2 and returns the result.

Note that although the division will use floating point precision, value2 must not be 0.
If you need to divide by zero in floating point, use RawDiv() instead. See Section 37.40
[RawDiv], page 776, for details.

INPUTS

value1 numerator

value2 denominator

RESULTS

result result of the division

766 Hollywood manual

EXAMPLE
a=16

Div(a,4)

Print(a)

This will print "4" to the screen.

37.17 EndianSwap

NAME
EndianSwap – swap byte order of a value (V6.0)

SYNOPSIS
result = EndianSwap(val, bits)

FUNCTION
This function swaps the byte order in val. The additional parameter bits specifies how
many bits should be taken into account and can be either 16 or 32.

INPUTS

val input value

bits operation length in bits

RESULTS

result swapped bytes

EXAMPLE
DebugPrint(HexStr(EndianSwap($ABCD, 16)))

This prints $CDAB.

37.18 Exp

NAME
Exp – calculate the exponential of a value (V2.0)

SYNOPSIS
result = Exp(x)

FUNCTION
Calculates the exponential value of x (e ^ x).

INPUTS

x value whose exponential is to be calculated

RESULTS

result natural exponential of x

Chapter 37: Math library 767

37.19 Floor

NAME
Floor – calculate the floor of a value (V2.0)

SYNOPSIS
result = Floor(x)

FUNCTION
Calculates the floor of x. The floor of a value is the largest integer that is less than or
equal to it, e.g. the floor for 1.5 is 1, the floor for -1.5 is -2.

INPUTS

x value whose floor is to be calculated

RESULTS

result floor of x

37.20 Frac

NAME
Frac – return fractional part of a float (V1.5)

SYNOPSIS
result = Frac(val)

FUNCTION
This function returns the fractional part of a float.

INPUTS

val source value

RESULTS

result fractional part of val

EXAMPLE
a = Frac(3.14156)

The variable a is set to 0.14156.

37.21 FrExp

NAME
FrExp – extract mantissa and exponent from real number (V2.0)

SYNOPSIS
m, exp = FrExp(x)

FUNCTION
This function can be used to extract the mantissa and exponent of x. The mantissa is
returned in the first return value, the exponent in the second.

768 Hollywood manual

INPUTS

x floating point value to use

RESULTS

m mantissa of floating point value

exp exponent of floating point value

37.22 Hypot

NAME
Hypot – calculate the hypotenuse (V5.0)

SYNOPSIS
h = Hypot(x, y)

FUNCTION
This function can be used to calculate the hypotenuse of a right triangle. You have to
pass the length of the two sides in x and y. A call to Hypot() is the same as the square
root of x*x + y*y.

INPUTS

x length of triangle side

y length of triangle side

RESULTS

h hypotenuse of triangle

37.23 Int

NAME
Int – return integer part of a float (V1.5)

SYNOPSIS
result = Int(val)

FUNCTION
This function returns the integer part of a floating point number.

INPUTS

val source value

RESULTS

result integer part of val

EXAMPLE
a = Int(4.5)

This call returns 4.

Chapter 37: Math library 769

37.24 IsFinite

NAME
IsFinite – check for finiteness (V9.0)

SYNOPSIS
result = IsFinite(x)

FUNCTION
Checks if x is a finite value. A finite value is defined as any floating point value that is
neither NaN nor infinity.

See Section 37.26 [IsNan], page 770, for details.

See Section 37.25 [IsInf], page 769, for details.

INPUTS

x value to check

RESULTS

result True if x is a finite value, False otherwise

EXAMPLE
a=RawDiv(1,0) ; infinity, non-finite

b=RawDiv(0,0) ; NaN, non-finite

c=RawDiv(5,2) ; 2.5, finite

Print(IsFinite(a), IsFinite(b), IsFinite(c))

This will print "0 0 1" to the screen because the first two values are non-finite whereas
the last value is finite. Note that we need to use RawDiv() here because the division
operator as well as Div() will not allow a division by zero.

37.25 IsInf

NAME
IsInf – check for infinity (V9.0)

SYNOPSIS
result = IsInf(x)

FUNCTION
Checks if x is an infinity value (positive or negative). Positive and negative infinity values
are generated when dividing 1/-1 by zero in floating point.

Hollywood also has a predefined constant named #INF that contains the infinity value
but the preferred way of checking against infinity is using IsInf().

INPUTS

x value to check

RESULTS

result True if x is an infinity value, False otherwise

770 Hollywood manual

EXAMPLE
a=RawDiv(1,0)

Print(IsInf(a))

This will print "1" to the screen because the division 1/0 will yield an infinity value.
Note that we need to use RawDiv() here because the division operator as well as Div()
will not allow a division by zero.

37.26 IsNan

NAME
IsNan – check if value is NaN (V9.0)

SYNOPSIS
result = IsNan(x)

FUNCTION
Checks if x is a special NaN value (not-a-number). NaN is a special return value for
undefined floating point numbers such as the result of 0/0 or the square root of negative
numbers.

Note that you should not test for NaN by comparing a number with itself, expecting to
get False. This won’t work on all platforms. Using IsNan() is the only portable way
to check if a value is NaN.

The value of NaN is also in a predefined constant named #NAN but due to the design of
Hollywood’s parser you may only access this value using the GetConstant() function.
Using it literally in a script, i.e. outside a string, will fail.

INPUTS

x value to check

RESULTS

result True if x is a NaN value, False otherwise

EXAMPLE
a=RawDiv(0,0)

Print(IsNan(a))

This will print "1" to the screen because the result of 0/0 is NaN. Note that we need
to use RawDiv() here because the division operator as well as Div() will not allow a
division by zero.

37.27 Ld

NAME
Ld – calculate base-2 logarithm (V1.5)

SYNOPSIS
result = Ld(val)

Chapter 37: Math library 771

FUNCTION
This function calculates and returns the base-2 logarithm of val.

INPUTS

val source value

RESULTS

result base-2 logarithm of val

EXAMPLE
a = Ld(8)

This returns 3.

37.28 LdExp

NAME
LdExp – compute real number from mantissa and exponent (V2.0)

SYNOPSIS
r = LdExp(m, exp)

FUNCTION
This function can be used to compute a real number from the specified mantissa and
exponent. It returns the value resulting from multiplying m by 2 raised to the power of
exp.

INPUTS

m mantissa

exp exponent

RESULTS

r real number result

37.29 Limit

NAME
Limit – limit the range of a number (V2.0)

SYNOPSIS
n = Limit(x, low, high)

FUNCTION
Limits the range of x. If x is greater than or equal to low and less than or equal to high,
the value of x is returned. If x is less than low, then low is returned. If x is greater than
high, then high is returned.

This function ensures that the value of x stays in the boundaries defined by low and
high.

772 Hollywood manual

INPUTS

x value to examine

RESULTS

n result of limit operation

37.30 Ln

NAME
Ln – calculate natural logarithm (base e) (V1.5)

SYNOPSIS
result = Ln(val)

FUNCTION
This function calculates and returns the natural logarithm of val (using base e).

INPUTS

val source value

RESULTS

result natural logarithm of val

37.31 Log

NAME
Log – calculate logarithm for any base (V1.5)

SYNOPSIS
result = Log(val, base)

FUNCTION
This function calculates and returns the logarithm for any base of val.

INPUTS

val source value

base logarithm base

RESULTS

result logarithm of val from base

EXAMPLE
a = Log(100, 10)

This returns 2.

Chapter 37: Math library 773

37.32 Max

NAME
Max – return maximum value (V1.5)

SYNOPSIS
result = Max(a, b, ...)

FUNCTION
This function compares a and b and returns the value which is greater.

New in V2.0: You can pass any number of arguments to this function now. It will always
return the maximum value of all input values.

INPUTS

a value a

b value b

... any number of additional values

RESULTS

result maximum value

EXAMPLE
a = Max(9, 10)

This returns 10.

37.33 Min

NAME
Min – return minimum value (V1.5)

SYNOPSIS
result = Min(a, b, ...)

FUNCTION
This function compares a and b and returns the value which is smaller.

New in V2.0: You can pass any number of arguments to this function now. It will always
return the minimum value of all input values.

INPUTS

a value a

b value b

... any number of additional values

RESULTS

result minimum value

EXAMPLE
a = Min(9, 10)

This returns 9.

774 Hollywood manual

37.34 Mod

NAME
Mod – calculate remainder (V1.5)

SYNOPSIS
result = Mod(a, b)

FUNCTION
This function calculates the remainder of the division a / b.

INPUTS

a numerator

b denominator

RESULTS

result remainder of division

EXAMPLE
a = Mod(30, 4)

This returns 2 because 30 / 4 is 7 with a remainder of 2.

37.35 Mul

NAME
Mul – multiply two values

SYNOPSIS
result = Mul(value1, value2)

FUNCTION
Multiplies value1 by value2 and returns the result.

INPUTS

value1 source value

value2 multiplier

RESULTS

result result of multiplication

EXAMPLE
a=5

a=Mul(a,5)

Print(a)

This will print "25" to the screen.

Chapter 37: Math library 775

37.36 NearlyEqual

NAME
NearlyEqual – check for near equality (V10.0)

SYNOPSIS
result = NearlyEqual(x, y)

FUNCTION
This function compares x and y and returns True if they are nearly equal. This function
is only useful for floating point values. The advantage of this function over Hollywood’s
equality operator is that comparing floating point numbers using the equality operator
can lead to problems in case there are extremely minimal differences on the bit level,
e.g. caused by (de)serialization. That’s why it’s recommended to compare floating point
numbers against near equality instead of absolute equality for more reliability.

INPUTS

x first operand for comparison

y second operand for comparison

RESULTS

result True if x and y are nearly equal, False otherwise

37.37 Pi

NAME
Pi – returns the value of pi

SYNOPSIS
result = Pi()

FUNCTION
This function returns the value of pi.

Since pi is a constant, calling this function to get it is unnecessary overhead. Instead,
you can just use Hollywood’s inbuilt constant #PI to get the value of pi.

INPUTS
none

RESULTS

result value of pi, will be the same as the #PI constant

EXAMPLE
Print(Pi() = #PI)

This will print "1" because the return value of Pi() will be the same as #PI.

776 Hollywood manual

37.38 Pow

NAME
Pow – calculate x raised to the power of y (V1.5)

SYNOPSIS
result = Pow(x, y)

FUNCTION
This function calculates x raised to the power of y.

INPUTS

x base

y exponent

RESULTS

result calculation result

EXAMPLE
a = Pow(2, 8)

This returns 256.

37.39 Rad

NAME
Rad – convert degrees to radians (V2.0)

SYNOPSIS
result = Rad(x)

FUNCTION
Converts the degrees specified in x to radians.

INPUTS

x degree value which should be converted to radians

RESULTS

result radians of x

37.40 RawDiv

NAME
RawDiv – divide value by a factor (V9.0)

SYNOPSIS
result = RawDiv(value1, value2)

FUNCTION
Divides value1 by value2 using floating point precision and returns the result.

Chapter 37: Math library 777

This function does exactly the same as Div() except that it also allows a division by
zero, making it possible to generate special values like NaN or infinity.

See Section 37.26 [IsNan], page 770, for details.

See Section 37.25 [IsInf], page 769, for details.

INPUTS

value1 numerator

value2 denominator

RESULTS

result result of the division

EXAMPLE
a=RawDiv(16,4)

Print(a)

This will print "4" to the screen.

37.41 Rnd

NAME
Rnd – generate a random number

SYNOPSIS
result = Rnd(range)

FUNCTION
Generates a random integer number in the range of 0 to range (exclusive).

INPUTS

range upper integer boundary of the random generator

RESULTS

result a random number

EXAMPLE
num=Rnd(49)

Well, I cannot predict what value num will receive. I can only say that it will not be
greater than 48 and not less than zero.

37.42 RndF

NAME
RndF – generate a random float (V1.5)

SYNOPSIS
result = RndF()

778 Hollywood manual

FUNCTION
This function returns a random floating point number in the range of 0.0 to 1.0 (exclu-
sive).

Note that before Hollywood 8.0 this function’s upper boundary was documented as 1.0
(inclusive). This was wrong. The value returned by RndF() is guaranteed to be less than
1.0.

INPUTS
none

RESULTS

result a random float in the range of 0.0 to 1.0 (exclusive)

EXAMPLE
num = RndF()

num is set to random floating point number between 0.0 and 1.0.

37.43 RndStrong

NAME
RndStrong – generate a strongly random number (V7.1)

SYNOPSIS
result = RndStrong(type, param)

FUNCTION
This function can be used to generate cryptographically secure pseudo random numbers.
Numbers returned by RndStrong() are much more random than those generated by
Rnd() or RndF() both of which aren’t appropriate for anything cryptography related.

RndStrong() can operate in two different modes: If you pass #INTEGER in type, it will
return a single integer value that won’t be smaller than 0 and won’t be bigger than the
integer passed in param (but it could be equal to param). If you pass #STRING in type,
RndStrong() will generate a string of param random bytes, i.e. when passing #STRING,
param specifies the desired length of the string.

Be warned that RndStrong() is very slow in comparison to Rnd() and RndF(). That
is why you shouldn’t call it too often but rather cache its results if you need lots of
very random numbers. For example, you could call RndStrong() with type set to
#STRING and param to 65536 to make it generate a string containing 64kb worth of
random numbers. Once you’ve consumed those, you could call it again for more random
numbers.

Also note that on AmigaOS 3.x and AROS RndStrong() currently falls back to Rnd()

because those operating systems don’t offer cryptography-proof randomizers.

INPUTS

type type of data to generate; can be either #INTEGER or #STRING (see above)

param greatest acceptable integer number if type is #INTEGER or the length of the
string to generate if type is #STRING

Chapter 37: Math library 779

RESULTS

result random number(s) either as a string or integer value

EXAMPLE
num=RndStrong(#INTEGER, 49)

Well, I cannot predict what value num will receive. I can only say that it will not be
greater than 49 and not smaller than zero.

37.44 Rol

NAME
Rol – left bit rotation (V3.0)

SYNOPSIS
result = Rol(a, x[, length])

FUNCTION
This function rotates the bits of value a to the left by x bits. Bit rotation means that
the bits just circle inside a, i.e. bits moved out of the left side are appended to the right
side.

The optional argument length allows you to specify the length of the rotate operation.
By default, this is #INTEGER which means that a will be regarded as a 32-bit integer
value. If you want to do a 16-bit or an 8-bit rotation, you need to use #SHORT and
#BYTE, respectively.

INPUTS

a source value

x number of bits to rotate

length optional: bit length for this operation (defaults to #INTEGER which means
32-bit rotation); use #SHORT for 16-bit rotation and #BYTE for 8-bit rotation

RESULTS

result rotated value

EXAMPLE
r = Rol(Val("%10011110"), 4, #BYTE)

Print(BinStr(r, #BYTE))

The code above rotates the binary number %10011110 4 bits to the left and prints the
result which is %11101001.

37.45 Ror

NAME
Ror – right bit rotation (V3.0)

SYNOPSIS
result = Ror(a, x[, length])

780 Hollywood manual

FUNCTION
This function rotates the bits of value a to the right by x bits. Bit rotation means that
the bits just circle inside a, i.e. bits moved out of the right side are appended to the left
side.

The optional argument allows you to specify the length of the rotate operation. By
default, this is #INTEGER which means that a will be regarded as a 32-bit integer value.
If you want to do a 16-bit or an 8-bit rotation, you need to use #SHORT and #BYTE,
respectively.

INPUTS

a source value

x number of bits to rotate

length optional: bit length for this operation (defaults to #INTEGER which means
32-bit rotation); use #SHORT for 16-bit rotation and #BYTE for 8-bit rotation

RESULTS

result rotated value

EXAMPLE
r = Ror(Val("%10011110"), 2, #BYTE)

Print(BinStr(r, #BYTE))

The code above rotates the binary number %10011110 2 bits to the right and prints the
result which is %10100111.

37.46 Round

NAME
Round – round a float (V1.5)

SYNOPSIS
result = Round(x)

FUNCTION
This function rounds x to the next intenger.

INPUTS

x float to round

RESULTS

result integer result

EXAMPLE
a = Round(3.7)

This returns 4.

Chapter 37: Math library 781

37.47 Rt

NAME
Rt – calculate root (V1.5)

SYNOPSIS
result = Rt(x, y)

FUNCTION
This function calculates and returns the y root of value x.

INPUTS

x source value

y root to calculate

RESULTS

result y root of x

EXAMPLE
a = Rt(27, 3)

This returns 3.

37.48 Sar

NAME
Sar – shift bits to the right (V3.0)

SYNOPSIS
result = Sar(a, x[, bignum])

FUNCTION
This function shifts a by x bits to the right padding the holes with the most significant
bit of a. This is called an arithmetic shift. a is converted to a signed 32-bit integer
variable before the shift (unless bignum is set to True).

Starting with Hollywood 9.0, there is an optional bignum argument. If this is set to True,
Sar() will be able to operate on integers larger than 2^31 but keep in mind that Sar()
still won’t be possible to use the full 64-bit integer range because Hollywood’s numeric
type is a 64-bit floating point number and is thus limited to integers in the range of
[-9007199254740992,9007199254740992].

INPUTS

a source value

x number of bits to shift

bignum optional: whether or not to use 64-bit integers (defaults to False) (V9.0)

RESULTS

result integer result

782 Hollywood manual

EXAMPLE
a = Sar(-256, 3)

This returns -32.

37.49 Sgn

NAME
Sgn – return the sign of a value (V2.0)

SYNOPSIS
sign = Sgn(x)

FUNCTION
Returns the sign of x. If x is less than 0, -1 is returned. If x is greater than 0, 1 is
returned. If x is equal to 0, 0 is returned.

INPUTS

x value to examine

RESULTS

sign sign of x

37.50 Shl

NAME
Shl – shift bits to the left (V1.5)

SYNOPSIS
result = Shl(a, x[, bignum])

FUNCTION
This function shifts a by x bits to the left, padding the holes with zero bits. This is
called a logical shift. a is converted to an unsigned 32-bit integer variable before the
shift (unless bignum is set to True).

Starting with Hollywood 9.0, there is an optional bignum argument. If this is set to True,
Shl() will be able to operate on integers larger than 2^31 but keep in mind that Shl()
still won’t be possible to use the full 64-bit integer range because Hollywood’s numeric
type is a 64-bit floating point number and is thus limited to integers in the range of
[-9007199254740992,9007199254740992].

INPUTS

a source value

x number of bits to shift

bignum optional: whether or not to use 64-bit integers (defaults to False) (V9.0)

RESULTS

result integer result

Chapter 37: Math library 783

EXAMPLE
a = Shl(256, 3)

This returns 2048.

37.51 Shr

NAME
Shr – shift bits to the right (V1.5)

SYNOPSIS
result = Shr(a, x[, bignum])

FUNCTION
This function shifts a by x bits to the right, padding the holes with zero bits. This is
called a logical shift. a is converted to an unsigned 32-bit integer variable before the
shift (unless bignum is set to True).

Starting with Hollywood 9.0, there is an optional bignum argument. If this is set to True,
Shr() will be able to operate on integers larger than 2^31 but keep in mind that Shr()
still won’t be possible to use the full 64-bit integer range because Hollywood’s numeric
type is a 64-bit floating point number and is thus limited to integers in the range of
[-9007199254740992,9007199254740992].

INPUTS

a source value

x number of bits to shift

bignum optional: whether or not to use 64-bit integers (defaults to False) (V9.0)

RESULTS

result integer result

EXAMPLE
a = Shr(256, 3)

This returns 32.

37.52 Sin

NAME
Sin – calculate sine (V1.5)

SYNOPSIS
result = Sin(x)

FUNCTION
Calculates the sine of the angle x.

INPUTS

x angle in radians

784 Hollywood manual

RESULTS

result sine of x

37.53 Sqrt

NAME
Sqrt – calculate square root (V1.5)

SYNOPSIS
result = Sqrt(x)

FUNCTION
This function calculates and returns the square root of x.

INPUTS

x source value

RESULTS

result square root of x

EXAMPLE
a = Sqrt(64)

This returns 8.

37.54 Sub

NAME
Sub – subtract value from a value

SYNOPSIS
result = Sub(value1, value2)

FUNCTION
Subtracts value2 from value1 and returns the result.

INPUTS

value1 minuend

value2 subtrahend

RESULTS

result result of the subtraction

EXAMPLE
a=1

a=Sub(a,1)

Print(a)

The above code will print "0" to the screen.

Chapter 37: Math library 785

37.55 Tan

NAME
Tan – calculate tangent (V1.5)

SYNOPSIS
result = Tan(x)

FUNCTION
Calculates the tangent of the angle x.

INPUTS

x angle in radians

RESULTS

result tangent of x

37.56 Wrap

NAME
Wrap – wrap values (V1.5)

SYNOPSIS
result = Wrap(x, low, high)

FUNCTION
Wrap will wrap the result of x if x is greater than or equal to high, or less than low. If
x is less than low, then x-low+high is returned. If x is greater than or equal to high,
then x-high+low is returned.

INPUTS

x source value

low low value

high high value

RESULTS

result result of operation

787

38 Memory block library

38.1 AllocMem

NAME
AllocMem – allocate a new memory block (V2.0)

SYNOPSIS
[id] = AllocMem(id, size)

FUNCTION
This command allocates a new memory block of the specified size and makes it available
under the handle id, or, if you specify Nil in id AllocMem() automatically chooses an
identifier and returns it. The memory will not be initialized and is therefore filled with
random data. If you want to initialize it to zero, use the FillMem() command.

INPUTS

id identifier for the memory block or Nil for auto id selection

size size for the memory block in bytes

RESULTS

id optional: identifier of the memory block; will only be returned when you
pass Nil as argument 1 (see above)

38.2 AllocMemFromPointer

NAME
AllocMemFromPointer – initialize memory block from pointer (V6.0)

SYNOPSIS
[id] = AllocMemFromPointer(id, ptr, size)

FUNCTION
This command can be used to convert a pointer of type #LIGHTUSERDATA into a memory
block that you can read from and write to using the memory block functions. The new
memory block object will be made available under the handle id, or, if you specify Nil

as id, AllocMemFromPointer() automatically chooses an identifier and returns it.

Note that AllocMemFromPointer() will not make a local copy of the memory pointed
to by parameter 2. It will just allocate a container object so that you can access the
memory data using the memory block functions. The size argument is only used to
prevent read or write operations that are outside the memory block’s boundaries. If you
don’t know the size of the memory block, you can also pass 0 in the size argument.
In that case, Hollywood will never forbid any read and write operation on this memory
block object.

Be warned that this is a dangerous function and should only be used by people who
know what they are doing. Reading from or writing to non-allocated memory can easily
crash your program.

788 Hollywood manual

INPUTS

id identifier for the memory block or Nil for auto id selection

ptr #LIGHTUSERDATA variable pointing to a memory block

size size of the memory block in bytes or 0 if you don’t know the size

RESULTS

id optional: identifier of the memory block; will only be returned when you
pass Nil as argument 1 (see above)

38.3 AllocMemFromVirtualFile

NAME
AllocMemFromVirtualFile – initialize memory block from virtual file (V6.1)

SYNOPSIS
[id] = AllocMemFromVirtualFile(id, vf$)

FUNCTION
This command can be used to access the raw memory contents of a virtual string
file created using DefineVirtualFileFromString(). The new memory block
object will be made available under the handle id, or, if you specify Nil as id,
AllocMemFromVirtualFile() automatically chooses an identifier and returns it.

Note that AllocMemFromVirtualFile() will not make a local copy of the memory owned
by the virtual string file. It will just allocate a container object so that you can access
the memory data using the memory block functions.

Also note that when dealing with writeable virtual string files their memory represen-
tation can change with every single write operation performed on the virtual string file.
Thus, it is not safe to access the virtual string file’s memory through a container ob-
tained from AllocMemFromVirtualFile() after a write operation to this virtual string
file. Instead, you have to obtain a new container after every write operation and free the
old one using FreeMem() first. Everything else will crash sooner or later.

Also note that it is forbidden to write to the memory block allocated by this function
unless the virtual string file was created as writable.

Be warned that this is a dangerous function and should only be used by people who
know what they are doing. Reading from or writing to non-allocated memory can easily
crash your program and cause all sorts of issues.

INPUTS

id identifier for the memory block or Nil for auto id selection

vf$ virtual string file allocated by DefineVirtualFileFromString()

RESULTS

id optional: identifier of the memory block; will only be returned when you
pass Nil as argument 1 (see above)

Chapter 38: Memory block library 789

38.4 CopyMem

NAME
CopyMem – copy data between memory blocks (V2.0)

SYNOPSIS
CopyMem(src, dst, size[, src_offset, dst_offset])

FUNCTION
This command copies size bytes from the memory block with the id src to the block
with the id dst starting from src_offset in the source block and from dst_offset in
the destination block.

Please note that src and dst must not be the same blocks.

INPUTS

src source memory block to read data from

dst destination memory block to copy to

size size in bytes to copy

src_offset

optional: offset in the source block from where to start reading (defaults to
0 = beginning of the block)

dst_offset

optional: offset in the destination block from where to start writing (defaults
to 0 = beginning of the block)

38.5 DecreasePointer

NAME
DecreasePointer – decrease pointer (V6.0)

SYNOPSIS
ptr = DecreasePointer(ptr, amount)

FUNCTION
This function decreases the specified pointer of type #LIGHTUSERDATA by the amount
of bytes specified in parameter 2. Since you shouldn’t use pointers in Hollywood, this
function is really only useful when debugging code or doing some experimental stuff with
Hollywood.

To increase a pointer, you can use the IncreasePointer() function. See Section 38.11
[IncreasePointer], page 792, for details.

INPUTS

ptr pointer passed as a #LIGHTUSERDATA variable

amount number of bytes to decrease

RESULTS

ptr new pointer of type #LIGHTUSERDATA

790 Hollywood manual

38.6 DumpMem

NAME
DumpMem – dump contents of a memory block (V2.0)

SYNOPSIS
DumpMem(id[, len, offset])

FUNCTION
This function dumps the contents of the memory block specified by id to the debug
device (usually a console window). The optional argument allows you to specify the
length in bytes that shall be dumped. If it is omitted, the whole block will be dumped.
The optional argument offset can be used to start dumping from an offset inside the
block.

Because of the raw data that is usually in memory blocks, Hollywood will do a hex dump
including ASCII notation (if possible). The format is the following:

xxxxxxxx: bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

x: offset in hexadecimal notation

b: 16 bytes per line

c: the 16 bytes in ASCII notation or ’.’ if the character is not graphical

INPUTS

id identifier of the memory block to be dumped

len optional: length in bytes (defaults to 0 which means that the complete block
will be dumped)

offset optional: offset in the block from where to start dumping (defaults to 0 =
beginning of the block)

38.7 FillMem

NAME
FillMem – fill a memory block (V2.0)

SYNOPSIS
FillMem(id, val, size[, offset, type])

FUNCTION
This function can be used to fill the whole memory block or a part of it with a specified
value. id specifies the memory block to use, val is the value to use for filling and size

specifies the size in bytes for the filling operation. You can use the optional argument
offset to fine-tune the filling operation by specifying an offset in the memory block here
(in bytes). type specifies the type of the value and can be #BYTE (1 byte), #SHORT (2
bytes) or #INTEGER (4 bytes).

If you use #SHORT or #INTEGER as the filling type, the size argument must be a multiple
of 2 or 4 respectively. Also, offset, if specified, must be a multiple of 2 or 4 respectively.

Chapter 38: Memory block library 791

INPUTS

id memory block to use

val value to fill block with

size size of the filling operation in bytes; must be a multiple of 2 or 4 if type is
#SHORT or #INTEGER

offset optional: offset in the block where the filling should start (defaults to 0 which
means the beginning of the block); must be a multiple of 2 or 4 if type is
#SHORT or #INTEGER

type optional: type of val; currently supported are #BYTE, #SHORT and #INTEGER

(defaults to #BYTE)

EXAMPLE
AllocMem(1, 65536)

FillMem(1, 0, 65536)

Allocate a block of 64kb and initialize it to 0.

38.8 FreeMem

NAME
FreeMem – free a memory block (V2.0)

SYNOPSIS
FreeMem(id)

FUNCTION
This command releases the memory occupied by the block specified by id.

INPUTS

id memory block to free

38.9 GetMemPointer

NAME
GetMemPointer – get raw address of memory block (V6.0)

SYNOPSIS
ptr = GetMemPointer(id[, offset])

FUNCTION
This function returns the raw address of the memory block passed in id. Optionally,
you can specify an offset in bytes that should be added to the address before returning
it. The pointer will be returned as a variable of type #LIGHTUSERDATA. It will stay valid
until you call FreeMem() on the memory block object.

This function is only useful in connection with functions which expect parameters of
type #LIGHTUSERDATA. There are currently no Hollywood functions which can handle
#LIGHTUSERDATA parameters but plugins might want to use #LIGHTUSERDATA parameters
for certain tasks in case using tables is too slow.

792 Hollywood manual

INPUTS

id memory block whose address should be returned

offset optional: offset in bytes to add to the address before returning it (defaults
to 0)

RESULTS

ptr pointer to the raw data of the specified memory block

38.10 GetMemString

NAME
GetMemString – get string from memory block (V7.1)

SYNOPSIS
s$ = GetMemString(id[, offset, length])

FUNCTION
This function returns length bytes starting at offset from the memory block specified
by id. Both the offset and length parameters must be specified in bytes. If omitted,
offset defaults to 0 (i.e. the beginning of the memory block) and length also defaults
to 0 which means all remaining bytes starting from the specified offset are returned.

Note that since Hollywood strings can also contain raw binary data the string that is
returned by GetMemString() isn’t necessarily a valid UTF-8 string but contains the raw
binary data copied from the specified memory block.

INPUTS

id memory block to use

offset optional: offset in bytes defining where to start fetching bytes (defaults to
0)

length optional: number of bytes to fetch or 0 to fetch all remaining bytes in the
memory block (defaults to 0)

RESULTS

s$ contents of the specified memory block range

38.11 IncreasePointer

NAME
IncreasePointer – increase pointer (V6.0)

SYNOPSIS
ptr = IncreasePointer(ptr, amount)

FUNCTION
This function increases the specified pointer of type #LIGHTUSERDATA by the amount
of bytes specified in parameter 2. Since you shouldn’t use pointers in Hollywood, this

Chapter 38: Memory block library 793

function is really only useful when debugging code or doing some experimental stuff with
Hollywood.

To decrease a pointer, you can use the DecreasePointer() function. See Section 38.5
[DecreasePointer], page 789, for details.

INPUTS

ptr pointer passed as a #LIGHTUSERDATA variable

amount number of bytes to increase

RESULTS

ptr new pointer of type #LIGHTUSERDATA

38.12 MemToTable

NAME
MemToTable – return memory block contents as a table (V6.0)

SYNOPSIS
t = MemToTable(id, type[, table])

FUNCTION
This function can be used to return the contents of a memory block (or part of a memory
block) as a table. The type argument specifies the data type of the elements that should
be read from the memory block and stored inside a table. This can be either #BYTE (1
byte), #SHORT (2 bytes), #INTEGER (4 bytes), #FLOAT (4 bytes), or #DOUBLE (8 bytes).

The optional table argument can be used to set additional parameters for the operation.
The following table fields are currently recognized:

Items: The number of items to be read from the memory block. Note that this is
not a size in bytes, but an item count. So if you set the type argument to
#INTEGER and set Items to 4, 16 bytes will be read from the memory block.
Defaults to all items that are in the memory block.

Offset: This tag can be used to specify an offset in bytes inside the memory block
that defines where MemToTable() should start to read elements. Defaults to
0 which means read from the beginning of the memory block.

Signed: If this tag is set to True, MemToTable() will treat all elements of type #BYTE,
#SHORT, and #INTEGER as signed values. Defaults to False.

EndianSwitch:

If this tag is set to True, MemToTable() will switch byte order for all multi-
byte data types. This can be useful if you need to convert between big and
little endian values. Defaults to False.

To convert a table back into a memory block, use the TableToMem() function. See
Section 38.16 [TableToMem], page 797, for details.

INPUTS

id memory block to use

794 Hollywood manual

type data type of the elements to read (see above)

table optional: table configuring further parameters (see above)

RESULTS

t a table containing as many elements as specified in the Items tag

EXAMPLE
AllocMem(1, 26)

For Local k = 0 To 25 Do Poke(1, k, ’A’ + k, #BYTE)

Local t = MemToTable(1, #BYTE)

For Local k = 0 To 25 Do Print(Chr(t[k]))

This prints the alphabet from a memory block source.

38.13 Peek

NAME
Peek – look inside a memory block (V2.0)

SYNOPSIS
val = Peek(id, offset[, type, len, endian])

FUNCTION
This function allows you to look inside a memory block at the specified offset. type

specifies the data type for which you want to look. This can be #BYTE, #SHORT, #INTEGER,
#FLOAT, #DOUBLE or #STRING. #BYTE will read one byte from the block, #SHORT reads two
bytes, #INTEGER and #FLOAT four bytes, #DOUBLE eight bytes, and #STRING reads from
the memory block until it encounters a non-graphical character or a NULL character.

Starting with Hollywood 2.5, you can specify the optional parameter len. This parameter
can only be used with type #STRING. If specified, Peek() will read exactly len bytes
from the specified memory block location and return it as a string. You can use this to
read raw data from memory blocks because Peek() will not terminate at non-graphical
or NULL characters any more if len is specified. If len is 0, which is the default setting,
Peek() will read bytes until it encounters a non-graphical or NULL character.

Starting with Hollywood 6.0 there is a new endian parameter which allows you to specify
the byte order that should be used when reading the data from the memory block. This
can be set to the following types:

#BIGENDIAN:

Big endian byte order, MSB first. This is the default.

#NATIVEENDIAN:

Native endian byte order. If you use this type, the byte order will depend
on the default byte order on the host system, i.e. big endian on big endian
systems, little endian on little endian systems. Be careful using this type
because it limits portability.

#LITTLEENDIAN:

Little endian byte order, LSB first. (V8.0)

Chapter 38: Memory block library 795

INPUTS

id identifier of the memory block to be used

offset where to peek (in bytes)

type optional: data type to peek for (defaults to #INTEGER)

len optional: number of bytes to read (works only in connection with type
#STRING) (defaults to 0 which means read until a non-graphical or NULL

character) (V2.5)

endian optional: byte order to use (defaults to #BIGENDIAN) (V6.0)

RESULTS

val contents of the memory block at the specified offset; can be a value or a
string (if type was set to #STRING)

38.14 Poke

NAME
Poke – write to a memory block (V2.0)

SYNOPSIS
Poke(id, offset, val[, type, endian])

FUNCTION
This function writes the value or string specified in val to the memory block with the
identifier id at the specified offset. Type defaults to #INTEGER and specifies the type of
val. You can also use the following types: #BYTE (1 byte), #SHORT (2 bytes), #FLOAT (4
byte single-precision floating point number), #DOUBLE (8 byte double-precision floating
point number) or #STRING. Poking a string into a memory block occupies the number
of characters in the string plus 1 byte.

Starting with Hollywood 6.0 there is a new endian parameter which allows you to specify
the byte order that should be used when writing the data to the memory block. This
can be set to the following types:

#BIGENDIAN:

Big endian byte order, MSB first. This is the default.

#NATIVEENDIAN:

Native endian byte order. If you use this type, the byte order will depend
on the default byte order on the host system, i.e. big endian on big endian
systems, little endian on little endian systems. Be careful using this type
because it limits portability.

#LITTLEENDIAN:

Little endian byte order, LSB first. (V8.0)

INPUTS

id identifier of the memory block to be used

offset where to poke (in bytes)

796 Hollywood manual

val data to poke; can be string or number

type optional: data type to poke (defaults to #INTEGER)

endian optional: byte order to use (defaults to #BIGENDIAN) (V6.0)

EXAMPLE
AllocMem(1, 1024)

Poke(1, 0, "Hello World!", #STRING)

Print(Peek(1, 0, #STRING))

This will print "Hello World!" to the screen.

38.15 ReadMem

NAME
ReadMem – read raw data from a file (V2.0)

SYNOPSIS
ReadMem(file_id, blk_id, len[, offset])

FUNCTION
This function allows you to read len bytes raw data from an open file (specified by file_

id, use OpenFile() to open files) to a memory block (specified by blk_id). Additionally
you can specify the optional offset argument to define where in the memory block the
raw data shall be stored. The data from the source file is read from the current cursor
position in the file which you can modify using the Seek() command.

INPUTS

file_id identifier of an open file

blk_id identifier of a memory block

len bytes to read from the file

offset optional: where to store the data in the block (defaults to 0 = beginning of
the block)

EXAMPLE
len = FileSize("C:SetPatch")

OpenFile(1, "C:SetPatch", #MODE_READ)

AllocMem(1, len)

ReadMem(1, 1, len)

CloseFile(1)

OpenFile(1, "Ram:Copy_of_SetPatch", #MODE_WRITE)

WriteMem(1, 1, len)

CloseFile(1)

FreeMem(1)

Makes a copy of the SetPatch program in RAM: by using the two raw data i/o functions
ReadMem() and WriteMem().

Chapter 38: Memory block library 797

38.16 TableToMem

NAME
TableToMem – write table contents to memory block (V6.0)

SYNOPSIS
TableToMem(t, id, type[, table])

FUNCTION
This function writes the contents of the table passed as the first parameter to the memory
block object specified by id. The third parameter specifies the data type of the elements
that should be written to the memory block. This can be either #BYTE (1 byte), #SHORT
(2 bytes), #INTEGER (4 bytes), #FLOAT (4 bytes), or #DOUBLE (8 bytes).

The optional table argument can be used to set additional parameters for the operation.
The following table fields are currently recognized:

Offset: This tag can be used to specify an offset in bytes inside the memory block
that defines where TableToMem() should start to write elements. Defaults
to 0 which means start writing at the beginning of the memory block.

EndianSwitch:

If this tag is set to True, TableToMem() will switch byte order for all multi-
byte data types when writing them to the memory block. This can be useful
if you need to convert between big and little endian values. Defaults to
False.

If there are more elements in the table than the memory block can store, this function
will issue an error.

To convert a memory block back into a table, use the MemToTable() function. See
Section 38.12 [MemToTable], page 793, for details.

INPUTS

t table whose contents should be written to the memory block

id memory block to use

type data type of the elements to write (see above)

table optional: table configuring further parameters (see above)

38.17 WriteMem

NAME
WriteMem – write raw data to a file (V2.0)

SYNOPSIS
WriteMem(file_id, blk_id, len[, offset])

FUNCTION
This function writes len bytes from the memory block specified by blk_id to the file
specified by file_id. The data is read from the memory block at the offset, which
you can specify in the homonymous optional argument. The data is written to the file
at the current cursor position which you can modify using the Seek() command.

798 Hollywood manual

INPUTS

file_id identifier of an open file (use OpenFile())

blk_id identifier of a memory block

len bytes to write to the file

offset optional: where to begin reading the data from the block (defaults to 0 =
beginning of the block)

EXAMPLE
See Section 38.15 [ReadMem], page 796.

799

39 Menu library

39.1 CreateMenu

NAME
CreateMenu – create a menu strip (V6.0)

SYNOPSIS
[id] = CreateMenu(id, table)

FUNCTION
This function can be used to create a menu strip that can later be attached to one or more
displays by calling SetDisplayAttributes() on an existing display or by specifying the
Menu tag in the @DISPLAY preprocessor command or in the CreateDisplay() call.

You have to pass an identifier for the new menu strip or Nil. If you pass Nil,
CreateMenu() will return a handle to the new menu strip which you can then use to
refer to this menu strip.

You also need to pass a table containing the actual menu tree definition to this function.
Menus are defined as a tree structure that is composed of a master table that contains
various subtables. See Section 39.8 [MENU], page 804, for a detailed description of menu
tree tables.

This command is also available from the preprocessor: Use @MENU to create menu strips
at startup time!

INPUTS

id identifier for the menu strip or Nil for auto id select

table menu tree definition

RESULTS

id optional: identifier of the new menu; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
CreateMenu(1, {

{"File", {

{"New", ID = "new"},

{"Open...", ID = "open"},

{""},

{"Close", ID = "close", Flags = #MENUITEM_DISABLED},

{""},

{"Save", Flags = #MENUITEM_DISABLED, Hotkey = "S"},

{"Compress", ID = "cmp", Flags = #MENUITEM_TOGGLE},

{""},

{"Export image...", {

{"JPEG...", ID = "jpeg"},

{"PNG...", ID = "png"},

{"BMP...", ID = "bmp"}}},

800 Hollywood manual

{""},

{"Dump state", ID = "dump"},

{""},

{"Quit", ID = "quit", Hotkey = "Q"}}},

{"Edit", {

{"Cut", ID = "cut"},

{"Copy", ID = "copy"},

{"Paste", ID = "paste"}}},

{"?", {

{"About...", ID = "about"}}}

})

SetDisplayAttributes({Menu = 1})

The code above creates a menu strip and attaches it to the current display.

39.2 DeselectMenuItem

NAME
DeselectMenuItem – deselect a toggle menu item (V6.0)

SYNOPSIS
DeselectMenuItem(id, item$[, detached])

FUNCTION
This function can be used to deselect a toggle menu item. The optional argument
detached specifies whether a menu strip that is attached to a display or a detached
menu strip should be used. If detached is False (which is also the default), the menu
strip of the display specified by id will be used. If detached is True, the menu strip
specified by id will be used. In other words: If you set detached to True, you need to
pass the identifier of a menu strip in id; otherwise you need to pass the identifier of a
display in id.

Note that when setting detached to True your operation will never have any effect
on menu strips attached to a display. Setting detached to True is typically only used
with menu strips that are shown as popup menus using the PopupMenu() function. It’s
impossible to address display menu strips when setting detached to True because a
single menu strip can be attached to multiple displays.

On AmigaOS 4 you can also pass the special value of 0 for id. In that case, the context
menu of the docky will be used.

INPUTS

id identifier of a display or a menu strip (see above)

item$ identifier of the item inside the menu strip

detached optional: False if id specifies a display, True if it specifies a menu strip
object (defaults to False) (V10.0)

Chapter 39: Menu library 801

39.3 DisableMenuItem

NAME
DisableMenuItem – disable a menu item (V6.0)

SYNOPSIS
DisableMenuItem(id, item$[, detached])

FUNCTION
This function can be used to disable a menu item. The optional argument detached

specifies whether a menu strip that is attached to a display or a detached menu strip
should be used. If detached is False (which is also the default), the menu strip of the
display specified by id will be used. If detached is True, the menu strip specified by id

will be used. In other words: If you set detached to True, you need to pass the identifier
of a menu strip in id; otherwise you need to pass the identifier of a display in id.

Note that when setting detached to True your operation will never have any effect
on menu strips attached to a display. Setting detached to True is typically only used
with menu strips that are shown as popup menus using the PopupMenu() function. It’s
impossible to address display menu strips when setting detached to True because a
single menu strip can be attached to multiple displays.

On AmigaOS 4 you can also pass the special value of 0 for id. In that case, the context
menu of the docky will be used.

INPUTS

id identifier of a display or a menu strip object (see above)

item$ identifier of the item inside the menu strip

detached optional: False if id specifies a display, True if it specifies a menu strip
object (defaults to False) (V10.0)

39.4 EnableMenuItem

NAME
EnableMenuItem – enable a menu item (V6.0)

SYNOPSIS
EnableMenuItem(id, item$[, detached])

FUNCTION
This function can be used to enable a menu item. The optional argument detached

specifies whether a menu strip that is attached to a display or a detached menu strip
should be used. If detached is False (which is also the default), the menu strip of the
display specified by id will be used. If detached is True, the menu strip specified by id

will be used. In other words: If you set detached to True, you need to pass the identifier
of a menu strip in id; otherwise you need to pass the identifier of a display in id.

Note that when setting detached to True your operation will never have any effect
on menu strips attached to a display. Setting detached to True is typically only used

802 Hollywood manual

with menu strips that are shown as popup menus using the PopupMenu() function. It’s
impossible to address display menu strips when setting detached to True because a
single menu strip can be attached to multiple displays.

On AmigaOS 4 you can also pass the special value of 0 for id. In that case, the context
menu of the docky will be used.

INPUTS

id identifier of a display or a menu strip (see above)

item$ identifier of the item inside the menu strip

detached optional: False if id specifies a display, True if it specifies a menu strip
object (defaults to False) (V10.0)

39.5 FreeMenu

NAME
FreeMenu – free a menu strip (V6.0)

SYNOPSIS
FreeMenu(id)

FUNCTION
This command can be used to the free the specified menu strip. Please note that only
menu strips that are no longer attached to a display can be freed. To detach a menu
strip from a display, call SetDisplayAttributes() on the display passing the special
value -1 in the Menu tag.

INPUTS

id identifier of the menu strip to free

39.6 IsMenuItemDisabled

NAME
IsMenuItemDisabled – check if a menu item is disabled (V6.0)

SYNOPSIS
result = IsMenuItemDisabled(id, item$[, detached])

FUNCTION
This function can be used to check whether a menu item is disabled or not. The optional
argument detached specifies whether a menu strip that is attached to a display or a
detached menu strip should be used. If detached is False (which is also the default),
the menu strip of the display specified by id will be used. If detached is True, the menu
strip specified by id will be used. In other words: If you set detached to True, you need
to pass the identifier of a menu strip in id; otherwise you need to pass the identifier of
a display in id.

Note that when setting detached to True your operation will never have any effect
on menu strips attached to a display. Setting detached to True is typically only used

Chapter 39: Menu library 803

with menu strips that are shown as popup menus using the PopupMenu() function. It’s
impossible to address display menu strips when setting detached to True because a
single menu strip can be attached to multiple displays.

On AmigaOS 4 you can also pass the special value of 0 for id. In that case, the context
menu of the docky will be used.

INPUTS

id identifier of a display or a menu strip (see above)

item$ identifier of the item inside the menu strip

detached optional: False if id specifies a display, True if it specifies a menu strip
object (defaults to False) (V10.0)

RESULTS

result True if the menu item is disabled, False otherwise

39.7 IsMenuItemSelected

NAME
IsMenuItemSelected – check if a menu item is selected (V6.0)

SYNOPSIS
result = IsMenuItemSelected(id, item$[, detached])

FUNCTION
This function can be used to check whether a toggle or radio menu item is selected or
not. The optional argument detached specifies whether a menu strip that is attached to
a display or a detached menu strip should be used. If detached is False (which is also
the default), the menu strip of the display specified by id will be used. If detached is
True, the menu strip specified by id will be used. In other words: If you set detached
to True, you need to pass the identifier of a menu strip in id; otherwise you need to pass
the identifier of a display in id.

Note that when setting detached to True your operation will never have any effect
on menu strips attached to a display. Setting detached to True is typically only used
with menu strips that are shown as popup menus using the PopupMenu() function. It’s
impossible to address display menu strips when setting detached to True because a
single menu strip can be attached to multiple displays.

On AmigaOS 4 you can also pass the special value of 0 for id. In that case, the context
menu of the docky will be used.

INPUTS

id identifier of a display or a menu strip (see above)

item$ identifier of the item inside the menu strip

detached optional: False if id specifies a display, True if it specifies a menu strip
object (defaults to False) (V10.0)

RESULTS

result True if the menu item is selected, False otherwise

804 Hollywood manual

39.8 MENU

NAME
MENU – create a menu strip (V6.0)

SYNOPSIS
@MENU id, table

FUNCTION
This preprocessor command can be used to create a menu strip that can later be at-
tached to one or more displays by calling SetDisplayAttributes() on an existing dis-
play or by specifying the Menu tag in the @DISPLAY preprocessor command or in the
CreateDisplay() call.

You need to pass an identifier for the menu strip to this preprocessor command as well as
the actual menu definition. Menus are defined as a tree structure that is composed of a
master table that contains various subtables. There are two different types of subtables:

1. Menu tables: These tables contain a heading for the menu in the table element at
index 0 and a list of single menu items in the table element at index 1. The list
of single menu items, of course, is another subtable that is composed of another
number of tables that describe a menu item each (see below). The table you pass
to @MENU must start with a number of menu tables because every menu item needs
a parent menu that it belongs it. These parent menus are described in the menu
tables. You can also nest menus, i.e. it is possible to insert a submenu among a
number of menu items.

2. Menu item tables: A menu item subtable is a table that describes a single menu
item. The name of the menu item that is to be shown in the menu has to be passed
at table index 0. If you pass an empty string ("") at table index 0, Hollywood will
insert a horizontal divider bar instead of a selectable menu item. These divider bars
can be used to group related menu items together. There must not be any element
at table index 1 for menu item tables. Instead, you can use a number of other tags
to configure things like menu item type, hotkey, and identifier. See below for a list
of possible tags.

Menu item tables recognize the following tags:

ID: Here you can specify a string that identifies this menu item. This string will
be passed to your event handler callback so that you know which menu item
has been selected by the user. The identifier specified here is also necessary
if you want to use functions like DisableMenuItem() or SelectMenuItem()
to manually modify the state of menu items.

Flags: This tag allows you to set some flags for this menu item. This can be set to
a bitmask containing one or more of the following flags:

#MENUITEM_TOGGLE:

If this flag is set, this menu item will be created as a toggle menu
item. Toggle menu items have two different states (selected and
deselected) and the window manager usually renders them with

Chapter 39: Menu library 805

a checkmark indicating their current state. You can manually
modify the toggle state of a menu item by calling the functions
SelectMenuItem() and DeselectMenuItem() or by setting the
#MENUITEM_SELECTED flag (see below). The toggle state can be
checked by calling the IsMenuItemSelected() function.

#MENUITEM_RADIO:

Set this flag to make the menu item part of a radio group.
All neighbouring menu items which have #MENUITEM_RADIO set,
will be included in the same radio group. All menu items in-
side a radio group will be mutually exclusive, i.e. only one
menu item of a radio group can be active at a time. You
can manually modify the state of a radio menu item by calling
the functions SelectMenuItem() or by setting the #MENUITEM_

SELECTED flag (see below). The radio state can be checked
by calling the IsMenuItemSelected() function. Since radio
groups always need an active item, it is not possible to call
DeselectMenuItem() on a radio menu item. If you want to
deselect a radio menu item, you need to select a different radio
menu item using SelectMenuItem() and then the previously se-
lected radio menu item will automatically be deselected. (V7.1)

#MENUITEM_SELECTED:

If you have set the #MENUITEM_TOGGLE or #MENUITEM_RADIO flag
to create a toggle or a radio menu item, you can set this flag
to put the menu item into selected state. See above for more
information on toggle and radio menu items.

#MENUITEM_DISABLED:

If you set this flag, the menu item will be grayed out so that
the user won’t be able to select it. You can also manually dis-
able a menu item by calling the function DisableMenuItem().
To enable a disabled menu item, use EnableMenuItem(). The
disabled state of a menu item can be checked by calling the
IsMenuItemDisabled() function.

Hotkey: This tag can be set to a character that acts as a key shortcut for this menu
item. For the best cross-platform compatibility, this tag should be set to a
string that contains one character only, e.g. "q" for a quit shortcut. Some
platforms also support custom hotkeys like "CTRL+F1" but in that case you
often have to implement the key handling on your own because the window
manager does not support listening to these special shortcuts. If you pass
a one character string, however, automatic hotkey listening will work on all
platforms.

Menu strips can also be created at runtime by using the CreateMenu() command. See
Section 39.1 [CreateMenu], page 799, for details.

You can attach menu strips to displays by using the SetDisplayAttributes()

function or by specifying the Menu tag in the @DISPLAY preprocessor command

806 Hollywood manual

or in the CreateDisplay() call. To detach a menu strip from a display, call
SetDisplayAttributes() passing the special value -1 in the Menu tag.

To get notified when the user selects items from the menu, you have to listen to the
OnMenuSelect event handler. This can be done by installing a listener callback for this
event using InstallEventHandler(). See Section 29.13 [InstallEventHandler], page 553,
for details.

Please note that menu strips are not supported for displays in fullscreen mode. They
will only work if your display is in windowed mode.

Note that on Android, it’s normally not possible to place menu items in the root level of
the action bar’s options menu because on desktop systems menu items always have to be
members of certain root groups (e.g. "File", "Edit", "View", etc.) There can’t be any
menu items outside such root groups. When using menu strips on Android, Hollywood
will of course replicate the desktop menu behaviour by creating individual submenus for
those root groups. This means, however, that the user has to tap at least twice to select
a menu item because there won’t be any menu items in the root level, they will always be
in submenus instead. So if you don’t want Hollywood to create those submenus but just
place all items in the root level, set the SingleMenu tag in the @DISPLAY preprocessor
command to True. This is especially useful if there are only a few menu items and it
doesn’t make sense to place them in submenus.

Also note that menu strips are currently unsupported on Linux and iOS.

INPUTS

id a value that is used to identify this menu strip

table menu tree definition (see above)

EXAMPLE
@MENU 1, {

{"File", {

{"New", ID = "new"},

{"Open...", ID = "open"},

{""},

{"Close", ID = "close", Flags = #MENUITEM_DISABLED},

{""},

{"Save", Flags = #MENUITEM_DISABLED, Hotkey = "S"},

{"Compress", ID = "cmp", Flags = #MENUITEM_TOGGLE},

{""},

{"Export image...", {

{"JPEG...", ID = "jpeg"},

{"PNG...", ID = "png"},

{"BMP...", ID = "bmp"}}},

{""},

{"Dump state", ID = "dump"},

{""},

{"Quit", ID = "quit", Hotkey = "Q"}}},

{"Edit", {

{"Cut", ID = "cut"},

Chapter 39: Menu library 807

{"Copy", ID = "copy"},

{"Paste", ID = "paste"}}},

{"?", {

{"About...", ID = "about"}}}

}

@DISPLAY {Menu = 1}

The code above creates a menu strip that is attached then attached to the default display.

39.9 PopupMenu

NAME
PopupMenu – show popup menu (V10.0)

SYNOPSIS
PopupMenu(id[, x, y])

FUNCTION
This function shows the menu strip specified by id as a popup menu. Popup menus are
also known as context menus and are typically shown when the user presses the right
mouse button at a certain area of the display. The menu strip passed to PopupMenu()

must have been created using either CreateMenu() or @MENU and it must only consist of
a single strip. The title of the menu strip is ignored.

The optional arguments x and y allow you to specify the desired position of the popup
menu. Note that this must be passed in coordinates relative to the screen’s top-left
corner, i.e. if you pass 0 for x and y, the popup menu will appear in the top-left corner
of the screen. If you omit the x and y arguments, the popup menu will be shown at the
location of the mouse pointer.

PopupMenu() will block the script execution until the user has selected a menu item
or closed the popup menu. Just as with normal menu events, popup menu events will
be sent to your script through the OnMenuSelect event handler. See Section 29.13
[InstallEventHandler], page 553, for details.

Note that on AmigaOS and compatibles the right mouse button is typically reserved for
accessing the screen menu. If you want to be able to listen to the right mouse button
to show a popup menu, you need to set the TrapRMB tag to True. See Section 25.8
[DISPLAY], page 380, for details.

INPUTS

id identifier of a menu strip

x optional: desired x position for the popup menu

y optional: desired y position for the popup menu

EXAMPLE
CreateMenu(1, {{"Unused", {

{"Cut", ID = "cut"},

808 Hollywood manual

{"Copy", ID = "copy"},

{"Paste", ID = "paste"},

{""},

{"Undo", ID = "undo"},

{"Redo", ID = "redo"}

}}})

PopupMenu(1)

The code above defines and shows a popup menu.

39.10 SelectMenuItem

NAME
SelectMenuItem – select a toggle or radio menu item (V6.0)

SYNOPSIS
SelectMenuItem(id, item$[, detached])

FUNCTION
This function can be used to select a toggle or radio menu item. The optional argument
detached specifies whether a menu strip that is attached to a display or a detached menu
strip should be used. If detached is False (which is also the default), the menu strip of
the display specified by id will be used. If detached is True, the menu strip specified
by id will be used. In other words: If you set detached to True, you need to pass the
identifier of a menu strip in id; otherwise you need to pass the identifier of a display in
id.

Note that when setting detached to True your operation will never have any effect
on menu strips attached to a display. Setting detached to True is typically only used
with menu strips that are shown as popup menus using the PopupMenu() function. It’s
impossible to address display menu strips when setting detached to True because a
single menu strip can be attached to multiple displays.

On AmigaOS 4 you can also pass the special value of 0 for id. In that case, the context
menu of the docky will be used.

Please note that radio groups can only have one active item at a time: This means that
if you select a new radio menu item using SelectMenuItem(), the previously selected
radio menu item will automatically be deselected.

INPUTS

id identifier of a display or a menu strip (see above)

item$ identifier of the item inside the menu strip

detached optional: False if id specifies a display, True if it specifies a menu strip
object (defaults to False) (V10.0)

809

40 Mobile support library

40.1 CallJavaMethod

NAME
CallJavaMethod – call method of Java activity (V8.0)

SYNOPSIS
[ret] = CallJavaMethod(name$[, t, type1, value1, type2, value2, ...])

PLATFORMS
Android only

FUNCTION
This is a powerful function that allows you to call directly into the Java code of Hol-
lywood’s Android activity. The Java code may then access the whole Android API to
enhance your app with custom features unavailable in Hollywood.

You have to pass the name of the method to call in the name$ argument. Note that Java
is a case-sensitive language so the method name you pass in name$ must exactly match
its definition in the Java code.

Optionally, you can pass a table in the second argument. This table currently supports
the following tags:

Static: Set this to True if the method you’d like to call is static. By default,
CallJavaMethod() expects the method to be non-static.

ReturnType:

Set this tag to configure the return data type for the method passed in name$.
This must be one of the following predefined constants:

#BYTE: Java’s byte data type, a signed 8-bit quantity.

#SHORT: Java’s short data type, a signed 16-bit quantity.

#INTEGER:

Java’s int data type, a signed 32-bit quantity.

#FLOAT: Java’s float data type, a 32-bit floating point number.

#DOUBLE: Java’s double data type, a 64-bit floating point number.

#BOOLEAN:

Java’s boolean data type, a boolean value (True or False).

#STRING: Java’s String data type, a text string.

#VOID: No return value.

This tag defaults to #VOID, i.e. the method doesn’t return any value.

ReturnArray:

If this tag is set to True, the method passed in name$ is expected to return
an array of the data type specified in ReturnType. Note that if ReturnArray
is set to True, ReturnType must not be set to #VOID. Defaults to False.

810 Hollywood manual

After the optional table argument, CallJavaMethod() accepts an unlimited number of
type and value pairs. These pairs can be used to pass parameters to the method specified
in name$. For each type there must be a corresponding value argument directly after
it.

The following predefined constants are currently supported for the type argument:

#BYTE: Java’s byte data type, a signed 8-bit quantity.

#SHORT: Java’s short data type, a signed 16-bit quantity.

#INTEGER:

Java’s int data type, a signed 32-bit quantity.

#FLOAT: Java’s float data type, a 32-bit floating point number.

#DOUBLE: Java’s double data type, a 64-bit floating point number.

#BOOLEAN:

Java’s boolean data type, a boolean value (True or False).

#STRING: Java’s String data type, a text string.

The value that follows each type argument must correspond to the type specified for
that parameter, e.g. if you pass #STRING in a type argument, a string must follow after
the #STRING argument.

Here is an example Java method:

public int littleTest(String s, int v) {

Log.v("Test", "Got data: " + s + " " + v);

return 50;

}

Note that it is important to declare the method using the public keyword because it
is accessed from outside its class. To call the Java method littleTest() from your
Hollywood script using CallJavaMethod(), you’d have to use the following code:

r = CallJavaMethod("littleTest", {ReturnType = #INTEGER},

#STRING, "Hello Java!", #INTEGER, 10)

Since we have declared the Java method as returning an integer value and its implemen-
tation on the Java side returns 50, the Hollywood variable r will be set to 50 as soon as
CallJavaMethod() returns.

Note that this function can only be used in connection with the Hollywood APK Compiler
because the Hollywood Player doesn’t allow you to inject any custom code into its
activity. This is only supported by the Hollywood APK Compiler.

The Java methods you declare will all be part of a subclass of Hollywood’s Android
Activity. Thus, you can call any of the Activity methods directly from the meth-
ods called by CallJavaMethod(). Keep in mind, though, that Java methods run by
CallJavaMethod() will not be executed on the main (UI) thread but on Hollywood’s
VM thread. So if you need to access Android APIs that can only be called from the UI
thread (like most of the View-related APIs), you must first delegate from the Hollywood
thread to the main thread or the code won’t work.

INPUTS

name$ name of method to call

Chapter 40: Mobile support library 811

t optional: table configuring further options (see above)

type1 optional: type of first parameter to pass to method (see above for possible
values)

value1 optional: actual value of first parameter

... optional: unlimited number of method parameters

RESULTS

ret optional: in case ReturnType is not #VOID, the value returned by the Java
method

40.2 GetAsset

NAME
GetAsset – get handle to Android asset (V6.1)

SYNOPSIS
handle$ = GetAsset(f$)

FUNCTION
This function can be used to get a handle to an Android asset linked to an APK file
compiled by the Hollywood APK Compiler, which is an external add-on for Hollywood.
The string returned by this function can then be passed to all Hollywood functions that
deal with files, e.g. LoadBrush() or OpenMusic(). Keep in mind, though, that assets
are read-only. Trying to write to an asset handle will result in an error.

Note that since Android is based on Linux, asset names are case sensitive. Thus, the
name you pass to this function must exactly match the name specified with the Hollywood
APK Compiler or Hollywood will report a "File not found" error.

For convenience reasons, GetAsset() is also supported by all other Hollywood versions
but it simply returns the string passed to the function when used outside APKs generated
by the Hollywood APK Compiler.

INPUTS

f$ name of the asset to obtain

RESULTS

handle$ handle to the asset which can then be passed to all Hollywood functions that
deal with files

EXAMPLE
LoadBrush(1, GetAsset("test.png"))

The code above loads the asset "test.png" into brush number 1. For this code to work
you need to link a file named "test.png" (case must match exactly!) to your APK with
the Hollywood APK Compiler.

812 Hollywood manual

40.3 HideKeyboard

NAME
HideKeyboard – hide the software keyboard (V5.0)

SYNOPSIS
HideKeyboard()

PLATFORMS
Mobile platforms only

FUNCTION
This function can be used to hide the host system’s software keyboard on mobile devices.
As soon as the software keyboard is hidden, the user will no longer be able to trigger
any OnKeyDown or OnKeyUp events.

To show the software keyboard again, use the ShowKeyboard() function.

INPUTS
none

40.4 PerformSelector

NAME
PerformSelector – perform selector (V7.0)

SYNOPSIS
[ret] = PerformSelector(s$[, ...])

PLATFORMS
iOS only

FUNCTION
This function can be used to perform a selector of your application’s delegate, i.e. it
allows you to make calls from your Hollywood script into native code. The name of the
selector has to be passed as a string in s$.

The selector specified by s$ will then be run with an NSMutableArray as its sole argu-
ment. Inside that array, index 1 will contain the lua_State and index 2 will contain a
pointer to a hwPluginAPI structure, allowing you to access all public APIs and especially
the Lua VM. Indices 3 and 4 contain the UIViewController and UIView, respectively.
Upon return, you must set index 0 to an NSValue containing an int which specifies the
return code of your function. This is all very similar to the way functions in Hollywood
plugins are executed. So please see the Hollywood SDK documentation for more details
(especially the chapters concerning writing library plugins).

You need to implement the desired selector in your application’s delegate in native code.
This is what a custom selector might look like in Objective C:

- (void)MyTestSelector:(NSMutableArray *) args

{

// get essential pointers from Hollywood

lua_State *L = (lua_State *)

Chapter 40: Mobile support library 813

[((NSValue *) [args objectAtIndex:1]) pointerValue];

hwPluginAPI *hwcl = (hwPluginAPI *)

[((NSValue *) [args objectAtIndex:2]) pointerValue];

// we return 1 because we push one string

int retval = 1;

// print string at stack index 2

printf("%s\n", hwcl->LuaBase->luaL_checklstring(L, 2, NULL));

// push return value

hwcl->LuaBase->lua_pushstring(L, "Test return value");

// set return value

[args replaceObjectAtIndex:0 withObject:[NSValue value:&retval

withObjCType:@encode(int*)]];

}

This selector will print the string argument that is passed to the PerformSelector()

call in argument 2. It will then return the string "Test return value" to the Hollywood
script. You could run this selector from your Hollywood script like this:

DebugPrint(PerformSelector("MyTestSelector", "Test"))

This code will pass the string "Test" to the MyTestSelector method. DebugPrint()

will print "Test return value" because that is the return value of MyTestSelector.

Keep in mind that your selector function will not be run on the main (UI) thread but on
Hollywood’s VM thread. So when accessing UIKit functionality (or other frameworks
that need to run on the main thread) you need to delegate the respective code to the
main thread first.

INPUTS

s$ name of selector to run

RESULTS

ret optional: return values of your selector function

40.5 ShowKeyboard

NAME
ShowKeyboard – show the software keyboard (V5.0)

SYNOPSIS
ShowKeyboard()

PLATFORMS
Mobile platforms only

FUNCTION
This function can be used to show the host system’s software keyboard on mobile devices.
As soon as the software keyboard is visible, the user will be able to enter text that

814 Hollywood manual

will then be sent to your script in the form of OnKeyDown and OnKeyUp events. Thus,
you should install the appropriate event handlers using InstallEventHandler() before
calling ShowKeyboard().

To hide the software keyboard, use the HideKeyboard() function.

INPUTS
none

40.6 ShowToast

NAME
ShowToast – show a short message (V5.3)

SYNOPSIS
ShowToast(s$[, x, y, long])

PLATFORMS
Mobile platforms only

FUNCTION
This function can be used to show a short message (a so-called "toast") that disappears
automatically after a certain period of time. You have to pass the message to display in
the string argument s$. The optional arguments allow you to specify the desired position
of the message on the screen and whether the presentation time should be long or short.
You can also use Hollywood’s special coordinate constants in the x and y arguments.

INPUTS

s$ message to show

x optional: x position for the message

y optional: y position for the message

long optional: whether or not the presentation duration should be long or short
(defaults to False which means a short presentation duration)

EXAMPLE
ShowToast("Hello World!", #CENTER, #CENTER)

The code above shows the message "Hello World!" in the center of the screen and hides
it automatically after a short period of time.

40.7 Vibrate

NAME
Vibrate – vibrate device (V8.0)

SYNOPSIS
Vibrate(ms)

PLATFORMS
Android only

815

FUNCTION
This function can be used to vibrate the device for the duration specified by ms. The
duration must be specified in milliseconds.

INPUTS

ms duration in milliseconds to vibrate

EXAMPLE
Vibrate(1000)

The code above will vibrate the device for one second.

817

41 Mouse pointer library

41.1 CreatePointer

NAME
CreatePointer – create a new mouse pointer (V4.0)

SYNOPSIS
[id] = CreatePointer(id, type, ...)

[id] = CreatePointer(id, #SPRITE, srcid[, frame, spotx, spoty])

[id] = CreatePointer(id, #BRUSH, srcid[, spotx, spoty])

[id] = CreatePointer(id, #POINTER, ptrtype)

FUNCTION
This function creates a new mouse pointer and assigns the identifier id to it. If you
pass Nil in id, CreatePointer() will automatically choose an identifier and return
it. The mouse pointer object created by this function can be displayed later by calling
the SetPointer() function. Mouse pointers can be created either from a sprite or
brush source, or you can choose a predefined mouse pointer. The calling convention of
CreatePointer() depends on the type you specify as the second argument.

For the types #SPRITE and #BRUSH you have to specify the identifier of the object that
shall be used as the source for the pointer graphics. The mouse pointer created by this
function is independent of the source object, so you can free the source object after
calling CreatePointer().

If you specify #POINTER as the type, you have to provide an additional argument that
defines which predefined mouse pointer image you want to obtain. Currently, this can be
#STDPTR_SYSTEM for the system’s standard pointer and #STDPTR_BUSY for the system’s
standard wait pointer.

The spotx and spoty arguments specify the hot spot inside the mouse pointer. The hot
spot is the mouse pointer’s pixel that is used to click. If the mouse pointer image is an
arrow, then the hot spot is usually exactly at the tip of the arrow. If you do not specify
the spotx & spoty arguments, CreatePointer() will use the center of the image as the
hot spot.

Please note that not all systems can handle true colour mouse pointers. If the system
does not support true colour mouse pointers, Hollywood will reduce the colors. Also,
your image data might get scaled because some systems impose limits on the maximum
mouse pointer size.

On AmigaOS 3, CreatePointer() also supports palette brushes and sprites. Pointers
on classic Amiga hardware are always palette-based because they are implemented us-
ing hardware sprites so if you pass palette brushes or sprites to CreatePointer() on
AmigaOS 3 you have full control over the exact pens used by the pointer which is more
convenient than using 32-bit graphics because those will first have to be mapped down
to palette graphics on AmigaOS 3 and you won’t have any control over the palette pens
in the remapped brush or sprite.

INPUTS

id id for the mouse pointer or Nil for auto id selection

818 Hollywood manual

type type from which to take the source data

... further arguments depend on the type specified (see above)

RESULTS

id optional: identifier of the mouse pointer; will only be returned when you
pass Nil as argument 1 (see above)

EXAMPLE
CreatePointer(1, #BRUSH, 2, 0, 0)

SetPointer(1)

The code above creates a new mouse pointer 1 from the brush with the id 2. The hot
spot will be at position 0:0 (i.e. the top-left corner of the image). After creating the
mouse pointer it will be displayed using SetPointer().

41.2 FreePointer

NAME
FreePointer – free a mouse pointer (V4.0)

SYNOPSIS
FreePointer(id)

FUNCTION
This function frees the mouse pointer specified by id. The mouse pointer must have
been created previously using CreatePointer(). Please note that the mouse pointer
must not be currently active. You may only free mouse pointers that are not displayed
currently.

INPUTS

id identifier of the mouse pointer to be freed

41.3 HidePointer

NAME
HidePointer – hide the mouse pointer in the current display

SYNOPSIS
HidePointer()

FUNCTION
This function hides the mouse pointer. Use this command with care because it might
confuse the user. You can bring the pointer back to the display using ShowPointer().

Please note that every display has its private pointer setting. Thus, this function will
only hide the mouse pointer in the current display. If the user activates another display,
the mouse pointer will be visible again.

INPUTS
none

Chapter 41: Mouse pointer library 819

41.4 MovePointer

NAME
MovePointer – move the mouse pointer

SYNOPSIS
MovePointer(x, y)

FUNCTION
This function moves the mouse pointer to the location specified by x and y. Use this
function with care because it might confuse the user.

INPUTS

x desired new x position of the pointer

y desired new y position of the pointer

EXAMPLE
MovePointer(#CENTER, #CENTER)

The above code moves the pointer to the center of your display.

41.5 SetPointer

NAME
SetPointer – change mouse pointer of current display (V4.0)

SYNOPSIS
SetPointer(id)

FUNCTION
This function displays the mouse pointer specified by id. The mouse pointer must have
been previously created by CreatePointer().

Please note that every display has its private pointer setting. Thus, this function will only
set the mouse pointer in the current display. If you want to change the mouse pointer
of all your displays, you need to call SetPointer() for each of them (after making each
active using SelectDisplay()).

Please note: This function has already been available since version 1.5 but its function-
ality changed completely in version 4.0. The old command is no longer supported.

INPUTS

id identifier of the mouse pointer to be displayed

EXAMPLE
See Section 41.1 [CreatePointer], page 817.

820 Hollywood manual

41.6 ShowPointer

NAME
ShowPointer – show the mouse pointer in the current display

SYNOPSIS
ShowPointer()

FUNCTION
This function brings the mouse pointer back after it has been hidden using
HidePointer().

INPUTS
none

821

42 Network library

42.1 CloseConnection

NAME
CloseConnection – disconnect from server (V5.0)

SYNOPSIS
CloseConnection(id)

FUNCTION
This function disconnects from the server specified in id and closes the connection.
The connection which you need to specify here must have been established by the
OpenConnection() command.

INPUTS

id identifier of the connection that shall be terminated

42.2 CloseServer

NAME
CloseServer – shutdown an existing server (V5.0)

SYNOPSIS
CloseServer(id)

FUNCTION
This function shuts down the server specified by the identifier argument. The server you
pass here must have been created by the CreateServer() command.

It is important that you disconnect all clients from your server using the
CloseConnection() command before you call CloseServer().

INPUTS

id identifier of the server to shut down

42.3 CloseUDPObject

NAME
CloseUDPObject – close existing UDP object (V5.0)

SYNOPSIS
CloseUDPObject(id)

FUNCTION
This function closes the UDP object specified in the identifier argument. The UDP object
you pass here must have been created earlier by the command CreateUDPObject().

INPUTS

id identifier of the UDP object to close

822 Hollywood manual

42.4 CreateServer

NAME
CreateServer – open a new server (V5.0)

SYNOPSIS
[id] = CreateServer(id[, port, ip$, backlog, protocol])

FUNCTION
This command can be used to establish a new server that is ready to take incoming con-
nections on the local host. The optional argument port can be used to specify on which
port the server should be opened. If you do not specify this argument, CreateServer()
will choose a vacant port automatically, and you can use GetLocalPort() later to find
out the port number of the server. In the first argument, you need to pass an identifier
which is needed to refer to this server later on. Alternatively, you can pass Nil as the
first argument. In that case, CreateServer() will select an identifier automatically and
return it to you.

The optional argument ip$ can be used to specify a local IP address the server should
be bound to. This defaults to "*", which means that the server will accept connections
from the whole network. You can also specify "127.0.0.1" (or "::1" in IPv6) to allow
only connections from the local host. Note that passing "*", which is also the default,
might trigger the firewall on some configurations.

The optional backlog argument can be used to specify the maximum number of client
connections that can be added to the queue. This defaults to 32.

Starting with Hollywood 8.0 there is an optional new protocol argument which allows
you to specify the Internet protocol that should be used when creating the server. This
can be one of the following special constants:

#IPV4: Use Internet Protocol version 4 (IPv4). IPv4 addresses are limited to 32
bits and are represented using four numbers separated by three dots, e.g.
127.0.0.1.

#IPV6: Use Internet Protocol version 6 (IPv6). IPv6 addresses use 128 bits
and are represented by eight groups of four hexadecimal digits, e.g.
2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that #IPV6 is currently
unsupported on AmigaOS and compatible systems.

#IPAUTO: Let the host operating system determine the Internet protocol to use. You
can then use GetLocalProtocol() to find out which Internet protocol the
host operating system has chosen for this server. See Section 42.14 [GetLo-
calProtocol], page 835, for details.

The protocol argument defaults to the default protocol type set using
SetNetworkProtocol(). By default, this is #IPV4 due to historical and portability
reasons. See Section 42.23 [SetNetworkProtocol], page 845, for details.

Once the server has been successfully established, you must use the function
InstallEventHandler() to listen to the events OnConnect, OnDisconnect, and
OnReceiveData. These events will inform you whenever a new client tries to connect to
your server, or when a client sends new data (i.e. commands that you need to handle)
to your server.

Chapter 42: Network library 823

INPUTS

id identifier for the new server or Nil for auto id selection

port optional: port to open up for this server, or 0 for automatic port selection
(defaults to 0)

ip$ optional: local IP address to bind server to (defaults to "*")

backlog optional: maximum number of connections that can be queued (defaults to
32)

protocol optional: Internet protocol to use (see above for possible values); defaults to
the protocol type set using SetNetworkProtocol() (V8.0)

RESULTS

id optional: identifier of the new server; this will only be returned when you
pass Nil as argument 1 (see above)

42.5 CreateUDPObject

NAME
CreateUDPObject – create a new UDP object (V5.0)

SYNOPSIS
[id] = CreateUDPObject(id[, port, ip$, mode, protocol])

FUNCTION
This command can be used to create a new UDP object that can receive data and
send data to other network participants. The optional argument port can be used to
specify at which local port the UDP object should be created. If you do not specify
this argument, CreateUDPObject() will choose a vacant port automatically, and you
can use GetLocalPort() later to find out the port number of the UDP object. In the
first argument, you need to pass an identifier which is needed to refer to this UDP
object later on. Alternatively, you can pass Nil as the first argument. In that case,
CreateUDPObject() will select an identifier automatically and return it to you.

Starting with Hollywood 8.0 there is a new mode argument which allows you to specify
the type of UDP object that should be created for you. This can be one of the following
predefined values:

#UDPSERVER:

Create an UDP server object. In that case, the optional argument ip$ can be
used to specify a local IP address the UDP object should be bound to. This
defaults to "*", which means that the server will accept connections from the
whole network. You can also specify "127.0.0.1" (or "::1" in IPv6) to allow
only connections from the local host. Note that passing "*", which is also
the default, might trigger the firewall on some configurations. #UDPSERVER

is the default mode for CreateUDPObject().

#UDPCLIENT:

Create a client UDP object. In that case, the optional arguments ip$ and
portmust be specified to specify the server the client should be connected to.

824 Hollywood manual

If your UDP object always sends data to the same server, it is recommended
to create it as a #UDPCLIENT object because SendUDPData() is faster then.
(V8.0)

#UDPNONE:

Create an unconnected UDP object. In that case, the optional arguments
ip$ and port are ignored. Unconnected UDP objects are useful if you need
to send data to different servers without being able to receive data on your
own. (V8.0)

Additionally, Hollywood 8.0 introduces an optional new protocol argument which allows
you to specify the Internet protocol that should be used by the UDP object. This can
be one of the following special constants:

#IPV4: Use Internet Protocol version 4 (IPv4). IPv4 addresses are limited to 32
bits and are represented using four numbers separated by three dots, e.g.
127.0.0.1.

#IPV6: Use Internet Protocol version 6 (IPv6). IPv6 addresses use 128 bits
and are represented by eight groups of four hexadecimal digits, e.g.
2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that #IPV6 is currently
unsupported on AmigaOS and compatible systems.

#IPAUTO: Let the host operating system determine the Internet protocol to use. You
can then use GetLocalProtocol() or GetConnectionProtocol() to find
out which Internet protocol the host operating system has chosen for the
UDP object

The protocol argument defaults to the default protocol type set using
SetNetworkProtocol(). By default, this is #IPV4 due to historical and portability
reasons. See Section 42.23 [SetNetworkProtocol], page 845, for details.

Once the UDP object is created, you can use the commands SendUDPData(),
ReceiveUDPData(), and the OnReceiveUDPData event handler to communicate with
other systems in the network.

Please note that UDP is an unreliable transfer protocol. It is faster than the TCP
protocol but data may arrive incompletely or out of order. Thus, it is only suitable for
purposes that do not depend on the integrity of the transferred data.

INPUTS

id identifier for the new UDP object or Nil for auto id selection

port optional: port for this UDP object, or 0 for automatic port selection (defaults
to 0); must be set for #UDPCLIENT

ip$ optional: IP address to bind server to (for #UDPSERVER) or to connect UDP
object to (for #UDPCLIENT) (defaults to "*" for #UDPSERVER); must be set
for #UDPCLIENT

mode optional: desired mode for this UDP object (see above for possible values)
(V8.0)

protocol optional: Internet protocol to use (see above for possible values); defaults to
the protocol type set using SetNetworkProtocol() (V8.0)

Chapter 42: Network library 825

RESULTS

id optional: identifier of the new UDP object; this will only be returned when
you pass Nil as argument 1 (see above)

42.6 DownloadFile

NAME
DownloadFile – download file via HTTP, FTP or other protocol (V5.0)

SYNOPSIS
data$, count = DownloadFile(url$[, options, func, userdata])

FUNCTION
This command allows you to conveniently download a file from a network server. By
default, HTTP and FTP servers are supported but Hollywood plugins may provide sup-
port for additional protocols. You have to pass the URL of the file in the url$ argument.
DownloadFile() will then download the file and return it as a string. Storing binary
data inside strings is possible because Hollywood strings are not limited to printable
characters. Instead, they can also contain control characters and the NULL character.
The second return value indicates the size of the downloaded file in bytes.

Alternatively, you can also set the File tag in the optional table argument named
options to a filename. In that case, the downloaded file won’t be returned as a string
but it will be saved as the file specified in the File tag. This is recommended for bigger
files because strings are obviously stored in memory so downloading a large file to a
string is generally not a good idea because it will require lots of memory.

The URL passed in url$ must begin with a protocol prefix like http:// or
ftp://, and it must not contain any escaped characters. Escaping will be done
by DownloadFile() so make sure that you pass only unescaped URLs, e.g.
passing "http://www.mysite.net/cool%20file.html" will not work. You must
specify an URL without escaped characters, so the correct version would be:
"http://www.mysite.net/cool file.html". If you want to pass a URL that has already
been escaped, you have to set the Encoded tag to True (see below). In that case,
DownloadFile() won’t do any further escaping on your URL.

DownloadFile() also supports authentification for the HTTP and FTP protocols. In
that case, username and password have to be passed after the protocol identifier in the
form username:password, followed by an @ character and the server. Here is an example
for user "joe" and password "secret": http://joe:secret@www.test.net/private/files.lha.
Note that HTTP authentification support was not available before Hollywood 6.0. When
downloading from an FTP server, "anonymous" is used as the default username and
"anonymous@anonymous.org" as the default password. If you want to use a different
login account, you have to pass the username/password combination in the URL, for
example: ftp://joe:secret@ftp.test.net/pub/files.lha.

The URL you pass to this function can also contain a port number. If you want to specify
a port number, you have to put it behind the host name and separate it using a colon.
Here is an example for using port 1234: http://www.test.com:1234/test/image.jpg. If

826 Hollywood manual

no port is specified, DownloadFile() will use port 80 for HTTP servers and port 21 for
FTP servers.

The second argument can be used to specify further options for the download operation.
It is a table that recognizes the following tags:

File: If you specify a filename in this table tag, DownloadFile() will stream the
downloaded data directly to this file instead of returning it as a string. This
is useful for very large files on the one hand, but it is also useful for other files
because it saves you the hassle of having to save the string data manually
to a file and set it to Nil afterwards. Therefore, if you are going to save
the downloaded string to a file anyway, it is more efficient to use this tag.
If you decide not to use this tag, please also read below for some important
information when downloading files to strings.

TransferMode:

This tag is only supported when downloading files from an FTP source. In
that case, you can use this tag to specify whether DownloadFile() should
transfer the file in ASCII or in binary mode. For ASCII mode, specify
#FTPASCII here. For binary mode, use #FTPBINARY. The default transfer
mode is #FTPBINARY.

Proxy: This tag is only supported when downloading files from an HTTP source.
In that case, you can specify a server here that should act as a proxy server
for the connection.

Fail404: This tag specifies whether or not DownloadFile() should fail with a "file
not found" error when you pass a URL that points to a non-existent file.
Normally, when you request a non-existent file, HTTP servers will generate
a special HTML page with a "404 - file not found" error, and send that to
you instead. So you will always be getting a file even if you are requesting
a non-existent file. If you do not want this behaviour, set this tag to True.
In that case, DownloadFile() will fail when requesting an invalid file and
you will not get any 404 error page. By default, this tag is set to False

which means that an error page is generated. This tag is only supported for
downloading files from an HTTP source.

SilentFail:

If you set this tag to True, DownloadFile() will never throw an error but
simply exit silently and return an error message in the first return value, and
-1 in the second return value to indicate that an error has happened. If it is
set to False, DownloadFile() will throw a system error for all errors that
occur. Defaults to False.

Redirect:

Specifies whether or not the web server is allowed to redirect you to a new
URL. This defaults to True which means that redirection is allowed. This
tag is only supported when downloading files from an HTTP source.

Post: This tag is only supported when working with a HTTP server. If this tag
is specified, DownloadFile() will send a POST request to the HTTP server
instead of a GET request. A POST request has the advantage that you can

Chapter 42: Network library 827

attach additional data to your request. Thus, it is often used for submitting
the contents of web forms, or for uploading files via HTTP. The data that
shall be attached to the POST request must be specified in this tag as a
string. You can set the type of the data by using the PostType tag (see
below).

PostType:

This tag is only handled when the Post tag was also specified. If that
is the case, PostType specifies the type of data inside the Post tag. The
type must be passed as a MIME content type string. This tag defaults
to "application/x-www-form-urlencoded" which is the MIME type used for
submitting the contents of web forms to Perl (CGI) scripts.

UserAgent:

This tag allows you to change the user agent that DownloadFile() sends to
the target server. This is useful with servers that refuse to cooperate with
unknown user agents. By default, DownloadFile() will send "Hollywood"
in the user agent field of HTTP requests. This tag is only supported for
downloading files from an HTTP source. (V5.2)

CustomHeaders:

This tag allows you to specify a string of custom headers that should be sent
to the HTTP server when making the request. This can be useful for some
fine-tuned adjustments for some servers. Keep in mind that the individual
header elements have to be terminated by a carriage return and a line feed.
This tag is only supported when using the HTTP protocol. (V6.0)

Encoded: Set this tag to True if the URL you passed to this function has already been
correctly escaped. If this tag is set to True, DownloadFile() won’t escape
any characters. Instead, it expects you to pass a URL that has already been
correctly escaped so that it can be directly used for server requests without
any additional escaping. (V6.1)

Protocol:

This tag can be used to specify the Internet protocol that should be used
when opening the connection. This can be one of the following special con-
stants:

#IPV4: Use Internet Protocol version 4 (IPv4).

#IPV6: Use Internet Protocol version 6 (IPv6). Note that #IPV6 is cur-
rently unsupported on AmigaOS and compatible systems.

#IPAUTO: Let the host operating system determine the Internet protocol
to use.

This tag defaults to the default protocol type set using
SetNetworkProtocol(). By default, this is #IPV4 due to histori-
cal and portability reasons. See Section 42.23 [SetNetworkProtocol],
page 845, for details. (V8.0)

Adapter: This tag allows you to specify one or more network adapters that should
be asked to establish the specified connection. This must be set to a string

828 Hollywood manual

containing the name(s) of one or more adapter(s). Defaults to the adapter
set using SetDefaultAdapter(). See Section 7.9 [Loaders and adapters],
page 92, for details. (V8.0)

SSL: Set this tag to True to request a connection through TLS/SSL encryption.
Note that setting this tag when using Hollywood’s inbuilt network adapter
doesn’t have any effect because Hollywood’s inbuilt network adapter doesn’t
support TLS/SSL connections. However, there might be a network adapter
provided by a plugin that supports TLS/SSL and if you set this tag to True

Hollywood will forward your wish to have a TLS/SSL connection to the
network adapter provided by the plugin. Do note, though, that you normally
don’t have to set this tag in case the URL’s scheme already indicates an SSL
connection by using a prefix such as "https://" or "ftps://". (V8.0)

Async: If this is set to True, DownloadFile() will operate in asynchronous mode.
This means that it will return immediately, passing an asynchronous opera-
tion handle to you. You can then use this asynchronous operation handle to
finish the operation by repeatedly calling ContinueAsyncOperation() until
it returns True. This is very useful in case your script needs to do something
else while the operation is in progress, e.g. displaying a status animation or
something similar. By putting DownloadFile() into asynchronous mode, it
is easily possible for your script to do something else while the operation is
being processed. See Section 19.4 [ContinueAsyncOperation], page 224, for
details. Defaults to False. (V9.0)

Verbose: This tag can be set to True to request detailed log information about the
connection and the protocol interaction with the server. This is currently
only used by Hollywood plugins so if you use Hollywood’s internal network
adapter, setting this tag to True has no effect. Plugins, however, may choose
to provide extended connection information when this tag has been set to
True. Defaults to False. (V9.0)

FileAdapter:

This tag is only used if the File tag is set as well. In that case, FileAdapter
allows you to specify one or more file adapters that should be asked if they
want to save the specified file. If you use this tag, you must set it to a string
containing the name(s) of one or more adapter(s). Defaults to default. See
Section 7.9 [Loaders and adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
file and network adapters. If you use this tag, you must set it to a table
of key-value pairs that contain the additional data that should be passed to
plugins. See Section 7.10 [User tags], page 95, for details. (V10.0)

The optional parameter func can be used to pass a callback function which will be called
from time to time by DownloadFile() so you can update a progress bar for example.
The callback function you specify here will be called with a single argument: A table that
contains more information. Here is an overview of the table fields that will be initialized
before DownloadFile() runs your callback function:

Chapter 42: Network library 829

Action: #DOWNLOADFILE_STATUS

Count: Contains the number of bytes that have already been downloaded.

Total: Contains the size of the file being downloaded.

UserData:

Contains the value you passed in the userdata argument.

The callback function of type #DOWNLOADFILE_STATUS should normally return False. If
it returns True, the download operation will be aborted.

Finally, there is a fourth optional argument called userdata. The value you specify
here is passed to your callback function whenever it is called. This is useful if you want
to avoid working with global variables. Using the userdata argument you can easily
pass data to your callback function. You can specify a value of any type in userdata.
Numbers, strings, tables, and even functions can be passed as user data.

If you are downloading to a string, you can use the StringToFile() shortcut function to
convert the string returned by DownloadFile() to a file. Alternatively, you could use the
DefineVirtualFileFromString() function to create a virtual file from a string source.
This can be useful, for example, when you download an image file that you want to load
into Hollywood using LoadBrush(). By using DefineVirtualFileFromString() you
can load this file directly into Hollywood without having to save it to a temporary file
first.

Important note: Make sure that you set the string returned by this function to Nil when
you no longer need it. By setting the string to Nil, you signal to the Hollywood garbage
collector that you no longer need this string and that its memory can be freed. This is
especially important for large files. If you download a large file, save it to disk and do
not set its string to Nil, you will waste a lot of memory. So make sure to be careful with
strings returned by DownloadFile().

INPUTS

url$ URL to file that shall be downloaded

options optional: a table containing further options for this download

func optional: a callback function that shall be called from time to time

userdata optional: user defined data that should be passed to callback function

RESULTS

data$ the data that was read from the network buffer or an empty string if the
File tag was specified in the options table

count number of bytes successfully transmitted

EXAMPLE
DownloadFile("http://www.airsoftsoftwair.de/images/products/" ..

"hollywood/47_shot1.jpg", {File = "47_shot1.jpg"})

The code above downloads the specified file and saves it as "47 shot1.jpg" to the current
directory.

830 Hollywood manual

DownloadFile("http://www.<your server>.com/cgi-bin/formmailer.cgi",

{Post = "sender=Hollywood&mail=me@hollywood-mal.de" ..

"&message=Hello from Hollywood!"}))

The code above shows to invoke a CGI script using DownloadFile(). The data specified
in the Post tag will be passed to the HTTP server using the POST method.

DownloadFile("http://www.hollywood-mal.com/index.html", {

File = "index.html",

CustomHeaders = "Accept-Encoding: gzip, deflate\r\n"})

The code above downloads the specified file and sends a custom header to tell the server
that it can also send the file as a gzip or flate compressed file.

@REQUIRE "hurl"

...

DownloadFile("https://www.hollywood-mal.com/index.html", {

File = "index.html", Adapter = "hurl"})

The code above downloads a file using the HTTPS protocol. Since Hollywood doesn’t
support SSL/TLS by default, this code uses the hURL plugin for the operation because
hURL supports SSL/TLS. hURL is activated by passing hurl in the Adapter tag.

42.7 GetConnectionIP

NAME
GetConnectionIP – get IP address of remote side (V5.0)

SYNOPSIS
ip$ = GetConnectionIP(id[, type])

FUNCTION
This command returns the IP address of the connection object specified in id. This can
either be the identifier of a server connection obtained by a call to OpenConnection(),
the identifier of a client connection obtained by listening to the OnConnect and
OnReceiveData events using InstallEventHandler(), or it can be the identifier of
a UDP object created by CreateUDPObject(). The IP address of the remote side is
returned as a string by this function.

The optional argument type specifies the type of the network object passed in argument
1. The following types are currently supported by this function:

#NETWORKCONNECTION:

Query the IP of a connection obtained by a call to OpenConnection(),
or the IP of a client connection obtained by listening to the OnConnect

and OnReceiveData events that can be installed using the command
InstallEventHandler().

#NETWORKUDP:

Query the IP of a UDP object created using the CreateUDPObject() call.

If you omit the optional type argument, it will default to type #NETWORKCONNECTION.

Chapter 42: Network library 831

INPUTS

id connection object to query

type optional: type of network object to query (defaults to #NETWORKCONNECTION)
(V8.0)

RESULTS

ip$ IP address of the remote side of the connection as a string

EXAMPLE
OpenConnection(1, "www.airsoftsoftwair.de", 80)

DebugPrint(GetConnectionIP(1), GetConnectionPort(80))

CloseConnection(1)

The code above connects to www.airsoftsoftwair.de port 80 and then obtains the IP
address of this server.

42.8 GetConnectionPort

NAME
GetConnectionPort – get port number of remote side (V5.0)

SYNOPSIS
port = GetConnectionPort(id[, type])

FUNCTION
This command returns the port number of the connection object specified in
id. This can either be the identifier of a server connection obtained by a call to
OpenConnection(), the identifier of a client connection obtained by listening to the
OnConnect and OnReceiveData events using InstallEventHandler(), or it can be the
identifier of a UDP object created by CreateUDPObject().

The optional argument type specifies the type of the network object passed in argument
1. The following types are currently supported by this function:

#NETWORKCONNECTION:

Query the port of a connection obtained by a call to OpenConnection(),
or the IP of a client connection obtained by listening to the OnConnect

and OnReceiveData events that can be installed using the command
InstallEventHandler().

#NETWORKUDP:

Query the port of a UDP object created using the CreateUDPObject() call.

If you omit the optional type argument, it will default to type #NETWORKCONNECTION.

INPUTS

id connection object to query

type optional: type of network object to query (defaults to #NETWORKCONNECTION)
(V8.0)

832 Hollywood manual

RESULTS

port port number of the remote side of the connection

EXAMPLE
See Section 42.7 [GetConnectionIP], page 830.

42.9 GetConnectionProtocol

NAME
GetConnectionProtocol – get protocol of remote side (V8.0)

SYNOPSIS
protocol = GetConnectionProtocol(id[, type])

FUNCTION
This command returns the Internet protocol of the connection object specified in
id. This can either be the identifier of a server connection obtained by a call to
OpenConnection(), the identifier of a client connection obtained by listening to the
OnConnect and OnReceiveData events using InstallEventHandler(), or it can be the
identifier of a UDP object created by CreateUDPObject().

The optional argument type specifies the type of the network object passed in argument
1. The following types are currently supported by this function:

#NETWORKCONNECTION:

Query the protocol of a connection obtained by a call to OpenConnection(),
or the protocol of a client connection obtained by listening to the OnConnect
and OnReceiveData events that can be installed using the command
InstallEventHandler().

#NETWORKUDP:

Query the protocol of a UDP object created using the CreateUDPObject()

call.

If you omit the optional type argument, it will default to type #NETWORKCONNECTION.

The return value will be one of the following predefined constants:

#IPV4: Internet Protocol version 4 (IPv4). IPv4 addresses are limited to 32 bits and
are represented using four numbers separated by three dots, e.g. 127.0.0.1.

#IPV6: Internet Protocol version 6 (IPv6). IPv6 addresses use 128 bits
and are represented by eight groups of four hexadecimal digits, e.g.
2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that #IPV6 is currently
unsupported on AmigaOS and compatible systems.

#IPAUTO: The host system hasn’t decided on a protocol for this network object yet.

#IPUNKNOWN:

Network object uses an unknown protocol.

INPUTS

id connection object to query

Chapter 42: Network library 833

type optional: type of network object to query (defaults to #NETWORKCONNECTION)

RESULTS

protocol protocol of remote side of the connection

42.10 GetHostName

NAME
GetHostName – return standard host name of machine (V5.0)

SYNOPSIS
host$ = GetHostName()

FUNCTION
This function returns the standard host name of the machine that Hollywood is currently
running on.

INPUTS
none

RESULTS

host$ standard host name of machine

42.11 GetLocalInterfaces

NAME
GetLocalInterfaces – get local interfaces (V9.0)

SYNOPSIS
t = GetLocalInterfaces([linklocal])

FUNCTION
This function returns a list of all network interfaces that are currently available. This al-
lows you to conveniently determine a system’s local IP address. If the optional linklocal
argument is set to True, link-local addresses will be included as well.

GetLocalInterfaces() will return a table that contains a number of subtables, each
describing a local interface. The following fields will be initialized in each subtable:

Name: The name of the interface.

Address: The address of the interface. Depending on the setting of the Protocol tag
(see below), this may be either an IPv4 or IPv6 address.

Protocol:

The protocol of the interface. This will be one of the following predefined
constants:

#IPV4: Internet Protocol version 4 (IPv4). IPv4 addresses are limited
to 32 bits and are represented using four numbers separated by
three dots, e.g. 127.0.0.1.

834 Hollywood manual

#IPV6: Internet Protocol version 6 (IPv6). IPv6 addresses use 128 bits
and are represented by eight groups of four hexadecimal digits,
e.g. 2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that #IPV6
is currently unsupported on AmigaOS and compatible systems.

INPUTS

linklocal

optional: True to include link-local addresses in the return table, False to
exclude them (defaults to False)

RESULTS

t table containing a list of all local interfaces

EXAMPLE
t = GetLocalInterfaces()

For Local k = 0 To ListItems(t) - 1

NPrint(t[k].Name, t[k].Address, t[k].Protocol)

Next

The code above prints information about all available network interfaces.

42.12 GetLocalIP

NAME
GetLocalIP – get IP address of local side (V5.0)

SYNOPSIS
ip$ = GetLocalIP(id[, type])

FUNCTION
This command returns the IP address on the local side of the network object specified
in id. The optional argument type specifies the type of the network object passed in
argument 1. The following types are currently supported by this function:

#NETWORKCONNECTION:

Query the local IP of a connection obtained by a call to OpenConnection(),
or the local IP of a client connection obtained by listening to the OnConnect
and OnReceiveData events that can be installed using the command
InstallEventHandler().

#NETWORKSERVER:

Query the local IP of a server established using the CreateServer() call.

#NETWORKUDP:

Query the local IP of an UDP object created using the CreateUDPObject()
call.

If you omit the optional type argument, it will default to type #NETWORKCONNECTION.

INPUTS

id network object to query

Chapter 42: Network library 835

type optional: type of the network object passed in argument 1 (defaults to
#NETWORKCONNECTION)

RESULTS

ip$ IP address of the local side of the connection

42.13 GetLocalPort

NAME
GetLocalPort – get port number of local side (V5.0)

SYNOPSIS
port = GetLocalPort(id[, type])

FUNCTION
This command returns the port number on the local side of the network object specified
in id. The optional argument type specifies the type of the network object passed in
argument 1. The following types are currently supported by this function:

#NETWORKCONNECTION:

Query the local port of a connection obtained by a call to the
OpenConnection(), function or the local port of a client connection
obtained by listening to the OnConnect and OnReceiveData events using
the command InstallEventHandler().

#NETWORKSERVER:

Query the local port of a server established using the CreateServer() call.

#NETWORKUDP:

Query the local port of an UDP object created using the CreateUDPObject()
call.

If you omit the optional type argument, it will default to type #NETWORKCONNECTION.

INPUTS

id network object to query

type optional: type of the network object passed in argument 1 (defaults to
#NETWORKCONNECTION)

RESULTS

port port number of the local side of the connection

42.14 GetLocalProtocol

NAME
GetLocalProtocol – get protocol of local side (V8.0)

SYNOPSIS
protocol = GetLocalProtocol(id[, type])

836 Hollywood manual

FUNCTION
This command returns the Internet protocol on the local side of the network object
specified in id. The optional argument type specifies the type of the network object
passed in argument 1. The following types are currently supported by this function:

#NETWORKCONNECTION:

Query the local IP of a connection obtained by a call to OpenConnection(),
or the local IP of a client connection obtained by listening to the OnConnect
and OnReceiveData events that can be installed using the command
InstallEventHandler().

#NETWORKSERVER:

Query the local IP of a server established using the CreateServer() call.

#NETWORKUDP:

Query the local IP of an UDP object created using the CreateUDPObject()
call.

If you omit the optional type argument, it will default to type #NETWORKCONNECTION.

The return value will be one of the following predefined constants:

#IPV4: Internet Protocol version 4 (IPv4). IPv4 addresses are limited to 32 bits and
are represented using four numbers separated by three dots, e.g. 127.0.0.1.

#IPV6: Internet Protocol version 6 (IPv6). IPv6 addresses use 128 bits
and are represented by eight groups of four hexadecimal digits, e.g.
2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that #IPV6 is currently
unsupported on AmigaOS and compatible systems.

#IPAUTO: The host system hasn’t decided on a protocol for this network object yet.

#IPUNKNOWN:

Network object uses an unknown protocol.

INPUTS

id network object to query

type optional: type of the network object passed in argument 1 (defaults to
#NETWORKCONNECTION)

RESULTS

protocol protocol of the local side of the connection (see above for possible return
values)

42.15 GetMACAddress

NAME
GetMACAddress – get host system’s MAC address (V7.0)

SYNOPSIS
addr$ = GetMACAddress()

Chapter 42: Network library 837

FUNCTION
This function returns the host system’s MAC address as 6 octets separated by colons,
e.g. 12:34:56:78:9A:BC.

If the MAC address cannot be obtained, "Unknown" is returned.

Note that on AmigaOS 3, the only TCP/IP stack that supports obtaining the MAC
address is Roadshow.

INPUTS
none

RESULTS

addr$ host system’s MAC address or "Unknown"

42.16 IsOnline

NAME
IsOnline – check if an Internet connection is available (V5.0)

SYNOPSIS
bool = IsOnline()

FUNCTION
This function can be used to check whether or not an Internet connection is available.
It will return True if connection to the Internet is possible, and False otherwise.

INPUTS
none

RESULTS

bool boolean value indicating whether or not Internet is available

42.17 OpenConnection

NAME
OpenConnection – connect to a server (V5.0)

SYNOPSIS
[id] = OpenConnection(id, server$, port[, table])

FUNCTION
This command can be used to establish a new connection to the server specified in
server$. This can be either a host name or an IP address directly. The third argument
specifies the port at which OpenConnection() should try to connect. In the first argu-
ment, you need to pass an identifier which is needed to refer to this connection later on.
Alternatively, you can pass Nil as the first argument. In that case, OpenConnection()
will select an identifier automatically and return it to you.

Once the connection is successfully established, you can use SendData() and
ReceiveData() to communicate with the server. When you are finished you should call
CloseConnection() to disconnect from the server.

838 Hollywood manual

Please note that scheme prefixes like "http://" or "ftp://" are not part of a server
name. These just specify the protocol that is used to communicate with the server.
So if you want to connect http://www.airsoftsoftwair.de you will have to specify
"www.airsoftsoftwair.de" as the server name and 80 as the port because 80 is the standard
HTTP port. See below for an example. An exception to this rule might be the case where
you use the Adapter tag to have a network adapter establish the connection. In that
case, the network adapter might ask you to specify a scheme name like "http://" or
"ftp://" but it really depends on the network adapter. Hollywood’s inbuilt adapter
doesn’t support scheme prefixes and expects you to specify the IP address or the host
name directly.

Starting with Hollywood 8.0, OpenConnection() accepts an optional table argument
that can be used to specify further options. The following tags are currently recognized
by the optional table argument:

Protocol:

This tag allows you to specify the Internet protocol that should be used when
opening the connection. This can be one of the following special constants:

#IPV4: Use Internet Protocol version 4 (IPv4). IPv4 addresses are lim-
ited to 32 bits and are represented using four numbers separated
by three dots, e.g. 127.0.0.1.

#IPV6: Use Internet Protocol version 6 (IPv6). IPv6 addresses use 128
bits and are represented by eight groups of four hexadecimal
digits, e.g. 2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that
#IPV6 is currently unsupported on AmigaOS and compatible
systems.

#IPAUTO: Let the host operating system determine the Internet protocol
to use. You can then use GetConnectionProtocol() to find out
which Internet protocol the host operating system has chosen for
this server. See Section 42.9 [GetConnectionProtocol], page 832,
for details.

The Protocol tag defaults to the default protocol type set using
SetNetworkProtocol(). By default, this is #IPV4 due to historical and
portability reasons. See Section 42.23 [SetNetworkProtocol], page 845, for
details. (V8.0)

Adapter: This tag allows you to specify one or more network adapters that should
be asked to establish the specified connection. This must be set to a string
containing the name(s) of one or more adapter(s). Defaults to the adapter
set using SetDefaultAdapter(). See Section 7.9 [Loaders and adapters],
page 92, for details. (V8.0)

SSL: Set this tag to True to request a connection through TLS/SSL encryption.
Note that setting this tag when using Hollywood’s inbuilt network adapter
doesn’t have any effect because Hollywood’s inbuilt network adapter doesn’t
support TLS/SSL connections. However, there might be a network adapter
provided by a plugin that supports TLS/SSL and if you set this tag to True

http://www.airsoftsoftwair.de

Chapter 42: Network library 839

Hollywood will forward your wish to have a TLS/SSL connection to the
network adapter provided by the plugin. (V8.0)

UserTags:

This tag can be used to specify additional data that should be passed to
network adapters. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

id identifier for the new connection or Nil for auto id selection

server$ server to connect to

port port to connect at

table optional: table argument containing further options (see above) (V8.0)

RESULTS

id optional: identifier of the new connection; this will only be returned when
you pass Nil as argument 1 (see above)

EXAMPLE
OpenConnection(1, "www.airsoftsoftwair.de", 80)

SendData(1, "GET http://www.airsoftsoftwair.de/index.html " ..

"HTTP/1.0\r\n\r\n")

a$ = ReceiveData(1, #RECEIVEALL)

Print(a$)

CloseConnection(1)

The code above connects to http://www.airsoftsoftwair.de and downloads the index
HTML page.

42.18 ReceiveData

NAME
ReceiveData – receive data through the network (V5.0)

SYNOPSIS
data$, count, done = ReceiveData(id, mode, ...)

data$, count, done = ReceiveData(id, #RECEIVEBYTES, maxbytes[, callback,

userdata])

data$, count, done = ReceiveData(id, #RECEIVEALL[, untilterm, callback,

userdata])

data$, count, done = ReceiveData(id, #RECEIVELINE[, callback, userdata])

FUNCTION
This function can be used to receive data from a server or a client. If you want to receive
data from a server, you need to pass an identifier obtained from OpenConnection() to
this function. If you are a server and want to retrieve data from one of your clients, you
need to pass the network identifier of the respective client. You can get the identifiers of

http://www.airsoftsoftwair.de

840 Hollywood manual

your clients by listening to the OnConnect event handler which you can set up by calling
InstallEventHandler().

The second argument specifies how much data you want to receive from the sender with
this call. Currently, the following modes are supported:

#RECEIVEBYTES:

Receive all available data but not more than the specified number of bytes.
If you use this mode, you need to pass the maximum number of bytes you
wish to receive in the third argument. ReceiveData() will then never obtain
more bytes than you specified. However, it can happen that less bytes are
returned in case there is not enough data available from the sender. You
can find out the number of bytes obtained by looking at the second return
value.

#RECEIVEALL:

Receive all data currently available. If the optional argument untilterm is
set to True, ReceiveData() will not return before the sender terminates the
connection, thus allowing you to receive all data a sender has to offer using
just a single call. If untilterm is set to False, ReceiveData() will only
return the data that is currently available. It will not wait for additional
data to arrive, but it will tell you if there is more data to be retrieved (in
the third return value). The default setting for untilterm is True which
means that ReceiveData() will read data until the sender terminates the
connection.

#RECEIVELINE:

Receive a single line of text from the sender. This mode must only be used
when working with non binary data. The carriage return and the newline
characters will not be included in the returned string. They are read from
the network buffer but they will not be returned by ReceiveData() if you
use #RECEIVELINE.

ReceiveData() returns three values: The first return value is a string that contains the
data that was received from the network or an empty string if you use a callback to
handle the data or no data could be read. Please note that although the data read is
returned as a string, it is not limited to text only. It can also contain binary data because
Hollywood strings can handle control characters and the NULL character just fine. The
second return value specifies how many bytes could be read from the network buffer. If
this is 0, then there is currently no data available. The third return value is only useful
if you use #RECEIVEALL transfer mode with untilterm set to False. In that case, the
third return value tells you if more data is available in the network buffer. If there is
more data to be read, then done is False, otherwise it will be True.

Starting with Hollywood 6.0 there is an optional callback parameter that allows you
to pass a callback function that should receive the data read from the server. This can
be useful if you need to stream large amounts of data that cannot be efficiently stored
inside a Hollywood string. The callback function could simply write the data it receives
to a file, for example. Note that if you specify a callback function, ReceiveData() will
always return an empty string. The callback function you specify will be called with a

Chapter 42: Network library 841

single argument: A table that contains more information. Here is an overview of the
table fields that will be initialized before ReceiveData() runs your callback function:

Action: #RECEIVEDATA_PACKET

Data: The data that has been received from the server. Note that this can contain
binary data.

Count: Contains the number of bytes in Data.

Total: Contains the total number of bytes already received.

UserData:

Contains the value you passed in the userdata argument.

The callback function of type #RECEIVEDATA_PACKET should normally return False. If
it returns True, ReceiveData() will abort its operations and return immediately.

Finally, there is another optional argument called userdata. The value you specify here
is passed to your callback function whenever it is called. This is useful if you want
to avoid working with global variables. Using the userdata argument you can easily
pass data to your callback function. You can specify a value of any type in userdata.
Numbers, strings, tables, and even functions can be passed as user data.

INPUTS

id identifier of the sender

mode the desired transfer mode; see above for a list of currently supported transfer
modes

... further arguments depend on the specified transfer mode; see above

RESULTS

data$ the data that was read from the network buffer or an empty string if a
callback is specified

count number of bytes successfully transmitted

done whether or not there is more data in the network buffer (only when
#RECEIVEALL is used together with untilterm set to False)

EXAMPLE
See Section 42.17 [OpenConnection], page 837.

42.19 ReceiveUDPData

NAME
ReceiveUDPData – receive data through UDP protocol (V5.0)

SYNOPSIS
data$, ip$, port = ReceiveUDPData(id[, size])

FUNCTION
This function can be used to receive data from the UDP object specified by id. This UDP
object must have been created using CreateUDPObject() earlier. The optional argument

842 Hollywood manual

size can be used to specify the maximum number of bytes to receive. By default, this
is set to 8192 bytes which is also the maximum number of bytes ReceiveUDPData() can
handle. So you may set size to values less than 8192 bytes but not to more.

ReceiveUDPData() returns three values: The first return value is a string containing the
data received from the UDP object. The second return value contains the IP address of
the sender, and the third return value contains the port number of the sender.

Note that the global network timeout set using SetNetworkTimeout() is currently ig-
nored by ReceiveUDPData().

INPUTS

id identifier of the UDP object to use

size optional: maximum number of bytes to receive (defaults to 8192 bytes)

RESULTS

data$ the data that was read from the network

ip$ IP address of the data sender

port port number of the data sender

42.20 ResolveHostName

NAME
ResolveHostName – convert host name to IP address (V8.0)

SYNOPSIS
t = ResolveHostName(host$)

FUNCTION
This function can be used to convert the host name specified in host$ to an IP address.
In contrast to the similar function ToIP(), ResolveHostName() returns all information
it can retrieve from the resolver in a table. This is especially useful if you need to get
information about the available Internet protocols for the host name. Thus, this function
can return multiple IP addresses for the specified host name, e.g. one IPv4 address and
one IPv6 address.

ResolveHostName() returns a table which contains a number of subtables, one for each
IP address successfully resolved. Each of these subtables will have the following fields
initialized:

Address: The IP address of the specified host name in the format of the respective
Internet protocol (see below).

Protocol:

The Internet protocol used by this IP address. This can be one of the
following special values:

#IPV4: Internet Protocol version 4 (IPv4). IPv4 addresses are limited
to 32 bits and are represented using four numbers separated by
three dots, e.g. 127.0.0.1.

Chapter 42: Network library 843

#IPV6: Internet Protocol version 6 (IPv6). IPv6 addresses use 128 bits
and are represented by eight groups of four hexadecimal digits,
e.g. 2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that #IPV6
is currently unsupported on AmigaOS and compatible systems.

#IPUNKNOWN:

IP address uses an unknown protocol.

INPUTS

host$ host name to resolve

RESULTS

t a table of tables containing all information from the resolver (see above)

EXAMPLE
t = ResolveHostName("www.airsoftsoftwair.de")

For Local k = 0 To ListItems(t) - 1

Print(t[k].address, t[k].protocol)

Next

On a Windows 10 system, the code above resolves two IP address for
www.airsoftsoftwair.de: One IPv4 address and one IPv6 address.

42.21 SendData

NAME
SendData – send data through the network (V5.0)

SYNOPSIS
count = SendData(id, data$)

FUNCTION
This function can be used to send data to a server or a client. If you want to send
data to a server, you need to pass an identifier obtained from OpenConnection() to
this function. If you are a server and want to send data to one of your clients, you
need to pass the identifier of the respective client. You will receive the identifiers of
your clients by listening to the OnConnect event handler which you can set up by calling
InstallEventHandler().

The second argument is a string containing the data that you want to send to the
recipient. Please note that although this argument is a string, it is not limited to text
only. You can also send raw data with this function because Hollywood strings can
handle character control codes as well as the special NULL character without problems.

Upon return, SendData() will return the number of bytes that it has successfully trans-
mitted to the recipient. This can be less than the number of bytes in data$.

INPUTS

id identifier of the recipient

data$ string containing the data that should be sent

844 Hollywood manual

RESULTS

count number of bytes successfully transmitted

EXAMPLE
See Section 42.17 [OpenConnection], page 837.

42.22 SendUDPData

NAME
SendUDPData – send data through UDP protocol (V5.0)

SYNOPSIS
count = SendUDPData(id, data$[, ip$, port])

FUNCTION
This function will send the data specified in data$ to the recipient specified by ip$ and
port. The data will be sent through the UDP object specified in the first argument. This
UDP object must have been created by CreateUDPObject() before. For performance
reasons, you must pass an IP address directly to this function. Passing a host name
instead is not supported because it would have to be resolved first which would take
too much time. SendUDPData() will return the number of bytes successfully transferred.
This can be less than the number of bytes in data$.

Please note that although the data argument is a string, it is not limited to text only.
You can also send binary data with this function because Hollywood strings can handle
character control codes as well as the special NULL character without problems.

Starting with Hollywood 8.0, the ip$ and port arguments are not required in case the
UDP object has been created as a UDP object of type #UDPCLIENT. In that case, the
UDP object is already connected and you don’t have to pass ip$ and port. In fact, they
are ignored for UDP objects of type #UDPCLIENT. See Section 42.5 [CreateUDPObject],
page 823, for details.

Note that the global network timeout set using SetNetworkTimeout() is currently ig-
nored by SendUDPData().

INPUTS

id identifier of the UDP object to use

data$ string containing the data that should be sent

ip$ optional: IP address of recipient; must be specified for UDP objects of type
#UDPSERVER and #UDPNONE

port optional: port number of recipient; must be specified for UDP objects of
type #UDPSERVER and #UDPNONE

RESULTS

count number of bytes successfully transmitted

Chapter 42: Network library 845

42.23 SetNetworkProtocol

NAME
SetNetworkProtocol – set default network protocol (V8.0)

SYNOPSIS
SetNetworkProtocol(protocol)

FUNCTION
This function can be used to set the Internet protocol to be used by functions like
OpenConnection(), CreateServer(), CreateUDPObject() and DownloadFile() if no
explicit protocol has been requested.

You have to pass the desired default Internet protocol in the protocol argument. This
must be one of the following special values:

#IPV4: Use Internet Protocol version 4 (IPv4). IPv4 addresses are limited to 32
bits and are represented using four numbers separated by three dots, e.g.
127.0.0.1.

#IPV6: Use Internet Protocol version 6 (IPv6). IPv6 addresses use 128 bits
and are represented by eight groups of four hexadecimal digits, e.g.
2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that #IPV6 is currently
unsupported on AmigaOS and compatible systems.

#IPAUTO: Let the host operating system determine the Internet protocol to use.

Due to historical and portability reasons, #IPV4 is the default network protocol Holly-
wood will use. If you want to change this default, call this function.

INPUTS

protocol desired new default Internet protocol to use

42.24 SetNetworkTimeout

NAME
SetNetworkTimeout – set global timeout for network functions (V5.0)

SYNOPSIS
SetNetworkTimeout(ms)

FUNCTION
This function can be used to define a global timeout setting for all functions of the
Hollywood network library. By default, this timeout is set to 10000 milliseconds (10
seconds). This means that if a server takes longer than 10 seconds to respond, the
network library will automatically terminate the connection. Defining such a timeout is
very important to make sure that network functions cannot block your whole script just
because a server is down. Thus, there should always be a reasonable timeout value.

Normally, it should not be necessary to use this function. In rare circumstances, however,
it might be useful to modify the global timeout value. If you need to do so, just pass the
desired timeout value in milliseconds to this function.

846 Hollywood manual

INPUTS

ms new desired global timeout in milliseconds (defaults to 10000 milliseconds)

42.25 ToHostName

NAME
ToHostName – convert IP address to host name (V5.0)

SYNOPSIS
host$ = ToHostName(ip$)

FUNCTION
This function can be used to locate the host name of the specified IP address. The IP
address must be specified as a string in the form of four numbers separated by colons,
like this: "10.20.30.40". To get the IP address from a host name, use ToIP().

INPUTS

ip$ IP address to resolve

RESULTS

host$ resolved host name of the specified IP address

42.26 ToIP

NAME
ToIP – convert host name to IP address (V5.0)

SYNOPSIS
ip$ = ToIP(host$[, protocol])

FUNCTION
This function can be used to resolve the IP address of the specified host name. The IP
address of the host will be returned as a string. To get the host of an IP address, use
ToHostName().

Starting with Hollywood 8.0, there is an optional new protocol argument which allows
you to specify the Internet protocol that should be used for the resulting IP address.
This can be one of the following special constants:

#IPV4: Use Internet Protocol version 4 (IPv4). IPv4 addresses are limited to 32
bits and are represented using four numbers separated by three dots, e.g.
127.0.0.1.

#IPV6: Use Internet Protocol version 6 (IPv6). IPv6 addresses use 128 bits
and are represented by eight groups of four hexadecimal digits, e.g.
2001:0db8:85a3:0000:0000:8a2e:0370:7334. Note that #IPV6 is currently
unsupported on AmigaOS and compatible systems.

#IPAUTO: Let the host operating system determine the Internet protocol to use.

Chapter 42: Network library 847

The protocol argument defaults to the default protocol type set using
SetNetworkProtocol(). By default, this is #IPV4 due to historical and portability
reasons. See Section 42.23 [SetNetworkProtocol], page 845, for details.

To resolve a host name with advanced functionality, take a look at the
ResolveHostName() function. See Section 42.20 [ResolveHostName], page 842, for
details.

INPUTS

host$ host name to resolve

protocol optional: Internet protocol to use (see above for possible values); defaults to
the protocol type set using SetNetworkProtocol() (V8.0)

RESULTS

ip$ IP address of the specified host

42.27 UploadFile

NAME
UploadFile – upload file to a server (V5.0)

SYNOPSIS
s$, len = UploadFile(url$, options[, func, userdata])

FUNCTION
This command allows you to conveniently upload a file to a network server. By default,
UploadFile() supports the FTP and HTTP protocols but plugins may provide support
for additional protocols. Before Hollywood 6.0 UploadFile() only supported FTP up-
load but starting with version 6.0 HTTP upload is supported as well. Since HTTP and
FTP upload use two entirely different mechanisms of sending the data to the receiving
server, the procedures of uploading a file using FTP and using HTTP are quite different
as well.

If you want to upload a file to an FTP server with UploadFile(), you will have to
pass the URL where the file should be stored on the FTP server as the first argument.
This URL must begin with the ftp:// prefix, and it must contain a fully qualified path
specification (that is, including the destination filename). The URL must not contain
any escaped characters. Escaping will be done by UploadFile() so make sure that you
pass only unescaped URLs, e.g. passing "ftp://ftp.site.net/my%20file.zip" will not work.
You must specify an URL without escaped characters, so the correct version would be:
"ftp://ftp.site.net/my file.zip". If you want to pass a URL that has already been escaped,
you have to set the Encoded tag to True (see below). In that case, UploadFile() won’t
do any further escaping on your URL.

The file that should be uploaded to the FTP server must be specified in either the File
or Data table element (see below).

If you want to upload a file to an HTTP server, you need to pass the URL of a PHP
or CGI script which handles the upload. Note that UploadFile() only supports upload
using the HTTP POST method. Upload via HTTP PUT is not supported. In addition

848 Hollywood manual

to the URL of a PHP or CGI script, you also have to specify the parameters that should
be passed to this script. These parameters are passed in the FormData table element (see
below). The file(s) to be uploaded also have to be passed as parameters in the FormData
table element.

You can also specify a username and password that shall be used to log into the
HTTP or FTP server. When using FTP upload, "anonymous" is used as the
default username and "anonymous@anonymous.org" as the default password. If
you want to use a different user account, you have to pass the username/password
pair in the URL. Here is an example URL for username "johndoe" and password
"topsecret": ftp://johndoe:topsecret@ftp.test.net/pub/files.lha for FTP upload or
http://johndoe:topsecret@www.test.com/private/upload.php for HTTP upload.

The URL you pass to this function can also contain a port number. If you want to
specify a port number, you have to put it after the host name and separate it using a
colon. Here is an example for using port 1234: ftp://ftp.test.net:1234/test/image.jpg. If
no port is specified, UploadFile() will use port 21.

The second argument is a table that recognizes several options. When using FTP upload,
the data to be uploaded can be specified by using either the File table tag or the Data
tag. When using HTTP upload, the data to be uploaded must be specified using the
FormData element. Here is an overview of all tags that are currently recognized by the
options table:

File: For FTP uploads, the file you want to upload must be specified in this tag.
In case you want to upload data from a string source, you must use the
Data tag below. You must use either specify File or Data in every call
to UploadFile() for FTP uploads. You must not use this tag for HTTP
uploads. Use FormData for HTTP uploads (see below).

Data: For FTP uploads, this tag allows you to specify a string that will be uploaded
to the location specified in argument one. The string is not limited to text
only, but it can also contain binary data. If you want to upload data from a
file source, you must use the File tag instead (see above). You must specify
either Data or File in every call to UploadFile() for FTP uploads. You
must not use this tag for HTTP uploads. Use FormData for HTTP uploads
(see below).

TransferMode:

This tag can be used to specify whether UploadFile() should transfer the
file in ASCII or in binary mode. For ASCII mode, specify #FTPASCII here.
For binary mode, use #FTPBINARY. The default transfer mode is #FTPBINARY.
This tag is only supported for FTP uploads.

SilentFail:

If you set this tag to True, UploadFile() will never throw an error but
simply exit silently and return an error message in the first return value,
and -1 in the second return value to indicate that an error has happened. If
it is set to False, UploadFile() will throw a system error for all errors that
occur. Defaults to False.

Chapter 42: Network library 849

FormData:

This tag is needed for HTTP uploads. It allows you to specify a table of
parameters that should be passed to the PHP or CGI script which handles
the upload. The file or data to be uploaded has to be passed in this table
as well. You have to pass a table of tables to this argument. Every subtable
describes a single script parameter. UploadFile() will use this table of
tables to compose multipart form data request that is then sent to the HTTP
server using the POST request type. The following table elements can be
used in each subtable:

Name: This must be set to the name of the parameter. This table
element must always be provided.

Data: The data that should be passed as the parameter’s value. This
must be set to a string. The string can also contain binary data
so it is possible to pass the file data to be uploaded in this table
element. Alternatively, you can also use the File table element
to upload data from a file source. Note that you have to specify
either the Data or the File tag for each subtable. If you want
to use Data to upload file instead of form data, you also have to
specify the MIMEType and FileAlias tags (see below).

File: If you don’t set the Data tag, you need to set this table element
to a filename whose contents should be uploaded as part of the
parameter passed in Name. Alternatively, you can also use the
Data table element to upload data from a string source. Note
that you have to specify either the File or the Data tag for each
subtable.

MIMEType:

This tag allows you to set the MIME type of the data to be up-
loaded. This should be specified whenever the parameter sub-
table intends to upload a file. It must not be specified in case the
parameter subtable merely passes simple form data (i.e. plain
text) to the server. This tag defaults to "application/octet-
stream" if the File tag has been set. If the Data tag has been
set there is no default for the MIMEType tag since the Data tag
could also contain plain form data. Thus, if you want to use the
Data tag to upload file data, you always have to explicitly set
MIMEType to the data’s MIME type.

FileAlias:

If the parameter subtable intends to upload a file, this tag can
be used to set a name for this file. This is usually only needed
if the file data you want to upload is specified using the Data

tag. When using the File tag, UploadFile() will simply use
the name of this file and you don’t have to use FileAlias at all,
though it can be used to override the filename specified in File.

It is perfectly allowed to upload more than one file at once. You can use as
many subtables as you need with the FormData table element. The resulting

850 Hollywood manual

HTML page generated by the PHP or CGI script after the upload will be
returned as a string by UploadFile(). (V6.0)

CustomHeaders:

This tag allows you to specify a string of custom headers that should be sent
to the HTTP server when making the request. This can be useful for some
fine-tuned adjustments for some servers. Keep in mind that the individual
header elements have to be terminated by a carriage return and a line feed.
This tag is only supported when using the HTTP protocol. (V6.0)

Encoded: Set this tag to True if the URL you passed to this function has already been
correctly escaped. If this tag is set to True, UploadFile() won’t escape any
characters. Instead, it expects you to pass a URL that has already been
correctly escaped so that it can be directly used for server requests without
any additional escaping. (V6.1)

Protocol:

This tag can be used to specify the Internet protocol that should be used
when opening the connection. This can be one of the following special con-
stants:

#IPV4: Use Internet Protocol version 4 (IPv4).

#IPV6: Use Internet Protocol version 6 (IPv6). Note that #IPV6 is cur-
rently unsupported on AmigaOS and compatible systems.

#IPAUTO: Let the host operating system determine the Internet protocol
to use.

This tag defaults to the default protocol type set using
SetNetworkProtocol(). By default, this is #IPV4 due to histori-
cal and portability reasons. See Section 42.23 [SetNetworkProtocol],
page 845, for details. (V8.0)

Adapter: This tag allows you to specify one or more network adapters that should
be asked to establish the specified connection. This must be set to a string
containing the name(s) of one or more adapter(s). Defaults to the adapter
set using SetDefaultAdapter(). See Section 7.9 [Loaders and adapters],
page 92, for details. (V8.0)

SSL: Set this tag to True to request a connection through TLS/SSL encryption.
Note that setting this tag when using Hollywood’s inbuilt network adapter
doesn’t have any effect because Hollywood’s inbuilt network adapter doesn’t
support TLS/SSL connections. However, there might be a network adapter
provided by a plugin that supports TLS/SSL and if you set this tag to True

Hollywood will forward your wish to have a TLS/SSL connection to the
network adapter provided by the plugin. Do note, though, that you normally
don’t have to set this tag in case the URL’s scheme already indicates an SSL
connection by using a prefix such as "https://" or "ftps://". (V8.0)

Async: If this is set to True, UploadFile() will operate in asynchronous mode. This
means that it will return immediately, passing an asynchronous operation

Chapter 42: Network library 851

handle to you. You can then use this asynchronous operation handle to
finish the operation by repeatedly calling ContinueAsyncOperation() until
it returns True. This is very useful in case your script needs to do something
else while the operation is in progress, e.g. displaying a status animation or
something similar. By putting UploadFile() into asynchronous mode, it
is easily possible for your script to do something else while the operation is
being processed. See Section 19.4 [ContinueAsyncOperation], page 224, for
details. Defaults to False. (V9.0)

Verbose: This tag can be set to True to request detailed log information about the
connection and the protocol interaction with the server. This is currently
only used by Hollywood plugins so if you use Hollywood’s internal network
adapter, setting this tag to True has no effect. Plugins, however, may choose
to provide extended connection information when this tag has been set to
True. Defaults to False. (V9.0)

FileAdapter:

This tag is only used if the File tag is set as well. In that case, FileAdapter
allows you to specify one or more file adapters that should be asked if they
want to open the specified file. If you use this tag, you must set it to a string
containing the name(s) of one or more adapter(s). Defaults to default. See
Section 7.9 [Loaders and adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
file and network adapters. If you use this tag, you must set it to a table
of key-value pairs that contain the additional data that should be passed to
plugins. See Section 7.10 [User tags], page 95, for details. (V10.0)

The optional parameter func can be used to pass a callback function which will be called
from time to time by UploadFile() allowing you to update a progress bar for example.
The callback function you specify here will be called with a single argument: A table that
contains more information. Here is an overview of the table fields that will be initialized
before UploadFile() runs your callback function:

Action: #UPLOADFILE_STATUS

Count: Contains the number of bytes that have already been uploaded.

Total: Contains the size of the file being uploaded.

UserData:

Contains the value you passed in the userdata argument.

The callback function of type #UPLOADFILE_STATUS should normally return False. If it
returns True, the upload operation will be aborted.

Note that when using UploadFile() for HTTP uploading, the PHP or CGI script used
to handle the upload will also generate a resulting HTML page that is usually shown
by the browser after the upload has been completed. This HTML page is returned by
UploadFile() as a string. The second return value describes the length of this HTML
page in bytes. Since UploadFile() has to download this resulting HTML page from the
server, your callback function will be called while UploadFile() is receiving the server’s

852 Hollywood manual

response so that you can monitor progress. The table that is passed to your callback
function will be initialized as follows in that case:

Action: #UPLOADFILE_RESPONSE

Count: Contains the number of bytes that have already been downloaded.

Total: Contains the size of the file being downloaded.

UserData:

Contains the value you passed in the userdata argument.

The callback function of type #UPLOADFILE_RESPONSE should normally return False. If
it returns True, the download operation will be aborted.

Finally, there is a fourth optional argument called userdata. The value you specify
here is passed to your callback function whenever it is called. This is useful if you want
to avoid working with global variables. Using the userdata argument you can easily
pass data to your callback function. You can specify a value of any type in userdata.
Numbers, strings, tables, and even functions can be passed as user data.

INPUTS

url$ FTP URL for destination file or URL of a PHP or CGI script on a HTTP
server

options a table containing the file/data to be uploaded as well as further options

func optional: a callback function that shall be called from time to time

userdata optional: user defined data that should be passed to callback function

RESULTS

s$ optional: the resulting HTML page generated by the PHP or CGI script;
note that this is only passed when using HTTP upload

len optional: the length of the resulting HTML page generated by the PHP or
CGI script; note that this is only passed when using HTTP upload

EXAMPLE
UploadFile("ftp://ftp.test.net/pub/image.jpg", {File = "image.jpg"})

The code above uploads the file "image.jpg" to the FTP server specified in argument 1.

UploadFile("http://www.test.com/upload.php", {FormData = {

{Name = "uploadername", Data = "John Doe"},

{Name = "uploaderemail", Data = "john@doe.com"},

{Name = "description", Data = "My profile picture"},

{Name = "imagefile", File = "image.jpg", MIMEType = "image/jpeg"}}})

The code above uploads the file "image.jpg" to a HTTP server. Additionally, it passes
the parameters uploadername, uploaderemail, and description to the PHP script.

@REQUIRE "hurl"

...

UploadFile("ftp://ftp.test.net/pub/image.jpg",

853

{File = "image.jpg", SSL = True, Adapter = "hurl"})

The code above uploads a file using explicit FTPS. Since Hollywood doesn’t support
SSL/TLS by default, this code uses the hURL plugin for the operation because hURL
supports SSL/TLS. hURL is activated by passing hurl in the Adapter tag.

@REQUIRE "hurl"

...

UploadFile("ftps://ftp.test.net/pub/image.jpg",

{File = "image.jpg", Adapter = "hurl"})

The code above uploads a file using implicit FTPS. Since Hollywood doesn’t support
SSL/TLS by default, this code uses the hURL plugin for the operation because hURL
supports SSL/TLS. hURL is activated by passing hurl in the Adapter tag.

855

43 Object library

43.1 Overview

This library provides abstract functions to deal with Hollywood objects. Hollywood ob-
jects are all objects created and managed by Hollywood, e.g. brushes, anims, background
pictures, videos, etc. Those objects will be closed and freed automatically when Hollywood
exits. It is recommended, though, that you free objects no longer needed yourself in order
to avoid unnecessary memory consumption.

Hollywood objects are addressed either through numeric identifiers or through handles that
are returned by all object creation functions when you pass the special value Nil as the
numeric identifier. See Section 7.8 [Auto id selection], page 91, for details. When using
numeric identifiers and passing a numeric identifier that already exists to an object creation
function, the existing object will automatically be freed.

Object library functions like GetAttribute(), GetObjectData(), or SetObjectData() re-
quire you to pass an object type constant together with the identifier of the object. The
following object type constants are currently recognized:

#ANIM An animation object created by @ANIM or LoadAnim(). See Section 17.2 [ANIM],
page 177, for details.

#ANIMSTREAM

An animation object created by BeginAnimStream(). See Section 17.3 [Begi-
nAnimStream], page 180, for details.

#ASYNCDRAW

An asynchronous draw object created by PlayAnim(), the functions in the move
object library, or by the transition effects functions.

#ASYNCOBJ

An asynchronous operation handle created by functions like CopyFile() or
DownloadFile().

#BGPIC A background picture object created by @BGPIC, LoadBGPic() and the like. See
Section 20.2 [BGPIC], page 227, for details.

#BRUSH A brush object created by @BRUSH, LoadBrush() and the like. See Section 21.6
[BRUSH], page 251, for details.

#CLIENT A client object created by OpenConnection() or passed to your OnConnect

event handler callback. See Section 42.17 [OpenConnection], page 837, for
details.

#CLIPREGION

A clip region object created by CreateClipRegion(). See Section 30.8 [Cre-
ateClipRegion], page 596, for details.

#CONSOLEWINDOW

A console window object created by CreateConsoleWindow(). See
Section 23.10 [CreateConsoleWindow], page 327, for details.

856 Hollywood manual

#DIRECTORY

A directory object created by OpenDirectory(). See Section 26.47 [OpenDi-
rectory], page 458, for details.

#DISPLAY A display object created by @DISPLAY or CreateDisplay(). See Section 25.8
[DISPLAY], page 380, for details.

#FILE A file object created by @FILE or OpenFile(). See Section 26.18 [FILE],
page 433, for details.

#FONT A font object created by @FONT or OpenFont(). See Section 54.10 [FONT],
page 1125, for details.

#ICON An icon object created by @ICON, LoadIcon() and the like. See Section 31.6
[ICON], page 625, for details.

#INTERVAL

An interval object created by SetInterval(). See Section 29.26 [SetInterval],
page 582, for details.

#LAYER A Hollywood layer created by one of the commands which draw graphics, e.g.
DisplayBrush().

#MEMORY A memory block object created by AllocMem() and the like. See Section 38.1
[AllocMem], page 787, for details.

#MENU A menu object created by @MENU or CreateMenu(). See Section 39.8 [MENU],
page 804, for details.

#MOVELIST

A move list object created by AddMove(). See Section 34.2 [AddMove],
page 649, for details.

#MUSIC A music object created by @MUSIC, OpenMusic() and the like. See Section 49.28
[MUSIC], page 993, for details.

#PALETTE:

A palette object created by @PALETTE, LoadPalette() or CreatePalette().
See Section 44.17 [PALETTE], page 902, for details.

#POINTER A mouse pointer object created by CreatePointer(). See Section 41.1 [Cre-
atePointer], page 817, for details.

#SAMPLE A sound sample object created by @SAMPLE, LoadSample() and the like. See
Section 49.39 [SAMPLE], page 1001, for details.

#SERIAL An serial connection object created by OpenSerialPort. See Section 47.11
[OpenSerialPort], page 952, for details.

#SERVER A server object created by CreateServer(). See Section 42.4 [CreateServer],
page 822, for details.

#SPRITE A sprite object created by @SPRITE or LoadSprite(). See Section 50.13
[SPRITE], page 1020, for details.

#TEXTOBJECT

A text object created by CreateTextObject(). See Section 54.7 [CreateTex-
tObject], page 1121, for details.

Chapter 43: Object library 857

#TIMEOUT A timeout object created by SetTimeout(). See Section 29.27 [SetTimeout],
page 583, for details.

#TIMER A timer object created by StartTimer(). See Section 55.17 [StartTimer],
page 1168, for details.

#UDPOBJECT

A UDP object created by CreateUDPObject(). See Section 42.5 [CreateUD-
PObject], page 823, for details.

#VECTORPATH

A path object created by StartPath(). See Section 56.36 [StartPath],
page 1197, for details.

#VIDEO A video object created by @VIDEO or OpenVideo(). See Section 57.17 [VIDEO],
page 1212, for details.

43.2 ClearObjectData

NAME
ClearObjectData – clear private data key in an object (V5.0)

SYNOPSIS
ClearObjectData(type, id[, key$])

FUNCTION
This function can be used to remove private data from an object. You have to pass
the type and identifier of the object whose private data you would like to modify. If the
optional argument key$ is specified, ClearObjectData() will remove the data associated
with this key only. If key$ is omitted, ClearObjectData() will remove the private data
of all keys in this object.

See Section 43.1 [Object types], page 855, for a list of all object types.

INPUTS

type type of the object

id identifier of the object

key$ optional: key which shall be removed from object; if this argument is omit-
ted, all keys will be removed from this object

43.3 CopyObjectData

NAME
CopyObjectData – copy private data between objects (V5.0)

SYNOPSIS
CopyObjectData(srctype, srcid, dsttype, dstid[, overwrite])

FUNCTION
This function copies all private data associated with the object specified by srctype and
srcid to the object specified by dsttype and dstid. The optional overwrite argument

858 Hollywood manual

specifies whether or not CopyObjectData() should overwrite keys in the destination
object in case they share the name of keys in the source object. By default, this is set
to True which means that existing keys in the destination object will be replaced with
the keys in the source object in case their names are the same. If you do not want this
behaviour, set overwrite to False.

See Section 43.1 [Object types], page 855, for a list of all object types.

INPUTS

srctype type of source object to use

srcid identifier of source object to use

dsttype type of destination object to use

dstid identifier of destination object to use

overwrite

optional: specifies whether or not existing keys in the destination object
should be overwritten (defaults to True)

EXAMPLE
SetObjectData(#BRUSH, 1, "name", "mybrush")

CopyObjectData(#BRUSH, 1, #BRUSH, 2)

DebugPrint(GetObjectData(#BRUSH, 2, "name"))

The code above copies all data keys of brush 1 to brush 2. The call to DebugPrint() will
print "mybrush" then.

43.4 GetAttribute

NAME
GetAttribute – get information about an object

SYNOPSIS
info = GetAttribute(obj, id, attr[, param, param2])

FUNCTION
This function can be used to retrieve properties from all different kinds of Hollywood
objects. For example, you can query the dimensions of a brush or the length of sound
file. Please see below for a complete list of object types and their attributes.

The following attributes can be queried for #ANIM:

#ATTRWIDTH:

Returns width of the animation.

#ATTRHEIGHT:

Returns height of the animation.

#ATTRTRANSPARENTCOLOR:

Returns the transparent color of the animation or #NOTRANSPARENCY.

Chapter 43: Object library 859

#ATTRNUMFRAMES:

Returns the number of frames in this animation. (V2.0)

#ATTRHASMASK:

Returns True if animation has a mask. (V2.0)

#ATTRHASALPHA:

Returns True if animation has an alpha channel. (V4.5)

#ATTRFRAMEDELAY:

Returns the time anim players should wait after the specified frame in mil-
liseconds. You also need to specify the frame number you want to query
in the param argument. Frames are counted from 1. If you leave out the
param argument, the first frame will be used. Please note that not all an-
imation formats support frame delays and that the information might only
be available for frames that are already loaded; i.e. if you are querying a
random frame of a disk-based anim, it could be that you get a zero return
value because the frame has not been loaded yet. (V4.5)

#ATTRCOUNT:

Returns how many animations there are currently in memory. Useful for
tracking memory consumption. (V4.5)

#ATTRLOADER:

Returns the name of the loader that was used to load this animation. (V6.0)

#ATTRDEPTH:

Returns the depth of the frame specified in the param argument. Frames
are counted from 1. If the param argument is omitted, the first frame will
be used. If the depth is less than or equal to 8, the anim is a palette anim.
(V9.0)

#ATTRPALETTE:

Returns the palette of the frame specified in the param argument. Frames
are counted from 1. If the param argument is omitted, the first frame will
be used. The frame’s palette will be returned as a table and will contain
as many items as there are pens in the palette. The individual pens will be
returned as RGB colors. If the frame doesn’t have a palette, an empty table
will be returned. (V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the palette of the frame specified by
param. Frames are counted from 1. If the param argument is omitted, the
first frame will be used. If there is no transparent pen or the frame doesn’t
have a palette, #NOPEN will be returned. (V9.0)

#ATTRTYPE:

Returns the type of the anim. This will be set to either #ANIMTYPE_RASTER
for a raster anim or #ANIMTYPE_VECTOR for a vector anim. (V9.0)

#ATTRFORMAT:

Returns the anim format name as a string. (V10.0)

860 Hollywood manual

The following attributes can be queried for #ANIMSTREAM:

#ATTRCOUNT:

Returns how many anim stream objects are currently in memory. Useful for
keeping track of the resources used by your script. (V5.0)

The following attributes can be queried for #ASYNCDRAW:

#ATTRTYPE:

Returns the type of this asynchronous drawing object; will be #ADF_FX,
#ADF_MOVEOBJECT or #ADF_ANIM. (V4.5)

#ATTRNUMFRAMES:

Returns the number of frames of this asynchronous drawing object; please
note that if you use this value as the base for a loop over AsyncDrawFrame(),
you must add one loop because the final call to AsyncDrawFrame() does not
count as a frame; See Section 19.1 [AsyncDrawFrame], page 221, for details.
(V4.5)

#ATTRCURFRAME:

Returns the frame currently on display in this async drawing object. (V4.5)

#ATTRCOUNT:

Returns how many async draw objects there are currently in memory. Useful
for tracking memory consumption. (V4.5)

The following attributes can be queried for #ASYNCOBJ:

#ATTRCOUNT:

Returns how many asynchronous operation handles there are currently in
memory. Useful for tracking memory consumption. (V9.0)

The following attributes can be queried for #BGPIC:

#ATTRWIDTH:

Returns width of the BGPic.

#ATTRHEIGHT:

Returns height of the BGPic.

#ATTRTRANSPARENTCOLOR:

Returns the transparent color of the BGPic or #NOTRANSPARENCY.

#ATTRLAYERS:

Returns the number of layers attached to this BGPic. (V1.5)

#ATTRHASMASK:

Returns True if BGPic has a mask. (V2.0)

#ATTRHASALPHA:

Returns True if BGPic has an alpha channel. (V4.5)

Chapter 43: Object library 861

#ATTRCLIPREGION:

Returns the identifier of the clip region currently active on this BGPic or -1
if there is no active clip region. (V4.5)

#ATTRCOUNT:

Returns how many BGPics there are currently in memory. Useful for track-
ing memory consumption. (V4.5)

#ATTRTYPE:

Returns the type of the BGPic. This will be set to either #IMAGETYPE_

RASTER for a raster BGPic or #IMAGETYPE_VECTOR for a vector BGPic.
(V5.0)

#ATTRLOADER:

Returns the name of the loader that was used to load this BGPic. (V6.0)

#ATTRSPRITES:

Returns the number of sprites currently visible on this BGPic. (V7.0)

#ATTRDEPTH:

Returns the depth of the BGPic. If this is less than or equal to 8, the BGPic
is a palette BGPic. (V9.0)

#ATTRPALETTE:

Returns the BGPic’s palette as a table. The table will contain as many
items as there are pens in the palette. The individual pens will be returned
as RGB colors. If the BGPic doesn’t have a palette, an empty table will be
returned. (V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the BGPic’s palette. If there is
no transparent pen or the BGPic doesn’t have a palette, #NOPEN will be
returned. (V9.0)

#ATTRCYCLE:

If the BGPic has a palette which has color cycling ranges defined, this at-
tribute will return a table containing all color cycling ranges that are defined.
In that case, the table returned by #ATTRCYCLE will contain a number of sub-
tables which will have the following fields initialized:

Low: The pen index that marks that start of the color range.

High: The pen index that marks the end of the color range.

Rate: The desired speed of the color cycling effect. A value of 16384
indicates 60 frames per second. All other speeds scale linearly
from this base, e.g. a value of 8192 indicates 30 frames per
second, and so on.

Reverse: If this tag is set to True, the colors should be cycled in reverse.

Active: If this tag is set to True, this color cycling range is marked as
active.

(V9.0)

862 Hollywood manual

#ATTRFORMAT:

Returns the image format name as a string. (V10.0)

The following attributes can be queried for #BRUSH:

#ATTRWIDTH:

Returns width of the brush.

#ATTRHEIGHT:

Returns height of the brush.

#ATTRTRANSPARENTCOLOR:

Returns the transparent color of the brush or #NOTRANSPARENCY.

#ATTRHASMASK:

Returns True if brush has a mask. (V2.0)

#ATTRHASALPHA:

Returns True if brush has an alpha channel. (V2.0)

#ATTRCOUNT:

Returns how many brushes there are currently in memory. Useful for track-
ing memory consumption. (V4.5)

#ATTRTYPE:

Returns the type of the brush. This will be set to either #IMAGETYPE_RASTER
for a raster brush or #IMAGETYPE_VECTOR for a vector brush. (V5.0)

#ATTRHARDWARE:

Returns True if the specified brush is a hardware brush. See Section 21.37
[hardware brushes], page 280, for details. (V5.0)

#ATTRDISPLAY:

Returns the identifier of the display that this brush belongs to if the brush
is a display-dependent hardware brush. Otherwise -1 is returned. See
Section 21.37 [hardware brushes], page 280, for details. (V6.0)

#ATTRLOADER:

Returns the name of the loader that was used to load this brush. (V6.0)

#ATTRDEPTH:

Returns the depth of the brush. If this is less than or equal to 8, the brush
is a palette brush. (V9.0)

#ATTRPALETTE:

Returns the brush’s palette as a table. The table will contain as many items
as there are pens in the palette. The individual pens will be returned as
RGB colors. If the brush doesn’t have a palette, an empty table will be
returned. (V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the brush’s palette. If there is no
transparent pen or the brush doesn’t have a palette, #NOPEN will be returned.
(V9.0)

Chapter 43: Object library 863

#ATTRCYCLE:

If the brush has a palette which has color cycling ranges defined, this at-
tribute will return a table containing all color cycling ranges that are defined.
In that case, the table returned by #ATTRCYCLE will contain a number of sub-
tables which will have the following fields initialized:

Low: The pen index that marks that start of the color range.

High: The pen index that marks the end of the color range.

Rate: The desired speed of the color cycling effect. A value of 16384
indicates 60 frames per second. All other speeds scale linearly
from this base, e.g. a value of 8192 indicates 30 frames per
second, and so on.

Reverse: If this tag is set to True, the colors should be cycled in reverse.

Active: If this tag is set to True, this color cycling range is marked as
active.

(V9.0)

#ATTRFORMAT:

Returns the image format name as a string. (V10.0)

The following attributes can be queried for #CLIENT:

#ATTRCOUNT:

Returns how many network client objects are currently in memory. Useful
for keeping track of the resources used by your script. (V5.0)

#ATTRADAPTER:

Returns the name of the adapter that has been used to open this connection
or inbuilt if the connection has been opened using Hollywood’s inbuilt
connection handler. (V8.0)

The following attributes can be queried for #CLIPREGION:

#ATTRXPOS:

Returns the x-position of the clip region. (V3.0)

#ATTRYPOS:

Returns the y-position of the clip region. (V3.0)

#ATTRWIDTH:

Returns the width of the clip region. (V3.0)

#ATTRHEIGHT:

Returns the height of the clip region. (V3.0)

#ATTRCOUNT:

Returns how many clip regions there are currently in memory. Useful for
tracking memory consumption. (V4.5)

864 Hollywood manual

The following attributes can be queried for #CONSOLEWINDOW:

#ATTRCOUNT:

Returns how many console windows are currently in memory. Useful for
tracking memory consumption. (V10.0)

The following attributes can be queried for #DIRECTORY:

#ATTRCOUNT:

Returns how many directory handles there are currently open. Useful for
tracking resources. (V4.5)

#ATTRADAPTER:

Returns the name of the adapter that has been used to open this directory or
inbuilt if this directory has been opened using Hollywood’s inbuilt directory
handler. (V6.0)

#ATTRFORMAT:

Returns the directory format name as a string. This is typically only set
if the directory is handled by a plugin because by default, directories don’t
have a "format" but plugins might implement adapters that map zip files
et al. to directories. In that case, #ATTRFORMAT allows you to find out the
format of the directory source, e.g. "zip archive". (V10.0)

The following attributes can be queried for #DISPLAY:

#ATTRWIDTH:

Returns the width of the display; this value does not include the width of
the window border.

#ATTRHEIGHT:

Returns the height of the display; this value does not include the height of
the window border.

#ATTRMAXWIDTH:

Returns the maximum possible width for this display (i.e. current desktop
resolution minus border width).

#ATTRMAXHEIGHT:

Returns the maximum possible height for this display (i.e. current desktop
resolution minus border height).

#ATTRBGPIC:

Returns the BGPic associated with this display. (V1.5)

#ATTRLAYERS:

Returns the number of layers in the associated BGPic. (V1.5)

#ATTRCURSORX:

Returns current x-position of the cursor. (V2.5)

Chapter 43: Object library 865

#ATTRCURSORY:

Returns current y-position of the cursor. (V2.5)

#ATTRXPOS:

Returns the x-position of the display on the screen. (V3.0)

#ATTRYPOS:

Returns the y-position of the display on the screen. (V3.0)

#ATTRBORDERLEFT:

Returns the width of the left display border or 0 if the display is borderless.
(V3.0)

#ATTRBORDERRIGHT:

Returns the width of the right display border or 0 if the display is borderless.
(V3.0)

#ATTRBORDERTOP:

Returns the height of the top display border or 0 if the display is borderless.
(V3.0)

#ATTRBORDERBOTTOM:

Returns the height of the bottom display border or 0 if the display is bor-
derless. (V3.0)

#ATTRHOSTWIDTH:

Returns the width of the screen on which the display is open (usually the
desktop screen). (V3.0)

#ATTRHOSTHEIGHT:

Returns the height of the screen on which the display is open (usually the
desktop screen). (V3.0)

#ATTRFONTASCENDER, #ATTRFONTDESCENDER, #ATTRFONTNAME, #ATTRFONTSIZE,

#ATTRFONTSCALABLE, #ATTRFONTAA, #ATTRFONTDEPTH, #ATTRFONTPALETTE,

#ATTRFONTTRANSPARENTPEN, #ATTRFONTENGINE, #ATTRFONTTYPE, #ATTRFONTCHARMAP,

#ATTRFONTLOADER, #ATTRFONTHEIGHT, #ATTRFONTFORMAT:

Information about the font currently selected into this display; please read
below in #TEXTOBJECT for the info on these attributes. (V3.1)

#ATTRPOINTER:

Returns the identifier of the mouse pointer currently associated with this
display. (V4.5)

#ATTRSTATE:

Returns the current state of this display; can be either #DISPSTATE_OPEN

(if display is open), or #DISPSTATE_CLOSED (display is currently closed), or
#DISPSTATE_MINIMIZED (display is currently minimized). (V4.5)

#ATTRACTIVE:

Returns whether or not this display is currently active; only one display can
be active at a time. (V4.5)

866 Hollywood manual

#ATTRMODE:

Returns the current display mode; this can be either #DISPMODE_WINDOWED
for windowed mode or it can be #DISPMODE_FULLSCREEN for full screen mode.
Note that this is a global setting. You can safely pass 0 for display when
querying #ATTRMODE. (V4.5)

#ATTRSCALEMODE:

Returns the scale mode currently active in this display. Can be either
#SCALEMODE_NONE, #SCALEMODE_AUTO, or #SCALEMODE_LAYER. (V4.5)

#ATTRSCALEWIDTH:

Returns the currently set scaling width for this display. If no scaling is active,
this attribute will return the same width as #ATTRWIDTH. (V4.5)

#ATTRSCALEHEIGHT:

Returns the currently set scaling height for this display. If no scaling is
active, this attribute will return the same height as #ATTRHEIGHT. (V4.5)

#ATTRBORDERLESS:

Returns whether or not the display is borderless. (V4.5)

#ATTRSIZEABLE:

Returns whether or not the display is resizeable. (V4.5)

#ATTRFIXED:

Returns whether or not the display is fixed. (V4.5)

#ATTRNOHIDE:

Returns whether or not the display can be iconified by the user. (V4.5)

#ATTRNOMODESWITCH:

Returns True if display mode switching via CMD+RETURN
(LALT+RETURN on Windows) hotkey is disabled for this display. (V4.5)

#ATTRTITLE:

Returns the display’s title string. (V4.5)

#ATTRMARGINLEFT, #ATTRMARGINRIGHT:

Returns the current margin settings for this display as set using
SetMargins(). (V4.5)

#ATTRDOUBLEBUFFER:

Returns True if the specified display is a double- buffered one, False if it is
not double-buffered. (V4.5)

#ATTROUTPUTDEVICE:

This attribute returns three values containing information about the cur-
rent output device. The first return value can be either #DISPLAY, #BGPIC,
#BRUSH, #ANIM, or #DOUBLEBUFFER. The second return value specifies the
corresponding identifier to the type indicated by the first return value. The
third return value, finally, is only used by types #BRUSH, #ANIM and #BGPIC

(NB: For #BGPIC it is only used when SelectBGPic() was called with mode
set to either #SELMODE_NORMAL or #SELMODE_COMBO). In that case, it speci-
fies the graphics of the brush/animation/BGPic that are currently selected:

Chapter 43: Object library 867

This can be either #MASK, #ALPHACHANNEL or #BRUSH. Note that the third
return value will be set to #BRUSH also in case #ANIM/#BGPIC is returned
by the first return value. If #BRUSH is returned as the third return value, it
means that the color channel of the brush/animation is currently selected.
If SelectBGPic() is in #SELMODE_LAYERS, the first and third return value
will both be #BGPIC. If SelectBGPic() is in a different mode, the first re-
turn value will be #BGPIC, but the third return value will be either #BRUSH,
#MASK, or #ALPHACHANNEL. (V4.5)

#ATTRCOUNT:

Returns how many display handles there are currently in memory. Useful
for tracking memory consumption. (V4.5)

#ATTRMASKMODE:

Returns the current mask mode. This is a global setting not tied to a specific
display. See Section 21.73 [SetMaskMode], page 311, for details. (V4.5)

#ATTRALPHAINTENSITY:

Returns the current alpha intensity. This is a global setting not tied to a
specific display. See Section 21.67 [SetAlphaIntensity], page 307, for details.
(V4.5)

#ATTRLAYERSON:

Returns True if the specified display has layers enabled, False if that is not
the case. (V5.0)

#ATTRORIENTATION:

Returns the current orientation of the mobile device that Hollywood is run-
ning on. The return value will be one of the following orientation modes:

#ORIENTATION_PORTRAIT

#ORIENTATION_LANDSCAPE

#ORIENTATION_PORTRAITREV

#ORIENTATION_LANDSCAPEREV

Please note that this tag is only supported in the mobile version of Hol-
lywood. In the desktop version it will always return #ORIENTATION_NONE.
(V5.0)

#ATTRPUBSCREEN:

Returns the public screen that this display is currently opened on. This is
only supported on AmigaOS compatible operating systems. (V5.2)

#ATTRDENSITY:

Returns the logical density of the display. The return value will be one of
the following predefined density values:

#DENSITY_LOW

#DENSITY_MEDIUM

#DENSITY_HIGH

Please note that this tag is only supported in the mobile version of Holly-
wood. In the desktop version it will always return #DENSITY_NONE. (V5.3)

868 Hollywood manual

#ATTRXDPI:

Returns the exact physical pixels per inch of the screen on the X axis. Please
note that this tag may return a spurious value on older Android devices.
(V5.3)

#ATTRYDPI:

Returns the exact physical pixels per inch of the screen on the Y axis. Please
note that this tag may return a spurious value on older Android devices.
(V5.3)

#ATTRMENU:

Returns the identifier of the menu strip attached to this display or -1 if this
display doesn’t have a menu strip attached. (V6.0)

#ATTRMONITOR:

Returns the monitor number that this display has been opened on. Monitors
are counted from 1 which is the primary monitor. (V6.0)

#ATTRHOSTMONITORS:

Returns the total number of monitors currently available to the system.
You can query their dimensions and extended desktop positions using
GetMonitors(). (V6.0)

#ATTRXSERVER:

Returns the name of the X Server that this display is connected to. This is
only supported on Linux. (V6.0)

#ATTRADAPTER:

Returns the name of the display adapter currently in use. If Hollywood’s
inbuilt display adapter is used, inbuilt is returned. (V6.0)

#ATTRMAXIMIZED:

Returns True if the display is currently maximized, False otherwise. (V7.0)

#ATTRRAWWIDTH:

Returns the raw physical width of the display, regardless of any scaling engine
currently active. Use this attribute with care because it can conflict with
scaling engines because they always pretend that Hollywood is in running in
a different resolution. (V7.0)

#ATTRRAWHEIGHT:

Returns the raw physical height of the display, regardless of any scaling en-
gine currently active. Use this attribute with care because it can conflict with
scaling engines because they always pretend that Hollywood is in running in
a different resolution. (V7.0)

#ATTRHOSTTITLEBARHEIGHT:

Returns the height of the host screen’s title bar. Note that not all systems
have a title bar, most notably Windows doesn’t have any. In that case, 0 is
returned. (V7.0)

#ATTRHOSTTASKBAR:

Returns information about the taskbar on Windows. This tag will return
5 values: The first two values describe the x- and y-position of the taskbar

Chapter 43: Object library 869

on the host screen, return values three and four contain the dimensions of
the taskbar and the fifth and last return value is a boolean which indicates
whether or not the taskbar is currently visible. This tag is currently only
supported on Windows. (V7.0)

#ATTRSPRITES:

Returns the number of sprites currently active on this display. (V7.0)

#ATTRHOSTSCALEX:

Returns the scaling coefficient on the x-axis of the display’s monitor. Nor-
mally, this is 1 but for high resolution displays (e.g. Retina Macs or 4K
monitors on Windows) this can be greater than 1. Note that on Windows
this will always be 1 unless you explicitly enable DPI-awareness by setting
the DPIAware tag in the @OPTIONS preprocessor command to True. (V7.0)

#ATTRHOSTSCALEY:

Returns the scaling coefficient on the y-axis of the display’s monitor. Nor-
mally, this is 1 but for high resolution displays (e.g. Retina Macs or 4K
monitors on Windows) this can be greater than 1. Note that on Windows
this will always be 1 unless you explicitly enable DPI-awareness by setting
the DPIAware tag in the @OPTIONS preprocessor command to True. (V7.0)

#ATTRHOSTSCALE:

Returns the global scaling coefficient of the display’s monitor. Normally, this
is 1 but for high resolution displays (e.g. Retina Macs or 4K monitors on
Windows) this can be greater than 1. Note that on Windows this will always
be 1 unless you explicitly enable DPI-awareness by setting the DPIAware tag
in the @OPTIONS preprocessor command to True. (V8.0)

#ATTRIMMERSIVEMODE:

Returns the immersive mode used by the display. The return value will be
one of the following special constants:

#IMMERSIVE_NONE

#IMMERSIVE_NORMAL

#IMMERSIVE_LEANBACK

#IMMERSIVE_STICKY

See Section 25.8 [DISPLAY], page 380, for details. (V9.0)

#ATTRSYSTEMBARS:

Returns True if the system bars are currently visible, False otherwise. This
is currently only supported on Android. Note that the system bars can only
ever be invisible when a display is in immersive mode. See Section 25.8
[DISPLAY], page 380, for details. (V9.0)

#ATTRDEPTH:

Returns the depth of the display. If this is less than or equal to 8, the
display is a palette mode display. See Section 25.16 [Palette mode displays],
page 400, for details. (V9.0)

#ATTRPALETTE:

Returns the display’s palette as a table. The table will contain as many
items as there are pens in the palette. The individual pens will be returned

870 Hollywood manual

as RGB colors. If the display doesn’t have a palette, an empty table will be
returned. (V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the display’s palette. If there is
no transparent pen or the display doesn’t have a palette, #NOPEN will be
returned. (V9.0)

#ATTRPALETTEMODE:

Returns the current palette mode set using SetPaletteMode(). See
Section 44.31 [SetPaletteMode], page 914, for details. (V9.0)

#ATTRDITHERMODE:

Returns the current dither mode set using SetDitherMode(). See
Section 44.26 [SetDitherMode], page 910, for details. (V9.0)

#ATTRPEN:

Returns the current draw pen set using SetDrawPen(). See Section 44.27
[SetDrawPen], page 911, for details. (V9.0)

#ATTRSHADOWPEN:

Returns the current shadow pen set using SetShadowPen(). See
Section 44.35 [SetShadowPen], page 918, for details. (V9.0)

#ATTRBORDERPEN:

Returns the current border pen set using SetBorderPen(). See Section 44.22
[SetBorderPen], page 907, for details. (V9.0)

#ATTRBULLETPEN:

Returns the current bullet pen set using SetBulletPen(). See Section 44.23
[SetBulletPen], page 907, for details. (V9.0)

#ATTRSCALESWITCH:

Returns if this display will just scale itself to the monitor’s current resolution
when pressing the CMD+RETURN (LALT+RETURN on Windows) hotkey or using
#DISPMODE_MODESWITCH with ChangeDisplayMode(). (V9.0)

#ATTRINTERPOLATE:

When a scaling engine is active, this will return whether or not interpolated
scaling will be used. (V9.0)

The following attributes can be queried for #EVENTHANDLER:

#ATTRFUNCTION:

Returns the callback function associated with the specified event handler.
Note that you need to pass the name of the event handler as a string in id.
Just as you would do in InstallEventHandler(). (V4.5)

#ATTRUSERDATA:

Returns the user data that is associated with the specified event handler.
Note that you need to pass the name of the event handler as a string in id.
Just as you would do in InstallEventHandler(). (V4.5)

Chapter 43: Object library 871

The following attributes can be queried for #FILE:

#ATTRMODE:

Returns the mode this file was opened in. Can be either #MODE_READ, #MODE_
WRITE, or #MODE_READWRITE. (V4.5)

#ATTRCOUNT:

Returns how many file handles there are currently open. Useful for tracking
resources. (V4.5)

#ATTRADAPTER:

Returns the name of the adapter that has been used to open this file or
inbuilt if this file has been opened using Hollywood’s inbuilt file handler.
(V6.0)

#ATTRENCODING:

Returns the encoding set for the file using OpenFile() or
SetFileEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for a list of encodings. (V9.0)

#ATTRFORMAT:

Returns the file format as a string. This is typically only set if the file is
handled by a plugin because Hollywood’s default file handler doesn’t provide
any format recognition. Plugins, however, might implement adapters that
allow you to open files from zip archives etc. In that case, #ATTRFORMAT
allows you to find out the format of the file source, e.g. "zip archive".(V10.0)

The following attributes can be queried for #FONT:

#ATTRFONTASCENDER, #ATTRFONTDESCENDER, #ATTRFONTNAME, #ATTRFONTSIZE,

#ATTRFONTSCALABLE, #ATTRFONTAA, #ATTRFONTDEPTH, #ATTRFONTPALETTE,

#ATTRFONTTRANSPARENTPEN, #ATTRFONTENGINE, #ATTRFONTTYPE, #ATTRFONTCHARMAP,

#ATTRFONTLOADER, #ATTRFONTHEIGHT, #ATTRFONTFORMAT:

Please see below in #TEXTOBJECT for information about the meaning of these
attributes. (V4.5)

#ATTRCOUNT:

Returns how many fonts there are currently in memory. Useful for tracking
memory consumption. (V4.5)

The following attributes can be queried for #ICON:

#ATTRNUMENTRIES:

Returns the number of images in the icon. (V8.0)

#ATTRSTANDARD:

Returns the index of the standard image in the icon or 0 in case there is no
standard image in the icon. (V8.0)

#ATTRWIDTH:

Returns the width of the image at the index specified in the optional param
argument. Indices start at 1. (V8.0)

872 Hollywood manual

#ATTRHEIGHT:

Returns the height of the image at the index specified in the optional param
argument. Indices start at 1. (V8.0)

#ATTRNUMFRAMES:

Returns the number of frames of the image at the index specified in the
optional param argument. This can be either 1 or 2, depending on whether
the image has only a normal state, or a normal and a selected state. Indices
start at 1. (V8.0)

#ATTRCOUNT:

Returns how many icons are currently in memory. Useful for tracking mem-
ory consumption. (V8.0)

#ATTRDEPTH:

Returns the depth of the image at the index specified in the param argument.
Indices start at 1. If param2 is set to True the selected image is queried, if it
is False (also the default) the normal image is queried. If the depth is less
than or equal to 8, the image is a palette image. (V9.0)

#ATTRPALETTE:

Returns the palette of the image at the index specified in the param argu-
ment. Indices start at 1. If param2 is set to True the selected image is
queried, if it is False (also the default) the normal image is queried. The
image’s palette will be returned as a table and will contain as many items as
there are pens in the palette. The individual pens will be returned as RGB
colors. If the image doesn’t have a palette, an empty table will be returned.
(V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the palette of the image at the index
specified in the param argument. Indices start at 1. If param2 is set to True

the selected image is queried, if it is False (also the default) the normal
image is queried. If there is no transparent pen or the image doesn’t have a
palette, #NOPEN will be returned. (V9.0)

#ATTRFORMAT:

Returns the icon format name as a string. (V10.0)

The following attributes can be queried for #INTERVAL:

#ATTRDURATION:

Returns the frequency of this interval object in milliseconds. (V4.5)

#ATTRFUNCTION:

Returns the callback function associated with the specified interval object.
(V4.5)

#ATTRUSERDATA:

Returns the user data associated with this interval object. (V4.5)

Chapter 43: Object library 873

The following attributes can be queried for #LAYER:

#ATTRTYPE:

Returns the type of the layer (e.g. #PRINT). (V1.5)

#ATTRXPOS:

Returns the x-position of the layer on the display. (V1.5)

#ATTRYPOS:

Returns the y-position of the layer on the display. (V1.5)

#ATTRWIDTH:

Returns width of the layer. (V1.5)

#ATTRHEIGHT:

Returns height of the layer. (V1.5)

#ATTRVISIBLE:

Returns True if the layer is currently visible, False if it is hidden. (V1.5)

#ATTRLAYERID:

Returns the identifier of the specified layer; obviously, this makes only sense
if you specify a layer name instead of an id as the source. (V2.0)

#ATTRNUMFRAMES:

Returns the number of frames of this layer; only works when used with layers
of type #ANIM (V2.0) or #VIDEO (V6.0).

#ATTRCURFRAME:

Returns the frame which is currently displayed; works only with layers of
type #ANIM. Note in contrast to most other commands, frames are counted
from 0 here so you’ll get 0 for the first frame, not 1. (V2.0)

#ATTRTEXT, #ATTRFONTASCENDER, #ATTRFONTDESCENDER, #ATTRFONTNAME,

#ATTRFONTSIZE, #ATTRFONTSCALABLE, #ATTRFONTAA, #ATTRFONTDEPTH,

#ATTRFONTPALETTE, #ATTRFONTTRANSPARENTPEN, #ATTRFONTENGINE, #ATTRFONTTYPE,

#ATTRFONTCHARMAP, #ATTRFONTLOADER, #ATTRFONTHEIGHT, #ATTRFONTFORMAT:

These attributes can be used with layers of type #PRINT and #TEXTOUT only;
to learn more about them read below in the #TEXTOBJECT section. (V4.0)

#ATTRFRAMEDELAY:

Returns the time anim players should wait after displaying the current frame
in milliseconds; this works only with layers of type #ANIM. (V4.5)

#ATTRCOUNT:

Returns how many layers there are currently in memory. Useful for tracking
memory consumption. Note that this will return the sum of all layers from
all BGPics. If you want to query the number of layers in the current BGPic,
use #ATTRLAYERS with type #BGPIC. (V4.5)

#ATTRRAWXPOS, #ATTRRAWYPOS, #ATTRRAWWIDTH, #ATTRRAWHEIGHT:

These four attributes can be used to find out the real position and size of a
layer. The difference between these attributes and the standard #ATTRXPOS,
#ATTRWIDTH etc. attributes is that the standard attributes will always re-
turn the position and size of the basic, untransformed layer. The standard

874 Hollywood manual

attributes will also not take any under/overhangs into account. Still, you
should work with the standard attributes whenever possible because the
#ATTRRAWxxx attributes operate on a low level in the layers system and
could be affected by future changes in the layers system. (V4.7)

#ATTRZPOS:

Returns the z-position of the layer. See Section 34.53 [SetLayerZPos],
page 704, for details. (V5.1)

#ATTRDURATION:

Returns the video layer’s source duration in milliseconds. This is only sup-
ported for layers of type #VIDEO. (V6.0)

#ATTRPOSITION:

Returns the current position of a playing or paused video layer in millisec-
onds. This is only supported for layers of type #VIDEO. (V6.0)

#ATTRFORMAT:

Returns the video layer’s source format name as a string. This is only sup-
ported for layers of type #VIDEO. (V6.0)

#ATTRCANSEEK:

Returns whether or not SeekLayer() can be used on this video layer. This
is only supported for layers of type #VIDEO. (V6.0)

#ATTRPLAYING:

Returns True if this video layer is currently playing. This is only supported
for layers of type #VIDEO. (V6.0)

#ATTRPAUSED:

Return True if this video is layer currently paused. This is only supported
for layers of type #VIDEO. (V6.0)

#ATTRID: Returns the identifier of this layer’s source object. This is only applicable
for layers of type #ANIM, #BRUSH, #BRUSHPART, #BGPICPART, #TEXTOBJECT,
#VECTORPATH and #VIDEO. (V6.0)

#ATTRDEPTH:

Returns the depth of the layer. If this is less than or equal to 8, the layer is
a palette layer. (V9.0)

#ATTRPALETTE:

Returns the layer’s palette as a table. The table will contain as many items
as there are pens in the palette. The individual pens will be returned as RGB
colors. If the layer doesn’t have a palette, an empty table will be returned.
(V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the layer’s palette. If there is no
transparent pen or the layer doesn’t have a palette, #NOPEN will be returned.
(V9.0)

#ATTRBUTTON:

If the layer is attached to a button, this will return the id of that button.
Otherwise Nil will be returned. (V9.1)

Chapter 43: Object library 875

#ATTRGROUP:

Returns the name of the group that this layer is attached to or an empty
string if the layer isn’t attached to a group. See Section 34.16 [GroupLayer],
page 660, for details. (V10.0)

Please note that the position and size values will always refer to the layer in its original,
untransformed state. If you rotate or scale a layer, you will still get its original dimensions
through #ATTRWIDTH and #ATTRHEIGHT.

The following attributes can be queried for #MEMORY:

#ATTRSIZE:

Returns the size of specified memory block. (V4.5)

#ATTRCOUNT:

Returns how many memory blocks there are currently in memory. Useful
for tracking memory consumption. (V4.5)

The following attributes can be queried for #MENU:

#ATTRCOUNT:

Returns how many menu strips are currently available. Useful for keeping
track of the resources used by your script. (V6.0)

The following attributes can be queried for #MOVELIST:

#ATTRCOUNT:

Returns how many move list objects are currently in memory. Useful for
keeping track of the resources used by your script. (V5.0)

The following attributes can be queried for #MUSIC:

#ATTRTYPE:

Returns the format of the music raw data; this attribute will return one of
#MONO8, #MONO16, #STEREO8 and #STEREO16; not possible with Protracker
modules. (V2.0)

#ATTRDURATION:

Returns the music duration in milliseconds. This is unsupported for Pro-
tracker modules. If you query #ATTRDURATION for Protracker modules, -1
will be returned. (V2.0)

#ATTRPITCH:

Returns the playback pitch (frequency) of the music in Hertz; not possible
with Protracker modules. (V2.0)

#ATTRPOSITION:

Returns the position of the music object in milliseconds. (V2.0)

#ATTRFORMAT:

Returns the music format as a string. (V2.0)

876 Hollywood manual

#ATTRBITRATE:

Returns the bitrate of the music object; if the music object is currently
playing and uses a variable bitrate, you will receive the bitrate of the current
frame; not possible with Protracker modules. (V2.0)

#ATTRCOUNT:

Returns how many music objects there are currently in memory. Useful for
tracking memory consumption. (V4.5)

#ATTRCANSEEK:

Returns whether or not SeekMusic() can be used on this music object.
(V5.0)

#ATTRNUMSUBSONGS:

Returns the number of subsongs which you can play using PlaySubsong().
If this 1, then there is only one song in the music object. (V5.3)

#ATTRCURSUBSONG:

Returns the number of the currently playing subsong. (V5.3)

#ATTRPLAYING:

Returns True if this music object is currently playing. (V6.0)

#ATTRPAUSED:

Return True if this music object is currently paused. (V6.0)

#ATTRLOADER:

Returns the name of the loader that was used to load this music object.
(V6.0)

The following attributes can be queried for #PALETTE:

#ATTRPALETTE:

Returns the palette’s pens as a table. The table will contain as many items
as there are pens in the palette. The individual pens will be returned as
RGB colors. (V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the palette. If there is no transparent
pen, #NOPEN will be returned. (V9.0)

#ATTRDEPTH:

Returns the depth of the palette. This will always be a value between 1 (=
2 colors) and 8 (= 256 colors). (V9.0)

#ATTRCYCLE:

If the palette is a one which has color cycling ranges defined, this attribute
will return a table containing all color cycling ranges that are defined. In that
case, the table returned by #ATTRCYCLE will contain a number of subtables
which will have the following fields initialized:

Low: The pen index that marks that start of the color range.

High: The pen index that marks the end of the color range.

Chapter 43: Object library 877

Rate: The desired speed of the color cycling effect. A value of 16384
indicates 60 frames per second. All other speeds scale linearly
from this base, e.g. a value of 8192 indicates 30 frames per
second, and so on.

Reverse: If this tag is set to True, the colors should be cycled in reverse.

Active: If this tag is set to True, this color cycling range is marked as
active.

(V9.0)

#ATTRLOADER:

Returns the name of the loader that was used to load this palette. (V9.0)

#ATTRCOUNT:

Returns how many palette objects there are currently in memory. Useful for
tracking memory consumption. (V9.0)

The following attributes can be queried for #POINTER:

#ATTRWIDTH:

Returns the width of the pointer image. (V4.5)

#ATTRHEIGHT:

Returns the height of the pointer image. (V4.5)

#ATTRTYPE:

Returns type of this pointer image; can be #STDPTR_CUSTOM, #STDPTR_

SYSTEM or #STDPTR_BUSY; See Section 41.1 [CreatePointer], page 817, for
details. (V4.5)

#ATTRCOUNT:

Returns how many pointer images there are currently in memory. Useful for
tracking memory consumption. (V4.5)

The following attributes can be queried for #SAMPLE:

#ATTRTYPE:

Returns the format of the samples raw data; this attribute will return one
of #MONO8, #MONO16, #STEREO8 and #STEREO16. (V2.0)

#ATTRDURATION:

Returns the sample duration in milliseconds. (V2.0)

#ATTRPITCH:

Returns the playback pitch (frequency) of the sample in hertz. (V2.0)

#ATTRPOSITION:

Returns how long the sample has been playing and how many times it has
looped. The position returned will be a value in milliseconds (1000 millisec-
onds = 1 second). This value will be reset everytime the sample loops so
that the returned position value will never exceed the sample length. The

878 Hollywood manual

second return value specifies how many times the sample was played. It will
be increased by one every time the sample loops. If you need to find out the
total playing time in milliseconds, just multiply the second return value mi-
nus 1 by the sample duration (use #ATTRDURATION) and add the first return
value to it. (V2.0)

#ATTRCOUNT:

Returns how many samples there are currently in memory. Useful for track-
ing memory consumption. (V4.5)

#ATTRNUMFRAMES:

Returns the number of PCM frames in the sample. (V5.0)

#ATTRPLAYING:

Returns True if this sample is currently playing. (V6.0)

#ATTRLOADER:

Returns the name of the loader that was used to load this sample. (V6.0)

#ATTRFORMAT:

Returns the sound format name as a string. (V10.0)

The following attributes can be queried for #SERIAL:

#ATTRCOUNT:

Returns how many serial connection objects are currently in memory. Useful
for keeping track of the resources used by your script. (V8.0)

The following attributes can be queried for #SERVER:

#ATTRCOUNT:

Returns how many network server objects are currently in memory. Useful
for keeping track of the resources used by your script. (V5.0)

The following attributes can be queried for #SPRITE:

#ATTRWIDTH:

Returns width of the sprite. (V2.0)

#ATTRHEIGHT:

Returns height of the sprite. (V2.0)

#ATTRTRANSPARENTCOLOR:

Returns the transparent color of the sprite or #NOTRANSPARENCY. (V2.0)

#ATTRHASMASK:

Returns True if sprite has a mask. (V2.0)

#ATTRHASALPHA:

Returns True if sprite has an alpha channel. (V2.0)

#ATTRNUMFRAMES:

Returns the number of frames in this sprite. (V2.0)

Chapter 43: Object library 879

#ATTRCURFRAME:

Returns the frame which is currently displayed. (V2.0)

#ATTRONSCREEN:

Returns True if the specified sprite is currently on screen. (V2.5)

#ATTRXPOS:

Returns the x-position of the sprite on the screen. (V2.5)

#ATTRYPOS:

Returns the y-position of the sprite on the screen. (V2.5)

#ATTRCOUNT:

Returns how many sprites there are currently in memory. Useful for tracking
memory consumption. (V4.5)

#ATTRZPOS:

Returns the z-position of the sprite. See Section 50.12 [SetSpriteZPos],
page 1019, for details. (V7.0)

#ATTRDEPTH:

Returns the depth of the frame specified in the param argument. Frames are
counted from 1. If the param argument is omitted, the first frame will be
used. If the depth is less than or equal to 8, the sprite is a palette sprite.
(V9.0)

#ATTRPALETTE:

Returns the palette of the frame specified in the param argument. Frames
are counted from 1. If the param argument is omitted, the first frame will
be used. The frame’s palette will be returned as a table and will contain
as many items as there are pens in the palette. The individual pens will be
returned as RGB colors. If the frame doesn’t have a palette, an empty table
will be returned. (V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the palette of the frame specified by
param. Frames are counted from 1. If the param argument is omitted, the
first frame will be used. If there is no transparent pen or the frame doesn’t
have a palette, #NOPEN will be returned. (V9.0)

The following attributes can be queried for #TEXTOBJECT:

#ATTRWIDTH:

Returns width of the text object.

#ATTRHEIGHT:

Returns height of the text object.

#ATTRFONTASCENDER:

Returns the ascender of the current font in pixels; the ascender of a font
is the maximum character extent from the baseline to the top of the line;
ascender + descender is always equal to the font’s pixel height. (V3.1)

880 Hollywood manual

#ATTRFONTDESCENDER:

Returns the descender of the current font in pixels; the descender of a font is
the maximum character extent from the baseline to the bottom of the line;
ascender + descender is always equal to the font’s pixel height. (V3.1)

#ATTRFONTNAME:

Returns the name of the currently selected font. (V3.1)

#ATTRFONTSIZE:

Returns the size of the currently selected font. (V3.1)

#ATTRFONTSCALABLE:

Returns True if the font is a scalable vector font. (V3.1)

#ATTRFONTAA:

Returns True if the font can be anti-aliased. (V3.1)

#ATTRTEXT:

Returns the text string of this text object. (V4.0)

#ATTRCOUNT:

Returns how many text objects there are currently in memory. Useful for
tracking memory consumption. (V4.5)

#ATTRDEPTH:

Returns the depth of the text object. If this is less than or equal to 8, the
brush is a palette text object. (V9.0)

#ATTRPALETTE:

Returns the text object’s palette as a table. The table will contain as many
items as there are pens in the palette. The individual pens will be returned
as RGB colors. If the text object doesn’t have a palette, an empty table will
be returned. (V9.0)

#ATTRTRANSPARENTPEN:

Returns the pen that is transparent in the text object’s palette. If there is
no transparent pen or the text object doesn’t have a palette, #NOPEN will be
returned. (V9.0)

#ATTRTYPE:

Returns the type of the text object. This will be set to either #IMAGETYPE_
RASTER for a raster text object or #IMAGETYPE_VECTOR for a vector text
object. (V10.0)

#ATTRFONTDEPTH:

If the font is an Amiga color font, this attribute will return its depth. (V9.0)

#ATTRFONTPALETTE:

If the font is an Amiga color font, this attribute will return its palette as a
table. The table will contain as many items as there are pens in the palette.
The individual pens will be returned as RGB colors. (V9.0)

#ATTRFONTTRANSPARENTPEN:

If the font is an Amiga color font, this attribute will return the pen that is
transparent in the font’s palette. (V9.0)

Chapter 43: Object library 881

#ATTRFONTENGINE:

Returns the engine that was used to open this font. This will be either
#FONTENGINE_INBUILT, #FONTENGINE_NATIVE or #FONTENGINE_PLUGIN. See
Section 54.31 [SetFont], page 1139, for details. (V9.0)

#ATTRFONTTYPE:

Returns the font type. This can be one of the following types:

#FONTTYPE_BITMAP:

An Amiga bitmap font.

#FONTTYPE_COLOR:

An Amiga color font.

#FONTTYPE_VECTOR:

A vector font, e.g. in TrueType or OpenType format.

#FONTTYPE_BRUSH:

A custom font created from a brush source using the
CreateFont() command. See Section 54.6 [CreateFont],
page 1119, for details. (V10.0)

(V9.0)

#ATTRFONTCHARMAP:

Returns the character map used by the font. This is only supported by fonts
managed by the inbuilt font engine, i.e. the font must have been opened
using #FONTENGINE_INBUILT. See Section 54.16 [GetCharMaps], page 1130,
for details. (V9.0)

#ATTRFONTLOADER:

Returns the name of the loader that was used to load this font. (V10.0)

#ATTRFONTHEIGHT:

Returns the pixel height of the font. This is often the same as #ATTRFONTSIZE
but not if the font has been opened in points mode or if the underlying text
engine interprets the font size as something different from the font height. In
any case, #ATTRFONTHEIGHT will always be the same as #ATTRFONTASCENDER
+ #ATTRFONTDESCENDER. (V10.0)

#ATTRFONTFORMAT:

Returns the font format name as a string. (V10.0)

#ATTRADJUSTX:

When drawing text objects using DisplayTextObject() Hollywood will po-
sition them in a way that they appear as if they had been drawn using
TextOut() which means that they could be offset to the left and top in case
parts of some characters are designed to appear in the area of previous char-
acters. This is often the case with characters like "j". You can query the
number of horizontal pixels Hollywood will offset the text object by querying
this tag. Adjustment of text objects can be disabled by setting NoAdjust to
True when calling CreateTextObject(). (V10.0)

882 Hollywood manual

#ATTRADJUSTY:

This does the same as #ATTRADJUSTX (see above) but returns the vertical
adjustment pixels for this text object. (V10.0)

The following attributes can be queried for #TIMEOUT:

#ATTRDURATION:

Returns the timeout duration of this timeout object in milliseconds. (V4.5)

#ATTRFUNCTION:

Returns the callback function associated with the specified timeout object.
(V4.5)

#ATTRUSERDATA:

Returns the user data associated with this timeout object. (V4.5)

The following attributes can be queried for #TIMER:

#ATTRCOUNT:

Returns how many timer objects are currently in memory. Useful for keeping
track of the resources used by your script. (V5.0)

#ATTRELAPSE:

Returns the timer’s elapse threshold. (V9.0)

The following attributes can be queried for #UDPOBJECT:

#ATTRCOUNT:

Returns how many UDP objects are currently in memory. Useful for keeping
track of the resources used by your script. (V5.0)

The following attributes can be queried for #VECTORPATH:

#ATTRCOUNT:

Returns how many vector path objects there are currently in memory. Useful
for tracking memory consumption. (V5.0)

The following attributes can be queried for #VIDEO:

#ATTRWIDTH:

Returns width of the video. (V5.0)

#ATTRHEIGHT:

Returns height of the video. (V5.0)

#ATTRDURATION:

Returns the total video duration in milliseconds. (V5.0)

#ATTRPOSITION:

Returns the current position of a playing or paused video in milliseconds.
(V5.0)

Chapter 43: Object library 883

#ATTRFORMAT:

Returns the video format name as a string. (V5.0)

#ATTRNUMFRAMES:

Returns the number of frames of this video. Please note that this is often
an approximation because it would take too much time to do a precise cal-
culation of all frames in a video stream. This can also return 0 if the video
codec does not support frame calculation. (V5.0)

#ATTRCOUNT:

Returns how many videos there are currently in memory. Useful for tracking
memory consumption. (V5.0)

#ATTRCANSEEK:

Returns whether or not SeekVideo() can be used on this video object.
(V5.0)

#ATTRDRIVER:

Returns the driver used for this video. See Section 57.4 [ForceVideoDriver],
page 1202, for details. This is obsolete since Hollywood 6.0. Use
#ATTRLOADER instead. (V5.1)

#ATTRPLAYING:

Returns True if this video is currently playing. (V6.0)

#ATTRPAUSED:

Return True if this video is currently paused. (V6.0)

#ATTRSCALEWIDTH:

Returns the current scale width set for the video using SetVideoSize().
(V6.0)

#ATTRSCALEHEIGHT:

Returns the current scale height set for the video using SetVideoSize().
(V6.0)

#ATTRSCALEMODE:

Returns the current scale mode set for the video using SetVideoSize().
(V6.0)

#ATTRLOADER:

Returns the name of the loader that was used to load this video. (V6.0)

INPUTS

obj type of object to query (see list above)

id object identifier

attr which information to return

param optional: additional parameter required by some attributes (see above)

RESULTS

info the information you wanted

884 Hollywood manual

EXAMPLE
width = GetAttribute(#DISPLAY, 0, #ATTRWIDTH)

The above code queries the display for its current width. As there is only one display,
you do not have to specify an id.

43.5 GetObjectData

NAME
GetObjectData – retrieve private data from an object (V5.0)

SYNOPSIS
data = GetObjectData(type, id, key$)

FUNCTION
This function can be used to retrieve private data from an object that has been stored
using the SetObjectData() function. Just pass the type and the identifier of the object
and the key$ under which the data was stored to this function and it will return the
corresponding data.

See Section 43.1 [Object types], page 855, for a list of all object types.

INPUTS

type type of the object

id identifier of the object

key$ key under which the data was stored

RESULTS

data data that has been stored under the specified key

EXAMPLE
See Section 43.10 [SetObjectData], page 886.

43.6 GetObjects

NAME
GetObjects – get all objects of specified type (V5.1)

SYNOPSIS
table, count = GetObjects(type)

FUNCTION
This function can be used to retrieve a list of all objects of the specified type that are
currently in memory. This function will return a table containing the identifiers of the
objects as well as the total number of objects of the specified type.

See Section 43.1 [Object types], page 855, for a list of all object types.

INPUTS

type return objects of this type

Chapter 43: Object library 885

RESULTS

table a table containing identifiers of all objects of the specified type

count number of items in the table

EXAMPLE
t, c = GetObjects(#BRUSH)

For Local k = 0 To c - 1 Do DebugPrint(t[k])

The code above will list all objects of type #BRUSH currently in memory.

43.7 GetObjectType

NAME
GetObjectType – retrieve type of an object handle (V5.0)

SYNOPSIS
type = GetObjectType(handle)

FUNCTION
This function returns the type of the specified object handle. The object handle passed
to this function must have been created using automatic id selection. See Section 7.8
[Auto id selection], page 91, for details.

See Section 43.1 [Object types], page 855, for a list of all object types.

INPUTS

handle handle of object whose type you want to retrieve

RESULTS

type type of the object handle

EXAMPLE
my_anim = LoadAnim(Nil, "test.gif")

my_brush = LoadBrush(Nil, "test.png")

DebugPrint(GetObjectType(my_anim), GetObjectType(my_brush))

The code above will print the values of constants #ANIM and #BRUSH.

43.8 HaveObject

NAME
HaveObject – check if a certain object is available (V5.2)

SYNOPSIS
r = HaveObject(type, id)

FUNCTION
This function can be used to check whether a certain object has already been loaded.
Just pass the object’s type and identifier to this function and it will return True or False
depending on whether or not the object is in memory.

See Section 43.1 [Object types], page 855, for a list of all object types.

886 Hollywood manual

INPUTS

type type of the object to check

id identifier of the object to check

RESULTS

r True if object is available, False otherwise

EXAMPLE
DebugPrint(HaveObject(#BRUSH, 1))

The code above prints True if brush number 1 is in memory, otherwise False.

43.9 HaveObjectData

NAME
HaveObjectData – check if data exists in an object (V6.1)

SYNOPSIS
b = HaveObjectData(type, id, key$)

FUNCTION
This function can be used to check if private data has been stored in an object under the
specified key using the SetObjectData() function. Just pass the type and the identifier
of the object and the key$ to check to this function and it will return whether there is
data for the key or not.

See Section 43.1 [Object types], page 855, for a list of all object types.

INPUTS

type type of the object

id identifier of the object

key$ key to query

RESULTS

b True if the key has data, False otherwise

43.10 SetObjectData

NAME
SetObjectData – store private data in an object (V5.0)

SYNOPSIS
SetObjectData(type, id, key$, value)

FUNCTION
This function can be used to associate any kind of private data with an object. You have
to pass the type and identifier of the object as well as a key string under which the data
should be stored inside the object structure. value can be any kind of Hollywood data

Chapter 43: Object library 887

value: It can be a string, a table, a number, or even a function. Everything is possible. If
the key specified in key$ is already used inside the object, the old data will be replaced
with the new one.

To access the data later, you can use the GetObjectData() function.

See Section 43.1 [Object types], page 855, for a list of all object types.

INPUTS

type type of the object to use

id identifier of the object to use

key$ key under which the data should be stored

value data to store

EXAMPLE
SetObjectData(#BRUSH, 1, "brushgroup", "A")

d$ = GetObjectData(#BRUSH, 1, "brushgroup")

The code above stores the value "A" in brush 1 under the key "brushgroup" and then
retrieves it again. d$ will be set to "A".

889

44 Palette library

44.1 Overview

This library provides functions to deal with palettes. As the name implies, a palette is a
palette (= set) of colors. The minimum number of colors in a palette is 2 and the maximum
number of colors in a palette is 256. The individual colors in a palette are referred to as
pens. Those pens are addressed through their indices within the palette, starting from 0.
Thus, the first pen in a palette is pen 0, the second one is pen 1, and so on. There can be
one pen in a palette that is marked as a transparent pen. Pixels that use this pen, e.g. in
a palette brush, will appear transparent then. Typically, pen 0 is the transparent pen.

The number of colors in a palette is referred to as its depth and it is always expressed as a
power of 2 exponent. The following depths are available:

1-bit: 2 colors.

2-bit: 4 colors.

3-bit: 8 colors.

4-bit: 16 colors.

5-bit: 32 colors.

6-bit: 64 colors.

7-bit: 128 colors.

8-bit: 256 colors.

Because of the limited number of colors that can be stored in a palette, palette graphics are
no longer widely used today. However, using palette graphics does have some advantages
over using RGB graphics in certain situations, for example:

− Palette graphics make it very easy to implement certain effects like color cycling or
fading. Because of the limited number of colors that need to be modified these effects
can be computed in very few CPU cycles.

− Memory consumption is much lower than when using RGB graphics. For 32-bit RGB
graphics, a single pixel will require 4 bytes of memory whereas in palette mode, a single
pixel will just require 1 byte of memory. Thus, a 1920x1080 image will require about
8 megabytes of memory in 32-bit mode but only 2 megabytes of memory in palette
mode.

− Because palette graphics require less memory than RGB graphics, they can also be
compressed better when saving them to disk, e.g. as PNG images. Saving images that
don’t use more than 256 colors as RGB pixels in PNG will yield a significantly bigger
image file than saving it as a PNG that uses a palette. That is why you might want to
save images that don’t use many colors as palette images if you care about file sizes.
Functions like SaveBrush() support palette images as well.

Of course, in order to become useful, a palette always needs to be attached to another
object that provides the actual pixel data that should be drawn using the colors taken from
the palette. In Hollywood, the following object types support palettes:

− animations

890 Hollywood manual

− BGPics

− brushes

− displays

− sprites

For most object types, you can just set the LoadPalette tag to True in functions like
LoadBrush() to make Hollywood create a palette brush for you. You can also convert RGB
brushes to palette brushes using functions like QuantizeBrush() or RemapBrush(). Once
you have a palette object, you can change its palette using the SetPalette() function.

Special care needs to be taken when putting a display in palette mode. This will have
several implications that you need to be aware of in order to make the most out of a palette
mode display. See Section 25.16 [Palette mode displays], page 400, for details.

44.2 ContrastPalette

NAME
ContrastPalette – enhance or reduce palette contrast (V9.0)

SYNOPSIS
ContrastPalette(id, inc[, repeat])

FUNCTION
This command can be used to enhance or reduce the color contrast in the specified
palette. If the inc argument is set to True, the contrast is enhanced. If it is set to
False, the contrast is reduced. The optional argument repeat can be used to apply the
effect to the palette multiple times. This is useful if you want to create sharper contrasts.

INPUTS

id palette to modify

inc True to increase contrast, False to decrease contrast

repeat optional: specifies how many times the contrast operation should be repeated
(defaults to 1 which means run the effect just once)

44.3 CopyPalette

NAME
CopyPalette – clone a palette (V9.0)

SYNOPSIS
[id] = CopyPalette(source, dest)

FUNCTION
This function clones the palette specified by source and creates a copy of it as palette
dest. The new palette is independent from the old palette so you can free the source
palette after it has been cloned.

If you pass Nil as dest, CopyPalette() will return a handle to the new palette to you.
Otherwise the new palette will use the identifier specified in dest.

Chapter 44: Palette library 891

INPUTS

source source palette id

dest identifier of the palette to be created or Nil for auto id selection

RESULTS

id optional: handle to the new palette; will only be returned if you specified
Nil in dest

EXAMPLE
CopyPalette(1, 10)

FreePalette(1)

The above code creates a new palette 10 which contains the same color data as palette
1. Then it frees palette 1 because it is no longer needed.

44.4 CopyPens

NAME
CopyPens – copy pens from one palette to another (V9.0)

SYNOPSIS
CopyPens(srcid, dstid, srcidx, n[, dstidx])

FUNCTION
This function will copy n pens from the palette specified by srcid to the palette specified
by dstid. The pens will be read from index srcidx in the source palette and they will
be copied to the index dstidx in the destination palette. If dstidx is omitted, the index
specified in srcidx will be used as the destination index.

Note that it is allowed to use the same palette identifier for srcid and dstid. In that
case, pens inside a single palette object can be moved around. Overlapping pens are also
supported.

INPUTS

srcid source palette

dstid destination palette; can be the same as the source

srcidx index of the first pen to be copied (starts from 0)

n number of pens to copy

dstidx optional: index to copy pens to in the destination palette; defaults to srcidx

EXAMPLE
CopyPens(1, 2, 0, 32)

The code above copies the first 32 pens from palette 1 to palette 2.

892 Hollywood manual

44.5 CreatePalette

NAME
CreatePalette – create new palette (V9.0)

SYNOPSIS
[id] = CreatePalette(id[, data, t])

FUNCTION
This function creates a new palette and assigns the identifier id to it. The data argument
may either be a table containing a number of colors that should be used to initialize the
palette’s pens or you may set data to one of Hollywood’s predefined palette types. See
below for all predefined palette types supported by Hollywood. If you pass Nil in the id
argument, CreatePalette() will automatically choose an identifier for the new palette
and return it to you.

The following predefined palette types are supported by Hollywood:

#PALETTE_MONOCHROME:

Two color, black and white palette.

#PALETTE_GRAY4:

4 color grayscale palette.

#PALETTE_GRAY8:

8 color grayscale palette.

#PALETTE_GRAY16:

16 color grayscale palette.

#PALETTE_GRAY32:

32 color grayscale palette.

#PALETTE_GRAY64:

64 color grayscale palette.

#PALETTE_GRAY128:

128 color grayscale palette.

#PALETTE_GRAY256:

256 color grayscale palette.

#PALETTE_CGA:

Standard CGA palette (16 colors).

#PALETTE_OCS:

Standard OCS palette (32 colors).

#PALETTE_EGA:

Standard EGA palette (64 colors).

#PALETTE_AGA:

Standard AGA palette (256 colors).

#PALETTE_WORKBENCH:

Standard classic Amiga Workbench palette (256 colors).

Chapter 44: Palette library 893

#PALETTE_MACINTOSH:

Standard classic Macintosh palette (256 colors).

#PALETTE_WINDOWS:

Standard classic Windows palette (256 colors).

#PALETTE_DEFAULT:

Same as #PALETTE_AGA. If you omit the data argument, CreatePalette()
will initialize the new palette using the pens from #PALETTE_DEFAULT.

If you pass a table of colors in the data argument, make sure that all colors are passed as
RGB values. Note that the table can also be a sparse array with only the pens initialized
that you actually need. Pens that aren’t in the data table will be initialized to black.
See below for an example.

The optional table argument t can be used to specify further options. The following
options are currently recognized:

Depth: The desired depth for the palette. This must be between 1 (= 2 colors) and 8
(= 256 colors). The default is 8. If Depth specifies more colors than you pass
in the table in the data parameter, the remaining colors will be initialized
to black. This tag is only used if you pass a table in the data argument.
If you pass a predefined palette type in data, the predefined palette type’s
depth overrides the depth specified here.

TransparentPen:

This tag can be used to specify the pen that shall be transparent in the
palette. This defaults to #NOPEN which means that no pen shall be made
transparent.

Cycle: This tag can be used to define several ranges of colors that can be cycled.
When set, you must pass a table of subtables to Cycle, each subtable de-
scribing a configuration of a color cycling effect. Each subtable supports the
following tags:

Low: The pen index that marks that start of the color range.

High: The pen index that marks the end of the color range.

Rate: The desired speed of the color cycling effect. A value of 16384
indicates 60 frames per second. All other speeds scale linearly
from this base, e.g. a value of 8192 indicates 30 frames per
second, and so on.

Reverse: If this tag is set to True, the colors should be cycled in reverse.
Defaults to False.

Active: If this tag is set to False, the color range will be marked as
inactive. Defaults to True.

INPUTS

id id for the new palette or Nil for auto id selection

data optional: either one of the predefined palette types (see above) or a table
containing an array of colors (defaults to #PALETTE_DEFAULT)

894 Hollywood manual

t optional: table for specifying further options (see above)

RESULTS

id optional: identifier of the palette; will only be returned if you pass Nil as
argument 1 (see above)

EXAMPLE
CreatePalette(1, {#RED, #GREEN, #BLUE}, {Depth = 2})

The code above creates a palette with four colors initialized to red, green, blue and black.

CreatePalette(1, {[0] = #RED, [127] = #BLUE, [255] = #GREEN})

The code above creates a new palette with 256 colors and initializes pen 0 to red, pen
127 to blue, and the last pen to green. All other pens will be initialized to black.

CreatePalette(1)

Creates a new palette and initializes its colors to those of #PALETTE_DEFAULT.

CreatePalette(1, #PALETTE_CGA)

Creates a new palette using the CGA colors.

44.6 CyclePalette

NAME
CyclePalette – cycle palette colors (V9.0)

SYNOPSIS
CyclePalette(id, start, end[, repeat])

FUNCTION
This function cycles the palette colors between the pen specified by start and the pen
specified by end. If end is greater than start, all pens starting at the index start will
be shifted to the right and wrap at the pen specified by end. If start is greater than
end, pens will be cycled in reverse, i.e. they will be shifted to the left, wrapping at the
pen index specified by start. The repeat argument can be used to specify how many
times the cycling should be repeated. This defaults to 1 which means that colors should
only be cycled once.

INPUTS

id identifier of the palette whose pens should be cycled

start start pen of cycling range

end end pen of cycling range

repeat optional: number of times to repeat cycling (defaults to 1)

EXAMPLE
@DISPLAY {Palette = #PALETTE_CGA}

SetFont(#SANS, 96)

Chapter 44: Palette library 895

SetPaletteMode(#PALETTEMODE_PEN)

t$ = "Hollywood"

For Local k = 0 To StrLen(t$) - 1

SetDrawPen(k + 2)

Print(MidStr(t$, k, 1))

Next

ExtractPalette(1, #BGPIC, 1)

StartTimer(1)

Repeat

CyclePalette(1, 2, 10)

SetPalette(1)

WaitTimer(1, 80)

Forever

The code above prints the individual of characters of the string "Hollywood" in different
colors and then cycles their colors.

44.7 ExtractPalette

NAME
ExtractPalette – extract palette from object (V9.0)

SYNOPSIS
[id] = ExtractPalette(id, srctype, srcid[, frame])

FUNCTION
This function extracts the palette from the object specified by srctype and srcid,
creates a new palette and assigns the identifier id to that new palette. If you pass Nil
as id, ExtractPalette() will return a handle to the new palette to you. Otherwise the
new palette will use the identifier specified in id.

The following object types can be passed in srctype:

#ANIM: Extract palette from an anim frame. If you set srctype to #ANIM, you also
need to pass the anim frame whose palette should be extracted in the frame
parameter. Frames are counted from 1, which is also the default value for
frame.

#BGPIC: Extract palette from a BGPic.

#BRUSH: Extract palette from a brush.

#FONT: Extract palette from a color font.

#SPRITE: Extract palette from a sprite frame. If you set srctype to #SPRITE, you also
need to pass the sprite frame whose palette should be extracted in the frame
parameter. Frames are counted from 1, which is also the default value for
frame.

INPUTS

id identifier of the palette to be created or Nil for auto id selection

896 Hollywood manual

srctype object type to use as source (see above)

srcid id of source object to use

frame optional: number of frame to use if object type is #ANIM or #SPRITE (defaults
to 1)

RESULTS

id optional: handle to the new palette; will only be returned if you specified
Nil in id

EXAMPLE
ExtractPalette(1, #BRUSH, 10)

The code above extracts the palette from brush 10 and stores it as palette object 1.

44.8 FreePalette

NAME
FreePalette – free a palette (V9.0)

SYNOPSIS
FreePalette(id)

FUNCTION
This function frees the palette specified by id. To reduce memory consumption, you
should free palettes when you do not need them any longer.

INPUTS

id identifier of the palette to free

44.9 GammaPalette

NAME
GammaPalette – correct gamma values of palette (V9.0)

SYNOPSIS
GammaPalette(id, red, green, blue)

FUNCTION
This function can be used to gamma correct the color channels of the specified palette.
For each color channel, you have to pass a floating point value that specifies the desired
gamma correction. A value of 1.0 means no change, a value smaller than 1.0 darkens the
channel, a value greater than 1.0 lightens the channel.

INPUTS

id palette to gamma correct

red gamma correction for red channel

green gamma correction for green channel

Chapter 44: Palette library 897

blue gamma correction for blue channel

EXAMPLE
GammaPalette(1, 1.5, 1.0, 0.5)

The code above lightens the red channel and darkens the blue channel, while leaving the
green color channel untouched.

44.10 GetBestPen

NAME
GetBestPen – get best pen for color (V9.0)

SYNOPSIS
pen = GetBestPen(id, color)

FUNCTION
This command searches for a pen in the palette specified by id whose color is the closest
match to the color specified in the color argument and returns that pen. The color

argument must be an RGB color.

INPUTS

id identifier of palette

color RGB color to find closest matching pen for

RESULTS

pen pen that is the closest match for the specified color

EXAMPLE
SetDrawPen(GetBestPen(1, #RED))

The code above sets the pen that most closely resembles red as the drawing pen.

44.11 GetFreePen

NAME
GetFreePen – find unused pen (V10.0)

SYNOPSIS
pen = GetFreePen([t])

FUNCTION
This function tries to find an unused pen in the currently active palette image and returns
it. If all pens are used, -1 will be returned. By default, this function scans the palette
pixel data of the current display so it will only work if the current display is a palette
mode display. See Section 25.16 [Palette mode displays], page 400, for details. If you
don’t want GetFreePen() to use the current display, you can select the active palette
image using the SelectPalette() command but keep in mind that you need to select a
palette object that has pixel data attached, e.g. a palette brush or a palette BGPic. Just

898 Hollywood manual

selecting a palette object won’t work because free pens can obviously only be determined
if there’s pixel data.

You can also use the optional table argument t to specify the source palette object. The
table argument supports exactly the same arguments as the optional table argument of
GetPen(). See Section 44.13 [GetPen], page 898, for details.

INPUTS

t optional: table for specifying further options (see above)

RESULTS

pen unused pen index or -1 if all pens are in use

44.12 GetPalettePen

NAME
GetPalettePen – get pen color from palette (V9.0)

SYNOPSIS
color = GetPalettePen(id, pen)

FUNCTION
This function gets the color of the pen specified by pen from the palette specified by id.
The color will be returned as an RGB color.

INPUTS

id identifier of palette to use

pen pen you want to get (starting from 0)

RESULTS

color color of the pen, specified as an RGB color

EXAMPLE
color = GetPalettePen(1, 0)

The code gets the color of the first pen in palette 1.

44.13 GetPen

NAME
GetPen – get pen color (V9.0)

SYNOPSIS
color = GetPen(pen[, t])

FUNCTION
This function gets the color of the pen specified by pen from the currently active palette.
By default, the current display’s palette is the active palette but of course only in case
the current display is a palette mode display. See Section 25.16 [Palette mode displays],

Chapter 44: Palette library 899

page 400, for details. A palette can be made the active one by using the SelectPalette()
command.

Alternatively, you can also use GetPen() to get the pen color from a different palette
object. To do so, you need to pass the optional table argument t to SetPen() and specify
the Type and ID tags. See below for an example.

The following tags are supported by the optional table argument t:

Type: Set this to the type identifier of the object whose palette you want to query.
This can be one of the following object types:

#ANIM

#BGPIC

#BRUSH

#DISPLAY

#LAYER

#PALETTE

#SPRITE

Note that if you use types #ANIM or #SPRITE, you also need to set the Frame
tag (see below) to indicate the frame whose palette you want to query. If
you use #LAYER and the specified layer is an anim layer, you also need to set
the Frame tag.

Type defaults to the type of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

ID: Set this tag to the identifier of the object whose palette you want to query.
The default is the identifier of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

Frame: If the target type is an animation, sprite, or anim layer, you need to set
this tag to specify the frame whose palette you want to query. Frames are
counted from 1. Defaults to 1 when used with anims and sprites and to the
current frame when used with anim layers.

INPUTS

pen pen you want to get (starting from 0)

t optional: table for specifying further options (see above)

RESULTS

color color of the pen, specified as an RGB color

EXAMPLE
@DISPLAY {Palette = #PALETTE_MONOCHROME}

color0 = GetPen(0)

color1 = GetPen(1)

The code above creates a monochrome palette display and queries the colors of the first
two pens. color0 will be black and color1 will be white.

color = GetPen(4, {Type = #BRUSH, ID = 2})

The code gets the color of pen 4 in brush 2.

900 Hollywood manual

44.14 InvertPalette

NAME
InvertPalette – invert palette colors (V9.0)

SYNOPSIS
InvertPalette(id)

FUNCTION
This function inverts all colors in the palette specified by id, which means that all colors
will be replaced with their complements (white will become black, blue will become
yellow etc.).

INPUTS

id palette to invert

EXAMPLE
InvertPalette(1)

The code above inverts the colors of palette 1.

44.15 LoadPalette

NAME
LoadPalette – load a palette (V9.0)

SYNOPSIS
[id] = LoadPalette(id, filename$[, table])

FUNCTION
This function loads the palette specified by filename$ into memory and assigns the
identifier id to it. If you pass Nil in id, LoadPalette() will automatically choose an
identifier and return it.

The palette specified in filename$ can either be in the IFF ILBM palette format, as
established by Deluxe Paint, or, alternatively, filename$ can also be a normal image
file that contains a palette. In that case, LoadPalette() will simply extract the palette
from the image file.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this palette. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details.

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details.

Chapter 44: Palette library 901

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

This command is also available from the preprocessor: Use @PALETTE to preload palettes.

INPUTS

id identifier for the palette or Nil for auto id selection

filename$

file to load

table optional: further options (see above)

RESULTS

id optional: identifier of the palette; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
LoadPalette(1, "DPaint32.pal")

This loads "DPaint32.pal" as palette 1.

44.16 ModulatePalette

NAME
ModulatePalette – change brightness, saturation, and hue of palette (V9.0)

SYNOPSIS
ModulatePalette(id, brightness, saturation, hue)

FUNCTION
This function can be used to change the brightness, saturation, and hue settings of the
colors in a palette. For each setting, you need to pass a floating point value that describes
the desired change. A value of 1.0 means no change, a value smaller than 1.0 reduces
the brightness/saturation/hue, while a value greater than 1.0 enhances it.

INPUTS

id palette to modulate

brightness

desired brightness correction

saturation

desired saturation correction

hue desired hue correction

EXAMPLE
ModulatePalette(1, 1.0, 2.0, 1.0)

The code above increases the saturation while leaving brightness and hue untouched.
The result is a palette with emphasized colors, just like in a cartoon.

902 Hollywood manual

44.17 PALETTE

NAME
PALETTE – define a palette for later use (V9.0)

SYNOPSIS
@PALETTE id[, filename$][, table]

FUNCTION
This preprocessor command can be used to define a palette for later use. The palette
can either be loaded from a file, it can be one of Hollywood’s predefined palettes, or you
can define your own palette by specifying a collection of colors.

If you pass the filename$ argument, the palette will be loaded from that file. The file
specified in filename$ can either be in the IFF ILBM palette format, as established by
Deluxe Paint, or, alternatively, filename$ can also be a normal image file that contains
a palette. In that case, @PALETTE will simply extract the palette from the image file. Be
advised, though, that if you pass a full image file to @PALETTE and compile your script
into an applet or executable, Hollywood will link the whole image file to your applet
or executable, which will increase the output file size. Thus, it is advised to only use
palette files in the IFF ILBM format with @PALETTE because those are really small as
they don’t contain any image data.

If you don’t pass the filename$ argument, you need to set either the Type or Colors
tag in the optional table argument to define the palette (see below). The optional table
argument recognizes the following tags:

Type: Set this tag if you want to use one of Hollywood’s predefined palettes. In that
case, you must set Type to the identifier of the desired inbuilt palette. See
Section 44.36 [SetStandardPalette], page 918, for a list of inbuilt palettes. If
you set this tag, you must not pass filename$ or Colors.

Colors: This tag can be used to define a custom palette. If you set Colors, you must
not pass filename$ or Type. To define a custom palette, set Colors to a
table containing the desired colors for the palette. The palette depth is cal-
culated automatically from the number of colors in the table. Alternatively,
you can also set the Depth tag to define the palette depth (see below).

Depth: The desired depth for the palette. This must be between 1 (= 2 colors) and
8 (= 256 colors). The default is 8. This must only be specified when also
setting the Colors tag. If Depth specifies more colors than you pass in the
table in the Colors tag, the remaining colors will be initialized to black.

TransparentPen:

This tag can be used to specify the pen that shall be transparent in the
palette. This defaults to #NOPEN which means that no pen shall be made
transparent. This must only be used when the Type or Colors tag is passed
as well.

Link: Set this field to False if you do not want to have filename$ linked to your
executable/applet when you compile your script. This field defaults to True

which means that the palette will be linked to your executable/applet when

Chapter 44: Palette library 903

Hollywood is in compile mode. If you use this tag, you must also pass
filename$.

Loader: This tag allows you to specify one or more format loaders that should be
asked to load the file specified in filename$. This must be set to a string
containing the name(s) of one or more loader(s). Defaults to the loader set
using SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92,
for details. If you use this tag, you must also pass filename$.

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the file specified in filename$. This must be set to a string
containing the name(s) of one or more adapter(s). Defaults to the adapter
set using SetDefaultAdapter(). See Section 7.9 [Loaders and adapters],
page 92, for details. If you use this tag, you must also pass filename$.

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

To load or create palettes at runtime, take a look at the LoadPalette() and
CreatePalette() commands.

INPUTS

id a value that is used to identify this palette later in the code

filename$

the palette file you want to load

table optional: table containing further options

EXAMPLE
@PALETTE 1, "DPaint32.pal"

Preloads "DPaint32.pal" as palette 1.

@PALETTE 1, {Colors = {#WHITE, #BLACK, $7777CC, $BBBBBB}}

Defines a custom palette as palette 1.

@PALETTE 1, {Type = #PALETTE_CGA}

Defines the standard CGA palette as palette 1.

44.18 PaletteToGray

NAME
PaletteToGray – convert palette to gray (V9.0)

SYNOPSIS
PaletteToGray(id)

904 Hollywood manual

FUNCTION
This function converts all colors in the palette specified by id to gray.

INPUTS

id identifier of the palette to convert

EXAMPLE
PaletteToGray(1)

Convert all colors in palette 1 to gray.

44.19 ReadPen

NAME
ReadPen – read pen from palette object (V9.0)

SYNOPSIS
pen = ReadPen(x, y[, t])

FUNCTION
This function reads the pen at the position specified by x and y from the currently active
palette object. By default, the current display is the active palette object but of course
only in case the current display is a palette mode display. See Section 25.16 [Palette
mode displays], page 400, for details. You can set the active palette object using the
SelectPalette() command.

Alternatively, you can also use ReadPen() to read a pen from a different palette object.
To do so, you need to pass the optional table argument t to ReadPen() and specify the
Type and ID tags. See below for an example.

The following tags are supported by the optional table argument t:

Type: Set this to the type identifier of the object from whose pixel data you want
to read the pen. This can be one of the following object types:

#ANIM

#BGPIC

#BRUSH

#DISPLAY

#LAYER

#PALETTE

#SPRITE

Note that if you use types #ANIM or #SPRITE, you also need to set the Frame
tag (see below) to indicate the frame whose pixel data should be used. If
you use #LAYER and the specified layer is an anim layer, you also need to set
the Frame tag.

Type defaults to the type of the currently active palette object selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

ID: Set this tag to the identifier of the object whose pixel data should be used.
The default is the identifier of the currently active palette object set using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

Chapter 44: Palette library 905

Frame: If the target type is an animation, sprite, or anim layer, you need to set
this tag to specify the frame whose pixel data should be used. Frames are
counted from 1. Defaults to 1 when used with anims and sprites and to the
current frame when used with anim layers.

INPUTS

x x position to read from

y y position to read from

t optional: table for specifying further options (see above)

RESULTS

pen pen at the specified position

EXAMPLE
@DISPLAY {Palette = #PALETTE_MONOCHROME}

pen = ReadPen(0, 0)

The code above reads the pen in the top-left corner of the display. This will be 0 because
by default, the display background will be filled using pen 0.

pen = ReadPen(0, 0, {Type = #BRUSH, ID = 2})

The code reads the pen in the top-left corner in brush 2.

44.20 SavePalette

NAME
SavePalette – save palette to a file (V9.0)

SYNOPSIS
SavePalette(id, f$[, t])

FUNCTION
This function saves the palette specified by id to the file specified by f$. The palette
will be saved in the IFF ILBM palette format, as established by Deluxe Paint.

Starting with Hollywood 10.0, SavePalette() accepts an optional table argument that
allows you to pass additional arguments to the function. The following tags are currently
supported by the optional table argument:

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to save the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

906 Hollywood manual

To load a palette back into Hollywood, use the LoadPalette() function or the @PALETTE
preprocessor command.

INPUTS

id identifier of the palette to save

f$ destination file

t optional: table containing further options (see above) (V10.0)

44.21 SelectPalette

NAME
SelectPalette – set active palette object (V9.0)

SYNOPSIS
SelectPalette(type, id)

FUNCTION
This function can be used to set the palette object that should be used by functions like
SetPen(), GetPen() and SetPalette() by default. The palette that is used by those
functions by default is also called the active palette.

You have to pass the type and identifier of the object whose palette should be made the
active one. The following object types can be passed to the type argument:

#ANIM

#BGPIC

#BRUSH

#DISPLAY

#LAYER

#PALETTE

#SPRITE

Note that SelectPalette() will neither check if the object passed to it exists nor if it
has a palette. For performance reasons, all this won’t be verified until you call a function
which actually tries to access the currently active palette. Thus, it is also possible to
make a palette active which doesn’t exist yet.

By default, the current display’s palette is the active one. If the current display doesn’t
have a palette and you call a function that tries to access it, an error will occur. See
Section 25.16 [Palette mode displays], page 400, for details.

Note that EndSelect() must never be called for SelectPalette(). Do not confuse
SelectPalette() with functions like SelectBrush() or SelectAlphaChannel() which
require you to call EndSelect() when you’re done with them. This must not be done
for SelectPalette() as it just sets the default palette for functions like SetPen() so
you must never call EndSelect() for SelectPalette().

INPUTS

type type of object whose palette should be made active

id identifier of object whose palette should be made active

Chapter 44: Palette library 907

EXAMPLE
SelectPalette(#BRUSH, 1)

The code above makes the palette of brush 1 the active one.

44.22 SetBorderPen

NAME
SetBorderPen – set border pen (V9.0)

SYNOPSIS
SetBorderPen(pen)

FUNCTION
This function sets the pen specified by pen to the pen that will be used for drawing
borders when the palette mode is #PALETTEMODE_PEN and the current output device is a
palette one. The palette mode can be set using SetPaletteMode().

When the palette mode has been set to #PALETTEMODE_PEN, all Hollywood commands
that draw a border won’t use the border color that has been set using SetFormStyle(),
SetFontStyle() or a BorderColor tag but they will use the pen that has been set as
the border pen using this function.

See Section 44.31 [SetPaletteMode], page 914, for details.

INPUTS

pen pen to use for drawing borders

44.23 SetBulletPen

NAME
SetBulletPen – set bullet pen (V9.0)

SYNOPSIS
SetBulletPen(pen)

FUNCTION
If the Hollywood display is currently in palette mode, this function allows you to set
the pen to be used for drawing bullets when using TextOut() in list mode. By default,
bullets are drawn using the current draw pen set using SetDrawPen(). If you want them
to be drawn with a different pen, you can use this function to do so.

See Section 54.39 [TextOut], page 1149, for more information on bullet lists.

INPUTS

pen pen to draw bullets with (starting from 0)

908 Hollywood manual

44.24 SetCycleTable

NAME
SetCycleTable – set color cycling table (V9.0)

SYNOPSIS
SetCycleTable(cycle[, t])

FUNCTION
This function sets the color cycling table of the currently active palette to the one
specified in cycle. You must pass a table of subtables in cycle, each subtable describing
a configuration of a color cycling effect. Each subtable supports the following tags:

Low: The pen index that marks that start of the color range.

High: The pen index that marks the end of the color range.

Rate: The desired speed of the color cycling effect. A value of 16384 indicates 60
frames per second. All other speeds scale linearly from this base, e.g. a value
of 8192 indicates 30 frames per second, and so on.

Reverse: If this tag is set to True, the colors should be cycled in reverse. Defaults to
False.

Active: If this tag is set to False, the color range will be marked as inactive. Defaults
to True.

By default, SetCycleTable() will copy the color cycling table to the current display’s
palette which is the default active palette but of course only in case the current display
is a palette mode display. See Section 25.16 [Palette mode displays], page 400, for
details. You can select a different palette as the active one by using the SelectPalette()
command.

Alternatively, the specified color cycling table can also be set to a different palette object.
To do so, you need to pass the optional table argument to SetCyclingTable() and specify
the Type and ID tags.

The following tags are supported by the optional table argument t:

Type: Set this to the type identifier of the object whose color cycling table you
want to set. This can be one of the following object types:

#BGPIC

#BRUSH

#PALETTE

Type defaults to the type of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

ID: Set this tag to the identifier of the object whose cycle table you want to set.
The default is the identifier of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

INPUTS

cycle table containing color cycling ranges (see above)

t optional: table for specifying further options (see above)

Chapter 44: Palette library 909

44.25 SetDepth

NAME
SetDepth – set palette depth (V9.0)

SYNOPSIS
SetDepth(depth[, t])

FUNCTION
This function sets the depth of the currently active palette to the one specified in
depth. depth must be a bit depth ranging from 1 (= 2 colors) to 8 (= 256 colors).
See Section 44.1 [Palette overview], page 889, for details. Note that if the specified
depth is less than that of the pixel data attached to the palette, the pixel data will be
remapped to match the new depth.

By default, the current display’s palette is the active palette but of course only in case
the current display is a palette mode display. See Section 25.16 [Palette mode displays],
page 400, for details. A palette can be made the active one by using the SelectPalette()
command.

Alternatively, the specified depth can also be set to a different palette object. To do so,
you need to pass the optional table argument to SetDepth() and specify the Type and
ID tags. See below for an example.

The following tags are supported by the optional table argument t:

Type: Set this to the type identifier of the object whose depth you want to set.
This can be one of the following object types:

#ANIM

#BGPIC

#BRUSH

#DISPLAY

#LAYER

#PALETTE

#SPRITE

Note that if you use types #ANIM or #SPRITE, you also need to set the Frame
tag (see below) to indicate the frame whose depth you want to modify. If
you use #LAYER and the specified layer is an anim layer, you also need to set
the Frame tag.

Type defaults to the type of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

ID: Set this tag to the identifier of the object whose depth you want to set.
The default is the identifier of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

Frame: If the target type is an animation, sprite, or anim layer, you need to set this
tag to specify the frame whose depth should be set. Frames are counted
from 1. Defaults to 1 when used with anims and sprites and to the current
frame when used with anim layers.

Remap: If this tag is set to False, out-of-range pens will not be remapped to existing
pens but instead they will simply be set to the pen specified in the ClipPen

910 Hollywood manual

tag (see below), i.e. no remapping will take place. Note that Remap is only
effective when reducing colors. If the new depth has more pens than the old
depth, Remap won’t do anything. (V10.0)

ClipPen: This is only used in case the Remap tag is set to False (see above). In
that case, out-of-range pens will not be remapped to existing pens but will
simply be set to the pen specified in the ClipPen tag, i.e. no remapping will
take place. Note that ClipPen is only effective when reducing colors. If the
new depth has more pens than the old depth, ClipPen won’t do anything.
(V10.0)

INPUTS

depth desired new palette depth (ranging from 1 to 8)

t optional: table for specifying further options (see above)

EXAMPLE
SetDepth(4, {Type = #BRUSH, ID = 2})

The code above sets the palette depth of brush 2 to 4 (= 16 colors).

44.26 SetDitherMode

NAME
SetDitherMode – set dither mode (V9.0)

SYNOPSIS
SetDitherMode(mode)

FUNCTION
When palette mode is set to #PALETTEMODE_REMAP, which is also the default, you can use
this command to configure the dithering mode to use. The desired dithering mode has
to be passed in the mode argument. Dithering can increase the quality of the remapped
graphics but it is slower than remapping graphics without dithering.

The following dithering modes are currently available:

#DITHERMODE_NONE:

No dithering. This is the default dithering mode.

#DITHERMODE_FLOYDSTEINBERG:

Use Floyd-Steinberg dithering.

See Section 44.31 [SetPaletteMode], page 914, for details.

INPUTS

mode desired dithering mode (see above)

Chapter 44: Palette library 911

44.27 SetDrawPen

NAME
SetDrawPen – set draw pen (V9.0)

SYNOPSIS
SetDrawPen(pen)

FUNCTION
This function sets the pen specified by pen to the pen that will be used for drawing to
palette output devices when the palette mode is #PALETTEMODE_PEN. The palette mode
can be set using SetPaletteMode(). See Section 44.31 [SetPaletteMode], page 914, for
details.

When the palette mode has been set to #PALETTEMODE_PEN, the following functions will
use the pen set using SetDrawPen() instead of the color that is passed to them:

− Arc()

− Box()

− Circle()

− Cls()

− CreateTextObject()

− DrawPath()

− Ellipse()

− Line()

− Plot()

− Polygon()

− Print()

− TextOut()

Note that in case the palette mode is #PALETTEMODE_PEN, any shadow or border effect
also won’t be drawn in the color that was set using SetFormStyle(), SetFontStyle()
or ShadowColor or BorderColor tags. Instead, shadow and border will be drawn using
the pen set via SetShadowPen() and SetBorderPen(), respectively.

INPUTS

pen desired drawing pen; pens start at 0

EXAMPLE
@DISPLAY {Palette = #PALETTE_DEFAULT}

SetFillStyle(#FILLCOLOR)

SetPaletteMode(#PALETTEMODE_PEN)

SetDrawPen(10)

Box(#CENTER, #CENTER, 320, 240)

The code above will create a palette mode display and then draw a filled rectangle to
the center of the screen using palette pen 10.

912 Hollywood manual

44.28 SetGradientPalette

NAME
SetGradientPalette – create color gradient in palette (V9.0)

SYNOPSIS
SetGradientPalette(id, startcolor, endcolor)

FUNCTION
This function creates a color gradient in the palette specified by id. The first pen will
be initialized to the color specified in startcolor and the last pen will be initialized
to the color specified in endcolor. All pens between the first and the last pen will
be filled with intermediary colors so that the result will be a smooth gradient between
startcolor and firstcolor. Obviously, the more colors the palette has, the smoother
the resulting gradient will be so it’s recommended to set the palette depth to 8 (= 256
colors) for the best result.

INPUTS

id identifier of palette to use

startcolor

start color of the gradient

endcolor end color of the gradient

EXAMPLE
@DISPLAY {Palette = #PALETTE_DEFAULT, Height = 512}

CreatePalette(1)

SetGradientPalette(1, #BLACK, #BLUE)

SetPaletteMode(#PALETTEMODE_PEN)

SetPalette(1)

SetFillStyle(#FILLCOLOR)

For Local y = 0 To 255

SetDrawPen(y)

Box(0, y * 2, 640, 2)

Next

The code above creates gradient between black and blue in palette 1 and draws it.

44.29 SetPalette

NAME
SetPalette – change palette (V9.0)

SYNOPSIS
SetPalette(id[, t])

FUNCTION
This function replaces all pens in the currently active palette with the pens from palette
specified by id. By default, the current display’s palette is the active palette but of
course only in case the current display is a palette mode display. See Section 25.16

Chapter 44: Palette library 913

[Palette mode displays], page 400, for details. A palette can be made the active one by
using the SelectPalette() command.

Alternatively, the palette specified by id can also be copied to other objects. To do so,
you need to pass the optional table argument to SetPalette() and set the destination
object type in the Type table tag and the object’s identifier in the ID table tag. For
example, to assign palette 1 to brush 2, do the following:

SetPalette(1, {Type = #BRUSH, ID = 2})

The following tags are supported by the optional table argument t:

Type: Set this to the type identifier of the object you want to copy the palette to.
This can be one of the following object types:

#ANIM

#BGPIC

#BRUSH

#DISPLAY

#LAYER

#PALETTE

#SPRITE

Note that if you use types #ANIM or #SPRITE, you also need to set the Frame
tag (see below) to indicate the frame whose palette you want to modify. If
you use #LAYER and the specified layer is an anim layer, you also need to set
the Frame tag.

Type defaults to the type of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

ID: Set this tag to the identifier of the object you want to copy the palette to.
The default is the identifier of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

Frame: If the palette is to be copied to an animation, sprite, or anim layer, you need
to set this tag to specify the frame the palette should be copied to. Frames
are counted from 1. Defaults to 1 when used with anims and sprites and to
the current frame when used with anim layers.

Remap: If this is set to True, the colors of the target object will be remapped to
match the colors in the source palette as closely as possible. By default,
there will be no remapping and the actual pixel data of the target object
will remain untouched. If you want remapping, set this tag to True but be
warned that remapping all pixels will of course take much more time than
just setting a new palette without remapping. Defaults to False.

Dither: If the Remap tag (see above) has been set to True, you can use the Dither

tag to specify whether or not dithering should be used. Defaults to True

which means dithering should be used.

CopyCycleTable:

Palettes can have a table containing color cycling information. If you set
this tag to True, this cycle table will be copied to the target object as well.
Defaults to False.

914 Hollywood manual

INPUTS

id id of the palette to set

t optional: table for specifying further options (see above)

EXAMPLE
@DISPLAY {Palette = #PALETTE_MONOCHROME}

SetFillStyle(#FILLCOLOR)

SetPaletteMode(#PALETTEMODE_PEN)

SetDrawPen(1)

Box(#CENTER, #CENTER, 320, 240)

WaitLeftMouse

CreatePalette(1, {#WHITE, #BLACK}, {Depth = 1})

SetPalette(1)

The code above creates a monochrome palette display with a black background and white
rectangle in the center. After a mouse-click the colors of the background and the white
rectangle will be reversed by setting a new palette which uses white instead of black in
pen 0 and black instead of white in pen 1.

44.30 SetPaletteDepth

NAME
SetPaletteDepth – set palette depth (V9.0)

SYNOPSIS
SetPaletteDepth(id, depth)

FUNCTION
This function sets the depth of the palette specified by id to the depth specified in
depth. depth must be a bit depth ranging from 1 (= 2 colors) to 8 (= 256 colors). See
Section 44.1 [Palette overview], page 889, for details.

INPUTS

id identifier of palette to modify

depth desired new palette depth (ranging from 1 to 8)

EXAMPLE
SetPaletteDepth(1, 8)

The code above changes the depth of palette 1 to 8 (= 256 colors).

44.31 SetPaletteMode

NAME
SetPaletteMode – set palette drawing mode (V9.0)

SYNOPSIS
SetPaletteMode(mode)

Chapter 44: Palette library 915

FUNCTION
This function sets the palette drawing mode to the mode specified in the mode argument.
This mode will be used whenever the output device is palette-based, for example a palette
mode display or a palette brush.

The following modes are currently supported:

#PALETTEMODE_REMAP:

All graphics that are drawn will be remapped to the output device’s palette.
This is the default palette mode but be warned that this can become very
slow because Hollywood has to find the closest pen match for every sin-
gle pixel it draws. To get the best drawing performance in palette mode,
you should use #PALETTEMODE_PEN instead (see below). The way graphics
data is remapped to a a palette output device can be configured by call-
ing SetDitherMode(). This allows you to enable or disable dithering and
you can also specify the dithering algorithm to use. Note that when using
#PALETTEMODE_REMAP single-color drawing functions like Box(), Circle()
or TextOut() won’t draw using the drawing pen set via SetDrawPen() but
using the RGB color that is passed to the function.

#PALETTEMODE_PEN:

When using #PALETTEMODE_PEN, all palette graphics will be copied to the
output device without any pixel remapping. This is very fast but of course,
it requires the palette of the graphics object that should be drawn and the
palette of the output device to be the same or the result will have messed up
colors. So if you use #PALETTEMODE_PEN, you should make sure that all your
graphics objects share the same palette. Furthermore, when #PALETTEMODE_

PEN is active, all single-color drawing functions like Box(), Circle() and
TextOut() won’t draw in the RGB color that you pass to them but they
will all use the drawing pen set using SetDrawPen().

The same is true for the shadow and border color: When palette mode is set
to #PALETTEMODE_PEN, all graphics functions that support shadows and bor-
ders won’t use the color specified in SetFormStyle(), SetFontStyle() or
in standard draw tags like ShadowColor but they will use the pens that were
specified using functions like SetShadowPen(), SetBorderPen() or draw
tags like ShadowPen and BorderPen.

Furthermore, antialiasing of text and graphics primitives will be disabled
when #PALETTEMODE_PEN is active because in most cases palettes don’t have
enough colors for satisfactorily anti-aliasing edges.

Note, however, that even if #PALETTEMODE_PEN is active, RGB graphics, of
course, still have to be remapped because it’s obviously impossible to draw
RGB graphics to a palette output device without remapping the RGB colors
to palette pens. Thus, drawing 32-bit true color graphics to palette output
devices should be avoided because it will always be slow because remapping
needs to be done for those graphics and there is no way around this.

The default drawing mode is #PALETTEMODE_REMAP but it is recommended to use
#PALETTEMODE_PEN for performance reasons. See Section 25.16 [Palette displays],
page 400, for details.

916 Hollywood manual

INPUTS

mode desired palette drawing mode (see above)

44.32 SetPalettePen

NAME
SetPalettePen – change palette pen (V9.0)

SYNOPSIS
SetPalettePen(id, pen, color)

FUNCTION
This function sets the color of the pen specified by pen to the color specified by color

in the palette specified by id.

INPUTS

id identifier of palette

pen pen you want to modify (starting from 0)

color new color for the pen, must be specified as an RGB color

EXAMPLE
SetPalettePen(1, 0, #RED)

The code above sets pen 0 to red in palette 1.

44.33 SetPaletteTransparentPen

NAME
SetPaletteTransparentPen – set transparent pen of palette (V9.0)

SYNOPSIS
SetPaletteTransparentPen(id, pen)

FUNCTION
This function sets the transparent pen of the palette specified by id to the pen specified
in pen. Pens are counted from 0.

INPUTS

id identifier of palette to use

pen desired transparent pen (starting from 0)

EXAMPLE
SetPaletteTransparentPen(1, 4)

The code makes pen 4 in palette 1 transparent.

Chapter 44: Palette library 917

44.34 SetPen

NAME
SetPen – change pen color (V9.0)

SYNOPSIS
SetPen(pen, color[, t])

FUNCTION
This function sets the color of the pen specified by pen to the color specified by color.
The change will be done in the currently active palette. By default, the current display’s
palette is the active palette but of course only in case the current display is a palette
mode display. See Section 25.16 [Palette mode displays], page 400, for details. A palette
can be made the active one by using the SelectPalette() command.

Alternatively, you can also make SetPen() change pens in a different palette object. To
do so, you need to pass the optional table argument t to SetPen() and specify the Type
and ID tags. See below for an example.

The following tags are supported by the optional table argument t:

Type: Set this to the type identifier of the object whose pen you want to modify.
This can be one of the following object types:

#ANIM

#BGPIC

#BRUSH

#DISPLAY

#LAYER

#PALETTE

#SPRITE

Note that if you use types #ANIM or #SPRITE, you also need to set the Frame
tag (see below) to indicate the frame whose pen you want to modify. If you
use #LAYER and the specified layer is an anim layer, you also need to set the
Frame tag.

Type defaults to the type of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

ID: Set this tag to the identifier of the object whose pen you want to modify.
The default is the identifier of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

Frame: If the target type is an animation, sprite, or anim layer, you need to set this
tag to specify the frame whose pen you want to modify. Frames are counted
from 1. Defaults to 1 when used with anims and sprites and to the current
frame when used with anim layers.

INPUTS

pen pen you want to modify (starting from 0)

color new color for the pen, must be specified as an RGB color

t optional: table for specifying further options (see above)

918 Hollywood manual

EXAMPLE
@DISPLAY {Palette = #PALETTE_MONOCHROME}

SetFillStyle(#FILLCOLOR)

SetPaletteMode(#PALETTEMODE_PEN)

SetDrawPen(1)

Box(#CENTER, #CENTER, 320, 240)

WaitLeftMouse

SetPen(0, #WHITE)

SetPen(1, #BLACK)

The code above creates a monochrome palette display with a black background and white
rectangle in the center. After a mouse-click the colors of the background and the white
rectangle will be reversed by setting pen 0 to white and pen 1 to black.

SetPen(4, #RED, {Type = #BRUSH, ID = 2})

The code changes pen 4 in brush 2 to red.

44.35 SetShadowPen

NAME
SetShadowPen – set shadow pen (V9.0)

SYNOPSIS
SetShadowPen(pen)

FUNCTION
This function sets the pen specified by pen to the pen that will be used for drawing
shadows when the palette mode is #PALETTEMODE_PEN and the current output device is
a palette one. The palette mode can be set using SetPaletteMode().

When the palette mode has been set to #PALETTEMODE_PEN, all Hollywood commands
that draw a shadow won’t use the shadow color that has been set using SetFormStyle(),
SetFontStyle() or a ShadowColor tag but they will use the pen that has been set as
the shadow pen using this function.

See Section 44.31 [SetPaletteMode], page 914, for details.

INPUTS

pen pen to use for drawing shadows

44.36 SetStandardPalette

NAME
SetStandardPalette – copy colors from standard palette (V9.0)

SYNOPSIS
SetStandardPalette(id, type)

Chapter 44: Palette library 919

FUNCTION
This function can be used to copy the colors from the standard palette specified by type

to the palette specified by id. Note that this might change the depth of the palette
specified by id because the standard palette’s depth is copied to the palette specified by
id as well.

The following standard palettes are currently available:

#PALETTE_MONOCHROME:

Two color, black and white palette.

#PALETTE_GRAY4:

4 color grayscale palette.

#PALETTE_GRAY8:

8 color grayscale palette.

#PALETTE_GRAY16:

16 color grayscale palette.

#PALETTE_GRAY32:

32 color grayscale palette.

#PALETTE_GRAY64:

64 color grayscale palette.

#PALETTE_GRAY128:

128 color grayscale palette.

#PALETTE_GRAY256:

256 color grayscale palette.

#PALETTE_CGA:

Standard CGA palette (16 colors).

#PALETTE_OCS:

Standard OCS palette (32 colors).

#PALETTE_EGA:

Standard EGA palette (64 colors).

#PALETTE_AGA:

Standard AGA palette (256 colors).

#PALETTE_WORKBENCH:

Standard classic Amiga Workbench palette (256 colors).

#PALETTE_MACINTOSH:

Standard classic Macintosh palette (256 colors).

#PALETTE_WINDOWS:

Standard classic Windows palette (256 colors).

#PALETTE_DEFAULT:

Same as #PALETTE_AGA.

INPUTS

id identifier of palette to use

920 Hollywood manual

type desired standard palette to copy to target palette

EXAMPLE
SetStandardPalette(1, #PALETTE_EGA)

The code above copies the standard EGA palette to palette 1. The new depth of palette
1 will be 6 (= 64 colors) after the operation.

44.37 SetTransparentPen

NAME
SetTransparentPen – set transparent pen (V9.0)

SYNOPSIS
SetTransparentPen(pen[, t])

FUNCTION
This function sets the transparent pen in the currently active palette to the one specified
in pen. Pens are counted from 0. By default, the current display’s palette is the active
palette but of course only in case the current display is a palette mode display. See
Section 25.16 [Palette mode displays], page 400, for details. A palette can be made the
active one by using the SelectPalette() command.

Alternatively, the specified transparent pen can also be set to a different palette object.
To do so, you need to pass the optional table argument to SetTransparentPen() and
specify the Type and ID tags. See below for an example.

The following tags are supported by the optional table argument t:

Type: Set this to the type identifier of the object whose transparent pen you want
to set. This can be one of the following object types:

#ANIM

#BGPIC

#BRUSH

#DISPLAY

#LAYER

#PALETTE

#SPRITE

Note that if you use types #ANIM or #SPRITE, you also need to set the Frame
tag (see below) to indicate the frame whose transparent pen you want to
modify. If you use #LAYER and the specified layer is an anim layer, you also
need to set the Frame tag.

Type defaults to the type of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

ID: Set this tag to the identifier of the object whose transparent pen you want to
set. The default is the identifier of the currently active palette selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

Frame: If the target type is an animation, sprite, or anim layer, you need to set this
tag to specify the frame whose transparent pen should be set. Frames are

Chapter 44: Palette library 921

counted from 1. Defaults to 1 when used with anims and sprites and to the
current frame when used with anim layers.

INPUTS

pen desired transparent pen (starting from 0)

t optional: table for specifying further options (see above)

EXAMPLE
SetTransparentPen(4, {Type = #BRUSH, ID = 2})

The code makes pen 4 in brush 2 transparent.

44.38 SetTransparentThreshold

NAME
SetTransparentThreshold – set alpha mapping threshold (V9.0)

SYNOPSIS
SetTransparentThreshold(threshold)

FUNCTION
This function can be used to specify a threshold value between 0 and 255 that should be
used when quantizing alpha transparency to monochrome transparency. For example,
when drawing an RGB brush with alpha transparency to a palette display, Hollywood
needs to decide which pixels to remap and draw to the display and which pixels to ignore
because they are (partly) transparent.

All pixels whose alpha value is less than or equal to the threshold value specified in
threshold will be considered transparent. This defaults to 0 which means that only
completely invisible pixels will be considered transparent. Depending on the actual
image data you want to quantize, it might be necessary to choose a different threshold
value here, however.

There is no "one size, fits all" best threshold value here. It all depends on the source
image data you want to quantize. Sometimes you might want to have partially trans-
parent pixels in the destination image, sometimes not. That’s why it might be necessary
to call this function with different threshold values depending on the actual image that
needs to be quantized.

INPUTS

threshold

desired transparent pixel threshold (must be between 0 and 255); the default
is 0

44.39 SolarizePalette

NAME
SolarizePalette – apply solarization effect to palette (V9.0)

922 Hollywood manual

SYNOPSIS
SolarizePalette(id, level)

FUNCTION
This command can be used to apply a solarization effect to the specified palette. The
solarization effect tries to simulate the look of photographic film exposed to light. The
second argument controls the intensity of the solarization effect and can be any value
between 0 and 255, or a percentage specification inside a string.

INPUTS

id palette to solarize

level desired solarization level (0 to 255, or a string containing a percentage spec-
ification)

44.40 TintPalette

NAME
TintPalette – tint palette (V9.0)

SYNOPSIS
TintPalette(id, color, level)

FUNCTION
This function tints all colors in the palette specified by id with the RGB color specified
in color using the tint level specified in level. The level argument must be between
0 (no tinting) to 255 (full tinting). Alternatively, level can also be a string containing
a percent specification, e.g. "50%".

INPUTS

id identifier of the palette to tint

color a RGB color to use for tinting

level tint level (0 to 255 or percent specification)

EXAMPLE
TintPalette(1, #RED, 128)

The code above adds some red to all colors in palette 1.

44.41 WritePen

NAME
WritePen – write pen to palette object (V9.0)

SYNOPSIS
WritePen(x, y, pen[, t])

FUNCTION
This function writes the pen specified by pen to the position specified by x and y in the
currently active palette object. By default, the current display is the active palette object

Chapter 44: Palette library 923

but of course only in case the current display is a palette mode display. See Section 25.16
[Palette mode displays], page 400, for details. You can set the active palette object using
the SelectPalette() command.

Alternatively, you can also use WritePen() to write a pen to a different palette object.
To do so, you need to pass the optional table argument t to WritePen() and specify the
Type and ID tags. See below for an example.

The following tags are supported by the optional table argument t:

Type: Set this to the type identifier of the object from whose pixel data you want
to write to. This can be one of the following object types:

#ANIM

#BGPIC

#BRUSH

#DISPLAY

#LAYER

#PALETTE

#SPRITE

Note that if you use types #ANIM or #SPRITE, you also need to set the Frame
tag (see below) to indicate the frame whose pixel data should be used. If
you use #LAYER and the specified layer is an anim layer, you also need to set
the Frame tag.

Type defaults to the type of the currently active palette object selected using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

ID: Set this tag to the identifier of the object whose pixel data should be used.
The default is the identifier of the currently active palette object set using
SelectPalette(). See Section 44.21 [SelectPalette], page 906, for details.

Frame: If the target type is an animation, sprite, or anim layer, you need to set
this tag to specify the frame whose pixel data should be used. Frames are
counted from 1. Defaults to 1 when used with anims and sprites and to the
current frame when used with anim layers.

INPUTS

x x position to write to

y y position to write to

pen the pen to write

t optional: table for specifying further options (see above)

EXAMPLE
WritePen(0, 0, 10, {Type = #BRUSH, ID = 2})

The code plots a pixel that uses pen 10 to the top-left corner in brush 2.

925

45 Plugin library

45.1 DisablePlugin

NAME
DisablePlugin – disable a plugin (V6.0)

SYNOPSIS
DisablePlugin(name$)

FUNCTION
This function can be used to disable the specified plugin. Please note that not all plugins
can be disabled. Disabling plugins is only supported for plugins that provide loaders and
savers for additional formats. It is not supported for plugins that replace complete core
components inside Hollywood, e.g. by providing a custom display adapter. These plugins
cannot be disabled.

To enable a plugin again later, call the EnablePlugin() function. See Section 45.2
[EnablePlugin], page 925, for details.

INPUTS

name$ name of the plugin to disable

45.2 EnablePlugin

NAME
EnablePlugin – enable a plugin (V6.0)

SYNOPSIS
EnablePlugin(name$)

FUNCTION
This function can be used to enable the specified plugin. This is only necessary if you
disabled it previously using DisablePlugin().

INPUTS

name$ name of the plugin to enable

45.3 GetPlugins

NAME
GetPlugins – get information about available plugins (V5.3)

SYNOPSIS
t = GetPlugins()

FUNCTION
This function returns a table that contains information about all available plugins. You
will get one subtable for each plugin that has been loaded. Use ListItems() to find out

926 Hollywood manual

how many plugin subtables are in the table. Each subtable will contain the following
fields:

Name: Name of the plugin.

Version: Version number of plugin.

Revision:

Revision number of plugin.

Capabilities:

Bitmask describing the Hollywood capabilities that this plugin extends. This
will be a combination of the following capabilities:

#PLUGINCAPS_CONVERT

#PLUGINCAPS_LIBRARY

#PLUGINCAPS_IMAGE

#PLUGINCAPS_ANIM

#PLUGINCAPS_SOUND

#PLUGINCAPS_VECTOR

#PLUGINCAPS_VIDEO

#PLUGINCAPS_SAVEIMAGE

#PLUGINCAPS_SAVEANIM

#PLUGINCAPS_SAVESAMPLE

#PLUGINCAPS_REQUIRE

#PLUGINCAPS_DISPLAYADAPTER

#PLUGINCAPS_TIMERADAPTER

#PLUGINCAPS_REQUESTERADAPTER

#PLUGINCAPS_FILEADAPTER

#PLUGINCAPS_DIRADAPTER

#PLUGINCAPS_AUDIOADAPTER

#PLUGINCAPS_EXTENSION

#PLUGINCAPS_NETWORKADAPTER

#PLUGINCAPS_SERIALIZE

#PLUGINCAPS_ICON

#PLUGINCAPS_SAVEICON

#PLUGINCAPS_IPCADAPTER

#PLUGINCAPS_FONT

Author: Author of the plugin.

Description:

Description of the plugin.

Copyright:

Copyright string of the plugin.

URL: URL of the plugin’s homepage (where to get updates, etc.)

Date: Compilation date of plugin.

Settings:

Fully qualified path to settings tool of the plugin.

Chapter 45: Plugin library 927

HelpFile:

Fully qualified path to the help file of the plugin.

Path: Fully qualified path to the plugin’s binary code.

FileTypes:

This item contains a subtable that contains tables describing all file formats
that this plugin makes available. This is for example useful for adapting
your file requesters to contain additional extensions that are supported by
plugins. For every new file type there will be a table with the following fields
initialized:

Type: Set to the type of the file format. This will be one of the following
constants:

#FILETYPE_IMAGE

#FILETYPE_ANIM

#FILETYPE_SOUND

#FILETYPE_VIDEO

#FILETYPE_ICON

#FILETYPE_FONT

Name: Set to a string describing the name of the file format, e.g.
"TIFF".

Extensions:

Set to a string containing all extensions used by this file format.
The extensions are separated by the "|" character and do not
contain a dot, e.g. "tif|tiff".

MIMEType:

Set to a string that describes the MIME of the file format. This
can also be empty.

Flags: Set to a bitmask combination that describes the capabilities of
this file type. The following flags are currently defined:

#FILETYPEFLAGS_SAVE:

If this flag is set, the entry describes a file type that
this plugin can save. The FormatID tag will contain
the constant used to refer to this plugin file type
saver in that case.

#FILETYPEFLAGS_ALPHA:

Indicates that this file type supports alpha
channel loading or saving (depending on whether
#FILETYPEFLAGS_SAVE is set).

#FILETYPEFLAGS_QUALITY:

Only used for #FILETYPE_IMAGE or #FILETYPE_

ANIM with save mode enabled. In that case this
flag indicates that the image/anim saver supports
different quality levels (ranging from 0 to 100).

928 Hollywood manual

#FILETYPEFLAGS_FPS:

Only used for #FILETYPE_ANIM with save mode en-
abled. In that case this flag indicates that the anim
saver supports different frames per second settings.

FormatID:

If #FILETYPEFLAGS_SAVE is set in Flags, this tag will contain
the constant identifier that has to be passed to the respective
save function in order to use this file type saver. For example, for
files of type #FILETYPE_IMAGE FormatID contains the identifier
that has to be passed to SaveBrush().

ModuleName:

Contains the plugin’s module name. This is equal to the plugin’s file name
minus the file extension. The module name of the plugin is unique among
all loaded plugins. Hollywood will never load two plugins with the same
module name. (V6.0)

Disabled:

Tells you whether or not this plugin is currently disabled because of a call
to DisablePlugin(). (V6.0)

INPUTS
none

RESULTS

t table containing information about the plugins loaded

45.4 HavePlugin

NAME
HavePlugin – check if a plugin is available (V6.0)

SYNOPSIS
ok, loaded = HavePlugin(name$[, version, revision])

FUNCTION
This function can be used to check if the plugin specified in name$ is currently avail-
able. In that case HavePlugin() will return True in the first return value. The sec-
ond return value indicates whether the plugin has been auto-loaded at startup or not.
By default, Hollywood will auto-load all plugins at startup but this behaviour can be
changed either by prefixing plugin filenames with an underscore character (’ ’) or by
using the -skipplugins console argument. If the plugin has not been loaded, you can
call LoadPlugin() on it to load it manually.

HavePlugin() accepts two optional arguments that can be used to check if a certain
version of the plugin is available. Note that this can only be checked if the plugin has
been loaded already. If the plugin hasn’t been loaded yet, HavePlugin() won’t be able
to check its version.

Chapter 45: Plugin library 929

INPUTS

name$ plugin to check

version optional: version number to look for (defaults to 0 which means any version
is acceptable)

revision optional: revision number to look for (defaults to 0 which means any revision
is acceptable)

RESULTS

ok True if the plugin is available in the specified version

loaded True if the plugin has already been loaded

45.5 LoadPlugin

NAME
LoadPlugin – load a plugin at runtime (V6.0)

SYNOPSIS
LoadPlugin(name$[, table])

FUNCTION
This function can be used to load and initialize the specified plugin at runtime.
LoadPlugin() does basically the same as @REQUIRE but can be called while your script
is already running while @REQUIRE is executed by the preprocessor. As LoadPlugin() is
a runtime function you cannot load certain plugins which require lowlevel initialization
from this function, e.g. it is not possible to runtime-load plugins which install display
adapters because Hollywood has already setup its inbuilt display driver by then.
Runtime loading plugins which just install loaders or savers of additional file formats
works fine, though.

LoadPlugin() accepts an optional table argument which can contain the following tags:

Version: Minimum plugin version required. Hollywood will fail if the installed plugin
does not have at least this version number. This defaults to 0 which means
that any version will do.

Revision:

Minimum plugin revision required. Hollywood will fail if the installed plugin
does not have at least this revision number. This defaults to 0 which means
that any revision will do.

SkipRequire:

Set this tag to True if you want Hollywood to skip calling the plugin’s require
initialization code. This is only useful for some advanced debugging purposes
and should normally not be touched. Defaults to False.

Additionally, the optional table argument can contain an unlimited number of additional
tags to be passed directly to the plugin’s initialization routine exactly in the same way
as done by the @REQUIRE preprocessor command. The additional argument acceptable

930 Hollywood manual

here depend on the respective plugin. Please consult the documentation of the plugin to
find out if it accepts any additional parameters that can be passed here.

See Section 45.6 [REQUIRE], page 930, for details.

INPUTS

name$ plugin to load

table optional: table containing further parameters (see above)

45.6 REQUIRE

NAME
REQUIRE – declare a plugin dependency (V5.0)

SYNOPSIS
@REQUIRE plugin$[, table]

FUNCTION
This preprocessor command allows you to declare an external plugin dependency which
your script requires to run. If you use this preprocessor command, Hollywood will make
sure that the specified plugin is installed before running your script. Optionally, you can
pass additional parameters to the plugin which allows you to control how the plugin is
initialized.

Please note that although Hollywood loads all plugins automatically on startup, many
plugins require you to call @REQUIRE before they can be used. This is because these
plugins need custom initialization code which is only run if you explicitly call @REQUIRE
on them. For example, plugins which install a display adapter will not be activated unless
you call @REQUIRE on them. Plugins which just add a loader or saver for additional file
formats, however, will be automatically activated even if you don’t call @REQUIRE on
them.

This preprocessor command can also be used to load plugins which have been exempt
from automatic loading at startup. Plugins can be exempt from auto-loading by prefixing
their filename with an underscore character (’ ’) or by using the -skipplugins console
argument. If you want to load a plugin that has been skipped by the auto loader, just call
@REQUIRE on it from your script and it will be loaded by the preprocessor. Alternatively,
you can also load these plugins using the LoadPlugin() function.

Starting with Hollywood 6.0 this preprocessor command accepts an optional table ar-
gument which allows you to pass additional parameters to the plugin’s initialization
routine. The parameters accepted here vary from plugin to plugin. Please consult the
documentation of the plugin to find out if it accepts any additional parameters that can
be passed to @REQUIRE. The following two parameters are supported for every plugin:

Version: Minimum plugin version required. Hollywood will fail if the installed plugin
does not have at least this version number. This defaults to 0 which means
that any version will do. (V6.0)

Chapter 45: Plugin library 931

Revision:

Minimum plugin revision required. Hollywood will fail if the installed plugin
does not have at least this revision number. This defaults to 0 which means
that any revision will do. (V6.0)

Link: If this tag is set to True, the specified plugin will be linked into your ex-
ecutable when compiling your script. This will only work if you’ve set up
the plugin linker infrastructure correctly. See Section 4.5 [Linking plugins],
page 61, for details. Make sure to carefully read the licenses of all plugins
you link to your executable because licenses like LGPL affect your project if
you statically link against LGPL software. This tag defaults to False which
means that the plugin won’t be linked. (V7.0)

Please note that you must not specify an absolute path in plugin$. Just pass the name
of the plugin.

See Section 5.1 [Plugins], page 65, for more information on plugins.

INPUTS

plugin$ name of the required plugin

table optional: table containing further options to be passed to the plugin (V6.0)

EXAMPLE
@REQUIRE "xml"

Declares that your script requires the "xml.hwp" plugin to be installed. Any version will
be accepted.

@REQUIRE "myplugin", {Version = 2, Revision = 1, User = "John"}

The code above checks for version 2.1 of "myplugin.hwp" and also passes the additional
argument "User=John" to the plugin’s initialization code.

933

46 Requester library

46.1 ColorRequest

NAME
ColorRequest – prompt the user to select a color (V5.0)

SYNOPSIS
ret = ColorRequest(title$[, t])

DEPRECATED SYNTAX
ret = ColorRequest(title$[, color])

FUNCTION
This command opens a color requester prompting the user to select a color from a palette
of predefined colors. Additionally, the user can also mix a custom color. The title$

argument can be used to set the title for the color requester’s dialog window. If an empty
string ("") is passed as title$, the requester will use the title specified in the @APPTITLE
preprocessor command.

ColorRequest() supports several optional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is
recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to ColorRequest().

The following table fields are recognized by this function:

Color: This table tag can be used to specify a color that is initially selected. If you
do not set this table tag, a random color will be preselected.

X: Initial x-position for the color requester on the screen. Not all platforms
support this. (V9.0)

Y: Initial y-position for the color requester on the screen. Not all platforms
support this. (V9.0)

Width: Initial width for the color requester dialog. Not all platforms support this.
(V9.0)

Height: Initial height for the color requester dialog. Not all platforms support this.
(V9.0)

Please note that this command requires reqtools.library to be installed on AmigaOS and
compatibles.

INPUTS

title$ title for the requester

t optional: table containing further arguments (see above) (V9.0)

RESULTS

ret the user’s selection or -1 if the user cancelled the requester

934 Hollywood manual

EXAMPLE
r = ColorRequest("Select a color")

If r = -1

Print("Requester cancelled!")

Else

SetFillStyle(#FILLCOLOR)

Box(0, 0, 640, 480, r)

EndIf

Ask the user for a color and then draws a filled rectangle using the selected color.

46.2 FileRequest

NAME
FileRequest – open a file requester

SYNOPSIS
f$ = FileRequest(title$[, t])

DEPRECATED SYNTAX
f$ = FileRequest(title$[, filter$, mode, defdir$, deffile$])

FUNCTION
This function opens a file requester that allows the user to select a file. You can specify
the title of the requester by setting the title$ argument. This can also be an empty
string ("") to use the default title. The file that the user has selected will be returned
in f$ including the path where it resides. If the user cancels the requester, the string f$

will be empty.

FileRequest() supports many optional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is
recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to FileRequest().

The following table fields are recognized by this function:

Mode: This table tag allows you to put the requester into save or multiselect mode.
For save mode, pass #REQ_SAVEMODE and for multiselect mode pass #REQ_

MULTISELECT. If you use multiselect mode, this function will not return a
string but a table that contains all the files the user selected terminated by
an empty string. Starting with Hollywood 6.0 you can also set the flag #REQ_
HIDEICONS if you want to have *.info files hidden on AmigaOS. Note that
#REQ_HIDEICONS is a flag that can be combined with the other modes by
ORing it into a bitmask. #REQ_HIDEICONS is only supported on AmigaOS.
(V2.0)

Path: This table tag can be used to specify the initial path for the file requester.
(V3.0)

File: This table tag can be used to specify the initial file for the file requester.
(V3.0)

Chapter 46: Requester library 935

Filters: This table tag can be used to specify filters that define which files should be
shown in the requester. This can either be a string or a table.

If it is a string, it must contain the extensions of the files that should be shown
in the requester. These extensions must be separated by ’|’ characters. For
example: "voc|wav|8svx|16sv|iff|aiff" will only show files which have one
of those extensions. Make sure not to include the . before the file extension
but just the actual extension. The default is "*" which means that all files
should be shown.

Starting with Hollywood 9.0, you can also set Filters to a table to define
individual groups of files and a description for each group. To do this, set
Filters to a table that contains an arbitrary number of subtables, each
describing a single group of files. Each subtable must contain the following
items:

Filter: A string containing the file extensions of this group. This string
must be in the same format as described above, i.e. the individ-
ual extensions must be separated by the vertical bar character
(|), for example "jpg|jpeg".

Description:

A string describing the filter group, e.g. "JPEG images".

HideFilter:

This table item is optional. If you set it to True, FileRequest()
won’t show the individual file extensions that belong to the fil-
ter group but just its description. Note that not all platforms
support this. Defaults to False.

X: Initial x-position for the file requester on the screen. Not all platforms sup-
port this. (V9.0)

Y: Initial y-position for the file requester on the screen. Not all platforms sup-
port this. (V9.0)

Width: Initial width for the file requester dialog. Not all platforms support this.
(V9.0)

Height: Initial height for the file requester dialog. Not all platforms support this.
(V9.0)

INPUTS

title$ title for the requester; pass an empty string ("") to use the default title

t optional: table containing further arguments (see above) (V9.0)

RESULTS

f$ the user’s selection or an empty string if the requester was cancelled; if the
requester was opened in multi-select mode, a table containing all files will
be returned

EXAMPLE
f$ = FileRequest("Select a picture", {Filters = "png|jpg|jpeg|bmp"})

936 Hollywood manual

If f$ = ""

Print("Requester cancelled!")

Else

Print("Your selection:", f$)

EndIf

Ask the user for a file and print the result.

files = FileRequest("Select some files", {Mode = #REQ_MULTISELECT})

If files[0] = ""

Print("Requester cancelled!")

Else

NPrint("Path:", PathPart(files[0]))

NPrint("Files selected:", ListItems(files) - 1)

While files[c] <> ""

NPrint(FilePart(files[c]))

c = c + 1

Wend

EndIf

The code above opens a multi-select file requester and prints all the files which the user
selected.

f$ = FileRequest("Select file", {

{Description = "Image files", Filter = "png|jpg|jpeg|bmp"},

{Description = "Audio files", Filter = "wav|mp3|mp4"},

{Description = "All files", Filter = "*"}

})

The code above shows how to use multiple filter groups with descriptions.

46.3 FontRequest

NAME
FontRequest – ask user to select a font (V5.0)

SYNOPSIS
t = FontRequest(title$[, t])

DEPRECATED SYNTAX
t = FontRequest(title$[, font$, size])

FUNCTION
This command will open a requester that will list all fonts currently available in the
system. The user is then prompted to select a font from this list. The user can also
choose an output size for the font, as well as the font style and font color. Note that the
color selection is not supported on every platform. The title$ argument specifies the
title text for the requester’s dialog window.

FontRequest() supports several additional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is

Chapter 46: Requester library 937

recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to FontRequest().

The following table fields are recognized by this function:

Font: Use this table tag to specify the name of a font that shall be initially selected.

Size: Use this table tag to specify the font size that shall be initially selected.

X: Initial x-position for the font requester on the screen. Not all platforms
support this. (V9.0)

Y: Initial y-position for the font requester on the screen. Not all platforms
support this. (V9.0)

Width: Initial width for the font requester dialog. Not all platforms support this.
(V9.0)

Height: Initial height for the font requester dialog. Not all platforms support this.
(V9.0)

Upon return, FontRequest() initializes a table containing all parameters selected by the
user and returns this table to the script. The return table will have the following fields
initialized:

Name: The complete font name (i.e. family name plus style). For example, "Ar-
ial Bold Italic". This is a string you could pass directly to SetFont() or
OpenFont().

Family: The family name of this font, e.g. "Arial".

Size: Contains the selected font size (e.g. 36).

Weight: The weight of the font. This will be set to one of the following weight
constants:

#FONTWEIGHT_THIN

#FONTWEIGHT_EXTRALIGHT

#FONTWEIGHT_ULTRALIGHT

#FONTWEIGHT_LIGHT

#FONTWEIGHT_BOOK

#FONTWEIGHT_NORMAL

#FONTWEIGHT_REGULAR

#FONTWEIGHT_MEDIUM

#FONTWEIGHT_SEMIBOLD

#FONTWEIGHT_DEMIBOLD

#FONTWEIGHT_BOLD

#FONTWEIGHT_EXTRABOLD

#FONTWEIGHT_ULTRABOLD

#FONTWEIGHT_HEAVY

#FONTWEIGHT_BLACK

#FONTWEIGHT_EXTRABLACK

#FONTWEIGHT_ULTRABLACK

938 Hollywood manual

Slant: The slant style of the font. This will be set to one of the following slant
constants:

#FONTSLANT_ROMAN

#FONTSLANT_ITALIC

#FONTSLANT_OBLIQUE

Bold: True if the user chose a bold font style.

Italic: True if the user chose an italic font style.

Underline:

True if the user chose an underlined font style.

StrikeOut:

True if the user chose a striked out font style.

Color: The font color chosen by the user in RGB format.

Please note that the Underline, StrikeOut, and Color fields are not supported on all
platforms. If the host operating system’s font dialog does not support them, they will
all be set to False.

INPUTS

title$ title for the requester

t optional: table containing further arguments (see above) (V9.0)

RESULTS

t a table containing all parameters chosen by the user (see above for a descrip-
tion of the table fields)

EXAMPLE
t = FontRequest("Select a font")

NPrint("Font:", t.name)

NPrint("Family:", t.family)

NPrint("Size:", t.size)

NPrint("Weight:", t.weight)

NPrint("Slant:", t.slant)

NPrint("Underline:", t.underline)

NPrint("Strike:", t.strikeout)

NPrint("Color:", HexStr(t.color))

The code above pops up a font requester and then prints out all information gathered
from the user.

46.4 ImageRequest

NAME
ImageRequest – prompt the user to select an image (V8.0)

SYNOPSIS
[id] = ImageRequest(id[, type])

Chapter 46: Requester library 939

PLATFORMS
Android only

FUNCTION
This function can be used to prompt the user to select an image. The image will
then be stored as the brush specified in id. If you specify Nil in the id argument,
ImageRequest() will automatically choose an identifier for the brush and return the
identifier to you.

The optional type argument allows you to specify the image source to use when prompt-
ing the user for an image. This can currently be set to one of the following predefined
constants:

#REQ_GALLERY:

Open the device’s gallery and prompt the user to select an image that will
then be returned as a Hollywood brush to your script.

#REQ_CAMERA:

Open the device’s camera and prompt the user to take a picture that will
then be returned as a Hollywood brush to your script.

The default mode is #REQ_GALLERY, i.e. ImageRequest() will prompt the user to select
an image from the device’s gallery.

To find out if this function has failed because the user cancelled the image requester, just
use HaveObject() to see if the brush object exists after ImageRequest() returns. If it
doesn’t exist, the user has cancelled the image requester. See Section 43.8 [HaveObject],
page 885, for details.

INPUTS

id id for the brush or Nil for auto id selection

type optional: image source to use; see above for possible modes; defaults to
#REQ_GALLERY

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
ImageRequest(1, #REQ_CAMERA)

If HaveObject(#BRUSH, 1)

DisplayBrush(1, #CENTER, #CENTER)

Else

NPrint("Requester cancelled!")

EndIf

The code above prompts the user to take a picture with the camera and then displays
this picture. It also checks if the requester has been cancelled.

940 Hollywood manual

46.5 ListRequest

NAME
ListRequest – prompt choice from a list of options (V5.0)

SYNOPSIS
choice = ListRequest(title$, body$, choices[, t])

DEPRECATED SYNTAX
choice = ListRequest(title$, body$, choices[, active])

FUNCTION
This command can be used to present a list of choices to the user and ask him to select
one of the list entries. The first argument specifies the title text for the requester’s dialog
window. The second argument specifies the body text that shall appear above the list of
choices. The third argument must be a table containing an arbitrary number of strings
from which the user shall be able to choose.

When ListRequest() returns, you will receive the index of the list entry that the user
has selected as the return value. If the user hasn’t selected an item or cancelled the
requester, -1 will be returned.

ListRequest() supports several additional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is
recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to ListRequest().

The following table fields are recognized by this function:

Active: This table tag can be used to preselect one of the choices in the list. Simply
pass the index of the entry to preselect in the Active table tag. Indices start
at 0 for the first entry and run through number of entries minus 1. If Active
is omitted or out of range, nothing will be preselected.

X: Initial x-position for the list requester on the screen. Not all platforms
support this. (V9.0)

Y: Initial y-position for the list requester on the screen. Not all platforms
support this. (V9.0)

Width: Initial width for the list requester dialog. Not all platforms support this.
(V9.0)

Height: Initial height for the list requester dialog. Not all platforms support this.
(V9.0)

Starting with Hollywood 6.0 you can pass an empty string ("") as title$. In that case,
the requester will use the title specified in the @APPTITLE preprocessor command.

INPUTS

title$ title for the requester

body$ body text to display above the list view widget

choices table containing a number of string entries that constitute the available
choices

Chapter 46: Requester library 941

t optional: table containing further arguments (see above) (V9.0)

RESULTS

choice index of the user’s selection or -1 if the user cancelled the requester; indices
start at 0 for the first entry and run through the number of entries minus 1

EXAMPLE
r = ListRequest("User prompt", "Which of these is not an island?",

{"Australia", "Fiji", "New Zealand", "Easter Island", "Hawaii",

"Goa", "Madagascar", "Maldives", "Seychelles"})

If r = -1

Print("You chose the chicken exit!")

ElseIf r = 5

Print("That’s right, congratulations!")

Else

Print("Sorry, but that is an island...")

EndIf

The code above shows how to use ListRequest() for a little quiz.

46.6 PathRequest

NAME
PathRequest – pop up a path requester (V2.0)

SYNOPSIS
p$ = PathRequest(title$[, t])

DEPRECATED SYNTAX
p$ = PathRequest(title$[, mode, defdir$])

FUNCTION
This function opens a path requester that allows the user to select a path. You can
specify the title of the requester by setting the title$ argument. This can also be an
empty string ("") to use the default title.

PathRequest() returns the user’s path selection or "" if the user has cancelled the
requester.

PathRequest() supports several optional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is
recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to PathRequest().

The following table fields are recognized by this function:

Mode: The Mode table tag allows you to specify the mode of the path requester.
This can either be #REQ_SAVEMODE for save mode or #REQ_NORMAL for normal
mode. Defaults to #REQ_NORMAL.

Path: This table tag can be used to specify the initial path for the path requester.
(V3.0) By default, this will be the current directory.

942 Hollywood manual

X: Initial x-position for the path requester on the screen. Not all platforms
support this. (V9.0)

Y: Initial y-position for the path requester on the screen. Not all platforms
support this. (V9.0)

Width: Initial width for the path requester dialog. Not all platforms support this.
(V9.0)

Height: Initial height for the path requester dialog. Not all platforms support this.
(V9.0)

INPUTS

title$ title for the requester; pass an empty string ("") to use the default title

t optional: table containing further arguments (see above) (V9.0)

RESULTS

p$ the user’s selection or an empty string if he cancelled the requester

EXAMPLE
p$ = PathRequest("Select a path")

If p$ = ""

Print("Requester cancelled!")

Else

Print("Your selection: ")

Print(p$)

EndIf

Ask the user for a path and print its name.

46.7 PermissionRequest

NAME
PermissionRequest – request permission from user (V8.0)

SYNOPSIS
ok = PermissionRequest(perms)

PLATFORMS
Android only

FUNCTION
This function can be used to request certain permissions from the user. Due to security
reasons, Android apps need first ask for user permission before they will be able to
execute certain actions. This function can be used to request such permissions from the
user. Android will then show a dialog box in which the user can either accept or decline
the permissions. If he declines, PermissionRequest() will return False, otherwise True
will be returned.

The permissions you want to request have to be passed in the perms argument. This
can be set to one or more of the following permission flags:

Chapter 46: Requester library 943

#PERMREQ_READEXTERNAL:

If your app has this permission, it will be able to read files from the external
storage device. The external storage device can be accessed through the
SDCard item in the table returned by GetSystemInfo(). By default, Android
apps are not allowed to read from the external storage device.

#PERMREQ_WRITEEXTERNAL:

If your app has this permission, it will be able to write and read files to/from
the external storage device. The external storage device can be accessed
through the SDCard item in the table returned by GetSystemInfo(). By
default, Android apps are not allowed to write to the external storage de-
vice. Note that #PERMREQ_WRITEEXTERNAL implies #PERMREQ_READEXTERNAL
so you don’t have to set #PERMREQ_READEXTERNAL when using this flag.

To ask for multiple permissions at once, simply combine them using the bitwise Or
operator.

Note that this function is only needed when compiling stand-alone APKs using the
Hollywood APK Compiler. When using the Hollywood Player, the Hollywood Player
will automatically request the #PERMREQ_WRITEEXTERNAL permission for you so you don’t
have to do that manually.

INPUTS

perms one or more permissions to request (see above for possible values)

RESULTS

ok True if user granted permission, False if he declined them

EXAMPLE
If PermissionRequest(#PERMREQ_WRITEEXTERNAL)

t = GetSystemInfo()

StringToFile("Hello World", FullPath(t.SDCard, "test.txt"))

Else

NPrint("Sorry, no permission!")

EndIf

The code above tries to get a permission from the user to write to the external storage
device. If the user grants this permission, the code will write a file named test.txt to
the external storage device.

46.8 StringRequest

NAME
StringRequest – ask the user to enter a string (V2.0)

SYNOPSIS
s$, ok = StringRequest(title$, body$[, t])

DEPRECATED SYNTAX
s$, ok = StringRequest(title$, body$[, def$, type, maxchars, password])

944 Hollywood manual

FUNCTION
This function opens a requester prompting the user to enter a string. You can specify
the title for the requester window in title$ and the body text in body$. If you pass
an empty string ("") title$, the requester will use the title specified in the @APPTITLE
preprocessor command.

StringRequest() will return the string the user has entered if the user acknowledges
the requester. If the user cancels this requester, an empty string will be returned. The
second return value allows you identify whether or not the user pressed the ’OK’ button.
This is normally only needed if your application allows an empty string on ’OK’. In that
case you need to check the second return value, too.

StringRequest() supports many optional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is
recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to StringRequest().

The following table fields are recognized by this function:

Type: This table tag can be used to specify which characters the user is allowed to
enter. This can currently be #NUMERICAL for numbers only or #ALL for no
restriction on characters that can be entered. Defaults to #ALL.

Password:

Set this table tag to True to put the requester in password mode. In that
case, the user’s input will be hidden. Defaults to False.

MaxLength:

This table tag can be used to specify the number of characters the user will
be allowed to enter. This defaults to 0, which means that there is no limit
concerning the number of characters the user may enter.

Text: This table tag can be used to specify the default text for the string requester.
The text you specify here will be initially shown in the string requester’s text
entry widget.

X: Initial x-position for the string requester on the screen. Not all platforms
support this. (V9.0)

Y: Initial y-position for the string requester on the screen. Not all platforms
support this. (V9.0)

Width: Initial width for the string requester dialog. Not all platforms support this.
(V9.0)

Height: Initial height for the string requester dialog. Not all platforms support this.
(V9.0)

Please note that this command requires reqtools.library to be installed on AmigaOS 3,
MorphOS, and AROS. Under AmigaOS 4 the StringRequest() function works without
reqtools.library.

INPUTS

title$ title for the requester window

Chapter 46: Requester library 945

body$ text for the requester body

t optional: table containing further arguments (see above) (V9.0)

RESULTS

s$ the string entered by the user or "" if requester was cancelled

ok True if the user pressed the ’OK’ button, False otherwise (V4.5)

EXAMPLE
a$ = StringRequest("My Program", "Please enter your name!")

Print("Hello,", a$, "!")

Ask the user for his name and print it out.

46.9 SystemRequest

NAME
SystemRequest – pop up a choice requester

SYNOPSIS
res = SystemRequest(title$, body$, buttons$[, icon])

FUNCTION
This function pops up a standard system requester that displays a message (body$) and
also allows the user to make a selection using one of the buttons specified by buttons$.
Separate the buttons specified in buttons$ by a "|". The return value tells you which
button the user has pressed. Please note that the right most button always has the value
of False (0) because it is typically used as the "Cancel" button. For example, if you
have three buttons "One|Two|Three", button "Three" has a return value of 0, "Two"
returns 2, and "One" returns 1.

New in Hollywood 4.0: You can use the optional argument icon to add a little icon to
the requester. The following icons are possible:

#REQICON_NONE:

No icon

#REQICON_INFORMATION:

An information sign

#REQICON_ERROR:

An error sign

#REQICON_WARNING:

A warning sign

#REQICON_QUESTION:

A question mark

Please note that currently requester icons are not supported on every platform that
Hollywood runs on.

Starting with Hollywood 6.0, SystemRequest() might map the following button
specifications to certain system-specific buttons: "OK", "OK|Cancel", "Yes|No" and

946 Hollywood manual

"Yes|No|Cancel". This means that it could happen that the buttons suddenly appear
in the user’s language instead of the English versions you passed to SystemRequest().
It can also mean that the order of the buttons is changed, e.g. on macOS the "OK"
button is typically placed to the right of the "Cancel" button whereas on other systems
it is the other way round. Nevertheless, the return values will always be consistent, i.e.
"OK" or "Yes" will always have a return value of 1 whereas "Cancel" or "No" has a
return value of 0 the only exception being "Yes|No|Cancel" where "No" has a return
value of 2 because there is also a "Cancel" button which has a return value of 0.

Also, it is possible to pass an empty string ("") in the first parameter since Hollywood
6.0. In that case, the requester will use the title specified in the @APPTITLE preprocessor
command.

INPUTS

title$ title for the requester

body$ text to appear in the body of the requester

buttons$ one or more buttons that the user can press

icon optional: icon to show in the requester (defaults to #REQICON_NONE) (V4.0)

RESULTS

res the button that was pressed by the user

EXAMPLE
sel = SystemRequest("Pizza Service", "Select your pizza!",

"Prosciutto e funghi|Calzone|Margerita|Hawaii")

Switch sel

Case 1:

Print("1x Prosciutto e funghi = 8 Euro")

Case 2:

Print("1x Calzone = 10 Euro")

Case 3:

Print("1x Margerita = 9 Euro")

Case 0:

Print("1x Hawaii = 12 Euro")

EndSwitch

The above code asks the user for a pizza and displays the price of that pizza.

947

47 Serial port library

47.1 ClearSerialQueue

NAME
ClearSerialQueue – clear serial port read buffer (V8.0)

SYNOPSIS
ClearSerialQueue(id)

FUNCTION
This function can be used to clear the read buffer of the serial port connection specified
by id. This serial port connection must have been opened using OpenSerialPort()

before.

To poll the number of bytes currently in the read buffer, use the PollSerialQueue()

function. See Section 47.12 [PollSerialQueue], page 954, for details.

Note that this function is currently unsupported on Android.

INPUTS

id identifier of the serial port whose read buffer shall be cleared

47.2 CloseSerialPort

NAME
CloseSerialPort – close serial port connection (V8.0)

SYNOPSIS
CloseSerialPort(id)

FUNCTION
This function can be used to close the serial port connection specified by id. This serial
port connection must have been opened using OpenSerialPort() before. You should
always close serial port connections as soon as you are done with them.

INPUTS

id identifier of the serial port connection to close

47.3 FlushSerialPort

NAME
FlushSerialPort – flush serial port connection (V8.0)

SYNOPSIS
FlushSerialPort(id)

FUNCTION
This function can be used to flush the serial port connection specified by id. This serial
port connection must have been opened using OpenSerialPort() before.

948 Hollywood manual

INPUTS

id identifier of the serial port connection to flush

47.4 GetBaudRate

NAME
GetBaudRate – get baud rate for serial port connection (V8.0)

SYNOPSIS
baud = GetBaudRate(id)

FUNCTION
This command can be used to get the baud rate for the serial port connection specified in
id. This serial port connection must have been opened using OpenSerialPort() before.

The return value will be one of the following special constants:

#BAUD_300:

300 bits per second.

#BAUD_600:

600 bits per second. (V9.0)

#BAUD_1200:

1200 bits per second. (V9.0)

#BAUD_2400:

2400 bits per second.

#BAUD_4800:

4800 bits per second.

#BAUD_9600:

9600 bits per second.

#BAUD_19200:

19200 bits per second.

#BAUD_38400:

38400 bits per second.

#BAUD_57600:

57600 bits per second.

#BAUD_115200:

115200 bits per second.

#BAUD_460800:

460800 bits per second.

INPUTS

id identifier of the serial port connection to use

RESULTS

baud current baud rate as a special constant (see above)

Chapter 47: Serial port library 949

47.5 GetDataBits

NAME
GetDataBits – get data bits for serial port connection (V8.0)

SYNOPSIS
bits = GetDataBits(id)

FUNCTION
This command can be used to get the number of data bits for the serial port con-
nection specified in id. This serial port connection must have been opened using
OpenSerialPort() before.

The return value will be one of the following special constants:

#DATA_5: Use 5 data bits.

#DATA_6: Use 6 data bits.

#DATA_7: Use 7 data bits.

#DATE_8: Use 8 data bits.

INPUTS

id identifier of the serial port connection to use

RESULTS

bits current data bits as a special constant (see above)

47.6 GetDTR

NAME
GetDTR – get DTR pin state for serial port connection (V8.0)

SYNOPSIS
state = GetDTR(id)

FUNCTION
This command can be used to get the DTR pin state for the serial port connection spec-
ified in id. This serial port connection must have been opened using OpenSerialPort()

before.

The return value will be one of the following special constants:

#DTR_ON: DTR pin is set.

#DTR_OFF:

DTR pin is cleared.

INPUTS

id identifier of the serial port connection to use

RESULTS

state state of DTR pin as a special constant (see above)

950 Hollywood manual

47.7 GetFlowControl

NAME
GetFlowControl – get flow control for serial port connection (V8.0)

SYNOPSIS
flow = GetFlowControl(id)

FUNCTION
This command can be used to get the flow control for the serial port connection specified
in id. This serial port connection must have been opened using OpenSerialPort()

before.

The return value will be one of the following special constants:

#FLOW_OFF:

No flow control.

#FLOW_HARDWARE:

Hardware flow control using CTS/RTS.

#FLOW_XON_XOFF:

Software flow control using XON/XOFF handshaking.

INPUTS

id identifier of the serial port connection to use

RESULTS

flow flow control as a special constant (see above)

47.8 GetParity

NAME
GetParity – get parity mode for serial port connection (V8.0)

SYNOPSIS
parity = GetParity(id)

FUNCTION
This command can be used to get the parity mode for the serial port connection specified
in id. This serial port connection must have been opened using OpenSerialPort()

before.

The return value will be one of the following special constants:

#PARITY_NONE:

Do not use any parity bit.

#PARITY_EVEN:

Use 1 bit of even parity.

#PARITY_ODD:

Use 1 bit of odd parity.

Chapter 47: Serial port library 951

INPUTS

id identifier of the serial port connection to use

RESULTS

parity parity bit as a special constant (see above)

47.9 GetRTS

NAME
GetRTS – get RTS pin state for serial port connection (V8.0)

SYNOPSIS
state = GetRTS(id)

FUNCTION
This command can be used to get the RTS pin state for the serial port connection speci-
fied in id. This serial port connection must have been opened using OpenSerialPort()

before.

The return value will be one of the following special constants:

#RTS_ON: RTS pin is set.

#RTS_OFF:

RTS pin is cleared.

INPUTS

id identifier of the serial port connection to use

RESULTS

state state of RTS pin as a special constant (see above)

47.10 GetStopBits

NAME
GetStopBits – get stop bits for serial port connection (V8.0)

SYNOPSIS
bits = GetStopBits(id)

FUNCTION
This command can be used to get the number of stop bits for the serial port con-
nection specified in id. This serial port connection must have been opened using
OpenSerialPort() before.

The return value will be one of the following special constants:

#STOP_1: Use 1 stop bit.

#STOP_2: Use 2 stop bits.

INPUTS

id identifier of the serial port connection to use

952 Hollywood manual

RESULTS

bits current stop bits as a special constant (see above)

47.11 OpenSerialPort

NAME
OpenSerialPort – open serial port connection (V8.0)

SYNOPSIS
[id] = OpenSerialPort(id, portname$[, table])

FUNCTION
This function can be used to open a connection to the serial port specified in portname$

and assign the identifier id to the connection. If you pass Nil in id, OpenSerialPort()
will automatically choose an identifier and return it.

The name you pass in portname$ depends on the platform your script is running
on. On Windows it could be COM1, on Linux and macOS it could be /dev/ttyS0 or
/dev/ttyUSB0 in case you’re using a USB adapter. On AmigaOS you have to pass the
serial.device unit you want to open in portname$ and on Android it is assumed that
there is only one port so portname$ is ignored.

Starting with Hollywood 9.0, portname$ can also be a string in the format "<device-
name>:<port>" now on AmigaOS and compatibles. This is useful in case you want
OpenSerialPort() to open an alternative serial device instead of AmigaOS’s standard
serial.device. For example, passing "serialpl2303.device:0" in portname$ will try to
open serialpl2303.device on port 0.

Additionally, you can pass an optional table argument allowing you to set the parameters
for the serial port connection. The following fields are currently recognized:

BaudRate:

The desired baud rate for the connection. This can be one of the following
special constants:

#BAUD_300:

300 bits per second.

#BAUD_600:

600 bits per second. (V9.0)

#BAUD_1200:

1200 bits per second. (V9.0)

#BAUD_2400:

2400 bits per second.

#BAUD_4800:

4800 bits per second.

#BAUD_9600:

9600 bits per second. This is the default.

Chapter 47: Serial port library 953

#BAUD_19200:

19200 bits per second.

#BAUD_38400:

38400 bits per second.

#BAUD_57600:

57600 bits per second.

#BAUD_115200:

115200 bits per second.

#BAUD_460800:

460800 bits per second.

DataBits:

The desired data bits for the connection. This can be set to one of the
following special constants:

#DATA_5: Use 5 data bits.

#DATA_6: Use 6 data bits.

#DATA_7: Use 7 data bits.

#DATE_8: Use 8 data bits. This is the default.

StopBits:

The desired stop bits for the connection. This can be set to one of the
following special constants:

#STOP_1: Use 1 stop bit. This is the default.

#STOP_2: Use 2 stop bits.

Parity: The desired parity mode. This can be set to one of the following special
constants:

#PARITY_NONE:

Do not use any parity bit. This is the default.

#PARITY_EVEN:

Use 1 bit of even parity.

#PARITY_ODD:

Use 1 bit of odd parity.

FlowControl:

The desired type of flow control to use. This can be set to one of the following
special constants:

#FLOW_OFF:

Do not use any flow control. This is the default.

#FLOW_HARDWARE:

Use hardware flow control using CTS/RTS.

#FLOW_XON_XOFF:

Use software flow control using XON/XOFF handshaking.

954 Hollywood manual

RTS: The desired state of the RTS pin. Note that manually setting the RTS pin
isn’t supported on every platform. Where supported, it can be set to one of
the following special constants:

#RTS_ON: Set the RTS pin.

#RTS_OFF:

Clear the RTS pin.

DTR: The desired state of the DTR pin. Note that manually setting the DTR pin
isn’t supported on every platform. Where supported, it can be set to one of
the following special constants:

#DTR_ON: Set the DTR pin.

#DTR_OFF:

Clear the DTR pin.

As you can see above, the default configuration used by OpenSerialPort() is 9600/8-
N-1, i.e. 9600 bps, 8 data bits, no parity bit, 1 stop bit. This is the most common
configuration and should work on every platform.

INPUTS

id identifier for the new serial connection or Nil for auto id selection

portname$

serial port to open

table optional: further options (see above)

RESULTS

id optional: identifier of the serial port connection; will only be returned when
you pass Nil as argument 1 (see above)

EXAMPLE
OpenSerialPort(1, "COM1")

WriteSerialData(1, "Hello World!")

CloseSerialPort(1)

The code above opens the serial port COM1 onWindows, sends the string "Hello World!"
to the receiver and closes the serial port connection. Note that there is no guarantee that
all 12 bytes could be sent to the serial port. In stable code, you would have to check the
return value of WriteSerialData() and call it again if necessary to send the remaining
bytes.

47.12 PollSerialQueue

NAME
PollSerialQueue – poll number of bytes in read buffer (V8.0)

SYNOPSIS
n = PollSerialQueue(id)

Chapter 47: Serial port library 955

FUNCTION
This function can be used to poll the number of bytes currently in the read buffer of
the serial port connection specified by id. This serial port connection must have been
opened using OpenSerialPort() before.

To clear a serial port connection’s read buffer, use the ClearSerialQueue() command.
See Section 47.1 [ClearSerialQueue], page 947, for details.

Note that this function is currently unsupported on Android.

INPUTS

id identifier of the serial port whose read buffer you want to poll

RESULTS

n number of bytes in read buffer

47.13 ReadSerialData

NAME
ReadSerialData – read data from serial port connection (V8.0)

SYNOPSIS
data$, count = ReadSerialData(id, len[, timeout])

FUNCTION
This command can be used to read len bytes of data from the serial port connection spec-
ified in id. The serial port connection must have been opened using OpenSerialPort()

before. Additionally, you can pass a duration in milliseconds in the timeout argu-
ment to set a timeout for the read operation. If the timeout parameter is specified,
ReadSerialData() will never block for longer than the specified duration. Otherwise it
will wait forever for data to arrive.

ReadSerialData() will return the data it has read from the serial port and the length
of the data in bytes. Note that this can be less than the length specified in len.
If ReadSerialData() returns less bytes than you requested in len, you have to call
ReadSerialData() again and again until you have received all the data you need.

Note that the value returned in count will always be the same as the ByteLen() for
data$. The only reason for the count return value is a performance gain because in that
way you don’t have to call ByteLen() to calculate the length of data$.

To poll the number of bytes currently in the read buffer, use the PollSerialQueue()

function. See Section 47.12 [PollSerialQueue], page 954, for details.

INPUTS

id identifier of the serial port connection to use

len number of bytes to read from the serial port

timeout optional: number of milliseconds after which to abort the operation (defaults
to 0 which means to block forever until data arrives)

RESULTS

data$ the data read from the serial port

956 Hollywood manual

count number of bytes read from the serial port

EXAMPLE
OpenSerialPort(1, "COM1")

Print(ReadSerialData(1, 256))

The code above will wait forever for data to arrive from the serial port. As soon as
something arrives, it will return and print it. This can be less than 256 bytes. The only
thing that is guaranteed is that it will never be more than 256 bytes.

47.14 SetBaudRate

NAME
SetBaudRate – set baud rate for serial port connection (V8.0)

SYNOPSIS
SetBaudRate(id, baud)

FUNCTION
This command can be used to set the baud rate for the serial port connection specified in
id. This serial port connection must have been opened using OpenSerialPort() before.
You have to pass the desired baud rate in the baud parameter. This must be one of the
following special constants:

#BAUD_300:

300 bits per second.

#BAUD_600:

600 bits per second. (V9.0)

#BAUD_1200:

1200 bits per second. (V9.0)

#BAUD_2400:

2400 bits per second.

#BAUD_4800:

4800 bits per second.

#BAUD_9600:

9600 bits per second.

#BAUD_19200:

19200 bits per second.

#BAUD_38400:

38400 bits per second.

#BAUD_57600:

57600 bits per second.

#BAUD_115200:

115200 bits per second.

Chapter 47: Serial port library 957

#BAUD_460800:

460800 bits per second.

INPUTS

id identifier of the serial port connection to use

baud desired baud rate

47.15 SetDataBits

NAME
SetDataBits – set data bits for serial port connection (V8.0)

SYNOPSIS
SetDataBits(id, bits)

FUNCTION
This command can be used to set the number of data bits for the serial port con-
nection specified in id. This serial port connection must have been opened using
OpenSerialPort() before. You have to pass the desired data bits in the bits parameter.
This must be one of the following special constants:

#DATA_5: Use 5 data bits.

#DATA_6: Use 6 data bits.

#DATA_7: Use 7 data bits.

#DATE_8: Use 8 data bits.

INPUTS

id identifier of the serial port connection to use

baud desired data bits

47.16 SetDTR

NAME
SetDTR – set DTR pin state for serial port connection (V8.0)

SYNOPSIS
SetDTR(id, state)

FUNCTION
This command can be used to set the DTR pin state for the serial port connection spec-
ified in id. This serial port connection must have been opened using OpenSerialPort()

before. You have to pass the desired state in the state parameter. This must be one of
the following special constants:

#DTR_ON: Set the DTR pin.

#DTR_OFF:

Clear the DTR pin.

958 Hollywood manual

INPUTS

id identifier of the serial port connection to use

baud desired DTR pin state

47.17 SetFlowControl

NAME
SetFlowControl – set flow control for serial port connection (V8.0)

SYNOPSIS
SetFlowControl(id, flow)

FUNCTION
This command can be used to set the flow control for the serial port connection specified
in id. This serial port connection must have been opened using OpenSerialPort()

before. You have to pass the desired flow control mode in the flow parameter. This
must be one of the following special constants:

#FLOW_OFF:

Do not use any flow control.

#FLOW_HARDWARE:

Use hardware flow control using CTS/RTS.

#FLOW_XON_XOFF:

Use software flow control using XON/XOFF handshaking.

INPUTS

id identifier of the serial port connection to use

baud desired flow control type

47.18 SetParity

NAME
SetParity – set parity mode for serial port connection (V8.0)

SYNOPSIS
SetParity(id, parity)

FUNCTION
This command can be used to set the parity mode for the serial port connection specified
in id. This serial port connection must have been opened using OpenSerialPort()

before. You have to pass the desired parity mode in the parity parameter. This must
be one of the following special constants:

#PARITY_NONE:

Do not use any parity bit.

#PARITY_EVEN:

Use 1 bit of even parity.

Chapter 47: Serial port library 959

#PARITY_ODD:

Use 1 bit of odd parity.

INPUTS

id identifier of the serial port connection to use

baud desired parity mode

47.19 SetRTS

NAME
SetRTS – set RTS pin state for serial port connection (V8.0)

SYNOPSIS
SetRTS(id, state)

FUNCTION
This command can be used to set the RTS pin state for the serial port connection specified
in id. This serial port connection must have been opened using OpenSerialPort()

before. You have to pass the desired state in the state parameter. This must be one of
the following special constants:

#RTS_ON: Set the RTS pin.

#RTS_OFF:

Clear the RTS pin.

INPUTS

id identifier of the serial port connection to use

baud desired RTS pin state

47.20 SetStopBits

NAME
SetStopBits – set stop bits for serial port connection (V8.0)

SYNOPSIS
SetStopBits(id, bits)

FUNCTION
This command can be used to set the number of stop bits for the serial port con-
nection specified in id. This serial port connection must have been opened using
OpenSerialPort() before. You have to pass the desired stop bits in the bits parameter.
This must be one of the following special constants:

#STOP_1: Use 1 stop bit.

#STOP_2: Use 2 stop bits.

INPUTS

id identifier of the serial port connection to use

960 Hollywood manual

baud desired stop bits

47.21 WriteSerialData

NAME
WriteSerialData – write data to serial port connection (V8.0)

SYNOPSIS
count = WriteSerialData(id, data$[, timeout])

FUNCTION
This command can be used to write the data specified in data$ to the serial port
connection specified in id. The serial port connection must have been opened using
OpenSerialPort() before. Additionally, you can pass a duration in milliseconds in the
timeout argument to set a timeout for the write operation. If the timeout parameter is
specified, WriteSerialData() will never block for longer than the specified duration.

WriteSerialData() returns the number of bytes written to the serial port. Note that
this can be less than the bytes in data$. If only parts of data$ have been sent to the
serial port, you need to call WriteSerialData() again to send the rest.

INPUTS

id identifier of the serial port connection to use

data$ the data to write to the serial port

timeout optional: number of milliseconds after which to abort the operation (defaults
to 0 which means to block forever until data can be sent)

RESULTS

count number of bytes successfully written

EXAMPLE
See Section 47.11 [OpenSerialPort], page 952.

961

48 Serializer library

48.1 DeserializeTable

NAME
DeserializeTable – deserialize string to table (V9.0)

SYNOPSIS
table = DeserializeTable(s$[, t])

DEPRECATED SYNTAX
table = DeserializeTable(s$[, adapter])

FUNCTION
This function deserializes the string specified by s$ to a table and returns it.

The optional table argument t can be used to specify the following additional options:

Adapter: The table will be deserialized using the deserializer that is specified in the
Adapter tag. This can be the name of an external deserializer plugin (e.g.
xml) or it can be one of the following inbuilt deserializers:

Default: Use Hollywood’s default deserializer. This will deserialize
data from the JSON format to a Hollywood table. This
is also the default if no other default has been set using
SetDefaultAdapter().

Inbuilt: Use Hollywood’s legacy deserializer. Using this deserializer is
not recommended any longer as the data is in a proprietary, non-
human-readable format. Using JSON is a much better choice.

UserTags:

This tag can be used to specify additional data that should be passed to
serializer plugins. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

Mode: This tag can be used to set the serialization mode to use for the operation.
It defaults to the serialization mode set using SetSerializeMode(). See
Section 48.5 [SetSerializeMode], page 965, for details. (V10.0)

Options: This tag can be used to set the serialization options to use for the operation.
It defaults to the serialization options set using SetSerializeOptions().
See Section 48.6 [SetSerializeOptions], page 968, for details. (V10.0)

SrcEncoding:

This tag can be used to specify the source character encoding. This
defaults to the string library’s default character encoding as set by
SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

DstEncoding:

This tag can be used to specify the destination character encoding.
This defaults to the string library’s default character encoding as set

962 Hollywood manual

by SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

If the Adapter tag isn’t specified, it will default to the default set using
SetDefaultAdapter().

Tables can be serialized to strings using the SerializeTable() function. See
Section 48.4 [SerializeTable], page 964, for details.

INPUTS

s$ string to deserialize

t optional: table specifying further options (see above)

RESULTS

table table deserialized from string

EXAMPLE
See Section 48.4 [SerializeTable], page 964.

48.2 GetSerializeMode

NAME
GetSerializeMode – get serialization mode (V10.0)

SYNOPSIS
mode = GetSerializeMode()

FUNCTION
This function returns the current serialization mode that has been set using
SetSerializeMode(). See Section 48.5 [SetSerializeMode], page 965, for details.

INPUTS
none

RESULTS

mode current serialization mode

48.3 ReadTable

NAME
ReadTable – read table from file (V4.0)

SYNOPSIS
table = ReadTable(id[, t])

FUNCTION
This function reads a Hollywood table from the file specified by id and returns it.
Reading starts from the current file cursor position which you can modify using the
Seek() command.

Chapter 48: Serializer library 963

Starting with Hollywood 9.0, the data will be deserialized using the deserializer that
can be specified in the Adapter tag in the optional table argument. Before version
9.0, ReadTable() always used Hollywood’s legacy deserializer which uses a proprietary,
non-human-readable format.

The following tags are currently recognized in the optional table argument:

Adapter: This table tag can be used to specify the deserializer that should be used
to import the data into a Hollywood table. This can be the name of an
external deserializer plugin (e.g. xml) or it can be one of the following
inbuilt deserializers:

Default: Use Hollywood’s default deserializer. This will deserialize data
from the JSON format to a Hollywood table. Note that even
though the name of this deserializer claims to be the default
one, it is actually not. For compatibility reasons, ReadTable()
will use the Inbuilt deserializer by default (see below). If you
want ReadTable() to use the JSON deserializer, you explicitly
have to request it by setting Adapter to Default.

Inbuilt: Use Hollywood’s legacy deserializer. The only data this deseri-
alizer will accept is data written by Hollywood’s legacy serializer
during the WriteTable() call. Note that for compatibility rea-
sons, this is still the default deserializer. However, it is not
recommended any longer as the data is in a proprietary, non-
human-readable format. Using JSON is a much better choice.

If the Adapter tag isn’t specified, it defaults to the default set using
SetDefaultAdapter(). Note that for compatibility reasons, this default
isn’t Default but Inbuilt. See above for an explanation.

UserTags:

This tag can be used to specify additional data that should be passed to
serializer plugins. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

Mode: This tag can be used to set the serialization mode to use for the operation.
It defaults to the serialization mode set using SetSerializeMode(). See
Section 48.5 [SetSerializeMode], page 965, for details. (V10.0)

Options: This tag can be used to set the serialization options to use for the operation.
It defaults to the serialization options set using SetSerializeOptions().
See Section 48.6 [SetSerializeOptions], page 968, for details. (V10.0)

SrcEncoding:

This tag can be used to specify the source character encoding. This
defaults to the string library’s default character encoding as set by
SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

DstEncoding:

This tag can be used to specify the destination character encoding.
This defaults to the string library’s default character encoding as set

964 Hollywood manual

by SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

INPUTS

id file to read from

t optional: table containing further options (V9.0)

RESULTS

table the table read from the file

EXAMPLE
See Section 48.7 [WriteTable], page 969.

48.4 SerializeTable

NAME
SerializeTable – serialize table to string (V9.0)

SYNOPSIS
s$ = SerializeTable(table[, t])

DEPRECATED SYNTAX
s$ = SerializeTable(table[, t])

FUNCTION
This function serializes the table specified by table to a string and returns it.

The optional table argument t can be used to specify additional options. The following
tags are currently recognized in the optional table argument:

Adapter: The table will be serialized using the serializer that is specified in the Adapter
tag. This can be the name of an external serializer plugin (e.g. xml) or it
can be one of the following inbuilt serializers:

Default: Use Hollywood’s default serializer. This will serialize the table
to the JSON format. This is also the default if no other default
has been set using SetDefaultAdapter().

Inbuilt: Use Hollywood’s legacy serializer. This will serialize the table
to a custom, proprietary format.

UserTags:

This tag can be used to specify additional data that should be passed to
serializer plugins. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

Mode: This tag can be used to set the serialization mode to use for the operation.
It defaults to the serialization mode set using SetSerializeMode(). See
Section 48.5 [SetSerializeMode], page 965, for details. (V10.0)

Options: This tag can be used to set the serialization options to use for the operation.
It defaults to the serialization options set using SetSerializeOptions().
See Section 48.6 [SetSerializeOptions], page 968, for details. (V10.0)

Chapter 48: Serializer library 965

SrcEncoding:

This tag can be used to specify the source character encoding. This
defaults to the string library’s default character encoding as set by
SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

DstEncoding:

This tag can be used to specify the destination character encoding.
This defaults to the string library’s default character encoding as set
by SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

If the Adapter tag isn’t specified, it will default to the default set using
SetDefaultAdapter().

The string can later be deserialized back to a table by using the DeserializeTable()

function. See Section 48.1 [DeserializeTable], page 961, for details.

INPUTS

table table to serialize

t optional: table specifying further options (see above)

EXAMPLE
mytable = {1, 2, 3, 4, 5,

"Hello World",

x = 100, y = 150,

subtable = {10, 9, 8, 7}

}

s$ = SerializeTable(mytable)

mytable2 = DeserializeTable(s$)

The code above serializes mytable to a string in the JSON format and then deserializes
that string back to a table. In the end, mytable and mytable2 will be two independent
tables but with identical contents.

48.5 SetSerializeMode

NAME
SetSerializeMode – set serialization mode (V10.0)

SYNOPSIS
SetSerializeMode(mode)

FUNCTION
This function sets the serialization mode to the one specified by mode. Currently,
the following serialization modes are available: #SERIALIZEMODE_HOLLYWOOD,
#SERIALIZEMODE_LIST, and #SERIALIZEMODE_NAMED. How the individual serialization
mode are interpreted depends on the serializer.

966 Hollywood manual

Hollywood’s legacy serializer, which serializes to a proprietary format, only supports
#SERIALIZEMODE_HOLLYWOOD. Hollywood’s JSON serializer supports all three serializa-
tion modes. Here is how the JSON serializer interprets the different serialization modes:

#SERIALIZEMODE_HOLLYWOOD:

This is the default serialization mode. All JSON elements will be serialized
to table fields. On top of that, the Hollywood serializer can also serialize
binary data and even complete Hollywood functions. Hollywood functions
and binary data will be serialized as Base64 data. The Hollywood serializer
also supports sparse arrays, i.e. tables whose indices aren’t strictly sequen-
tial but have gaps between the individual indices. A disadvantage of the
Hollywood serializer is that it sometimes uses some special markers in the
JSON file to tell Hollywood about the data stored in a JSON element, e.g.
whether the data is to be interpreted as a string, as binary data or as a
Hollywood function. Consequently, you might not be able to deserialize any
arbitrary JSON file with the Hollywood serializer because some things in the
JSON might be wrongly interpreted as one of Hollywood’s special markers.
As long as you only deserialize data written by the Hollywood serializer,
you will of course never run into any problems. For example, consider the
following table:

t = {foo = "bar", seqarray = {1,2,3,4,5}, sparsearray =

{1,[2]=2,[4]=3,[6]=4,[8]=5}}

When serializing this to JSON using the Hollywood serializer, the result will
look like this:

{

"seqarray": [1,2,3,4,5],

"sparsearray": {"0": 1, "2": 2, "4": 3, "6": 4, "8": 5},

"foo": "bar"

}

You can see that sparse arrays are serialized by using named JSON indices.
This, on the other hand, means that when deserializing JSON files using the
Hollywood serializer named elements that consist of nothing but numbers
are interpreted as sparse array fields which is why the Hollywood serializer
can’t be used to deserialize any arbitrary JSON file but should only be used
with JSONs that the Hollywood serializer created.

Another disadvantage of the Hollywood serializer is that the position of
elements in the JSON file can be completely random because they are se-
rialized from Hollywood table fields which don’t have any particular order.
If you want the JSON elements to keep a fixed order, you’ll have to use
#SERIALIZEMODE_LIST instead.

By default, #SERIALIZEMODE_HOLLYWOOD will convert all JSON key names to
lower-case. If you don’t want that, you can change the behaviour by setting
the NoLowerCase tag to True in SetSerializeOptions(). See Section 48.6
[SetSerializeOptions], page 968, for details.

Chapter 48: Serializer library 967

#SERIALIZEMODE_NAMED:

This is like #SERIALIZEMODE_HOLLYWOOD except that it doesn’t support any
Hollywood extensions. This means that you can only serialize numbers,
strings, and tables but no binary data or Hollywood functions. Also, this
serializer imposes some restrictions on tables, namely that they must ei-
ther use string indices or numeric indices but not both. If numeric indices
are used, those indices must also be strictly sequential, i.e. table indices
must be sequential within a certain range [0..n]. There must not be any
gaps like in the example above so it’s not possible to serialize sparse arrays
with the named serializer. The advantage of #SERIALIZEMODE_NAMED over
#SERIALIZEMODE_HOLLYWOOD is that since the named serializer doesn’t sup-
port any Hollywood extensions you can use it to deserialize any arbitrary
JSON file without issues. This is because the named serializers doesn’t use
any markers because it doesn’t support any Hollywood extensions so there
is no risk of clashes between JSON data and Hollywood markers. Just like
#SERIALIZEMODE_HOLLYWOOD, however, the position of elements in the JSON
file can be completely random because they are serialized from Hollywood
table fields which don’t have any particular order. If you want the JSON
elements to keep a fixed order, you’ll have to use #SERIALIZEMODE_LIST

instead.

By default, #SERIALIZEMODE_NAMED will convert all JSON key names to
lower-case. If you don’t want that, you can change the behaviour by setting
the NoLowerCase tag to True in SetSerializeOptions(). See Section 48.6
[SetSerializeOptions], page 968, for details.

#SERIALIZEMODE_LIST:

This mode will serialize JSON elements using lists instead of named table
fields. This has the advantage that the order of all JSON elements will be
preserved. Also, the spelling of the individual JSON keys will be preserved
and you could even use the same key several times. A disadvantage is that
it’s a bit more difficult to access the JSON data because it is stored in
key-value pair tables. For example, consider the following JSON data:

{

"firstName": "John",

"lastName": "Smith",

"isAlive": true,

"age": 27,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": "10021-3100"

}

}

The list serializer will store each key-value in its own table using key and
value as named table indices. So to access data from the JSON above, you’d
have to use this code:

968 Hollywood manual

Print(t[3].key, t[3].value) ; "age 27"

Print(t[4].value[2].key, t[4].value[2].value) ; "state NY"

With the named or Hollywood serializer you could access the JSON data by
simply using the key name:

Print(t.age) ; prints "27"

Print(t.address.state) ; prints "NY"

As you can see, using the named or Hollywood serializer leads to code that
is more readable but the downside is that the element order in the JSON
won’t be preserved so that the JSON might be more difficult to read.

Note that if you use an external serializer (e.g. a plugin) the interpretation of the different
serialization modes could be completely different. The documentation above is only valid
for Hollywood’s inbuilt JSON serializer.

Also note that this function will globally change the serialization mode. You can also
change the serialization mode locally by setting the Mode tag in the optional table argu-
ments of functions like SerializeTable(). See Section 48.4 [SerializeTable], page 964,
for details.

INPUTS

mode desired serialization mode

48.6 SetSerializeOptions

NAME
SetSerializeOptions – set serialization options (V10.0)

SYNOPSIS
SetSerializeOptions(t)

FUNCTION
This function can be used to set some options for the serializer. You have to pass a table
in t. The table can contain the following tags:

NoLowerCase:

Set this to True if the serializer shouldn’t automatically convert all key names
to lower case. Hollywood’s inbuilt JSON serializer currently converts all key
names to lower case when using the serialization modes #SERIALIZEMODE_

HOLLYWOOD and #SERIALIZEMODE_NAMED. External serializers like plugins
might interpret this option differently. Defaults to False.

Note that this function will globally change the serialization options. You can also change
the serialization options locally by setting the Options tag in the optional table argu-
ments of functions like SerializeTable(). See Section 48.4 [SerializeTable], page 964,
for details.

INPUTS

t table containing serialization options (see above)

Chapter 48: Serializer library 969

48.7 WriteTable

NAME
WriteTable – write table to file (V4.0)

SYNOPSIS
WriteTable(id, table[, t])

DEPRECATED SYNTAX
WriteTable(id, table[, txtmode, nobrk])

FUNCTION
This function writes the Hollywood table specified by table to the file specified by id.
The table will be serialized using the serializer that can be specified in the optional
arguments. It will be written to the file at the current cursor position which you can
modify by using the Seek() command. Tables written to files can later be loaded back
into Hollywood tables by using the ReadTable() command.

This function is fully recursive. Your table can contain as many subtables as you need.
Additionally, the table can even contain Hollywood functions. See below for an example.

WriteTable() supports several optional arguments. Before Hollywood 9.0, those had
to be passed as optional parameters (see above). Since Hollywood 9.0, however, it is
recommended to use the new syntax, which has a single optional table argument that
can be used to pass one or more optional arguments to WriteTable().

The following table fields are recognized by this function:

Adapter: This table tag can be used to specify the serializer that should be used to
export the Hollywood table. This can be the name of an external serializer
plugin (e.g. xml) or it can be one of the following inbuilt serializers:

Default: Use Hollywood’s default serializer. This will serialize the table
data to the JSON format. Note that even though the name of
this serializer claims to be the default one, it is actually not.
For compatibility reasons, WriteTable() will use the Inbuilt

serializer by default (see below). If you want WriteTable()

to use the JSON serializer, you explicitly have to request it by
setting Adapter to Default.

Inbuilt: Use Hollywood’s legacy serializer. This will serialize the
table into a custom, proprietary format. This is the
format WriteTable() has used since Hollywood 4.0 and for
compatibility reasons, it is still the default serializer. However,
it is not recommended any longer as this serializer will output
data that is not in a human-readable format. Using the JSON
serializer is a much better choice.

If Adapter isn’t specified, it defaults to the default set using
SetDefaultAdapter(). Note that for compatibility reasons, this default
isn’t Default but Inbuilt. See above for an explanation.

TextMode:

When using Hollywood’s legacy serializer, which is still the default, this
argument can be set to True to tell WriteTable() to export binary data as

970 Hollywood manual

text. Note that even if you set this tag to True, the text won’t be in a human-
readable format. If you want to serialize the table into human-readable text,
use the JSON serializer (see above). Defaults to False.

NoLineBreak:

If the TextMode tag has been set to True, WriteTable() will automatically
insert line breaks after every 72 characters for better readability. If you don’t
want that, set NoLineBreak to True. In that case, no line breaks will be
inserted. Note that this tag only affects Hollywood’s legacy serializer. It
doesn’t have any effect on other serializers. Defaults to False. (V6.1)

UserTags:

This tag can be used to specify additional data that should be passed to
serializer plugins. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

Mode: This tag can be used to set the serialization mode to use for the operation.
It defaults to the serialization mode set using SetSerializeMode(). See
Section 48.5 [SetSerializeMode], page 965, for details. (V10.0)

Options: This tag can be used to set the serialization options to use for the operation.
It defaults to the serialization options set using SetSerializeOptions().
See Section 48.6 [SetSerializeOptions], page 968, for details. (V10.0)

SrcEncoding:

This tag can be used to specify the source character encoding. This
defaults to the string library’s default character encoding as set by
SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

DstEncoding:

This tag can be used to specify the destination character encoding.
This defaults to the string library’s default character encoding as set
by SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

INPUTS

id file to write to

table table to write to the file

t optional: table containing further arguments (see above) (V9.0)

EXAMPLE
mytable = {1, 2, 3, 4, 5,

"Hello World",

x = 100, y = 150,

subtable = {10, 9, 8, 7},

mulfunc = Function(a, b) Return(a*b) EndFunction

}

971

OpenFile(1, "table.json", #MODE_WRITE)

WriteTable(1, mytable, {Adapter = "default"})

CloseFile(1)

OpenFile(1, "table.json", #MODE_READ)

newtable = ReadTable(1, {Adapter = "default"})

CloseFile(1)

Print(newtable[0], newtable[5], newtable.x, newtable.y,

newtable.subtable[0], newtable.mulfunc(9, 9))

The code above writes the table mytable to file "table.json". After that, it opens file
"table.json" again and reads the table back into Hollywood. The imported table will be
stored in the variable newtable. Finally, we will access the newly imported table and
print some of its data to the screen. The output of the code above will be "1 Hello World
100 150 10 81".

973

49 Sound library

49.1 Overview

Hollywood’s sound library offers two basic object types: Samples and music objects. Sam-
ples are typically short sounds like game or feedback effects whereas music objects are used
for longer sounds playing in the background. The biggest difference between samples and
music objects is that samples are loaded entirely into memory whereas music objects are
streamed from disk. Thus, you should only use samples for short sounds because loading a
4 minute music track as a sample will easily occupy about 40 megabytes of memory. Sam-
ples are optimized for immediate playback which is why they are often uploaded to audio
hardware memory when they are loaded so that they can be played with very low latency.
Music streams, however, might need a little bit longer to start playing.

Samples can be loaded via the @SAMPLE and LoadSample() commands. You can also cre-
ate your own samples using the CreateSample() command. To play a sample, use the
PlaySample() command.

Music objects can be loaded via the @MUSIC and OpenMusic() commands. You can also
create your own music objects using the CreateMusic() command. To play a music object,
use the PlayMusic() command.

By default, Hollywood’s sound library allocates 8 audio channels for sound playback. This
means that Hollywood will run out of channels in case you try to play more than 8 different
samples, music objects, or video streams at a time. If your script needs more than 8
channels for some particular reasons, you need to increase the number of channels using the
-numchannels console argument.

49.2 CloseAudio

NAME
CloseAudio – close audio hardware (V8.0)

SYNOPSIS
CloseAudio()

FUNCTION
This function can be used to close the audio hardware. It is normally not necessary to
call this command because Hollywood will automatically close the audio hardware when
it no longer needs it. On AmigaOS and compatibles, however, there are situations where
you might need fine-tuned control over the audio hardware, for example because another
program tries to get exclusive access to the audio hardware, which means that your
script has to release it first. In those situations you might want to call CloseAudio()
manually. Apart from that particular situation, there is no need to call this function at
all.

Note that calling CloseAudio() will not only stop all audio output but it will also free
all samples because samples are usually uploaded to sound card memory when they are
loaded so it is impossible to keep them in memory while the audio hardware is closed.
Music and video objects, however, aren’t freed by CloseAudio(), though. CloseAudio()
will only stop their playback.

974 Hollywood manual

INPUTS
none

EXAMPLE
See Section 49.29 [OpenAudio], page 995.

49.3 CloseMusic

NAME
CloseMusic – close a music object (V2.0)

SYNOPSIS
CloseMusic(id)

FUNCTION
This function frees any memory occupied by the music object specified by id and closes
the file. This is normally not necessary because Hollywood frees all memory when it
quits. However, if you are running out of memory and want to free the music object by
yourself, use this function.

INPUTS

id identifier of the music object to close

49.4 CopySample

NAME
CopySample – clone a sample (V5.0)

SYNOPSIS
[id] = CopySample(source, dest)

FUNCTION
This function clones the samples specified by source and creates a copy of it as sample
dest. The new sample is independent from the old one so you could free the source
sample after it has been cloned.

If you pass Nil as dest, CopySample() will return a handle to the new sample to you.
Otherwise the new sample will use the identifier specified in dest.

INPUTS

source source sample id

dest identifier of the sample to be created or Nil for auto id selection

RESULTS

id optional: handle to the new sample; will only be returned if you specified
Nil in dest

EXAMPLE
CopySample(1, 10)

Chapter 49: Sound library 975

FreeSample(1)

The above code creates a new sample 10 which contains the same audio data as sample
1. Then it frees sample 1 because it is no longer needed.

49.5 CreateMusic

NAME
CreateMusic – create dynamic music stream (V5.0)

SYNOPSIS
[id] = CreateMusic(id, pitch, fmt)

FUNCTION
This function can be used to create a dynamic music stream that has to be fed constantly
with new PCM data through a user defined callback function. This allows you to play
gapless audio using PCM data generated on the fly by a callback function. The music
object will be added to Hollywood’s music list and can be accessed through the specified
id. If you pass Nil in id, CreateMusic() will automatically select an identifier and return
it to you. You also have to specify the desired playback frequency for the music in the
pitch argument as well as the encoding of the PCM data in the fmt argument. Currently,
the following formats are supported: #MONO8, #STEREO8, #MONO16, and #STEREO16.

Before you call this function, you have to install a callback function of type
FillMusicBuffer using the InstallEventHandler() function. This callback will then
be called whenever the audio server needs new PCM data. To deliver the new PCM
data to the audio server, your callback has to call the FillMusicBuffer() function.
See Section 49.7 [FillMusicBuffer], page 978, for details.

Once you have created the music object using CreateMusic(), you can then use all the
regular commands from the music library to work with the new music. For instance, you
can use PlayMusic() to start playback and PauseMusic() to pause the music object.

Make sure that you always use a main loop that calls WaitEvent() when you use
this function because the callback function of CreateMusic() will always be called by
WaitEvent()! If you do not use a WaitEvent() loop, your callback will never get called
and thus no sound will ever play!

Please note that this is a lowlevel function that runs pretty close on the hardware level.
Thus, your callback function should never block your script for a longer time. It should
return as soon as possible. Never call any functions that could block the script in
CreateMusic() callback functions. For instance, calling Wait() or SystemRequest() in
a music callback is a very bad idea.

INPUTS

id identifier for the new music or Nil for auto selection

pitch desired playback frequency for the music object

fmt desired format for the music object

RESULTS

id optional: identifier of new music object; this is only used if Nil is passed in
the first argument

976 Hollywood manual

49.6 CreateSample

NAME
CreateSample – create a sample (V2.0)

SYNOPSIS
[id] = CreateSample(id, table, pitch[, fmt, length])

FUNCTION
This function can be used to create a new sample from custom PCM data. The sample
will be added to Hollywood’s sample list and can be accessed by the specified id. If you
pass Nil in id, CreateSample() will automatically select an identifier and return it to
you. You also have to specify the desired playback frequency for this sample in the pitch
argument. The optional argument fmt allows you to specify the format of the PCM data
you are about to pass to this function. Currently, the following formats are supported:
#MONO8 (which is the default), #STEREO8, #MONO16, and #STEREO16. The optional argu-
ment length specifies the desired length in PCM frames for the new samples.

The sample data must be passed as signed integers. For 8-bit samples the valid sample
range runs from -128 to 127, and for 16-bit samples the valid sample range runs from
-32768 to 32767.

If you want to create a stereo sample, you must pass interleaved PCM data, i.e. left
channel sample is followed by right channel sample is followed by left channel sample,
and so on.

Starting with Hollywood 5.0, the PCM data can be passed to this function in a number
of different ways. CreateSample() can use an array of PCM samples, an identifier of
an open file, or a memory block as the source for the new sample. Which source is used
depends on the setting in the table argument which accepts the following tags:

Source: This tag specifies from which source CreateSample() should fetch the audio
data for the sample. It must be set to a string that identifies the audio data
source. The following sources are possible:

PCM Fetch audio data directly from an array of PCM samples. If
you specify this field, you must pass the PCM data in the same
table starting at index 0. CreateSample() will then read length

PCM frames from this table. If length is not specified, then
CreateSample() will read all PCM frames from the table.

File Fetch audio data from an open file. If you use this source type,
you also need to specify a valid file identifier in the ID tag. It is
also necessary to specify the optional length argument so that
CreateSample() knows how many frames it should fetch from
the specified file.

Memory Fetch audio data from a memory block. If you use this source
type, you also need to specify a valid memory block identifier in
the ID tag. It is also necessary to specify the optional length

Chapter 49: Sound library 977

argument so that CreateSample() knows how many frames it
should fetch from the specified memory block.

The default value for the Source tag is PCM which means fetch the audio data
from an array of PCM samples stored in the same table as these options.

ID: This tag is only required for source types File and Memory. In that case,
you need to pass a valid file / memory block identifier here.

Offset: This tag can only be used in conjunction with source type Memory. In that
case, it specifies an offset into the memory block at which CreateSample()

should start fetching audio data. The offset is specified in bytes.

Swap: This tag can only be used in conjunction with source types File and Memory

and a sample depth of 16 bits. In that case, the Swap tag can be used to
specify whether or not CreateSample() should swap the two bytes making
up a 16 bit sample. This is required if the sample data in the file or memory
block is encoded in little endian format (LSB first). CreateSample(), how-
ever, requires 16-bit sample data to be in big endian format (MSB first). So
if your source can only provide sample data in LSB format, simply set the
Swap tag to True and everything should be fine. This tag defaults to False

which means do not swap anything.

Please note that the new sample should use at least 1000 PCM frames. If you use less
frames, the playback in loop mode will become very CPU intensive. Even if your sample
has only 32 different wave forms, you should concatenate them until your sample has at
least 1000 frames for performance reasons.

If you pass large sample tables to this function, please do not forget to set these tables to
Nil when you no longer need them. Otherwise you will waste great amounts of memory.

Starting with Hollywood 5.0, CreateSample() can also create empty samples if you pass
an empty table or specify a length of zero. In that case, you can use functions like
InsertSample() to fill the sample with audio data later.

INPUTS

id identifier for the new sample or Nil for auto selection

table table containing parameters for the new sample

pitch desired playback frequency for the sample

fmt optional: format of the samples passed in argument 2 (defaults to #MONO8)
(V5.0)

length optional: desired length of the new sample in PCM frames (V5.0)

RESULTS

id optional: identifier of new sample; this is only used if Nil is passed in the
first argument

EXAMPLE
smpdata = {}

slen = 32

For k = 0 To 30

978 Hollywood manual

For i = 0 To (slen\2)-1

smpdata[k*slen+i] = -128

smpdata[k*slen+i+(slen\2)] = 127

Next

Next

CreateSample(1, smpdata, 6982)

PlaySample(1)

The code above creates a simple beep sound.

49.7 FillMusicBuffer

NAME
FillMusicBuffer – feed sound server with new audio data (V5.0)

SYNOPSIS
FillMusicBuffer(id, type$, samples[, table])

FUNCTION
This function is used in connection with dynamic music streams that have been initialized
using CreateMusic(). These dynamic music streams need to be constantly fed with new
audio data. This is handled by FillMusicBuffer(). FillMusicBuffer() will send the
specified audio data to Hollywood’s sound server which will in turn send it to the audio
device. This chain of processors makes it possible to play gapless, dynamically generated
audio data from your script.

Hollywood’s sound server decides when it needs more audio data and thus the sound
server is also the one that decides when you have to call FillMusicBuffer(). Hollywood
will notify you when it needs more audio data by raising a FillMusicBuffer event so
that the callback function you provided using the InstallEventHandler() function will
get called. Inside this callback function you will now have to call FillMusicBuffer() to
feed new data to the sound server. It is not allowed to call FillMusicBuffer() at other
times! You must only call it inside of a callback function of type FillMusicBuffer.

This function takes four arguments: The first one specifies the music object to use. Your
callback will receive this information in the ID tag of the event message. The third
argument specifies how many samples (in PCM frames) you are providing to the audio
server. This must be set to exactly the same number of frames that are requested from
you by the callback handler. You get the number of frames requested from you in the
Samples tag of the event message. The table argument is optional and must only be
used for certain types (see below). The type$ argument specifies how you will provide
the new PCM data to the audio server. This can be one of the following strings:

PCM You will provide the new PCM data directly. In this case, you have to put
an array that contains the new PCM frames into the Data tag of the optional
table argument (see below).

Sample You will provide the new PCM data in the form of a sample. In this case,
you have to put the identifier of the sample in the ID tag of the optional table
argument (see below). Furthermore, you can use the Start, End, Offset,

Chapter 49: Sound library 979

and Loop tags to fine-tune the method that the audio server should use to
fetch new PCM data. See below for more information.

Mute If you specify this type, the audio server will mute audio output for the
duration of the number of PCM frames requested. If you pass Mute in the
Type tag, you do not have to specify anything else.

End Specify this type if you want playback of your music to stop. Once the audio
server receives an End packet, it will wait until all queued packets have been
played and will stop the playback of your music thereafter.

The tags in the optional table argument depend on the type specified in type$. The
following tags are recognized:

Data: If type$ is set to PCM, you need to return an array of PCM data in this tag.
The array should contain as many frames as requested by the audio server in
the Samples tag. The PCM data must be passed as signed integers. For 8-bit
data the valid sample range runs from -128 to 127, and for 16-bit data the
valid sample range runs from -32768 to 32767. If you are using stereo mode,
you must pass interleaved PCM data, i.e. left channel sample is followed by
right channel sample is followed by left channel sample, and so on.

ID: If type$ is set to Sample, you need to return the identifier of a sample from
which the audio server should fetch the PCM data in this tag. You can fine-
tune the way the audio server fetches the PCM data from this sample using
the Start, End, Offset, and Loop tags. See below for more information.

Start, End:

If type$ is set to Sample, these two tags allow you to specify the range in the
source sample that the audio server should use for fetching samples. This
is useful if you want the audio server to fetch data from only a part of the
sample. Both values have to be specified in PCM frames. These tags default
to 0 for Start and length of the specified sample for End. This means that
by default the whole sample will be used for fetching PCM data.

Offset: Specifies an offset into the sample at which the audio server should start
fetching PCM data. This offset must be specified in PCM frames and is
relative to the position specified in Start. For instance, if you pass 10000
in Start and 100 in Offset, then the audio server will start fetching PCM
data from offset 10100. This tag defaults to 0 which means start fetching
PCM data from the beginning of the sample.

Loop: Specifies whether or not the audio server should continue fetching PCM
data at the beginning of the source sample once its end has been reached.
This defaults to True which means that the audio server will automatically
revert to the beginning of the sample if its end has been reached and more
PCM data is required. The beginning of the sample is defined by the value
specified in the Start tag.

Please note that you have to use FlushMusicBuffer() if you need to update the au-
dio data with a very low latency. FillMusicBuffer() will always buffer about 1
second of music data. This means that it will take about 1 second from the call to

980 Hollywood manual

FillMusicBuffer() until you can actually hear the audio data that you’ve just sent. If
you need to update the audio data in real-time, e.g. when seeking to a new position in the
stream, you will have to flush the music buffer first. See Section 49.8 [FlushMusicBuffer],
page 980, for details.

INPUTS

id identifier of the music object to use

type$ desired way for providing new audio data to the device (see above)

samples number of samples that you are providing in PCM frames; must be identical
to the number of samples requested by the FillMusicBuffer event

table optional: table containing further options (see above)

49.8 FlushMusicBuffer

NAME
FlushMusicBuffer – flush buffer of dynamic music stream (V6.0)

SYNOPSIS
FlushMusicBuffer(id)

FUNCTION
This function is used in connection with dynamic music streams that have been
initialized using CreateMusic(). These dynamic music streams need to be constantly
fed with new audio data which is done by repeatedly calling FillMusicBuffer().
FlushMusicBuffer() can be used to empty all music buffers and refill them with
new data. This can be useful if you need to immediately update the audio data that
is being played, for example because the user has seeked the music stream to a new
position. After the call to FlushMusicBuffer(), Hollywood will immediately trigger
a FillMusicBuffer event so that your script gets a chance to refill the audio buffers
after they have been flushed.

By default, there will always be a lag of about 1 second between the call to
FillMusicBuffer() and the time you can hear the audio data on your sound device.
If you call FlushMusicBuffer() first, the data can be sent to the sound device with a
lower latency.

See Section 49.7 [FillMusicBuffer], page 978, for details.

INPUTS

id identifier of the music object to flush

49.9 ForceSound

NAME
ForceSound – fail if audio hardware cannot be allocated (V8.0)

SYNOPSIS
ForceSound(fail)

Chapter 49: Sound library 981

FUNCTION
Normally, when a script tries to play a sound and the audio hardware cannot be allocated,
Hollywood will continue running normally, just without sound. If you don’t want that,
i.e. if you want Hollywood to fail in case the audio hardware cannot be allocated, call
this function and pass True in the fail parameter. In that case Hollywood will throw
an error in case the audio hardware cannot be allocated.

Note that alternatively, you can also check the result of IsSound() to see if the audio
hardware can be allocated. See Section 49.24 [IsSound], page 989, for details.

INPUTS

fail specifies whether or not Hollywood should fail if the audio hardware cannot
be allocated (the default setting is False, which means that Hollywood won’t
fail)

49.10 FreeModule

NAME
FreeModule – free a module / OBSOLETE

SYNOPSIS
FreeModule(id)

IMPORTANT NOTE
This command is obsolete. Please use CloseMusic() instead.

FUNCTION
This function frees the memory of the module specified by id. This is normally not
necessary because Hollywood frees all memory when it quits. However, if you are running
out of memory and want to free the sample by yourself, use this function.

INPUTS

id identifier of the module

49.11 FreeSample

NAME
FreeSample – free a sample

SYNOPSIS
FreeSample(id)

FUNCTION
This function frees the memory of the sample specified by id. This is normally not
necessary because Hollywood frees all memory when it quits. However, if you are running
out of memory and want to free the sample by yourself, use this function.

INPUTS

id identifier of the sample

982 Hollywood manual

EXAMPLE
See Section 49.26 [LoadSample], page 990.

49.12 GetChannels

NAME
GetChannels – get number of available channels (V6.1)

SYNOPSIS
n = GetChannels()

FUNCTION
This function returns the total number of available channels for audio output. This
defaults to 8 but can be changed by using the -numchannels console argument. See
Section 3.2 [Console arguments], page 33, for details.

Note that this argument doesn’t return the free audio channels but the total audio
channels. To check if there is a channel that can be used for audio output, use the
HaveFreeChannel() function instead. See Section 49.16 [HaveFreeChannel], page 984,
for details.

Also note that if the legacy audio driver is active on AmigaOS (it is by default on Ami-
gaOS 3.x for performance reasons) the first four channels will be reserved for Protracker
playback. The console argument -nolegacyaudio can be used to disable the legacy
audio driver on AmigaOS 3.x. See Section 3.2 [console arguments], page 33, for details.

INPUTS
none

RESULTS

n total number of available channels

49.13 GetPatternPosition

NAME
GetPatternPosition – get current pattern position (V1.9)

SYNOPSIS
pos = GetPatternPosition()

FUNCTION
This function returns the pattern position of the currently playing Protracker module.
If no module is playing, -1 is returned. You can time your script to the music with this
function.

You can also use WaitPatternPosition() which halts the program flow until a certain
pattern position is reached.

INPUTS
none

Chapter 49: Sound library 983

RESULTS

pos current pattern position or -1

49.14 GetSampleData

NAME
GetSampleData – retrieve sample’s raw data (V5.0)

SYNOPSIS
table, count = GetSampleData(id)

FUNCTION
This function can be used to retrieve the raw PCM samples of the sample specified in
id. The PCM samples will be returned inside a table. The format of the individual
samples will be either 8-bit signed (ranging from -128 to +127) or 16-bit signed (ranging
from -32768 to 32767). You can find out the sample format by querying the #ATTRTYPE
of the sample using the GetAttribute() function. If the sample uses two channels (i.e.
stereo), the PCM data will be returned in interleaved order, i.e. left channel sample is
followed by right channel sample is followed by left channel sample, and so on.

The second return value of this function is a counter value that indicates the number of
sample frames in the table. Be warned that this value does not return the actual total
array elements but the number of sample frames. For stereo samples, the left and right
channel samples together form a single sample frame. Thus, if you get stereo data, there
will be twice as many samples in the table than indicated by count because the latter
counts in sample frames instead of raw samples.

If you get large sample tables from this function, please do not forget to set these tables to
Nil when you no longer need them. Otherwise you will waste great amounts of memory.

To convert a table of PCM data back into a sample, you can use the CreateSample()

command.

INPUTS

id identifier of sample to use

RESULTS

table a table containing the raw PCM data of the specified sample

count number of sample frames inside the table

49.15 GetSongPosition

NAME
GetSongPosition – get current song position (V1.9)

SYNOPSIS
pos = GetSongPosition()

984 Hollywood manual

FUNCTION
This function returns the song position of the currently playing Protracker module. If
no module is playing, -1 is returned. You can time your script to the music with this
function.

You can also WaitSongPosition() which halts the program flow until a certain song
position is reached.

INPUTS
none

RESULTS

pos current song position or -1

49.16 HaveFreeChannel

NAME
HaveFreeChannel – check if a free channel is available (V6.1)

SYNOPSIS
n = HaveFreeChannel()

FUNCTION
This function checks if there is a free channel for audio output. If there is,
HaveFreeChannel() will return the index of this channel, otherwise 0 is returned.

Note that if the legacy audio driver is active on AmigaOS (it is by default on AmigaOS 3.x
for performance reasons) the first four channels will be reserved for Protracker playback.
The console argument -nolegacyaudio can be used to disable the legacy audio driver
on AmigaOS 3.x. See Section 3.2 [console arguments], page 33, for details.

INPUTS
none

RESULTS

n index of free channel or 0 if all channels are currently occupied

49.17 InsertSample

NAME
InsertSample – insert one sample into another one (V5.0)

SYNOPSIS
InsertSample(src, dst, pos[, len, table])

FUNCTION
This function can be used to insert len PCM frames of the sample specified in src into
PCM frame position pos of the sample specified in dst. If the optional argument len
is not specified, the whole sample will be inserted into the position specified in pos. If
the two samples do not use the same format, this function will automatically perform

Chapter 49: Sound library 985

an appropriate conversion of the audio data so that sample depth, channel layout, and
sampling rate of the two samples match.

The optional table argument allows you to configure advanced options for the insert
operation. The following tags are currently recognized by the optional table argument:

Start, End:

These two tags allow you to specify a range in the source sample that should
be inserted into the destination one. This is useful if you want to insert only
a part of the source sample into the destination. Both values have to be
specified in PCM frames. These tags default to 0 for Start and length of
the source sample for End. This means that by default the whole sample will
be inserted.

Offset: Specifies an offset into the source sample at which InsertSample() should
start fetching PCM data for the destination sample. This offset must be spec-
ified in PCM frames and is relative to the position specified in Start. For in-
stance, if you pass 10000 in Start and 100 in Offset, then InsertSample()

will start fetching PCM data at offset 10100. This tag defaults to 0 which
means start fetching PCM data from the beginning of the source sample.

Loop: Specifies whether or not InsertSample() should continue to fetch PCM data
at the beginning of the source sample once its end has been reached. This
defaults to True which means InsertSample() will automatically revert to
the beginning of the sample if its end has been reached and more PCM data
is required. The beginning of the sample is defined by the value specified in
the Start tag.

Please note that this command will extend the length of the destination sample. Existing
audio data will not be overwritten. It will just be shifted forward by the insert operation.

INPUTS

src identifier of the source sample

dst identifier of the sample that shall be modified

pos position in PCM frames where src should be inserted into dst

len optional: number of PCM frames to insert into src (defaults to the length
of dst)

table optional: table containing further parameters (see above)

EXAMPLE
InsertSample(1, 2, 44100, 44100, {Start = 25000, End = 30000})

The code above inserts one second of audio data from sample 1 into sample 2. The
sample will be inserted at offset 44100. Audio data will be fetched from sample 1 but
only in the range of PCM frames 25000 to 30000 in a loop.

986 Hollywood manual

49.18 IsChannelPlaying

NAME
IsChannelPlaying – check if a channel is playing (V6.1)

SYNOPSIS
playing[, type, id] = IsChannelPlaying(n)

FUNCTION
This function checks if the channel specified by n is currently playing and returns True
if it is, False otherwise. If the channel is currently playing, IsChannelPlaying() will
also return type and id of the object that is currently playing on this channel. This can
be #MUSIC, #SAMPLE, or #VIDEO.

INPUTS

n channel index to check; channel indices start from 1 to the number of avail-
able channels

RESULTS

playing True if the channel is playing, False otherwise

type optional: object type currently playing on this channel; only returned if the
channel is currently playing

id optional: object id currently playing on this channel; only returned if the
channel is currently playing

49.19 IsModule

NAME
IsModule – determine if a module is in a supported format / OBSOLETE

SYNOPSIS
ret = IsModule(file$)

IMPORTANT NOTE
This command is obsolete. Please use IsMusic() instead.

FUNCTION
This function will check if the file specified file$ is in a supported module format. If
it is, this function will return True, otherwise False. If this function returns True, you
can load the module by calling LoadModule().

INPUTS

file$ file to check

RESULTS

ret True if the module is in a supported format, False otherwise

Chapter 49: Sound library 987

49.20 IsMusicPlaying

NAME
IsMusicPlaying – check if music is currently playing (V4.5)

SYNOPSIS
playing = IsMusicPlaying(id)

FUNCTION
This function checks if the music object specified by id is currently playing. If it is, True
is returned, False otherwise.

INPUTS

id identifier of music object to check

RESULTS

playing True if music object is currently playing; False otherwise

49.21 IsMusic

NAME
IsMusic – determine if a file is in a supported music format (V2.0)

SYNOPSIS
ret, fmt$ = IsMusic(file$[, table])

FUNCTION
This function will check if the file specified in file$ is in a supported music format. If
it is, this function will return True in the first return value, otherwise False. If this
function returns True, you can open the music file using OpenMusic().

The second return value is a string containing the music format of the file.

Starting with Hollywood 6.0 this function accepts an optional table argument which
allows you to configure further options:

Loader: This tag allows you to specify one or more format loaders that should be
asked to load this music object. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

988 Hollywood manual

See Section 49.30 [OpenMusic], page 995, for a list of supported music formats.

INPUTS

file$ file to check

table optional: table configuring further options (V6.0)

RESULTS

ret True if the music object is in a supported format, False otherwise

fmt$ format of the music file

49.22 IsSamplePlaying

NAME
IsSamplePlaying – check if a sample is playing

SYNOPSIS
playing = IsSamplePlaying(id)

FUNCTION
This function checks if the sample specified by id is currently playing and returns True
if it is, False otherwise.

INPUTS

id identifier of a sample

RESULTS

playing True if the sample specified by id is playing, False otherwise

EXAMPLE
LoadSample(1, "Sound/Samples/ChurchOrgan.wav")

PlaySample(1)

Repeat

Wait(2)

Until IsSamplePlaying(1) = False

FreeSample(1)

The above code loads the sample "Sound/Samples/ChurchOrgan.wav", plays it and then
waits for it to finish. After that, the sample is freed. If you just want to do something
like above, it is easier for you to use the WaitSampleEnd() command. But if you want
to do some things during the sample is playing, you will have to do it this way (using
IsSamplePlaying() and a loop).

49.23 IsSample

NAME
IsSample – determine if a sample is in a supported format

SYNOPSIS
ret = IsSample(file$[, table])

Chapter 49: Sound library 989

FUNCTION
This function will check if the file specified file$ is in a supported sample format. If
it is, this function will return True, otherwise False. If this function returns True, you
can load the sample by calling LoadSample().

Starting with Hollywood 6.0 this function accepts an optional table argument which
allows you to configure further options:

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this sample. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

file$ file to check

table optional: table configuring further options (V6.0)

RESULTS

ret True if the sample is in a supported format, False otherwise

49.24 IsSound

NAME
IsSound – determine if Hollywood can output audio

SYNOPSIS
ret = IsSound()

FUNCTION
This function checks if Hollywood can output audio. You can use this function if your
application cannot run without audio being output. Normally, if Hollywood cannot
output audio it will just skip all audio related code and still execute the script. If you
do not want that, use IsSound() to determine if audio can be output.

Starting with Hollywood 8.0, you can also use the ForceSound() function to make
Hollywood fail if the audio hardware cannot be allocated. See Section 49.9 [ForceSound],
page 980, for details.

990 Hollywood manual

INPUTS
none

RESULTS

ret True if sound can be played, False otherwise

EXAMPLE
If IsSound() = False

SystemRequest("My App", "Sorry, sound is required!", "OK")

End

EndIf

The above code checks if it can output sound and quits with a error message if this is
not possible.

49.25 LoadModule

NAME
LoadModule – load a module / OBSOLETE

SYNOPSIS
LoadModule(id, filename$)

IMPORTANT NOTE
This command is obsolete. Please use OpenMusic() instead.

FUNCTION
This function loads the module specified by filename$ into memory and gives it the
identifier id. The module must be in Protracker format.

INPUTS

id identifier for the module

filename$

file to load

EXAMPLE
LoadModule(5, "Modules/StardustMemories.mod")

The above declaration assigns module number 5 to the module "StardustMemories.mod"
located in a subdrawer named "Modules".

49.26 LoadSample

NAME
LoadSample – load a sample

SYNOPSIS
[id] = LoadSample(id, filename$[, table])

Chapter 49: Sound library 991

FUNCTION
This function loads the sample specified by filename$ into memory and assigns the
identifier id to it. If you pass Nil in id, LoadSample() will automatically choose an
identifier and return it.

Sample formats that are supported on all platforms are RIFF WAVE, IFF 8SVX, IFF
16SV, and sample formats you have a plugin for. Depending on the platform Hollywood
is running on, more sample formats might be supported. For example, on Amiga com-
patible systems Hollywood will be able to open all sample formats you have datatypes
for as well.

Starting with Hollywood 6.0, this function accepts an optional table argument which
allows you to pass additional parameters:

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this sample. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

This command is also available from the preprocessor: Use @SAMPLE to preload samples!

Please note that this function loads sample data completely into memory. If you plan to
play long samples, you should better use OpenMusic() which buffers only small portions
of the sound data in memory.

INPUTS

id identifier for the sample or Nil for auto id selection

filename$

file to load

table optional: table configuring further options (see above) (V6.0)

RESULTS

id optional: identifier of the sample; will only be returned when you pass Nil
as argument 1 (see above)

EXAMPLE
LoadSample(1, "Sound/Samples/WahWah.wav")

PlaySample(1)

WaitSampleEnd(1)

992 Hollywood manual

FreeSample(1)

The above code loads the sample "Sound/Samples/WahWah.wav", plays it, waits for it
to end and frees it.

49.27 MixSample

NAME
MixSample – mix existing sample(s) into a new sample (V5.0)

SYNOPSIS
[id] = MixSample(id, len, pitch, fmt, smp1, opt1, ...)

FUNCTION
This function can be used to mix one or more existing samples into a new sample. The
new sample will be added to Hollywood’s sample list and can be accessed by the specified
id. If you pass Nil in id, MixSample() will automatically select an identifier and return it
to you. The second argument len specifies the desired length of the new sample in PCM
frames. The third argument pitch specifies how many frames per second should be sent
to the audio device. For CD quality, you would pass 44100 as the pitch argument but
in many cases 22050 is also sufficient. The fmt argument specifies the desired sample
format for the new sample. Currently, the following formats are supported: #MONO8,
#STEREO8, #MONO16, and #STEREO16. The former two specify 8-bit PCM encodings while
the latter two use 16-bits per channel.

The samples that should be mixed into the new sample are passed to MixSample() from
argument 5 onwards. For each sample that should be mixed into the new sample you
have to pass its identifier as well as a table that contains further parameters for the
mixing operation. You can repeat this pattern as many times as you like. The options
table that has to be passed for each sample supports the following tags:

Pitch: Specifies the frequency that should be used when mixing this sample. This
tag defaults to the sample’s current frequency defined using SetPitch().

Offset: Specifies the offset inside the sample from which PCM data should be fetched
for mixing. This must be specified in PCM frames. This tag defaults to 0
which means start fetching data from the beginning.

Length: Specifies the maximum number of PCM frames that should be mixed. De-
faults to -1 which means mix as many frames as available into the new
sample.

Loop: Specifies whether or not the mixer should continue to fetch PCM data at
the beginning of the sample once its end has been reached. This defaults to
True which means the mixer will automatically revert to the beginning of
the sample if its end has been reached and more PCM data is required.

Scale: Specifies a scaling factor that should be applied to the mixing operation.
If you are mixing many samples together, you are likely to get some noise
artefacts you do not want. You can reduce these artefacts by reducing the
volume level. This can be achieved using this tag. Every PCM frame will

Chapter 49: Sound library 993

be multiplied with the scaling factor you pass here. Thus, to reduce the
volume by 50%, simply pass 0.5 here. This tag defaults to 1.0 which means
no scaling should be applied.

Threshold:

This tag allows you to specify a threshold at which this sample should be
mixed into the destination sample. For example, if you would like this sample
to kick in after 10,000 PCM frames have been mixed, you would specify
10000 here. The value specified here must be passed in PCM frames. This
tag defaults to 0 which means that this sample should be mixed into the
destination sample right from the start.

This function is powerful. It will perform automatic conversion between different sample
encodings, sampling rates, and channel layouts. Also, you can mix as many samples into
the new sample as you like. The samples to be mixed can also be the same, i.e. you
can mix the same sample into the new samples multiple times using different mixing
parameters like varying pitch speed or thresholds. If you get unwanted noise artefacts,
try reducing the volume of single samples using the Scale tag (see above).

INPUTS

id identifier for the new sample or Nil for auto selection

len desired length for the new sample in PCM frames

pitch desired playback frequency for the new sample

fmt desired format for the new sample

smp1 first sample to mix

opt1 options table for first sample to mix

... optional: you can repeat the id/options sequence as often as you want so
you can mix as many samples together as you like

RESULTS

id optional: identifier of new sample; this is only used if Nil is passed in the
first argument

EXAMPLE
MixSample(1, 10 * 44100, 44100, #STEREO16, 2, {}, 3,

{Threshold = 3 * 44100}, 4, {6 * 44100})

The code above creates a new sample in 44.1 format, using 16 bits per PCM frame and
two channels. The sample’s length will be exactly 10 seconds. The sample will start
with sample 2. After three seconds sample 3 will kick in and after six seconds sample 4
will start to play.

49.28 MUSIC

NAME
MUSIC – preload a music file for later use (V2.0)

994 Hollywood manual

SYNOPSIS
@MUSIC id, filename$[, table]

FUNCTION
Use this preprocessor command to preload a music object which you want to play later
using PlayMusic(). The music file can be in any format supported by Hollywood.
Please have a look at the OpenMusic() documentation for information on supported
music formats. If the music file is in a streaming format, this preprocessor command will
only initialize the music object for later playback. It will not load large music objects
completely into memory but they will be played as a sound stream buffered from disk.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Link: Set this field to False if you do not want to have this music file linked to
your executable/applet when you compile your script. This field defaults to
True which means that the music file is linked to your executable/applet
when Hollywood is in compile mode.

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this music file. This must be set to a string contain-
ing the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Music formats that are supported on all platforms are RIFF WAVE, IFF 8SVX, IFF
16SV, Protracker modules, and formats you have a plugin for. Depending on the platform
Hollywood is running on, more music formats might be supported. For example, on
Windows, Hollywood supports all formats that DirectShow can load, and on macOS, all
formats recognized by Apple’s AudioFile interface are supported.

If you want to open the music file manually, please use the OpenMusic() command.

INPUTS

id a value that is used to identify this music object later in the code

filename$

the file you want to have loaded

table optional: a table configuring further options (see above)

Chapter 49: Sound library 995

EXAMPLE
@MUSIC 1, "TurricanII_Remix.mod"

The code above opens "TurricanII Remix.mod" so that it can be played later using
PlayMusic().

49.29 OpenAudio

NAME
OpenAudio – open audio hardware (V8.0)

SYNOPSIS
OpenAudio()

FUNCTION
This function can be used to open the audio hardware. It is normally not necessary to
call this command because Hollywood will automatically open the audio hardware as
soon as it needs it. On AmigaOS and compatibles, however, there are situations where
you might need fine-tuned control over the audio hardware, for example because another
program tries to get exclusive access to the audio hardware, which means that your
script has to release it first. In those situations you might want to call OpenAudio() and
CloseAudio() manually. Apart from that particular situation, there is no need to call
these functions at all.

INPUTS
none

EXAMPLE
OpenAudio()

OpenMusic(1, "Turrican2_Remix.mod")

PlayMusic(1)

WaitLeftMouse

StopMusic(1)

CloseAudio()

The code above plays "Turrican2 Remix.mod" and then closes the audio hardware, mak-
ing it possible for other programs on AmigaOS aiming for exclusive audio hardware access
to reserve it.

49.30 OpenMusic

NAME
OpenMusic – open a music file (V2.0)

SYNOPSIS
[id] = OpenMusic(id, filename$[, table])

FUNCTION
This function opens the music file specified by filename$ and assigns the id to it. If you
pass Nil in id, OpenMusic() will automatically choose an identifier and return it. The

996 Hollywood manual

file specified in filename$ will be opened and prepared for playback. Please note that
files opened using OpenMusic() will be played using audio streaming. LoadSample()

on the other hand, will load the entire sound file into memory first. Thus, you should
use LoadSample() for playing short sounds and OpenMusic() for longer sounds and
background music.

Music formats that are supported on all platforms are RIFF WAVE, IFF 8SVX, IFF
16SV, Protracker modules, and formats you have a plugin for. Depending on the platform
Hollywood is running on, more music formats might be supported. For example, on
Windows, Hollywood supports all formats that DirectShow can load, and on macOS, all
formats recognized by Apple’s AudioFile interface are supported.

Starting with Hollywood 6.0, this function accepts an optional table argument which
allows you to pass additional parameters:

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this music file. This must be set to a string contain-
ing the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

This command is also available from the preprocessor: Use @MUSIC to preload music
objects!

INPUTS

id identifier for the music object or Nil for auto id selection

filename$

file to load

table optional: table configuring further options (see above) (V6.0)

RESULTS

id optional: identifier of the music object; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
OpenMusic(1, "Turrican2_Remix.mod")

PlayMusic(1)

The code above plays "Turrican2 Remix.mod".

Chapter 49: Sound library 997

49.31 PauseModule

NAME
PauseModule – pause the currently playing module / OBSOLETE

SYNOPSIS
PauseModule()

IMPORTANT NOTE
This command is obsolete. Please use PauseMusic() instead.

FUNCTION
This function pauses the currently playing module. It can be resumed with the
ResumeModule().

INPUTS
none

49.32 PauseMusic

NAME
PauseMusic – pause a playing music (V2.0)

SYNOPSIS
PauseMusic(id)

FUNCTION
This function pauses the music object with the identifier id. This music object must
be playing when you call this command. You can resume the playback by using the
ResumeMusic() command.

INPUTS

id identifier of the music object to pause

49.33 PlayModule

NAME
PlayModule – start playing a music module / OBSOLETE

SYNOPSIS
PlayModule(number)

IMPORTANT NOTE
This command is obsolete. Please use PlayMusic() instead.

FUNCTION
Starts playing the music module with the number number. This music module must have
been loaded with LoadModule(). If there is already a music module playing, it will be
stopped automatically.

INPUTS

number number of the music module to start

998 Hollywood manual

EXAMPLE
LoadModule(1,"StardustMemories.mod")

PlayModule(1)

49.34 PlayMusic

NAME
PlayMusic – start playback of a music object (V2.0)

SYNOPSIS
PlayMusic(id[, table])

FUNCTION
This command starts the playback of the music object specified by id. This music
object must have been opened with either the @MUSIC preprocessor command or the
OpenMusic() command.

Please note that before Hollywood 6.0 only one music could be played at a time. Starting
with Hollywood 6.0 this limit is no longer there, but it is still enforced in order to be
compatible with older scripts. Thus, if a music object is already playing and you call this
command, that music will be stopped first before playback of the new music starts. If you
need to play multiple music objects at the same time, you will have to explicitly disable
this behaviour by calling LegacyControl() and setting the SingleMusic tag to False.
PlayMusic() will no longer stop any playing music. See Section 52.22 [LegacyControl],
page 1085, for details.

Prior to Hollywood 4.5, the second argument was optional and specified how many
times the music object should be played. Starting with Hollywood 4.5, the second
argument is now an optional table argument. Of course, the old syntax is still supported
for compatibility. New scripts should use the new syntax though. The optional table
argument recognizes the following tags:

Times: This tag can be used to specify how many times the music object shall be
played. This tag defaults to 1 which means that the music object is only
played once. If you want your music object to loop infinitely, pass 0 as the
second argument.

Volume: Set this to the desired playback volume. This field can range from 0 to 64. If
not specified, the music object’s default volume will be used (you can modify
the default volume of a music object by calling SetMusicVolume()).

Channel: Channel to use for playback of this music object. By default, PlayMusic()
will automatically choose a vacant channel and will fail if there is no vacant
channel. To override this behaviour, you can use this field. When specified,
it will always enforce playback on the very channel specified here. If the
channel is already playing, it will be stopped first. (V6.1)

INPUTS

id identifier of the music object to start

table optional: table argument specifying further options (V4.5)

Chapter 49: Sound library 999

EXAMPLE
See Section 49.30 [OpenMusic], page 995.

49.35 PlaySample

NAME
PlaySample – start playing a sample

SYNOPSIS
PlaySample(id[, table], ...)

FUNCTION
Starts playing the sample specified by id. You can load samples either using the
LoadSample() command or by using the @SAMPLE preprocessor command (the sample
will be preloaded then).

Starting with Hollywood 2.0, you can also pass a table as the second argument that
defines parameters for the sample playback. The table can contain the following fields:

Times: This field can be used to specify how many times the sample shall be played.
This defaults to 1 which means that the sample will be played once. If you
want the sample to loop infinitely, set Times to 0.

Volume: Set this to the desired playback volume. This field can range from 0 to 64.
If not specified, the sample’s default volume will be used (you can modify
the default volume of a sample by calling SetVolume()).

Pitch: Set this to the desired playback pitch. This value has to be passed in hertz.
If not specified, the sample’s default pitch will be used (you can modify the
default pitch of a sample by calling SetPitch()).

Time: This field can be used to define how long the sample shall be played. Holly-
wood will loop the sample until the given time has elapsed. Time must be
specified in milliseconds. This tag is mutually exclusive with the Times tag.

Panning: This field allows you to set the channel panning for this sample. This must be
in the range of 0 to 255. 0 means left speaker playback only, 128 means both
speakers, and 255 means right speaker only. If not specified, the sample’s
default pan setting will be used (you can modify the default panning of a
sample by calling SetPanning()). (V4.5)

Channel: Channel to use for playback of this sample. By default, PlaySample() will
automatically choose a vacant channel and will fail if there is no vacant
channel. To override this behaviour, you can use this field. When specified,
it will always enforce playback on the very channel specified here. If the
channel is already playing, it will be stopped first. (V6.1)

Also new in Hollywood 2.0 is the possibility to play multiple samples at once with one
call to PlaySample(). Simply repeat the argument list as many times as you like and
PlaySample() will play all specified samples together - perfectly synchronized. Please
note that for each additional sample there is also an additional optional argument, that

1000 Hollywood manual

either specifies the number of times the sample shall be played or it is a table that
contains further attributes for the sample playback. See above for all possibilities.

INPUTS

id identifier of sample to play

table a table that contains playback parameters for the sample (V2.0)

... the argument list can be repeated as many times as you like; PlaySample()
will start all samples at the same time if you specify more than one

EXAMPLE
PlaySample(1)

The above code starts playing sample 1. The sample will not be looped.

PlaySample(1, {Time = 10000})

The code above plays sample 1 for exactly 10 seconds (= 10000 milliseconds).

PlaySample(1, {Times = 2}, 2, {Times = 4}, 3, {Time=5000})

The code above plays sample 1 two times, sample 2 four times and sample 3 is played
for 5 seconds. All three samples are started at once.

49.36 PlaySubsong

NAME
PlaySubsong – play subsong of music object

SYNOPSIS
PlaySubsong(number[, id, table])

FUNCTION
This command can be used to play the specified subsong of a music object. If you omit
the optional argument id the currently playing music is used.

The optional table argument can be used to specify further options. This table argument
supports the same fields like the PlayMusic() command. See Section 49.34 [PlayMusic],
page 998, for details.

Please note that only some music formats support subsongs. For example, old tracker
module formats can often contain multiple subsongs. If a Protracker module is used,
this command will jump to the specified song position.

INPUTS

number number of subsong to play

id optional: identifier of the music object to use (defaults to currently playing
music) (V5.3)

table optional: table argument specifying further options (V5.3)

Chapter 49: Sound library 1001

EXAMPLE
PlaySubsong(5, 1)

The above code starts playing Protracker module number 1, starting at song position 5.

49.37 ResumeModule

NAME
ResumeModule – resume the paused module / OBSOLETE

SYNOPSIS
ResumeModule()

IMPORTANT NOTE
This command is obsolete. Please use ResumeMusic() instead.

FUNCTION
This function resumes the currently paused module. It can be paused with the
PauseModule().

INPUTS
none

49.38 ResumeMusic

NAME
ResumeMusic – resume a paused music object (V2.0)

SYNOPSIS
ResumeMusic(id)

FUNCTION
This function resumes the playback of the paused music object with the identifier id.
You can pause the playback of a music object with the PauseMusic().

INPUTS

id identifier of the music object to be resumed

49.39 SAMPLE

NAME
SAMPLE – preload a sound sample for later use (V2.0)

SYNOPSIS
@SAMPLE id, filename$[, table]

FUNCTION
Use this preprocessor command to preload a sound sample which you want to play later
using PlaySample().

1002 Hollywood manual

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Link: Set this field to False if you do not want to have this sample linked to
your executable/applet when you compile your script. This field defaults to
True which means that the sample is linked to your executable/applet when
Hollywood is in compile mode.

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this sample. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Sample formats that are supported on all platforms are RIFF WAVE, IFF 8SVX, IFF
16SV, and sample formats you have a plugin for. Depending on the platform Hollywood
is running on, more sample formats might be supported. For example, on Amiga com-
patible systems Hollywood will be able to open all sample formats you have datatypes
for as well.

If you want to load the sample manually, please use the LoadSample() command.

INPUTS

id a value that is used to identify this sample later in the code

filename$

the sound sample you want to have loaded

table optional: a table configuring further options (see above)

EXAMPLE
@SAMPLE 1, "Gunshot.8svx"

The above declaration assigns sample number 5 to the sample "Gunshot.8svx".

@SAMPLE 1, "Sound/Samples/Gunshot.wav", {Link=False}

Does the same as above but the sample will not be linked when the script is compiled.

Chapter 49: Sound library 1003

49.40 SaveSample

NAME
SaveSample – save sample to disk (V5.0)

SYNOPSIS
SaveSample(id, f$[, fmt, t])

FUNCTION
This command saves the sample specified in id to the file specified in f$. The optional
argument fmt specifies the format in which the sample should be exported. Currently,
only #SMPFMT_WAVE is supported here. This will save the sample in the RIFF WAVE
format.

Starting with Hollywood 10.0, SaveSample() accepts an optional table argument that
allows you to pass additional arguments to the function. The following tags are currently
supported by the optional table argument:

Adapter: This tag allows you to specify one or more file adapters that should be asked
if they want to save the specified file. If you use this tag, you must set it
to a string containing the name(s) of one or more adapter(s). Defaults to
the adapter set using SetDefaultAdapter(). See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

INPUTS

id identifier of sample to save

f$ path to save location

fmt optional: format in which to export the sample (defaults to #SMPFMT_WAVE)

t optional: table containing further options (see above) (V10.0)

EXAMPLE
@SAMPLE 1, "ouch.8svx"

SaveSample(1, "ouch.wav")

The code above loads a sample in the IFF 8SVX format and saves it as a RIFF WAVE
sample.

49.41 SeekMusic

NAME
SeekMusic – seek to a certain position in a music object (V2.0)

SYNOPSIS
SeekMusic(id, pos)

1004 Hollywood manual

FUNCTION
You can use this function to seek to the specified position in the music specified by id.
The music object does not have to be playing. If the music is playing and you call
SeekMusic(), it will immediately skip to the specified position. The position is specified
in milliseconds. Thus, if you want to skip to the position 3:24, you would have to pass
the value 204000 because 3 * 60 * 1000 + 24 * 1000 = 204000.

Please note that this function does not work with Protracker modules.

INPUTS

id identifier of the music object to use

pos new position for the music

49.42 SetChannelVolume

NAME
SetChannelVolume – set channel volume (V6.1)

SYNOPSIS
SetChannelVolume(n, volume)

FUNCTION
This function modifies the volume of the channel specified by n. Channel indices range
from 1 to the number of channels. volume can be a number ranging from 0 (mute) to
64 (full) or a string containing a percent specification, e.g. "50%".

INPUTS

n channel index

volume new volume for the channel

49.43 SetMasterVolume

NAME
SetMasterVolume – set the master volume (V1.5)

SYNOPSIS
SetMasterVolume(vol)

FUNCTION
Please note: This command is somewhat obsolete and subject to removal. You should
better use SetVolume() for samples and SetMusicVolume() for music files/Protracker
modules.

This function sets the master volume to the specified value vol. Using this command
you can realise sound fade outs or ins.

Starting with Hollywood 2.0, vol can also be a string containing a percent specification,
e.g. "50%".

Chapter 49: Sound library 1005

INPUTS

vol new master volume (range 0 to 64 or percent specification)

EXAMPLE
For k = 64 To 0 Step -5

SetMasterVolume(k)

Next

The code above fades out all playing sounds by modifying the master volume.

49.44 SetMusicVolume

NAME
SetMusicVolume – modify volume of a music object (V2.0)

SYNOPSIS
SetMusicVolume(id, volume)

FUNCTION
This function modifies the volume of the music object specified by id. If the music object
is currently playing, the volume will be modified on-the-fly which can be used for sound
fades etc.

Starting with Hollywood 2.0, volume can also be a string containing a percent specifica-
tion, e.g. "50%".

INPUTS

id identifier of the music object

volume new volume for the music object (range: 0=mute until 64=full volume or
percent specification)

49.45 SetPanning

NAME
SetPanning – set sample panning (V1.9)

SYNOPSIS
SetPanning(id, pan)

FUNCTION
This function allows you to specify where the sample with the identifier id shall be
played. The parameter pan ranges from 0 to 255 where 0 means that the sample will
only be played through the left speaker and 255 means that the sample will only be
played through the right speaker. If you want to play the sample through both speakers
at the same level, use 128 which is also the default.

You can also specify the special constances #LEFT, #CENTER, and #RIGHT which corre-
spond to 0, 128, and 255, respectively.

If the sample is currently playing, the panning will be modified on-the-fly which can be
used for some nice effects.

1006 Hollywood manual

INPUTS

id identifier of the sample to use

pan new pan value (ranges from 0 to 255)

EXAMPLE
SetPanning(1, 255)

PlaySample(1)

The code above will play the sample only through the right speaker.

49.46 SetPitch

NAME
SetPitch – modify pitch of a sample

SYNOPSIS
SetPitch(id,pitch)

FUNCTION
This function modifies the pitch of the sample specified by id. If the sample is currently
playing, the pitch is modified on-the-fly which can be used for some nice sound effects.
Pitch is specified in hertz.

INPUTS

id identifier of a sample

pitch new pitch for the sample in hertz

49.47 SetVolume

NAME
SetVolume – modify volume of a sample

SYNOPSIS
SetVolume(id,volume)

FUNCTION
This function modifies the volume of the sample specified by id. If the sample is currently
playing, the volume will be modified on-the-fly which can be used for sound fades etc.

Starting with Hollywood 2.0, volume can also be a string containing a percent specifica-
tion, e.g. "50%".

INPUTS

id identifier of a sample

volume new volume for the sample (range: 0=mute until 64=full volume or percent
specification)

EXAMPLE
LoadSample(1, "Sound/Samples/GroovyLoop.wav")

Chapter 49: Sound library 1007

PlaySample(1)

Wait(100)

For k = 64 To 0 Step -1

SetVolume(1,vol)

Next

The above code loads the sample "Sound/Samples/GroovyLoop.wav", plays it, waits 2
seconds and then does a fade out.

49.48 StopChannel

NAME
StopChannel – stop channel playback (V6.1)

SYNOPSIS
StopChannel(n)

FUNCTION
Stops playback on the channel specified by n. Channel indices range from 1 to the
number of available channels.

INPUTS

n index of channel to stop

49.49 StopModule

NAME
StopModule – stop the currently playing module / OBSOLETE

SYNOPSIS
StopModule()

IMPORTANT NOTE
This command is obsolete. Please use StopMusic() instead.

FUNCTION
Stops the module that is currently playing and frees all used audio channels.

INPUTS
none

49.50 StopMusic

NAME
StopMusic – stop a currently playing music (V2.0)

SYNOPSIS
StopMusic(id)

1008 Hollywood manual

FUNCTION
This function stops the music object specified by id. This won’t fail if the specified
music isn’t currently playing.

INPUTS

id identifier of the music object to be stopped

49.51 StopSample

NAME
StopSample – stop playing a sample

SYNOPSIS
StopSample(id)

FUNCTION
Stops playback of the sample with the specified id. This won’t fail if the specified sample
isn’t currently playing.

INPUTS

id identifier of sample to stop

49.52 WaitMusicEnd

NAME
WaitMusicEnd – halt until music has finished playing (V10.0)

SYNOPSIS
WaitMusicEnd(id)

FUNCTION
This function halts the script execution until the music specified by id has finished
playing. After that, the execution of your script is continued. If you need to do something
while your music is playing, use the IsMusicPlaying() command in conjunction with a
loop.

INPUTS

id identifier of a music that is currently playing

49.53 WaitPatternPosition

NAME
WaitPatternPosition – halt program until module reaches pattern position

SYNOPSIS
WaitPatternPosition(pos)

Chapter 49: Sound library 1009

FUNCTION
This function halts the program flow until the currently playing module reaches the spec-
ified pattern position pos. You have to call PlayModule() before using this command.
This is useful for timing your applications with the music.

INPUTS

pos pattern position to wait for

EXAMPLE
PlayModule(1)

WaitPatternPosition(63)

The above code starts playing module number 1 and waits then for reaching the end of
the first pattern.

49.54 WaitSampleEnd

NAME
WaitSampleEnd – halt until sample has finished playing

SYNOPSIS
WaitSampleEnd(id)

FUNCTION
This function halts the program flow until the sample specified by id has finished playing.
After that, the execution of your script is continued. If you need to do something while
your sample is playing, use the IsSamplePlaying() command in conjunction with a
loop.

INPUTS

id identifier of a sample that is currently playing

EXAMPLE
See Section 49.26 [LoadSample], page 990.

49.55 WaitSongPosition

NAME
WaitSongPosition – halt program until module reaches song position

SYNOPSIS
WaitSongPosition(pos)

FUNCTION
This function halts the program flow until the currently playing module reaches the
specified song position pos. You have to call PlayModule() before using this command.
This is useful for timing your applications with the music.

INPUTS

pos song position to wait for

1010 Hollywood manual

EXAMPLE
PlayModule(1)

WaitSongPosition(2)

The above code starts playing module number 1 and waits then for song position 2.

1011

50 Sprite library

50.1 Overview

Sprites are elementary parts of many applications. They can be used for many different
purposes and Hollywood is very flexible with them because they are implemented fully in
software. Thus, there are no restrictions on sprite size, colors, transparency and so on.
Traditionally, sprites are used for player and enemy graphics in games but they also come
handy in many other situations.

Generally spoken, sprites have three distinctive attributes which distinguishes them from
brushes:

1. Sprites are always on the front of the display.

2. Every sprite can only be once on the screen.

3. A Sprite can have multiple frames.

A more detailed explanation of sprite features follows below.

1. Sprites are always on the front of the display. Look at the following code:

LoadBrush(1, "test.iff")

LoadSprite(1, "test2.iff")

DisplaySprite(1, 0, 0)

DisplayBrush(1, 0, 0)

You see that we load two images: Brush 1 and sprite 1. Now we draw sprite 1 and
after that we draw brush 1. Normally, brush 1 should be drawn over sprite 1 because
it DisplayBrush() is called after DisplaySprite(). Sprites, however, are always on
the front of the display and that is why in this special case, brush 1 is drawn behind
sprite 1.

This applies to all normal graphics commands of Hollywood: You can never draw
graphics over a sprite! Sprites are always on the front and normal functions, i.e. non-
sprite functions, can never paint sprites over. You can only draw sprites over with new
sprites.

2. Every sprite can only be on the screen once. Look at the following code:

LoadSprite(1, "test.iff")

DisplaySprite(1, 0, 0)

DisplaySprite(1, 100, 100)

You see that we display sprite 1 two times. First, it is displayed at 0:0 and second, it is
displayed at 100:100. Because every sprite can only be on the screen once, the second
call to DisplaySprite() will not draw sprite 1 again but move it from 0:0 to 100:100
instead. DisplaySprite() checks if sprite 1 is on the screen, and if it is, it is picked
up and moved to the new position. Thus, you can easily move your sprites around on
the screen.

3. A sprite can have multiple frames. Because sprites are often used for animation,
each sprite can carry multiple frames just like a Hollywood animation object. The
DisplaySprite() command accepts an optional argument which allows you to specify
which frame it shall show.

1012 Hollywood manual

Additional information on the sprite implementation in Hollywood:

− Sprites are tied to clip regions: When you display a sprite for the first time, it will be
tied to the clip region that is currently active. The sprite will stay in that clip region
even if you deactivate the clip region later. To let a sprite out of a clip region, you can
either free the whole clip region using FreeClipRegion() or remove the sprite using
RemoveSprite() and then display it again when no clip region is active.

− If you display a new background picture, all sprites on the old background picture are
automatically removed.

− Sprites can only be drawn to your display. You cannot draw sprites to brushes, masks
or alpha channels.

− Layers cannot be used together with sprites. These two concepts don’t go together.

− The doublebuffering functions cannot be used together with sprites. If you use a
doublebuffer, you normally do not need sprites anyway.

50.2 CopySprite

NAME
CopySprite – clone a sprite (V2.0)

SYNOPSIS
[id] = CopySprite(source, dest)

FUNCTION
This function clones the sprite specified by source and creates a copy of it as sprite
dest. If you specify Nil in the dest argument, this function will choose an identifier for
the new sprite automatically and return it to you. The new sprite is independent from
the old sprite so you could free the source sprite after it has been cloned.

If you just want to have a new sprite with the same graphics as your old sprite, you should
use CreateSprite() instead; it can create sprite links which are very memory-friendly,
i.e. they consume very little memory and thus should be preferred to CopySprite()

whenever possible.

INPUTS

source source sprite id

dest id for the sprite to be created or Nil for auto ID select

RESULTS

id optional: identifier of the cloned sprite; will only be returned when you pass
Nil as argument 2 (see above)

50.3 CreateSprite

NAME
CreateSprite – create a sprite (V2.0)

SYNOPSIS
[id] = CreateSprite(id, type, ...)

Chapter 50: Sprite library 1013

[id] = CreateSprite(id, #ANIM, source_id)

[id] = CreateSprite(id, #BRUSH, source_id[, width, height, frames,

fr_per_row, sourcex, sourcey])

[id] = CreateSprite(id, #SPRITE, source_id1, source_id2, ...)

[id] = CreateSprite(id, #TEXTOBJECT, source_id)

FUNCTION
This function creates a new sprite from the specified source. The sprite source can be
an animation, a brush, a sprite or a text object. The new sprite will be stored under the
specified id. If you specify Nil in the id argument, this function will choose an identifier
for the new sprite automatically and return it to you. The arguments of CreateSprite()
depend on what source type you specify.

If type is #ANIM, simply pass the identifier of the animation object to use in argument 3.

If type is #BRUSH, you have to specify the identifier of the source brush in argument 3.
You can also make CreateSprite() extract several frames out of a brush. If you want
that, you will have to pass at least the arguments width, height and frames. Width

and height define the dimensions for the sprite to be created and frames specifies how
many frames CreateSprite() shall read from the source brush. If the frames are aligned
in multiple rows in the source brush, you will also have to pass the argument fr_per_
row to tell CreateSprite() how many frames there are in every row. Finally, you
can tell CreateSprite() where in the brush it should start scanning by specifying the
arguments sourcex and sourcey (they both default to 0). CreateSprite() will then
start off at position sourcex and sourcey and read frames number of images with the
dimensions of width by height from the brush specified in source_id. After it has read
fr_per_row images, it will advance to the next row. If you specify only three arguments,
CreateSprite() will simply convert the brush specified in source_id to a sprite.

If type is #SPRITE, CreateSprite() will create a new sprite from an unlimited number
of source sprites. You can specify as many source sprites as you want. Of course, each of
the source sprites can also have multiple frames. When using #SPRITE, CreateSprite()
will never copy the graphics data of the specified source sprites. For performance reasons,
the source sprites will only be referenced and thus your new sprite will depend on them.
By using only references to existing sprites, CreateSprite() executes very fast and
with very low memory footprint. This is very convenient if you want to create various
different animation sequences from always the same source sprites. Please note though
that because sprites created using #SPRITE source type depend of their sub sprites, they
will automatically be freed if one of the sub sprites is freed. So you should not free the
sub sprites before you are done with the newly created sprite.

If type is #TEXTOBJECT, CreateSprite() will create a sprite from the specified text
object. You only have to pass the identifier of the source text object.

INPUTS

id identifier for the new sprite or Nil for auto ID select

type type of source object

... further arguments depend on the type specified (see above)

1014 Hollywood manual

RESULTS

id optional: identifier of the new sprite; will only be returned when you pass
Nil as argument 1 (see above)

50.4 DisplaySprite

NAME
DisplaySprite – display a sprite (V2.0)

SYNOPSIS
DisplaySprite(id, x, y[, frame])

FUNCTION
This function displays the sprite specified in id at the specified position. If the sprite is
already on the screen, it will be moved to the new position. The optional argument can
be used to specify which frame shall be displayed. If it is omitted, DisplaySprite()
will display the next frame of the sprite (if the sprite has multiple frames).

INPUTS

id identifier of the sprite to display

x desired x-position

y desired y-position

frame optional: frame to display (defaults to 0 which means show the next frame
of the sprite)

50.5 FlipSprite

NAME
FlipSprite – flip a sprite (V2.0)

SYNOPSIS
FlipSprite(id, xflip)

FUNCTION
This function flips (mirrors) the sprite specified by id. If xflip is set to True, the sprite
will be flipped in x-direction otherwise it will be flipped in y-direction.

This function can only be used on sprites that are not referenced by any other sprites.
It also cannot be used on sprite links created using CreateSprite() with source type
set to #SPRITE.

INPUTS

id sprite to flip

xflip True for horizontal (x) flip, False for vertical (y) flip

Chapter 50: Sprite library 1015

50.6 FreeSprite

NAME
FreeSprite – free a sprite (V2.0)

SYNOPSIS
FreeSprite(id)

FUNCTION
This function frees the memory occupied by sprite id. To reduce memory consumption,
you should free sprites when you do not need them any longer.

If the sprite is still on the screen and you call FreeSprite(), it will be removed before
it is freed.

INPUTS

id identifier of the sprite to be freed

50.7 LoadSprite

NAME
LoadSprite – load a sprite (V2.0)

SYNOPSIS
[id] = LoadSprite(id, filename$[, args])

FUNCTION
This function loads the sprite specified by filename$ into memory and assigns the
identifier id to it. If you pass Nil in id, LoadSprite() will automatically choose an
identifier and return it.

Supported image formats are PNG, JPEG, BMP, IFF ILBM, and some more depending
on the platform Hollywood is running on. Starting with Hollywood 4.5, LoadSprite()
can also open animation formats (IFF ANIM, GIF ANIM, uncompressed AVIs or AVIs
using Motion JPEG compression) and convert these animations into a sprite directly.

The optional argument args accepts a table which can contain further options for the
loading operation. The following fields can be set in the args table:

Transparency:

Here you can specify a color that shall appear transparent in the sprite. The
color you specify here will be masked out then.

LoadAlpha:

Set this field to True if the image contains an alpha channel that shall be
loaded.

X, Y, Width, Height, Frames, FPR:

This lot of fields can be used to fine-tune the loading operation. You can use
these fields to make LoadSprite() create a sprite with multiple frames from
a single picture. Width and Height define the dimensions for the sprite and
Frames specifies how many frames LoadSprite() shall read from the source
image. If the frames are aligned in multiple rows in the source image, you

1016 Hollywood manual

will also have to pass the argument FPR (stands for frames per row) to tell
LoadSprite() how many frames there are in each row. Finally, you can tell
LoadSprite() where in the image it should start scanning by specifying the
fields X and Y (they both default to 0). LoadSprite() will then start off at
position X and Y and read Frames number of images with the dimensions of
Width by Height from the picture specified by filename$. After it has read
FPR number of images, it will advance to the next row. All of these fields
can only be used if you specify an image file in filename$. If you specify
an anim file, they are ignored.

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this sprite. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

LoadTransparency:

If this tag is set to True, the monochrome transparency of the sprite will
be loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based sprite. If
you want to load the alphachannel of a sprite, set the LoadAlpha tag to
True. This tag defaults to False. (V6.0)

LoadPalette:

If this tag is set to True, Hollywood will load the sprite as a palette sprite.
This means that you can get and modify the sprite’s palette which is useful
for certain effects like color cycling. You can also make pens transparent
using the TransparentPen tag (see below) or the LoadTransparency tag
(see above). Palette sprites also have the advantage of requiring less memory
because 1 pixel just needs 1 byte of memory instead of 4 bytes for 32-bit
images. This tag defaults to False. (V9.0)

TransparentPen:

If the LoadPalette tag has been set to True (see above), the
TransparentPen tag can be used to define a pen that should be made
transparent. Pens are counted from 0. Alternatively, you can also set the
LoadTransparency tag to True to force Hollywood to use the transparent
pen that is stored in the file (if the file format supports the storage of
transparent pens). This tag defaults to #NOPEN. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Chapter 50: Sprite library 1017

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. A sprite cannot have a mask and an alpha channel!

This command is also available from the preprocessor: Use @SPRITE to preload sprites!

INPUTS

id identifier for the sprite or Nil for auto id selection

filename$

file to load

args optional: table that specifies further options for the loading operation

RESULTS

id optional: identifier of the sprite; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
LoadSprite(1, "MySprite.png", {Transparency = #RED})

This loads "MySprite.png" as sprite 1 with the color red being transparent.

LoadSprite(1, "PlayerSprites.png", {Width = 32, Height = 32,

Frames = 16, FPR = 8, Transparency = #BLACK})

The code above creates sprite 1 from the file "PlayerSprites.png". Sprite 1 will be of
the dimensions 32x32 and will contain 16 different frames. The single frames are aligned
with 8 frames per row in the image "PlayerSprites.png". Thus, LoadSprite() needs to
scan two rows to read the full 16 frames.

50.8 MoveSprite

NAME
MoveSprite – move a sprite from a to b (V2.0)

SYNOPSIS
MoveSprite(id, xa, ya, xb, yb[, table])

FUNCTION
This function moves (scrolls) the sprite specified by id softly from the location specified
by xa,ya to the location specified by xb,yb.

Further configuration options are possible using the optional argument table. You can
specify the move speed, special effect, and whether or not the move shall be asynchronous.
See Section 21.46 [MoveBrush], page 287, for more information on the optional table
argument. Besides the table elements mentioned in the MoveBrush() documentation,
MoveSprite() accepts one additional table element named AnimSpeed: The anim speed
value defines after how many draws the frame number should be increased; therefore a
higher number means a lower playback speed of the animation.

INPUTS

id identifier of the sprite to use

1018 Hollywood manual

xa source x position

ya source y position

xb destination x position

yb destination y position

table optional: further configuration options

EXAMPLE
MoveSprite(1, 100, 50, 0, 50, {Speed = 5, AnimSpeed = 4})

Moves the sprite 1 from 100:50 to 0:50 with move speed 5 and anim playback speed 4.

50.9 RemoveSprite

NAME
RemoveSprite – remove a sprite from the display (V2.0)

SYNOPSIS
RemoveSprite(id)

FUNCTION
This function removes the sprite specified by id from the display. Note that the sprite
will not be freed, so you can display it again at any time you like.

INPUTS

id identifier of the sprite to remove

50.10 RemoveSprites

NAME
RemoveSprites – remove all sprites from the display (V2.0)

SYNOPSIS
RemoveSprites([keep])

FUNCTION
This function will remove all sprites from the display. If you set the optional argument
keep to True, the sprites are still removed but will additionally be rendered as normal
graphics to the display. This means that you could now paint them over with other
graphics (e.g. a "Game Over" brush).

If keep is set to True, you will not see that this command does anything. That impression
is, however, wrong. The sprites are indeed removed but you do not see a difference
because they are immediately rendered as normal graphics to the display, so that you
can paint them over.

INPUTS

keep optional: True if the sprites shall be kept as normal graphics (defaults to
False)

Chapter 50: Sprite library 1019

50.11 ScaleSprite

NAME
ScaleSprite – scale a sprite (V2.0)

SYNOPSIS
ScaleSprite(id, width, height)

FUNCTION
This command scales the sprite specified by id to the specified width and height.

This function can only be used on sprites that are not referenced by any other sprites.
It also cannot be used on sprite links created using CreateSprite() with source type
set to #SPRITE.

Please note: You should always do scale operations with the original sprite. For instance,
if you scale sprite 1 to 12x8 and then scale it back to 640x480, you will get a messed
image. Therefore you should always keep the original brush and scale only copies of it.

You can also pass #KEEPASPRAT as either width or height. Hollywood will calculate the
size then automatically by taking the aspect-ratio of the sprite into account.

Alternatively, width and height can also be a string containing a percent specification,
e.g. "50%".

INPUTS

id identifier of the sprite to scale

width desired new width for the sprite

height desired new height for the sprite

50.12 SetSpriteZPos

NAME
SetSpriteZPos – change the z-position of a layer (V7.0)

SYNOPSIS
SetSpriteZPos(id, zpos)

FUNCTION
This command can be used to change a sprite’s z-position. The z-position of a sprite is
its position in the hierarchy of sprites. The first (i.e. backmost) sprite has a z-position of
1, the last (i.e. frontmost) sprite’s z-position is equal to the number of sprites currently
present. You need to pass the new desired z-position for the specified sprite to this
function. The sprite will then assume exactly this z-position, existing sprites that are on
or after this z-position will be shifted down. To move a sprite all the way to the front
(i.e. highest z-position), you can pass the special value 0 for the zpos argument. To
move a sprite all the way to the back, specify 1 in the zpos argument.

INPUTS

id identifier of the sprite whose z position shall be changed

zpos new z position for the sprite or 0 to move the sprite to the highest z position

1020 Hollywood manual

50.13 SPRITE

NAME
SPRITE – preload a sprite for later use (V2.0)

SYNOPSIS
@SPRITE id, filename$[, table]

FUNCTION
This preprocessor command preloads the sprite specified in filename$ and assigns the
identifier id to it.

Supported image formats are PNG, JPEG, BMP, IFF ILBM, and some more depending
on the platform Hollywood is running on. Starting with Hollywood 4.5, @SPRITE can
also open animation formats (IFF ANIM, GIF ANIM, uncompressed AVIs or AVIs using
Motion JPEG compression) and convert these animations into a sprite directly.

The third argument is optional. It is a table that can be used to set further options for
the loading operation. The following fields of the table can be used:

Transparency:

This field can be used to specify a color in RGB notation that shall be made
transparent in the sprite.

LoadAlpha:

Set this field to True if the alpha channel of the image shall be loaded,
too. Please note that not all pictures have an alpha channel and that not
all picture formats are capable of storing alpha channel information. It is
suggested that you use the PNG format if you need alpha channel data. This
field defaults to False.

Link: Set this field to False if you do not want to have this sprite linked to your
executable/applet when you compile your script. This field defaults to True

which means that the sprite is linked to your to your executable/applet when
Hollywood is in compile mode.

X, Y, Width, Height, Frames, FPR:

This lot of fields can be used to fine-tune the loading operation. You can
use these fields to make @SPRITE create a sprite with multiple frames from
a single picture. Width and Height define the dimensions for the sprite and
Frames specifies how many frames @SPRITE shall read from the source image.
If the frames are aligned in multiple rows in the source image, you will also
have to pass the argument FPR (stands for frames per row) to tell @SPRITE
how many frames there are in each row. Finally, you can tell @SPRITE where
in the image it should start scanning by specifying the fields X and Y (they
both default to 0). @SPRITE will then start off at position X and Y and read
Frames number of images with the dimensions of Width by Height from the
picture specified by filename$. After it has read FPR number of images,
it will advance to the next row. All of these fields can only be used if you
specify an image file in filename$. If you specify an anim file, they are
ignored.

Chapter 50: Sprite library 1021

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this sprite. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

LoadTransparency:

If this tag is set to True, the monochrome transparency of the image will
be loaded. Please note that this tag is specifically designed for monochrome
transparency channels, i.e. a transparent pen in a palette-based image. If
you want to load the alphachannel of an image, set the LoadAlpha tag to
True. This tag defaults to False. (V6.0)

LoadPalette:

If this tag is set to True, Hollywood will load the sprite as a palette sprite.
This means that you can get and modify the sprite’s palette which is useful
for certain effects like color cycling. You can also make pens transparent
using the TransparentPen tag (see below) or the LoadTransparency tag
(see above). Palette sprites also have the advantage of requiring less memory
because 1 pixel just needs 1 byte of memory instead of 4 bytes for 32-bit
images. This tag defaults to False. (V9.0)

TransparentPen:

If the LoadPalette tag has been set to True (see above), the
TransparentPen tag can be used to define a pen that should be made
transparent. Pens are counted from 0. Alternatively, you can also set the
LoadTransparency tag to True to force Hollywood to use the transparent
pen that is stored in the file (if the file format supports the storage of
transparent pens). This tag defaults to #NOPEN. (V9.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

Please note that the Transparency, LoadTransparency and LoadAlpha fields are mu-
tually exclusive. A sprite can only have one transparency setting!

If you want to load sprites manually, please use the LoadSprite() command.

INPUTS

id a value that is used to identify this sprite later in the code

filename$

the picture file you want to load

1022 Hollywood manual

table optional argument specifying further options

EXAMPLE
@SPRITE 1, "MySprite.png", {Transparency = #RED}

This loads "MySprite.png" as sprite 1 with the color red being transparent.

@SPRITE 1, "PlayerSprites.png", {Width = 32, Height = 32,

Frames = 16, FPR = 8, Transparency = #BLACK}

The code above creates sprite 1 from the file "PlayerSprites.png". Sprite 1 will be of
the dimensions 32x32 and will contain 16 different frames. The single frames are aligned
with 8 frames per row in the image "PlayerSprites.png". Thus, @SPRITE needs to scan
two rows to read the full 16 frames.

1023

51 String library

51.1 AddStr

NAME
AddStr – append substring to a string

SYNOPSIS
var$ = AddStr(string1$, string2$)

FUNCTION
Appends string2$ to string1$ and returns the new string.

This function is obsolete and only here for compatibility reasons. Starting with Hol-
lywood 2.0 you should use the string concatenation operator .. for concatenating two
strings.

INPUTS

string1$ source string

string2$ string to append

RESULTS

var$ resulting string

EXAMPLE
test$ = AddStr("Hello", " World!")

Print(test$)

This will print "Hello World!"

51.2 ArrayToStr

NAME
ArrayToStr – convert code point array to string (V6.0)

SYNOPSIS
s$ = ArrayToStr(t[, encoding])

FUNCTION
This function reads all code points contained in the table t, appends them to a string
and returns this string. ArrayToStr() will stop reading values from t once it encounters
a code point of 0 (string terminator) or the end of the table.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

To convert strings into arrays, you can use the function StrToArray(). See Section 51.58
[StrToArray], page 1062, for details.

INPUTS

t a table containing an arbitrary number of code points

1024 Hollywood manual

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

s$ string made up of the code points in the table

EXAMPLE
s$ = ArrayToStr({’H’, ’e’, ’l’, ’l’, ’o’})

DebugPrint(s$)

Prints "Hello".

51.3 Asc

NAME
Asc – return code point of character in string

SYNOPSIS
var = Asc(string$[, pos, encoding])

FUNCTION
Returns the code point value of the character at index pos in string$. The pos index
must be in characters, not in bytes. If the pos argument is omitted, the code point of
the first character will be returned.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

If you want to work with raw bytes instead of code points, you can either set the encoding
parameter to #ENCODING_RAW or use the ByteAsc() function. See Section 51.6 [ByteAsc],
page 1026, for details.

INPUTS

string$ input string

pos optional: index of character whose code point should be returned (defaults
to 0) (V7.0)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var code point value

EXAMPLE
result = Asc("A")

Print(result)

This will print "65" which is the code point value of "A".

Chapter 51: String library 1025

51.4 Base64Str

NAME
Base64Str – encode or decode Base64 data (V6.0)

SYNOPSIS
data$ = Base64Str(s$, decode)

FUNCTION
This function can be used to encode arbitrary data into the Base64 format or decode a
Base64 formatted string back into its original binary data. The second argument specifies
whether this function should encode or decode the data.

INPUTS

s$ data to encode or decode

decode True to decode Base64 data, False to encode the specified data into Base64

RESULTS

data$ encoded or decoded data

51.5 BinStr

NAME
BinStr – convert value to a binary formatted string (V2.0)

SYNOPSIS
bin$ = BinStr(val[, length])

FUNCTION
This function converts the value specified by val into binary format (base 2) and returns
it as a string. The optional argument length allows you to specify how many bits shall
be put into the string. This can be #INTEGER for 32 bits, #SHORT for 16 bits, and #BYTE

for 8 bits. By default, #INTEGER will be used.

INPUTS

val value to convert

length optional: how many bits shall be converted (must be #INTEGER, #SHORT, or
#BYTE) (V3.0)

RESULTS

bin$ binary notation of val

EXAMPLE
a$ = BinStr(255, #BYTE)

This returns the string "11111111".

1026 Hollywood manual

51.6 ByteAsc

NAME
ByteAsc – get single byte from string (V7.1)

SYNOPSIS
v = ByteAsc(string$[, pos])

FUNCTION
Returns the value of the byte at the string index specified by pos. The return value v

will be in the range of 0 to 255.

Since Hollywood strings cannot only contain text but also raw binary data, this function
is suitable for accessing raw string bytes at specified indices. The normal Asc() function,
on the other hand, is more appropriate for dealing with text strings because it operates
in Unicode mode by default which means that the input string must be in valid UTF-8.

INPUTS

string$ input string

pos optional: index of byte to return (defaults to 0)

RESULTS

v string byte at specified index

51.7 ByteChr

NAME
ByteChr – convert single byte to string (V7.1)

SYNOPSIS
s$ = ByteChr(v)

FUNCTION
Converts the byte value specified by v into a string. v must be in the range of 0 to 255.

Since Hollywood strings cannot only contain text but also raw binary data, this func-
tion is suitable for composing strings using non-encoded byte data. The normal Chr()
function, on the other hand, is more appropriate for dealing with text strings because it
operates in Unicode mode by default which means that it composes UTF-8 strings by
default, i.e. passing 255 will result in a string that has two bytes because of the UTF-8
encoding rules.

INPUTS

v byte to convert into string (in the range of 0 to 255)

RESULTS

s$ resulting string

Chapter 51: String library 1027

51.8 ByteLen

NAME
ByteLen – return string length in bytes (V7.0)

SYNOPSIS
len = ByteLen(s$)

FUNCTION
This function returns the length of string s$ in bytes. If you need to know the string
length in characters, use StrLen() instead. See Section 51.56 [StrLen], page 1061, for
details.

In the UTF-8 character encoding a single character may need a storage space of up to
4 bytes. In the ISO 8859-1 character encoding there is no difference between byte and
character sizes.

INPUTS

s$ input string

RESULTS

len length of input string in bytes

EXAMPLE
len = ByteLen("äöü")

Print(len)

If Hollywood is in Unicode mode, this will return 6 because each of the characters needs
two bytes in the UTF-8 character encoding. In ISO 8859-1 mode, there is no difference
between characters and bytes which means the code above will return 3.

51.9 ByteOffset

NAME
ByteOffset – convert character to byte offset (V7.0)

SYNOPSIS
boff = ByteOffset(s$, coff[, encoding])

FUNCTION
This function returns the byte offset of the character at the offset specified by coff inside
string s$. This offset is in characters, starting from 0.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

In the UTF-8 character encoding a single character may need a storage space of up
to 4 bytes. In the ISO 8859-1 character encoding there is no difference between byte
and character sizes. Hence, it doesn’t really make sense to call this function with the
character encoding set to #ENCODING_ISO8859_1.

To convert a byte offset into a character offset use the CharOffset() function. See
Section 51.12 [CharOffset], page 1030, for details.

1028 Hollywood manual

INPUTS

s$ input string

coff character offset to be mapped to a byte offset (starting from 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

boff byte offset of the specified character

EXAMPLE
boff = ByteOffset("äöü", 2)

Print(boff)

If Hollywood is in Unicode mode, this will return 4 because the two characters before
the "ü" take up 2 bytes each in UTF-8 code space. In ISO 8859-1 there is no difference
between characters and bytes, so 2 will be returned in that case.

51.10 ByteStrStr

NAME
ByteStrStr – convert value to raw bytes (V8.0)

SYNOPSIS
r$ = ByteStrStr(v[, type, le])

FUNCTION
This function can be used to convert a numeric value to raw bytes that are returned as
a string. The number of bytes that will be written to the return string depend on the
type that you pass in the type argument. The following types are currently supported:

#BYTE: Stores an 8-bit value (1 byte) in the return string.

#SHORT: Stores a 16-bit value (2 bytes) in the return string.

#INTEGER:

Stores a 32-bit value (4 bytes) in the return string. This is the default.

#FLOAT: Stores a 32-bit floating point value (4 bytes) in the return string.

#DOUBLE: Stores a 64-bit floating point value (8 bytes) in the return string.

For all multi-byte types, i.e. all types except #BYTE, you can use the additional le
argument to specify the order in which the bytes should be stored in the return string. If
you set le to True, the bytes will be stored in little endian order (LSB first), otherwise
the bytes will be stored in big endian order (MSB first). Big endian is also the default.

If you need to convert raw bytes to a value, you can use the ByteVal() function. See
Section 51.11 [ByteVal], page 1029, for details.

INPUTS

v numeric value to convert to binary data

type optional: type of value to store in string (defaults to #INTEGER)

Chapter 51: String library 1029

le optional: whether or not to use little endian byte order (defaults to False)

RESULTS

r$ resulting string

51.11 ByteVal

NAME
ByteVal – convert raw bytes to value (V8.0)

SYNOPSIS
v = ByteVal(s$[, type, le])

FUNCTION
This function can be used to convert raw bytes from the string passed in s$ to a numeric
value. The number of bytes that will be read from the string s$ depend on the type that
you pass in the type argument. The following types are currently supported:

#BYTE: Reads an 8-bit value (1 byte) from the string and returns it.

#SHORT: Reads a 16-bit value (2 bytes) from the string and returns it.

#INTEGER:

Reads a 32-bit value (4 bytes) from the string and returns it. This is the
default.

#FLOAT: Reads a 32-bit floating point value (4 bytes) from the string and returns it.

#DOUBLE: Reads a 64-bit floating point value (8 bytes) from the string and returns it.

For all multi-byte types, i.e. all types except #BYTE, you can use the additional le
argument to specify the order in which the bytes should be read from s$. If you set le
to True, the bytes will be read in little endian order (LSB first), otherwise the bytes will
be read in big endian order (MSB first). Big endian is also the default.

Note that for all integer types the result will always be unsigned. You can use the
Cast() function if you need to cast the result to a signed type. See Section 37.12 [Cast],
page 763, for details.

If you need to convert a value to raw bytes, you can use the ByteStrStr() function. See
Section 51.10 [ByteStrStr], page 1028, for details.

INPUTS

s$ string to read data from

type optional: type of value to read (defaults to #INTEGER)

le optional: whether or not to use little endian byte order (defaults to False)

RESULTS

v resulting value

1030 Hollywood manual

51.12 CharOffset

NAME
CharOffset – convert byte to character offset (V7.0)

SYNOPSIS
coff = CharOffset(s$, boff[, encoding])

FUNCTION
This function returns the offset, in characters, of the character at the offset specified by
boff, in bytes and starting from 0, inside string s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

In the UTF-8 character encoding a single character may need a storage space of up
to 4 bytes. In the ISO 8859-1 character encoding there is no difference between byte
and character sizes. Hence, it doesn’t really make sense to call this function with the
character encoding set to #ENCODING_ISO8859_1.

To convert a character offset into a byte offset use the ByteOffset() function. See
Section 51.9 [ByteOffset], page 1027, for details.

INPUTS

s$ input string

boff byte offset to be mapped to a character offset (starting from 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

coff character offset of the specified character

EXAMPLE
coff = CharOffset("äöü", 2)

Print(coff)

If Hollywood is in Unicode mode, this will return 1 because the "ä" character takes up
2 bytes in UTF-8 code space. In ISO 8859-1 there is no difference between characters
and bytes, so 1 will be returned in that case.

51.13 CharWidth

NAME
CharWidth – return byte width of character (V7.0)

SYNOPSIS
w = CharWidth(s$[, pos, encoding])

FUNCTION
Calculates the byte width of the character at position pos inside s$. The position must
be specified in characters, not in bytes. The pos argument is optional and defaults to 0,
i.e. the beginning of the string, if omitted.

Chapter 51: String library 1031

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

In the UTF-8 character encoding a single character may need a storage space of up
to 4 bytes. In the ISO 8859-1 character encoding there is no difference between byte
and character sizes. Hence, it doesn’t really make sense to call this function with the
character encoding set to #ENCODING_ISO8859_1.

INPUTS

s$ input string

pos optional: index, in characters, of the character whose width should be cal-
culated

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

w byte width of character at the specified position

EXAMPLE
w = CharWidth("ä")

Print(w)

If Hollywood is in Unicode mode, this will return 2 because the "ä" character takes up
2 bytes in UTF-8 code space. In ISO 8859-1 there is no difference between characters
and bytes, so 1 will be returned in that case.

51.14 Chr

NAME
Chr – convert code point value to string

SYNOPSIS
var$ = Chr(value[, encoding])

FUNCTION
Converts the code point value specified in value into a string.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

If you want to work with raw bytes instead of code points, you can either set the encoding
parameter to #ENCODING_RAW or use the ByteChr() function. See Section 51.7 [ByteChr],
page 1026, for details.

INPUTS

value code point value

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

1032 Hollywood manual

RESULTS

var$ resulting string

EXAMPLE
test$ = Chr(65)

Print(test$)

This will print "A" to the screen because 65 is the code point value for "A", in both
ASCII and Unicode character encodings.

51.15 CompareStr

NAME
CompareStr – compare two strings (V7.0)

SYNOPSIS
r = CompareStr(s1$, s2$[, casesen, encoding])

FUNCTION
This function compares s1$ and s2$ and returns how the two strings are related. If
s1$ is lexically less than s2$, -1 is returned. If s1$ is lexically greater than s2$, 1 is
returned, otherwise, i.e. if the strings are equal, the return value is 0.

The optional argument casesen can be used to specify whether or not the strings should
be compared in a case-sensitive manner. This defaults to the global case sensitive default
mode set using IgnoreCase(). See Section 51.26 [IgnoreCase], page 1040, for details.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s1$ first string to compare

s2$ second string to compare

casesen optional: True for a case-sensitive comparison, otherwise FALSE; the default
is True or whatever default has been set using the IgnoreCase() command

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

r relation of the two strings

EXAMPLE
DebugPrint(CompareStr("z", "a"))

The code above prints 1 because "z" is lexically greater than "a".

Chapter 51: String library 1033

51.16 ConvertStr

NAME
ConvertStr – convert between character encodings (V7.0)

SYNOPSIS
c$ = ConvertStr(s$, inencoding, outencoding)

FUNCTION
Converts s$ from the character encoding specified by inencoding to the character en-
coding specified by outencoding and returns it. See Section 13.2 [Character encodings],
page 149, for a list of valid encodings.

INPUTS

s$ input string

inencoding

source character encoding

outencoding

destination character encoding

RESULTS

c$ converted string in new character encoding

51.17 CountStr

NAME
CountStr – count number of substring occurrences (V4.5)

SYNOPSIS
n = CountStr(s$, sub$[, casesen, startpos, encoding])

FUNCTION
This function counts the number of occurrences of sub$ inside s$. The optional argument
casesen specifies whether or not the strings shall be compared in a case sensitive manner.
Furthermore, you can use the startpos argument to specify an offset into s$ at which
CountStr() should start counting. This offset is in characters, not in bytes. Position 0
means the beginning of the string.

The casesen parameter defaults to the global case sensitive default mode set using
IgnoreCase(). See Section 51.26 [IgnoreCase], page 1040, for details.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

sub$ the string to search in s$

1034 Hollywood manual

casesen optional: set this to True if the case in s$ must match the case setting
in sub$; the default is True or whatever default has been set using the
IgnoreCase() command

startpos optional: character offset inside s$ to start the search (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

n number of occurrences of sub$ inside s$

EXAMPLE
ret = CountStr("What is that on your head? Is that a new hat? " ..

"You have not had that on our last chat!", "hat")

The above code should return 6 because "hat" occurs 6 times in the source string.

51.18 CRC32Str

NAME
CRC32Str – calculate CRC32 checksum of string (V5.0)

SYNOPSIS
sum = CRC32Str(s$)

FUNCTION
This function calculates the CRC32 checksum of the string specified in s$ and returns
it. Note that Hollywood strings can also contain binary data so that you can also use
this function with non-text strings.

If you want to compute the CRC32 checksum of a file, use the CRC32() function instead.

INPUTS

s$ string whose checksum you want to have calculated

RESULTS

sum CRC32 checksum of string

51.19 EmptyStr

NAME
EmptyStr – check if string is empty (V7.1)

SYNOPSIS
bool = EmptyStr(s$)

FUNCTION
This function returns True if the string is empty, i.e. if it contains only whitespace
characters. The following characters are whitespace characters: space, form-feed ("\f"),
newline ("\n"), carriage return ("\r"), horizontal tab ("\t"), and vertical tab ("\v").

Chapter 51: String library 1035

INPUTS

s$ input string

RESULTS

bool True if input string contains only whitespace characters

51.20 EndsWith

NAME
EndsWith – check if string ends on substring (V7.1)

SYNOPSIS
bool = EndsWith(s$, substr$[, casesen, encoding])

FUNCTION
This function can be used to check if s$ ends on the substring specified by substr$.
If it does, True is returned, False otherwise. If the optional argument casesen is set
to False, the strings do not have to match in case. casesen defaults to the global
case sensitive default mode set using IgnoreCase(). See Section 51.26 [IgnoreCase],
page 1040, for details.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ input string

substr$ string to compare against s$

casesen optional: whether or not a case sensitive comparison should be activated;
the default is True or whatever default has been set using the IgnoreCase()
command

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool boolean value indicating success or failure

51.21 Eval

NAME
Eval – evaluate string expression (V5.0)

SYNOPSIS
val = Eval(expr$[, table])

FUNCTION
Eval() evaluates the numeric expression passed to it in expr$ and returns its result
as a number. The string passed in expr$ can use all operators that are recognized

1036 Hollywood manual

by Hollywood except the string concatenation operator because this operator requires
a string while the Eval() function only works with numbers. You can also prioritize
certain subexpressions by using parentheses. The operators defined by Eval() use the
same priorities as in Hollywood itself. See Section 9.7 [Operator priorities], page 110, for
a list of all Hollywood operators and their priorities.

Numbers inside expr$ can be specified in decimal or hexadecimal format. If you use
hexadecimal format, you have to prefix the number using the $ dollar sign.

It is also possible to use variables in the expression. Your script variables, however,
are not automatically available to Eval(). To make your script variables available to
Eval(), you need to set the MapVariables tag in the optional table argument to True.
Alternatively, you can also choose to define private variables for Eval() by setting the
Variables tag in the optional table argument. If both script variables and private
variables are used, the private ones will take precedence.

Here is a list of all tags currently supported by the optional table argument:

Variables:

This tag can be used to pass an array of variables that you want your ex-
pression to be able to access to Eval(). You have to pass an array here
that consists of a number of Name and Value pairs. Name must contain the
desired name for the variable and Value must contain the value the variable
should be initialized to. The semantics of the variable name are the same as
in Hollywood, i.e. it is only allowed to use alphanumerical characters plus
the special characters "$", "!", and " ". The first character must not be a
number. See below for an example.

MapVariables:

If this tag is set to True, Eval() will also take normal Hollywood variables
into account when evaluating the expression. Note that the variables must
be numeric variables only and the ones declared in the Variables tag (see
above) will take precedence. Defaults to False. (V9.0)

NoDeclare:

If this tag is set to True, all undeclared variables in the expression will be
treated as 0. By default, Eval() will throw an error when trying to access
an undeclared variable. Defaults to False. (V9.0)

INPUTS

expr$ numeric expression to evaluate

table optional: table containing further arguments

RESULTS

val evaluation result

EXAMPLE
v = Eval("5*(6+1)")

The call above returns 35.

v = Eval("var1*(var2+1)", {Variables = {{Name = "var1", Value = 5},

Chapter 51: String library 1037

{Name = "var2", Value = 6}}})

The code above does the same as the first example but uses variables instead of direct
numbers.

var1 = 5

var2 = 6

v = Eval("var1*(var2+1)", {MapVariables = True})

The code above does the same as the first two examples but now maps the Hollywood
variables var1 and var2 to Eval()’s variable space.

51.22 FindStr

NAME
FindStr – find a substring in a string

SYNOPSIS
pos = FindStr(string$, substring$[, casesensitive, startpos, encoding])

FUNCTION
Searches for substring$ in string$ and returns the position of the substring. The po-
sition is returned in characters, not in bytes, starting at position 0 for the first character.
If substring$ cannot be found, -1 is returned. The optional argument casesensitive
allows you to specify if the search should be case sensitive. This defaults to the global
case sensitive default mode set using IgnoreCase(). See Section 51.26 [IgnoreCase],
page 1040, for details.

Starting with Hollywood 4.5, you can also specify a starting position for the search in
the optional argument startpos. This position needs to be specified in characters, not
in bytes. Specifying 0 as the starting position means start searching from the beginning
of the string. This is also the default.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

string$ string to search in

substring$

string to find in string$

casesensitive

True for a case sensitive search or False for a case insensitive search; the
default is True or whatever default has been set using the IgnoreCase()

command

startpos optional: starting position of the search operation in characters (defaults to
0) (V4.5)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

1038 Hollywood manual

RESULTS

pos position of substring$ in string$ in characters or -1 if not found

EXAMPLE
result = FindStr("Hello World!", "World")

Print(result)

This will print "6" which is the position of the first char "W".

51.23 FormatNumber

NAME
FormatNumber – convert number to string with digit separation (V10.0)

SYNOPSIS
s$ = FormatNumber(n[, decimals, point$, thousands$])

FUNCTION
This function converts the number specified by n to a string, separating the digits by
the thousands and clipping the decimal places to the number passed in the decimals

argument. You can also pass the character that should be used as a decimal separator in
point$ and the character that should be used as a thousands separator in thousands$.
This makes FormatNumber() suitable for locale-sensitive number formatting. You can
use the GetLocaleInfo() function to get the decimal point and thousand separator
character for the current locale. See Section 36.8 [GetLocaleInfo], page 744, for details.

INPUTS

n number to convert to string

decimals optional: number of decimal places to use (defaults to 0)

point$ optional: character to use as decimal point (defaults to ".")

thousands$

optional: character to use as thousands separator (defaults to ",")

RESULTS

s$ formatted string

EXAMPLE
t = GetLocaleInfo()

s$ = FormatNumber(1234567.89, 2, t.DecimalPoint, t.ThousandSeparator)

DebugPrint(s$)

The code above will convert 1234567.89 to a string using the current locale’s decimal
point and thousand separator.

Chapter 51: String library 1039

51.24 FormatStr

NAME
FormatStr – compose a C-style formatted string (V5.0)

SYNOPSIS
s$ = FormatStr(fmt$, ...)

FUNCTION
This function can be used to compose a C-style formatted string with Hollywood. You
have to pass the formatting template in the first argument and you have to pass one
additional argument for every token in the template. Hollywood supports most of the
tokens of C’s printf specification. Here is a list of all tokens that are currently supported:

%c ASCII character

%d Signed decimal integer

%i Same as %d

%o Unsigned octal integer

%u Unsigned decimal integer

%x Unsigned hexadecimal integer (lower case notation)

%X Unsigned hexadecimal integer (upper case notation)

%e Floating point number in exponential notation

%E Same as %e but in upper case exponential notation

%f Floating point number in normal notation

%g Floating point number in %e or %f format (whichever is more compact)

%G Same as %g but uses upper case if exponential notation is used

%s String

You can also specify a width field before the token to limit the number of characters that
the specific token should add to the string. For example, if you use the token %.6x, the
hexadecimal number generated by this function will always have 6 digits.

As the percent sign is used for tokens by this function, you need to escape it if you just
want to append a percent sign to the string. In that case simply use a double percent
sign (%%).

INPUTS

fmt$ formatting template containing one or more tokens (see above for supported
tokens)

... additional arguments (one for each token present in fmt$)

RESULTS

s$ resulting string

1040 Hollywood manual

EXAMPLE
a = 128

s$ = FormatStr("The number " .. a .. " is $%x in hexadecimal notation", a)

The code above converts the number 128 to hexadecimal notation.

a = 255

s$ = FormatStr("The number " .. a .. " is $%.6x in RGB notation", a)

The code above converts the number 255 into a 6 digit hexadecimal value which is often
used to specify RGB colors.

51.25 HexStr

NAME
HexStr – convert value to a hex string (V1.5)

SYNOPSIS
hex$ = HexStr(val)

FUNCTION
This function converts the value specified by val into hexadecimal digits and returns it
as a string. The returned string will be prefixed with a dollar sign ($) and all alphabetical
hexadecimal digits will be in upper case.

INPUTS

val value to convert

RESULTS

hex$ hexadecimal representation of val

EXAMPLE
a$ = HexStr(255)

This will return the string "$FF".

51.26 IgnoreCase

NAME
IgnoreCase – define default case sensitive setting (V9.0)

SYNOPSIS
IgnoreCase(casesen)

FUNCTION
This function allows you to specify whether functions like FindStr() and ReplaceStr()

should be case sensitive by default. If you set the casesen argument to True, those
functions will be case sensitive. If you set it to False, they won’t be case sensitive. By
default, they are case sensitive.

IgnoreCase() affects the following Hollywood functions:

− CompareStr()

Chapter 51: String library 1041

− CountStr()

− EndsWith()

− FindStr()

− ReplaceStr()

− ReverseFindStr()

− StartsWith()

INPUTS

casesen True if functions should case sensitive by default, False otherwise

51.27 InsertStr

NAME
InsertStr – insert substring into string with optional overwriting (V4.5)

SYNOPSIS
var$ = InsertStr(s$, sub$, pos[, overwrite, encoding])

FUNCTION
This function inserts sub$ into s$ at the position specified by pos (0 means beginning
of the string). The position needs to be specified in characters, not in bytes. If the
optional argument overwrite is set to True, sub$ will overwrite any characters that
were previously there on the insert position.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ string to insert sub$ into

sub$ substring to insert

pos position at which to insert sub$ in characters (0 means beginning)

overwrite

optional: whether the sub$ should overwrite characters in s$ or shift them
to the right (defaults to False which means no overwriting)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ resulting string

EXAMPLE
Print(InsertStr("Hollywood is a very cool program!", " very", 19))

The above code prints "Hollywood is a very very cool program!"

Print(InsertStr("Hollywood is a very cool program!", "good", 20, True))

The above code prints "Hollywood is a very good program!"

1042 Hollywood manual

51.28 IsAlNum

NAME
IsAlNum – check if character is alphanumeric (V7.0)

SYNOPSIS
bool = IsAlNum(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is either a decimal digit or an
upper or lower case letter and returns True if it is, otherwise False. The optional pos
parameter must be in characters, not in bytes. It defaults to 0 which will test the first
character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

51.29 IsAlpha

NAME
IsAlpha – check if character is alphabetic (V7.0)

SYNOPSIS
bool = IsAlpha(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is an alphabetic letter and returns
True if it is, otherwise False. The optional pos parameter must be in characters, not in
bytes. It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

Chapter 51: String library 1043

51.30 IsCntrl

NAME
IsCntrl – check if character is a control character (V7.0)

SYNOPSIS
bool = IsCntrl(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is a control character and returns
True if it is, otherwise False. A control character is a character that is not printable, e.g.
backspace, tab, line feed, escape, etc. The optional pos parameter must be in characters,
not in bytes. It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

51.31 IsDigit

NAME
IsDigit – check if character is a decimal digit (V7.0)

SYNOPSIS
bool = IsDigit(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is a decimal digit and returns True
if it is, otherwise False. The optional pos parameter must be in characters, not in bytes.
It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

1044 Hollywood manual

51.32 IsGraph

NAME
IsGraph – check if character has a graphical representation (V7.0)

SYNOPSIS
bool = IsGraph(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ has a graphical representation and
returns True if it has, otherwise False. This function does the same as IsPrint() except
that it does not return True for the space character. The optional pos parameter must
be in characters, not in bytes. It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

51.33 IsLower

NAME
IsLower – check if character is a lowercase letter (V7.0)

SYNOPSIS
bool = IsLower(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is a lowercase letter and returns
True if it is, otherwise False. The optional pos parameter must be in characters, not in
bytes. It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

Chapter 51: String library 1045

51.34 IsPrint

NAME
IsPrint – check if character is printable (V7.0)

SYNOPSIS
bool = IsPrint(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is printable and returns True if
it is, False otherwise. Printable characters are all characters that have a graphical
representation, including the space character. Printable characters are the opposite to
control characters. IsPrint() basically does the same as IsGraph(), the only difference
being that IsPrint() returns True for the space character as well whereas IsGraph()
doesn’t. The optional pos parameter must be in characters, not in bytes. It defaults to
0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

51.35 IsPunct

NAME
IsPunct – check if character is a punctuation character (V7.0)

SYNOPSIS
bool = IsPunct(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is a punctuation character and
returns True if it is, otherwise False. The optional pos parameter must be in characters,
not in bytes. It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

1046 Hollywood manual

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

51.36 IsSpace

NAME
IsSpace – check if character is a white-space character (V7.0)

SYNOPSIS
bool = IsSpace(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is a white-space character and returns
True if it is, otherwise False. White-space characters are characters such as space, tab,
newline, carriage return, etc. The optional pos parameter must be in characters, not in
bytes. It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

51.37 IsUpper

NAME
IsUpper – check if character is an uppercase letter (V7.0)

SYNOPSIS
bool = IsUpper(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is an uppercase letter and returns
True if it is, otherwise False. The optional pos parameter must be in characters, not in
bytes. It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

Chapter 51: String library 1047

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

51.38 IsXDigit

NAME
IsXDigit – check if character is a hexadecimal digit (V7.0)

SYNOPSIS
bool = IsXDigit(s$[, pos, encoding])

FUNCTION
Checks if the character at index pos inside string s$ is a hexadecimal digit and returns
True if it is, otherwise False. The optional pos parameter must be in characters, not in
bytes. It defaults to 0 which will test the first character in s$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ source string

pos optional: index of character to test (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool True or False, depending on the test’s result

51.39 LeftStr

NAME
LeftStr – return the n leftmost characters of a string

SYNOPSIS
var$ = LeftStr(string$, len[, encoding])

FUNCTION
This function returns the len leftmost characters of string$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

string$ source string

1048 Hollywood manual

len number of characters to return

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ resulting string

EXAMPLE
test$ = LeftStr("Hello World!", 5)

Print(test$)

This will print "Hello" to the screen.

51.40 LowerStr

NAME
LowerStr – convert all characters in a string to lower case

SYNOPSIS
var$ = LowerStr(string$[, encoding])

FUNCTION
Converts all characters in string$ to lower case and returns the new string.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

string$ string to convert

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ converted string

EXAMPLE
test$ = LowerStr("Hello World!")

Print(test$)

This will print "hello world!" to the screen.

51.41 MD5Str

NAME
MD5Str – calculate MD5 checksum of string (V5.0)

SYNOPSIS
sum$ = MD5Str(s$)

Chapter 51: String library 1049

FUNCTION
This function calculates the MD5 checksum of the string specified in s$ and returns
it. The 128-bit checksum is returned as a string containing 16 hex digits. Note that
Hollywood strings can also contain binary data so that you can also use this function
with non-text strings.

If you want to compute the MD5 checksum of a file, use the MD5() function instead.

INPUTS

s$ string whose checksum you want to have calculated

RESULTS

sum$ MD5 checksum of string

51.42 MidStr

NAME
MidStr – extract characters from a string

SYNOPSIS
var$ = MidStr(string$, startpos[, len, encoding])

FUNCTION
Returns len characters from string$ (starting at position startpos) as a new string.
The starting position startpos needs to be specified in characters, not in bytes.

Starting with Hollywood 6.1 len may be omitted or set to -1. In that case, the remaining
characters in string$ will be returned.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

string$ source string

startpos starting offset in characters (first character is at position 0)

len optional: how many characters shall be returned; if you omit this argument
or set it to -1, all remaining characters will be returned

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ resulting string

EXAMPLE
test$ = MidStr("Hello World!", 4, 3)

Print(test$)

This will print "o W" to the screen.

1050 Hollywood manual

51.43 PadNum

NAME
PadNum – convert number to string with padding (V2.0)

SYNOPSIS
s$ = PadNum(num, len)

FUNCTION
This function converts the integer specified in num to a string. Additionally, it adds
leading zeros until the string is of the length specified in len. The number must not be
negative and must not contain any decimal places.

INPUTS

num number to convert to string

len desired string length

RESULTS

s$ padded string

EXAMPLE
DebugPrint(PadNum(9, 2))

Prints "09".

51.44 PatternFindStr

NAME
PatternFindStr – parse a string using pattern matching iterator function (V5.0)

SYNOPSIS
func, state, val = PatternFindStr(s$, pat$[, encoding])

FUNCTION
This function can be used in conjunction with the generic For statement to parse the
string specified in s$ according to the pattern specified in pat$. As required by the
generic For statement, PatternFindStr() will return three values: An iterator function,
a private state information, and an initial value for the traversal. Each time it is called,
the iterator function will return the next captures from pattern pat$ over string s$. If
pat$ specifies no captures, then the whole match is produced in each call.

The pattern specified in pat$ must adhere to the pattern syntax as described in the
documentation of the PatternReplaceStr() function. See Section 51.47 [PatternRe-
placeStr], page 1053, for details.

See Section 11.4 [Generic For statement], page 127, for details.

Starting with Hollywood 6.0, this function is also available in a version that can be used
without a generic For statement. So if you only care about the first occurrence of pat$
in s$, then you might want to use PatternFindStrDirect() instead. See Section 51.45
[PatternFindStrDirect], page 1051, for details.

Chapter 51: String library 1051

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ string to parse

pat$ pattern according to which the string should be parsed

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

func iterator function

state private state information

val initial traversal value

EXAMPLE
s$ = "Hello World from Hollywood"

For w$ In PatternFindStr(s$, "%a+") Do DebugPrint(w$)

The above code will iterate over all the words from string s$, printing one per line.

t = {}

s$ = "Name=Andreas, Sex=Male, Nationality=German"

For k, v in PatternFindStr(s$, "(%w+)=(%w+)") Do t[k] = v

The above example collects all pairs key=value from the given string into a table.

51.45 PatternFindStrDirect

NAME
PatternFindStrDirect – parse a string using pattern matching (V6.0)

SYNOPSIS
start, end, ... = PatternFindStrDirect(s$, pat$[, start, encoding])

FUNCTION
This function parses the string specified in s$ according to the pattern specified in pat$.
If there is a match, the indices of where the match starts and ends in the source string
are returned together with all strings that have been captured. If there is no match,
PatternFindStrDirect() will return -1. The optional argument start can be used to
specify a character index inside s$ where searching should begin. This defaults to 0
which means PatternFindStrDirect() should start at the beginning of s$.

This function does pretty much the same as PatternFindStr() but does not require
you to use a generic For statement. Instead, all captures are returned along with the
start and end indices. Keep in mind, though, that PatternFindStrDirect() does not
operate inside a generic For loop, so only the first occurrence of pat$ inside s$ will be
handled of course.

1052 Hollywood manual

If you do not need the start and end indices, you can also use the
PatternFindStrShort() function instead. See Section 51.46 [PatternFindStr-
Short], page 1052, for details.

The pattern specified in pat$ must adhere to the pattern syntax as described in the
documentation of the PatternReplaceStr() function. See Section 51.47 [PatternRe-
placeStr], page 1053, for details.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ string to parse

pat$ pattern according to which the string should be parsed

start optional: position where search should start (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

start position of the first match inside s$ or -1 for no match

end position of the last match inside s$

... individual strings with all captures

EXAMPLE
DebugPrint(PatternFindStrDirect("Name=Andreas", "(%w+)=(%w+)"))

The above example returns the strings next to the equal sign and the range 0 to 11 which
describes the complete source string.

51.46 PatternFindStrShort

NAME
PatternFindStrShort – parse a string using pattern matching (V6.0)

SYNOPSIS
... = PatternFindStrShort(s$, pat$[, start, encoding])

FUNCTION
This function does the same as PatternFindStrDirect() but does not return the start
and end indices. See Section 51.45 [PatternFindStrDirect], page 1051, for details.

The pattern specified in pat$ must adhere to the pattern syntax as described in the
documentation of the PatternReplaceStr() function. See Section 51.47 [PatternRe-
placeStr], page 1053, for details.

INPUTS

s$ string to parse

pat$ pattern according to which the string should be parsed

Chapter 51: String library 1053

start optional: position where search should start (defaults to 0)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

... individual strings with all captures

EXAMPLE
DebugPrint(PatternFindStrShort("Name=Andreas", "(%w+)=(%w+)"))

The above example returns the strings next to the equal sign.

51.47 PatternReplaceStr

NAME
PatternReplaceStr – modify string contents using pattern matching (V5.0)

SYNOPSIS
r$, n = PatternReplaceStr(s$, pat$, repl[, n, encoding])

FUNCTION
PatternReplaceStr() can be used to modify a string’s contents using pattern matching.
This function is powerful and can be used for all kinds of string operations. It returns
a copy of s$ in which all occurrences of the pattern pat$ have been replaced by a
replacement string specified by repl. PatternReplaceStr() also returns, as a second
value, the total number of substitutions made.

The third argument repl can be either a string or a callback function. If repl is a
string, then its value is used for replacement. Any sequence in repl of the form %n,
with n between 1 and 9, stands for the value of the n-th captured substring (see below).
If repl is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the pattern specifies no captures,
then the whole match is passed as a sole argument. If the value returned by this function
is a string, then it is used as the replacement string; otherwise, the replacement string
is the empty string.

The optional argument n limits the maximum number of substitutions to occur. For
instance, when n is 1 only the first occurrence of pat$ is replaced.

The pattern specified in pat$ is made up of a sequence of pattern items. A pattern item
is usually a character class which in turn represents a set of characters. The following
combinations are allowed in describing a character class:

x (where x is not one of the magic characters ^$()%.[]*+-?)

Represents the character x itself.

. (a dot) Represents all characters.

%a Represents all letters.

%c Represents all control characters.

%d Represents all digits.

1054 Hollywood manual

%g Represents all characters that have a graphical representation. (V7.0)

%l Represents all lowercase letters.

%p Represents all punctuation characters.

%s Represents all space characters.

%u Represents all uppercase letters.

%w Represents all alphanumeric characters.

%x Represents all hexadecimal digits.

%z Represents the character with representation 0.

%x (where x is any non-alphanumeric character)

Represents the character x. This is the standard way to escape the magic
characters. Any punctuation character (even the non magic) can be preceded
by a % when used to represent itself in a pattern.

[set] Represents the class which is the union of all characters in set. A range of
characters may be specified by separating the end characters of the range
with a -. All classes %x described above may also be used as components
in set. All other characters in set represent themselves. For example, [%w_]
(or [_%w]) represents all alphanumeric characters plus the underscore, [0-7]
represents the octal digits, and [0-7%l%-] represents the octal digits plus
the lowercase letters plus the - character. The interaction between ranges
and classes is not defined. Therefore, patterns like [%a-z] or [a-%%] have
no meaning.

[^set] Represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase
letter represents the complement of the class. For instance, %S represents all non-space
characters.

The following items are valid pattern items:

− a single character class, which matches any single character in the class

− a single character class followed by *, which matches 0 or more repetitions of char-
acters in the class. These repetition items will always match the longest possible
sequence

− a single character class followed by +, which matches 1 or more repetitions of char-
acters in the class. These repetition items will always match the longest possible
sequence

− a single character class followed by -, which also matches 0 or more repetitions
of characters in the class. Unlike *, these repetition items will always match the
shortest possible sequence

− a single character class followed by ?, which matches 0 or 1 occurrence of a character
in the class

− %n, for n between 1 and 9; such item matches a substring equal to the n-th captured
string (see below)

Chapter 51: String library 1055

− %bxy, where x and y are two distinct characters; such item matches strings that start
with x, end with y, and where the x and y are balanced. This means that, if one
reads the string from left to right, counting +1 for an x and -1 for a y, the ending
y is the first y where the count reaches 0. For instance, the item %b() matches
expressions with balanced parentheses.

A pattern is a sequence of pattern items. A ^ at the beginning of a pattern anchors
the match at the beginning of the subject string. A $ at the end of a pattern anchors
the match at the end of the subject string. At other positions, ^ and $ have no special
meaning and represent themselves.

A pattern may contain sub-patterns enclosed in parentheses; they describe captures.
When a match succeeds, the substrings of the subject string that match captures are
stored (captured) for future use. Captures are numbered according to their left paren-
theses. For instance, in the pattern (a*(.)%w(%s*)), the part of the string matching
a*(.)%w(%s*) is stored as the first capture (and therefore has number 1); the character
matching . is captured with number 2, and the part matching %s* has number 3.

As a special case, the empty capture () captures the current string position (a number).
For instance, if we apply the pattern ()aa() on the string "flaaap", there will be two
captures: 3 and 5.

A pattern cannot contain embedded zeros. Use %z instead.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ string to modify

pat$ pattern according to which the string should be modified

repl replacement string or callback function to handle replacements (see above)

n optional: maximum number of substitutions to make (defaults to the length
of s$ plus 1)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

r$ resulting string

n number of substitutions made

EXAMPLE
s$ = PatternReplaceStr("Hello World", "(%w+)", "%1 %1")

The code above returns "Hello Hello World World"

s$ = PatternReplaceStr("Hello World from Hollywood", "(%w+)%s*(%w+)",

"%2 %1")

The code above returns "World Hello Hollywood from"

1056 Hollywood manual

s$ = PatternReplaceStr("home = $HOME, user = $USER", "%$(%w+)", GetEnv)

The code above returns "home = /home/andreas, user = andreas" (on Linux).

Local t = {name = "Hollywood", version="5.0"}

s$ = PatternReplaceStr("$name_$version.jpg", "%$(%w+)", Function(v)

Return(t[v]) EndFunction)

The code above returns "Hollywood 5.0.jpg"

51.48 RepeatStr

NAME
RepeatStr – repeat string multiple times (V5.0)

SYNOPSIS
var$ = RepeatStr(s$, n)

FUNCTION
This function takes s$, repeats it n times, and returns the resulting string.

INPUTS

s$ the string to repeat

n number of times to repeat string; must be > 0

RESULTS

var$ the resulting string

EXAMPLE
Print(RepeatStr("Hollywood!", 5))

The above code prints "Hollywood!Hollywood!Hollywood!Hollywood!Hollywood!"

51.49 ReplaceStr

NAME
ReplaceStr – replaces a substring with another string

SYNOPSIS
var$ = ReplaceStr(s$, search$, replace$[, cs, startpos, encoding])

FUNCTION
Searches for search$ in s$ and replaces all occurrences of search$ with replace$. The
optional argument cs turns case sensitivity on (True) or off (False). This defaults
to the global case sensitive default mode set using IgnoreCase(). See Section 51.26
[IgnoreCase], page 1040, for details.

Starting with Hollywood 4.5, you can also specify a starting position for the search in the
optional argument startpos. This position needs to be specified in characters, not in
bytes. Specifying 0 as the starting position means search and replace from the beginning
of the string. This is also the default.

Chapter 51: String library 1057

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ string to search for search$

search$ string to search for

replace$ string replacement for search$

cs True for case sensitivity, False for no case sensitivity; the default is True or
whatever default has been set using the IgnoreCase() command

startpos optional: starting position of the search and replace operation in characters
(defaults to 0) (V4.5)

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ resulting string

EXAMPLE
test$ = "Hello World!"

test$ = ReplaceStr(test$, "World", "People")

Print(test$)

This will print "Hello People!" to the screen.

51.50 ReverseFindStr

NAME
ReverseFindStr – find a substring in a string in reverse (V9.0)

SYNOPSIS
pos = ReverseFindStr(string$, substring$[, casesen, startpos, encoding])

FUNCTION
Searches for substring$ in string$ and returns the position of the substring. In contrast
to FindStr(), searching is done in reverse, i.e. from the string’s end to its start.

The position is returned in characters, not in bytes, starting at position 0 for the first
character. If substring$ cannot be found, -1 is returned. The optional argument
casesen allows you to specify if the search should be case sensitive. This defaults
to the global case sensitive default mode set using IgnoreCase(). See Section 51.26
[IgnoreCase], page 1040, for details.

You can also specify a starting position for the search in the optional argument startpos.
This position needs to be specified in characters, not in bytes. By default, startpos is
set to the length of string$ in characters minus 1.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

1058 Hollywood manual

INPUTS

string$ string to search in

substring$

string to find in string$

casesen True for a case sensitive search or False for a case insensitive search; the
default is True or whatever default has been set using the IgnoreCase()

command

startpos optional: starting position of the search operation in characters (defaults to
the length of string$ minus 1)

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

pos position of substring$ in string$ in characters or -1 if not found

EXAMPLE
result = ReverseFindStr("Hello, Hello!", "Hello")

Print(result)

This will print "7" because searching is done in reverse, which is why the position of the
second "Hello" is returned.

51.51 ReverseStr

NAME
ReverseStr – reverse order of characters in string (V7.0)

SYNOPSIS
r$ = ReverseStr(s$[, encoding])

FUNCTION
Reverses the order of characters in string s$ and returns the new string.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ input string

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

r$ reversed string

EXAMPLE
r$ = ReverseStr("Hello")

Print(r$)

This prints "olleH".

Chapter 51: String library 1059

51.52 RightStr

NAME
RightStr – return rightmost characters of a string

SYNOPSIS
var$ = RightStr(string$, len[, encoding])

FUNCTION
Returns the rightmost len characters from string$.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

string$ source string

len number of characters to return

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ resulting string

EXAMPLE
test$ = RightStr("Hello World!", 6)

Print(test$)

Prints "World!" to the screen.

51.53 SplitStr

NAME
SplitStr – split a string in several pieces (V2.0)

SYNOPSIS
table, count = SplitStr(src$, token$[, multiple])

FUNCTION
This function splits the string specified in src$ into several pieces by looking for the
separator token$ in src$. token$ must be a string containing at least one character
that shall act as a separator in src$. SplitStr() will return a table containing all the
pieces and the number of pieces in the string as the second return value.

If the specified token does not appear in the source string, src$ is returned.

Starting with Hollywood 7.1 there is a new optional argument named multiple. If this
is set to True, multiple occurrences of token$ next to each other will be considered a
single occurrence. This can be useful when using the space character as token$ and
you want this function to work with an arbitrary number of spaces between the different
parts.

Note that before Hollywood 8.0, token$ was limited to a string using only one character.
This limit has been lifted for Hollywood 8.0 and the string can now be of arbitrary length.

1060 Hollywood manual

INPUTS

src$ string to split

token$ one character string containing a separator token

multiple optional: whether or not to treat multiple occurrences of token$ next to
each other as a single token (defaults to False) (V7.1)

RESULTS

table table where the new substrings are stored

count how many substrings this function created

EXAMPLE
array, c = SplitStr("AmigaOS3|MorphOS|AmigaOS4|WarpOS|AROS", "|")

For k = 1 To c Do NPrint(array[k - 1])

The above code will print

AmigaOS3

MorphOS

AmigaOS4

WarpOS

AROS

The variable c will be set to 5 because SplitStr() finds five substrings and places them
in the table specified.

51.54 StartsWith

NAME
StartsWith – check if string starts with substring (V7.1)

SYNOPSIS
bool = StartsWith(s$, substr$[, casesen, encoding])

FUNCTION
This function can be used to check if s$ starts with the substring specified by substr$.
If it does, True is returned, False otherwise. If the optional argument casesen is set
to False, the strings do not have to match in case. casesen defaults to the global
case sensitive default mode set using IgnoreCase(). See Section 51.26 [IgnoreCase],
page 1040, for details.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ input string

substr$ string to compare against s$

casesen optional: whether or not a case sensitive comparison should be activated;
the default is True or whatever default has been set using the IgnoreCase()
command

Chapter 51: String library 1061

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

bool boolean value indicating success or failure

51.55 StripStr

NAME
StripStr – strip whitespace from string (V7.1)

SYNOPSIS
r$ = StripStr(s$)

FUNCTION
This function strips all whitespace characters from both ends of a string and returns the
stripped string. The following characters are whitespace characters: space, form-feed
("\f"), newline ("\n"), carriage return ("\r"), horizontal tab ("\t"), and vertical tab
("\v").

INPUTS

s$ input string

RESULTS

r$ stripped string

EXAMPLE
s$ = StripStr(" Hello World ")

This will return "Hello World".

51.56 StrLen

NAME
StrLen – return character length of a string

SYNOPSIS
len = StrLen(str$[, encoding])

FUNCTION
This function returns the character length of str$. Note that for Unicode strings this
isn’t necessarily the same as the byte length of str$. To find out the byte length of a
string, use the ByteLen() function or pass a non-Unicode encoding in encoding.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

str$ input string

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

1062 Hollywood manual

RESULTS

len character length of string

EXAMPLE
len = StrLen("Hello")

This will return 5.

51.57 StrStr

NAME
StrStr – convert a number to a string

SYNOPSIS
var$ = StrStr(value[, digits])

FUNCTION
Converts the numerical value value to a string and returns it. The optional argument
digits allows you to define how many decimal places shall be used if value is a real
number. It defaults to 2.

INPUTS

value number to convert to string

digits optional: how many decimal places to use if a float value is specified (defaults
to 2)

RESULTS

var$ string representing the numeric value

EXAMPLE
test$ = StrStr(256)

Print(test$)

Prints "256" to the screen.

51.58 StrToArray

NAME
StrToArray – convert a string to an array of code points (V2.0)

SYNOPSIS
t = StrToArray(s$[, encoding])

FUNCTION
This function extracts the code point values from s$ and returns them in a table. The
table will have as many elements as the string has characters plus a terminating zero.

To convert the array back to a string, you can use the function ArrayToStr(). See
Section 51.2 [ArrayToStr], page 1023, for details.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

Chapter 51: String library 1063

INPUTS

s$ string to convert

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

t a table containing the code point values of the string’s characters

EXAMPLE
t = StrToArray("Hello World")

DebugPrint(Chr(t[6]))

Prints "W".

51.59 ToNumber

NAME
ToNumber – convert a string to a number (V2.0)

SYNOPSIS
n = ToNumber(s$[, base])

FUNCTION
This function tries to convert the string specified in s$ to a number. The optional
argument base can be used to convert binary, octal, and hexadecimal numbers or any
other bases ranging from 2 to 36. It defaults to 10 (decimal). In bases from 11 to 36
the letters of the English alphabet are used as the additional digits (10=A, 35=Z). Case
sensitivity is not required.

Starting with Hollywood 6.0 this function can also convert a variable of type
#LIGHTUSERDATA to a number. Since this variable type is meant to store pointers, it is
only interesting for expert users or debugging purposes.

INPUTS

s$ string to convert

base optional: base of the conversion (defaults to 10)

RESULTS

number converted number

EXAMPLE
r = ToNumber("10000") ; returns 10000

r = ToNumber("10110111", 2) ; returns 183

r = ToNumber("523", 8) ; returns 339

r = ToNumber("FFFF", 16) ; returns 65535

1064 Hollywood manual

51.60 ToString

NAME
ToString – convert any data type to a string (V2.0)

SYNOPSIS
s$ = ToString(data)

FUNCTION
This function can convert any type to a string. You can pass in tables, functions, strings,
numbers and Nil. ToString() is also used by the Print() and DebugPrint() commands
so they can print any types, too.

Additionally, if you pass in a table which metatable has a __tostring field, this
metamethod is called.

INPUTS

data value to convert to string

RESULTS

s$ a string

EXAMPLE
s$ = ToString(DisplayBrush) ; returns "Function: 74cd2456"

s$ = ToString({1,2,3,4,5}) ; returns "Table: 74ab1344"

s$ = ToString(Nil) ; returns "Nil"

s$ = ToString(5) ; returns "5"

s$ = ToString("Hello") ; returns "Hello"

51.61 ToUserData

NAME
ToUserData – convert number to a userdata pointer (V6.0)

SYNOPSIS
ptr = ToUserData(val)

FUNCTION
This function can be used to turn an arbitrary number into a variable of type
#LIGHTUSERDATA which is used to store memory pointers. You could then pass this
variable to a function which expects a #LIGHTUSERDATA parameter.

Note that this function is dangerous and should only be used by people who know what
they are doing. Using pointers that point to unallocated address space can easily crash
your script.

To convert a pointer of type #LIGHTUSERDATA back into a number, use the ToNumber()

function. See Section 51.59 [ToNumber], page 1063, for details.

INPUTS

val numeric value to be converted into a #LIGHTUSERDATA pointer

Chapter 51: String library 1065

RESULTS

ptr pointer of type #LIGHTUSERDATA

51.62 TrimStr

NAME
TrimStr – strip leading or tailing characters (V2.0)

SYNOPSIS
s$ = TrimStr(src$, chr$, tail[, encoding])

FUNCTION
This function can be used to strip all characters that match chr$ from the head or the
tail of src$. The string chr$ must only contain one character. tail must be True to
start stripping from the right or False to start from the left side. The stripped string
will be returned.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

src$ string to strip

chr$ a single character string

tail True or False indicating where to begin

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

s$ a stripped string

EXAMPLE
a$ = TrimStr("aaaaHello World", "a", False)

DebugPrint(a$)

Prints "Hello World".

a$ = TrimStr("aaaaHello Worldaaaa", "a", True)

DebugPrint(a$)

Prints "aaaaHello World".

51.63 UnleftStr

NAME
UnleftStr – remove rightmost characters from a string

SYNOPSIS
var$ = UnleftStr(string$, len[, encoding])

1066 Hollywood manual

FUNCTION
Removes len rightmost characters from string$ and returns the new string.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

string$ string to remove characters from

len number of characters to remove

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ resulting string

EXAMPLE
test$ = UnleftStr("Hello World!", 7)

Print(test$)

This will print "Hello".

51.64 UnmidStr

NAME
UnmidStr – remove characters from the middle of a string (V4.5)

SYNOPSIS
var$ = UnmidStr(s$, pos, len[, encoding])

FUNCTION
This function removes len characters from s$ starting at position pos in the string. The
position needs to be specified in characters, not in bytes. Position 0 indicates the start
of the string. The truncated string is returned.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

s$ string to truncate

pos position (in characters) at which to start removing characters

len number of characters to remove

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ truncated string

Chapter 51: String library 1067

EXAMPLE
Print(UnmidStr("This is definitely not a funny example", 19, 4))

The task of figuring out what the mysterious call above might do is left to the reader.

51.65 UnrightStr

NAME
UnrightStr – remove leftmost characters from a string

SYNOPSIS
var$ = UnrightStr(string$, len[, encoding])

FUNCTION
Removes the len leftmost characters from string$ and returns the new string.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

string$ string to remove characters from

len number of characters to remove

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ resulting string

EXAMPLE
test$ = UnrightStr("Hello World!", 6)

Print(test$)

This will print "World!".

51.66 UpperStr

NAME
UpperStr – convert string to upper case

SYNOPSIS
var$ = UpperStr(string$[, encoding])

FUNCTION
Converts all characters in string$ to upper case.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

INPUTS

string$ string to convert to upper case

1068 Hollywood manual

encoding optional: character encoding to use (defaults to default string encoding)
(V7.0)

RESULTS

var$ resulting string

EXAMPLE
Print(UpperStr("Hello World!"))

Prints "HELLO WORLD!" to the screen.

51.67 Val

NAME
Val – convert a string to a number

SYNOPSIS
var, chrs = Val(string$)

FUNCTION
Converts the specified string into a number. If the string does not start with a number,
0 will be returned. The string can also contain hexadecimal numbers starting with a
"$".

Starting with Hollywood 2.0 you can also pass a string which contains a binary number
to this function now. Simply prefix it with a ’%’ character. Additionally, a second value
is returned now which specifies how many characters Val() has read from the string.
This allows you to determine the length of the number.

INPUTS

string$ string to convert to number

RESULTS

var variable that receives the converted number

chrs number of characters converted

EXAMPLE
result, chrs = Val("500 people were on the train.")

Print(result, "-", chrs)

This will print "500-3" to the screen.

51.68 ValidateStr

NAME
ValidateStr – validate string (V7.0)

SYNOPSIS
ok, n = ValidateStr(s$[, encoding])

Chapter 51: String library 1069

FUNCTION
Validates the string specified by s$ and returns True if the string contains only valid
characters, False otherwise. The second return value contains the number of valid
characters in the string. If validation succeeds, this will be the same as the result of
StrLen(). Otherwise this will tell you the offset of the first invalid character in the
string.

The optional encoding parameter can be used to set the character encoding to use.
This defaults to the default string encoding set using SetDefaultEncoding(). See
Section 13.2 [Character encodings], page 149, for details.

This function is only useful in case #ENCODING_UTF8 is used. If the encoding is set to
#ENCODING_ISO8859_1, this function will always return True.

INPUTS

s$ input string

encoding optional: character encoding to use (defaults to default string encoding)

RESULTS

ok boolean value indicating success or failure

n number of valid characters in the string (V7.1)

1071

52 System library

52.1 Beep

NAME
Beep – play the system beep (V8.0)

SYNOPSIS
Beep([type])

FUNCTION
This function can be used to play the system’s default beep sound. For systems which
support different beep sounds for different contexts, you can pass the optional type
argument to specify which beep sound should be played.

The following beep types are currently supported:

#BEEPSYSTEM:

System beep sound. This is the default.

#BEEPERROR:

Error beep sound.

#BEEPWARNING:

Warning beep sound.

#BEEPQUESTION:

Question beep sound.

#BEEPINFORMATION:

Information beep sound.

Note that not all operating systems support all kinds of beeps. Only #BEEPSYSTEM is
supported on every platform.

INPUTS

type optional: type of beep sound to play (defaults to #BEEPSYSTEM)

EXAMPLE
Beep()

The code above plays the default beep.

52.2 CollectGarbage

NAME
CollectGarbage – force a garbage collection or set new threshold (V2.0)

SYNOPSIS
CollectGarbage([threshold])

FUNCTION
This function can be used to force a garbage collection. To do that, you have to call
CollectGarbage() without specifying the optional argument threshold. If you pass the

1072 Hollywood manual

optional threshold argument, however, then this value will be set as the new garbage col-
lector threshold. This means that whenever the garbage size is bigger than the specified
threshold in kilobytes, Hollywood will automatically run the garbage collector.

If you leave out the optional argument, Hollywood will immediately run the garbage
collector and set a new threshold that is twice the size of garbage just collected.

To get information about the state of the garbage collector, call the GCInfo() function.

INPUTS

threshold

optional: threshold in kilobytes that specifies when Hollywood should run
the garbage collector (defaults to 0 which means run the garbage collector
immediately)

52.3 DisableLineHook

NAME
DisableLineHook – disable the line hook (V6.0)

SYNOPSIS
DisableLineHook()

FUNCTION
This function can be used to disable Hollywood’s line hook. The line hook is a function
which is automatically called by Hollywood after every code line. It is responsible for
controlling several tasks that Hollywood needs for its housekeeping, for example event
handling and video playback. Thus, it is very important that the line hook gets called
several times per second at least, otherwise your application will become unresponsive
and video playback will stutter. Disabling the line hook for a brief period of time,
however, can increase the raw performance of Hollywood’s virtual machine significantly
since all the code in the linehook isn’t executed at all. Hence, you may want to disable
it temporarily if you need to do some complex calculations as fast as possible. But make
sure to enable the line hook again as soon as possible to prevent your application from
becoming unresponsive.

To enable the line hook again, you will have to call EnableLineHook().

INPUTS
none

52.4 ELSE

NAME
ELSE – block to enter if all conditions failed (V7.0)

SYNOPSIS
@ELSE

Chapter 52: System library 1073

FUNCTION
This preprocessor command signals the beginning of a block that should be entered if
all previous @IF and @ELSEIF preprocessor command of the same scope didn’t trigger.

See Section 52.17 [IF], page 1080, for details and an example.

INPUTS
none

EXAMPLE
See Section 52.17 [IF], page 1080.

52.5 ELSEIF

NAME
ELSEIF – test for another condition (V7.0)

SYNOPSIS
@ELSEIF val

FUNCTION
This preprocessor command tests for the condition specified in val. If it is True, the
preprocessor will continue parsing your script. If val is False, however, @ELSEIF will
branch to the next @ELSEIF, @ELSE, or @ENDIF statement. Note that the condition must
be a constant expression since @ELSEIF operates at preprocessor level, i.e. script variables
are not available at that time.

See Section 52.17 [IF], page 1080, for details and an example.

INPUTS

val condition to test; must be a constant expression

EXAMPLE
See Section 52.17 [IF], page 1080.

52.6 EnableLineHook

NAME
EnableLineHook – enable the line hook (V6.0)

SYNOPSIS
EnableLineHook()

FUNCTION
This function can be used to enable Hollywood’s line hook. The line hook is a function
which is automatically called by Hollywood after every code line. It is responsible for
controlling several tasks that Hollywood needs for its housekeeping, for example event
handling and video playback. Thus, it is very important that the line hook gets called
several times per second at least, otherwise your application will become unresponsive
and video playback will stutter. Disabling the line hook for a brief period of time,

1074 Hollywood manual

however, can increase the raw performance of Hollywood’s virtual machine significantly
since all the code in the linehook isn’t executed at all. Hence, you may want to disable
it temporarily if you need to do some complex calculations as fast as possible. But make
sure to enable the line hook again as soon as possible to prevent your application from
becoming unresponsive.

To disable the line hook, you will have to call DisableLineHook().

INPUTS
none

52.7 End

NAME
End – terminate Hollywood

SYNOPSIS
End([code])

FUNCTION
This function will immediately terminate your script, shut down Hollywood, free all
memory, and close all libraries.

Starting with Hollywood 7.0 you can pass the optional code parameter to set the return
code that Hollywood’s process should pass to its parent process. This is useful when
running Hollywood programs from a console.

INPUTS

code optional: return code to pass to parent process (defaults to 0) (V7.0)

52.8 ENDIF

NAME
ENDIF – declare end of conditional block (V7.0)

SYNOPSIS
@ENDIF

FUNCTION
This preprocessor command signals the end of a conditional block that was previously
started by an @IF preprocessor command.

See Section 52.17 [IF], page 1080, for details and an example.

INPUTS
none

EXAMPLE
See Section 52.17 [IF], page 1080.

Chapter 52: System library 1075

52.9 GCInfo

NAME
GCInfo – query garbage collector status (V2.0)

SYNOPSIS
count, threshold = GCInfo()

FUNCTION
This function returns information about the current status of the garbage collector.
The first return value tells you how many kilobytes of memory is currently occupied by
Hollywood’s VM whereas the second return value indicates the threshold in kilobytes
that should trigger the garbage collector. Whenever memory consumption exceeds the
specified threshold, Hollywood will automatically run the garbage collector.

You can also run the garbage collector manually or change the garbage collector threshold
by calling the CollectGarbage() function.

INPUTS
none

RESULTS

count amount of memory in kilobytes currently used by the Hollywood VM

threshold

current garbage collector threshold

52.10 GetConstant

NAME
GetConstant – get constant’s value from string (V4.5)

SYNOPSIS
val = GetConstant(c$)

FUNCTION
This function returns the value of a constant that is passed in as a string. It is probably
of not much use.

INPUTS

c$ constant inside string whose value is to be retrieved

RESULTS

val value of the constant

EXAMPLE
DebugPrint(#HOLLYWOOD, "=", GetConstant("#HOLLYWOOD"))

Obtains the constant #HOLLYWOOD first via direct specification and then via
GetConstant(). The result should be the same.

1076 Hollywood manual

52.11 GetDefaultAdapter

NAME
GetDefaultAdapter – get default adapter for type (V10.0)

SYNOPSIS
adapter$ = GetDefaultAdapter(type)

FUNCTION
This function gets the default adapter for the type specified by type and returns it.
The adapter types that can be passed in type are described in the manual for the
SetDefaultAdapter() function. See Section 52.26 [SetDefaultAdapter], page 1091, for
details.

Note that if no default adapter has been set using SetDefaultAdapter() for a specific
type, an empty string will be returned.

INPUTS

type adapter type to query

52.12 GetDefaultLoader

NAME
GetDefaultLoader – get default loader for type (V10.0)

SYNOPSIS
loader$ = GetDefaultLoader(type)

FUNCTION
This function gets the default loader for the type specified by type and returns it.
The loader types that can be passed in type are described in the manual for the
SetDefaultLoader() function. See Section 52.27 [SetDefaultLoader], page 1092, for
details.

Note that if no default loader has been set using SetDefaultLoader() for a specific
type, an empty string will be returned.

INPUTS

type loader type to query

52.13 GetMemoryInfo

NAME
GetMemoryInfo – get memory information

SYNOPSIS
space = GetMemoryInfo(type)

FUNCTION
This function returns information about the amount of memory in your system. The
following constants can be specified as type:

Chapter 52: System library 1077

#CHIPMEMORY:

Returns the amount of chip memory

#FASTMEMORY:

Returns the amount of fast memory

INPUTS

type one of the constants as listed above

RESULTS

space memory space

EXAMPLE
chip=GetMemoryInfo(#CHIPMEMORY)

fast=GetMemoryInfo(#FASTMEMORY)

Print("You have", chip, "bytes of chip memory and", fast,

"bytes of fast memory!")

The above code prints out the chip and fast memory.

52.14 GetSystemInfo

NAME
GetSystemInfo – get OS-specific information (V4.5)

SYNOPSIS
t = GetSystemInfo()

FUNCTION
This function can be used to query certain information from the operating system that
Hollywood is currently running on. GetSystemInfo() returns a table that contains sev-
eral fields which are different depending on the operating system Hollywood is currently
running on.

The following fields will be initialized in the return table:

UserHome:

Path to the user’s home directory. Supported on Windows, macOS, and
Linux. (V5.3)

UserName:

Name of the current user. Supported on Windows, macOS, and Linux.
(V5.3)

ProgramFiles:

Path to the program files directory on this computer. Supported onWindows
since V4.5 and on macOS since V5.3.

AppData: Path to the application data folder for the current user on this computer.
Supported on Windows since V4.5, on macOS since V5.3, and on iOS since
V7.0.

1078 Hollywood manual

CommonAppData:

Path to the application data folder for all users on this computer. Supported
on Windows and macOS. (V6.1)

LocalAppData:

Path to the local, non-roaming application data folder for the current user
on this computer. Supported on Windows and macOS. On macOS, this will
be set to the same path as CommonAppData. (V9.0)

MyDocuments:

Path to the "My documents" folder on this computer. Supported on Win-
dows since V4.5, on macOS since V5.3, and on iOS since V7.0.

Windows: Path to the Windows directory on this computer. Supported only on Win-
dows. (V4.5)

SDCard: Path to the external storage device. This is called SDCard for legacy reasons
because in the early days of Android, the external storage device typically
was an SD card. This tag is only supported on Android. Also note that
starting from Android 6.0, apps are no longer allowed to read from and
write to this folder without explicit user permission. When using the Holly-
wood Player, it will automatically request such permission from the user on
startup. When compiling stand-alone APKs using the Hollywood APK Com-
piler, though, you have to manually request read and/or write permission for
this folder by using the PermissionRequest() function. See Section 46.7
[PermissionRequest], page 942, for details. (V5.1)

ExternalStorage:

Path to the external storage folder on this device. Supported only on An-
droid. (V5.1)

InternalStorage:

Path to the internal storage folder on this device. Supported only on An-
droid. (V5.1)

AppBundle:

Path to the application bundle of the current program. Supported only on
macOS (V6.1) and iOS (V7.0).

Preferences:

The path that Hollywood uses to store preferences managed using
SavePrefs(). (V7.1)

TempFiles:

A path that you can write temporary files to. (V7.1)

INPUTS
none

RESULTS

t a table containing the fields described above

Chapter 52: System library 1079

52.15 GetType

NAME
GetType – examine a variable (V2.0)

SYNOPSIS
type = GetType(var)

FUNCTION
This function can be used to find out the type of a variable or value. Possible return values
are #NUMBER, #STRING, #TABLE, #FUNCTION, #USERDATA, #LIGHTUSERDATA, #THREAD and
#NIL.

This function is often used to find out if a variable is Nil. Starting with Hollywood 6.0,
however, there is also a new convenience function named IsNil() which can also be used
to check variables against Nil.

See Section 8.1 [Data types], page 97, for details.

INPUTS

var variable to examine

EXAMPLE
type = GetType("Hello World")

This will return #STRING.

type = GetType({1, 2, 3, 4})

This will return #TABLE.

type = GetType(Function() DebugPrint("Hello") EndFunction)

This will return #FUNCTION.

52.16 GetVersion

NAME
GetVersion – get information about the Hollywood version in use (V3.0)

SYNOPSIS
t = GetVersion()

FUNCTION
This function can be used to obtain some information about the Hollywood version
currently running your script or applet. You can also retrieve information about the
platform that your script is running on.

This function will return a table with the following fields initialized:

Application:

This will be "Hollywood" or "HollywoodPlayer" depending on which ver-
sion is in use. If you save your script as an executable, this will always be
"HollywoodPlayer".

1080 Hollywood manual

Version: A string containing the version of Hollywood, e.g. "3.0".

Version_Date:

A string containing the build date of this Hollywood version.

Kernel: A string containing the kernel version of Hollywood, e.g. "3.0".

Kernel_Date:

A string containing the build date of the Hollywood kernel.

Beta: This field will be set to True if a beta version of Hollywood is used, False
otherwise.

Platform:

This is probably the most useful field because it contains the platform on
which Hollywood is currently running. This field can be "AmigaOS3", "Mor-
phOS", "WarpOS", "AmigaOS4", "AROS", "Win32", "MacOS", "Linux",
"iOS", or "Android". Note that "Win32" is also returned for 64-bit Win-
dows. It’s called "Win32" for historical reasons.

Demo: This field will be set to True if the user is running a demo version of Holly-
wood. (V4.71)

Plugins: This field will be set to a table that contains information about all plug-
ins that have been loaded by Hollywood for this script. See Section 45.3
[GetPlugins], page 925, for details. (V5.1)

CPU: This field will be set to the CPU architecture that Hollywood is currently
running on. This field can be "m68k", "m68k/ppc" (for WarpOS), "ppc",
"arm", "arm64", "i386", or "x64". (V5.2)

BigEndian:

This field will be set to True if Hollywood is running on a big endian CPU
(i.e. 68000 or PowerPC) or False for a little endian CPU (x86, x64 and
ARM). (V6.0)

INPUTS
none

RESULTS

t a table containing information about the Hollywood version in use

EXAMPLE
t = GetVersion()

If t.platform = "Win32" Then Error("Sorry, Win32 is not supported yet!")

The code above checks on which version we are running and exits with an error if
Hollywood is running on Windows.

52.17 IF

NAME
IF – test for condition (V7.0)

Chapter 52: System library 1081

SYNOPSIS
@IF val

FUNCTION
This preprocessor command tests for the condition specified in val. If it is True, the
preprocessor will continue parsing your script. If val is False, however, @IF will branch
to the next @ELSEIF, @ELSE, or @ENDIF statement, allowing you to skip certain portions
of the script if certain conditions aren’t met.

Note that the condition must be a constant expression since @IF operates at preprocessor
level, i.e. script variables are not available at that time. You can use numeric constants
or Hollywood constants defined using either the Const statement or the -setconstants
console argument. There are also some inbuilt constants that allow you to test for the
platform Hollywood is running on (or compiling for) and the Hollywood version. Please
see below for a list.

Also note that the @IF and @ELSEIF preprocessor commands won’t complain if you use
a constant that hasn’t been declared at all. You won’t get a "Constant not found!"
error in this case. Instead, undeclared constants will simply evaluate to 0. The reason
behind this design is that the platform-specific constants (see below) are only defined
when running a Hollywood script on the respective platform or compiling for it. Thus,
when testing for a certain platform on another platform, you won’t get an error if the
platform constant hasn’t been defined. Instead, the non-existing constant will simply
evaluate to 0.

In contrast to the normal If statement, @IF operates at preprocessor level. This means
that you can use it to force the preprocessor to take certain routes or ignore certain
portions of your code. This isn’t possible with the normal If statement at all because
once that executes, the preprocessor has already finished its job.

For example, you could force the preprocessor to parse different code depending on which
platform Hollywood is running. You can also tell the preprocessor to ignore certain
portions of the code. Those portions aren’t even checked for syntactical correctness.
They are completely skipped, just like comments, so anything could be in those blocks.

Here is an example which uses a different background picture and window title for the
individual platforms supported by Hollywood:

@IF #HW_AMIGA

@BGPIC 1, "bg_amiga.png"

@DISPLAY {Title = "My project (Amiga)"}

@ELSEIF #HW_MACOS

@BGPIC 1, "bg_macos.png"

@DISPLAY {Title = "My project (macOS)"}

@ELSEIF #HW_LINUX

@BGPIC 1, "bg_linux.png"

@DISPLAY {Title = "My project (Linux)"}

@ELSEIF #HW_WINDOWS

@BGPIC 1, "bg_windows.png"

@DISPLAY {Title = "My project (Windows)"}

@ELSE

@BGPIC 1, "bg_default.png"

1082 Hollywood manual

@DISPLAY {Title = "My project (Default)"}

@ENDIF

You wouldn’t be able to use the normal If statement for this purpose because, as its very
name implies, the preprocessor parses the script before it is run. Hence, if you used the
normal If statement all preprocessor commands in the code above would be parsed and
executed because the preprocessor command would just ignore runtime instructions like
the normal If statement.

As you can see above, there are some inbuilt constants that allow you to test for the
platform Hollywood is currently running or compiling for. The following inbuilt constants
are available:

#HW_AMIGA

Defined on AmigaOS or compatible platforms, i.e. AmigaOS, MorphOS,
AROS, WarpOS.

#HW_AMIGAOS3

Defined on AmigaOS 3.

#HW_AMIGAOS4

Defined on AmigaOS 4.

#HW_ANDROID

Defined on Android.

#HW_AROS Defined on AROS.

#HW_IOS Defined on iOS.

#HW_LINUX

Defined on Linux.

#HW_MACOS

Defined on macOS.

#HW_MORPHOS

Defined on MorphOS.

#HW_WARPOS

Defined on WarpOS.

#HW_WINDOWS

Defined on Windows.

#HW_LITTLE_ENDIAN

Defined on little endian systems.

#HW_64BIT

Defined on 64-bit systems.

#HW_VERSION

Contains the integer part of Hollywood’s version number.

#HW_REVISION

Contains the fractional part of Hollywood’s version number.

Chapter 52: System library 1083

Note that when compiling your script into an executable, Hollywood will automatically
set the constants of the target architecture instead of the build architecture. For example,
if you compile your script on Windows for AmigaOS 3, Hollywood will set the constants
#HW_AMIGA and #HW_AMIGAOS3. The constants #HW_WINDOWS and #HW_LITTLE_ENDIAN

won’t be set. They will only be set if you compile for Windows or run your script on a
Windows machine.

Also note that when compiling applets, none of the architectural constants above will be
set. Applets are completely platform-agnostic so if you compile an applet, none of the
architectural constants will be set. An exception is if you compile an applet explicitly
for Android or iOS by passing "android" or "ios" to the -exetype console argument.
In that case, #HW_ANDROID and #HW_IOS, respectively, will indeed be set. If you compile
a platform-independent applet by passing "applet" to the -exetype argument, though,
none of the architectural constants will be set.

INPUTS

val condition to test; must be a constant expression

EXAMPLE
@IF #HW_VERSION >= 7

...

@ENDIF

The code above tells the preprocessor only to parse the following code if we have at least
version 7 of Hollywood.

52.18 IIf

NAME
IIf – returns value depending on the condition (V2.0)

SYNOPSIS
ret = IIf(expr, true_expr, false_expr)

FUNCTION
This function checks if the expression expr is True (non-zero). If it is, the function re-
turns the expression specified in true_expr, else false_expr is returned. It is important
to note that both true and false expressions are evaluated in every case, no matter if the
expression is True or False. So things like IIf(a <> 0, 5 / a, 0) will not work for a=0
because Hollywood will try evaluating 5/0 which obviously does not work.

INPUTS

expr source expression

true_expr

expression to return if expr is True

false_expr

expression to return if expr is False

RESULTS

ret result

1084 Hollywood manual

52.19 INCLUDE

NAME
INCLUDE – import code from external script files or applets (V2.0)

SYNOPSIS
@INCLUDE file$

FUNCTION
This preprocessor command will import all code from the file specified by file$ into the
current project. The code will be inserted into the current project at the position where
@INCLUDE is defined. Normally, you will want to use @INCLUDE at the beginning of your
project.

This preprocessor command is useful if you have larger projects and want to spread them
over multiple files. The included files usually contain functions that you can call then
from your main script. Included files can also contain preprocessor commands.

Starting from Hollywood 4.0, you can also include Hollywood applets using this com-
mand. This is useful for importing code from libraries.

See Section 7.6 [Include files], page 88, for details.

INPUTS

file$ script file to include

EXAMPLE
;---File: script2.hws---

Function p_Print(t$)

Print(t$)

EndFunction

;EOF script2.hws

;---File: mainscript.hws

@INCLUDE "script2.hws"

p_Print("Hello World!")

WaitLeftMouse

End

;EOF mainscript.hws

The code above consists of two scripts: script2.hws contains the function p Print() which
simply calls Hollywood’s Print() function. script2.hws is then included in the main
script which also calls the p Print() function then.

52.20 IsNil

NAME
IsNil – check if a variable is Nil (V6.0)

Chapter 52: System library 1085

SYNOPSIS
bool = IsNil(var)

FUNCTION
This function checks if the specified variable is Nil. Along with GetType() IsNil() is
the only reliable way to find out if a variable is Nil or not. Checking the variable against
the Nil identifier is not reliable because this will also result in True if the variable is
zero instead of Nil. Example:

a = 0

b = Nil

DebugPrint(IsNil(a), a = Nil) ; prints "0 1"

DebugPrint(IsNil(b), b = Nil) ; prints "1 1"

You see that "a = Nil" returns True although a is zero and not Nil. That is because
Nil is always regarded as zero when used in expressions. Thus, if you want to find out
whether a variable really is Nil, always use IsNil() or GetType().

See Section 8.1 [Data types], page 97, for details.

INPUTS

var variable to examine

RESULTS

bool True if the variable is Nil, False otherwise

52.21 IsUnicode

NAME
IsUnicode – determine if Hollywood is in Unicode mode (V7.0)

SYNOPSIS
bool = IsUnicode()

FUNCTION
This function returns True if Hollywood is currently in Unicode mode, False otherwise.
Since scripts should always run in Unicode mode, this function is probably of not much
use.

INPUTS
none

RESULTS

bool True if Hollywood is in Unicode mode, False otherwise

52.22 LegacyControl

NAME
LegacyControl – enable or disable certain legacy features (V6.0)

SYNOPSIS
LegacyControl(feature$, enable)

1086 Hollywood manual

FUNCTION
This function can be used to enable or disable certain legacy functionality that Hollywood
still supports for compatibility reasons. You have to pass the name of the feature that
you want to address as well as True to enable this feature or False to disable it.

The following strings can currently be passed in feature$:

SingleMusic:

Before Hollywood 6.0 only one music could be playing at a time. This
limitation has been removed with Hollywood 6.0 but by default, PlayMusic()
will still stop any playing music in order to be fully compatible with previous
versions. If you don’t want that, you have to call LegacyControl() and set
SingleMusic to False. Hollywood will then be able to play multiple music
objects at the same time. This tag defaults to True.

LineBasedShapes:

Before Hollywood 6.0 all round shapes drawn by the functions Arc(),
Circle(), Ellipse() and Box() (when using the optional parameter to
draw a box with round corners) were drawn as polygons which made them
look rather square. Starting with Hollywood 6.0 these round shapes are
now drawn as real Bézier splines if antialiasing is turned on. This will be
a little slower than the polyline-based approach from previous versions,
but it will look much better. If you want Hollywood to keep using the
polygon-based approach from previous versions, you can set this tag to
True. In that case, the functions listed above will draw shapes that look
exactly the same as the ones drawn by previous versions. This tag defaults
to False except when running an applet compiled by Hollywood versions
older than 6.0. In that case it defaults to True.

INPUTS

feature$ name of the feature to enable or disable (see above)

enable True to enable the feature, False to disable it

52.23 LINKER

NAME
LINKER – pass options to linker (V8.0)

SYNOPSIS
@LINKER table

FUNCTION
This preprocessor command can be used to pass options to Hollywood’s linker. Thus, it
is only used when compiling scripts to applets or executables. When just running scripts
with the Hollywood interpreter it is ignored.

You have to pass a table to the @LINKER preprocessor command. The following tags are
currently recognized:

Files: This tag allows you to pass a list of files that shall be linked to the applet or
executable to the linker. This is similar to the -linkfiles console argument,

Chapter 52: System library 1087

but it allows you to store the files to be linked directly in your script which
might be more convenient than having to maintain an external database
file for this purpose. You need to pass a table containing a list of files to
be linked to this tag. Note that it is very important that the file name
specifications passed to Files must be exactly identical to the ones passed
to Hollywood functions which should then load the linked files instead. If you
don’t use identical file paths, Hollywood won’t be able to map the files linked
to the applet or executable to the corresponding commands. See Section 4.3
[Linking data files], page 58, for details.

Fonts: This tag allows you to pass a list of fonts that shall be linked to the applet or
executable to the linker. This is similar to the -linkfonts console argument,
but it allows you to store the fonts to be linked directly in your script which
might be more convenient than having to maintain an external database
file for this purpose. Your script will then automatically load the linked
fonts from your applet or executable when you call SetFont(). Using the
Fonts tag of the @LINKER preprocessor command to link fonts into applets
or executables is an alternative to using the @FONT preprocessor command.
Normally, however, using @FONT should be much easier than using Fonts

so you should use Fonts only with good reasons. See Section 4.4 [Linking
fonts], page 60, for details.

INPUTS

table table containing options to pass to the linker

EXAMPLE
@LINKER {Files = {"test.jpg", "title.png"},

{Fonts = {"Arial", "Times New Roman"}}

LoadBGPic(1, "test.jpg")

LoadBrush(1, "title.png")

SetFont("Arial", 36)

NPrint("Hello World")

SetFont("Times New Roman", 72)

NPrint("Hello Hollywood")

The code above links the files test.jpg and title.png to the applet or executable.
LoadBGPic() and LoadBrush() will then the load the files directly from the applet or
the executable instead of an external source. Additionally, the fonts Arial and Times

New Roman will be linked to the applet or executable, and SetFont() will also open those
fonts directly from the applet or executable then.

52.24 OpenURL

NAME
OpenURL – open URL in default web browser (V4.5)

SYNOPSIS
OpenURL(url$)

1088 Hollywood manual

FUNCTION
This function opens the specified in the default web browser.

INPUTS

url$ URL to open

EXAMPLE
OpenURL("http://www.airsoftsoftwair.com/")

The code above takes you directly to the Airsoft Softwair headquarters.

52.25 OPTIONS

NAME
OPTIONS – configure miscellaneous options (V4.5)

SYNOPSIS
@OPTIONS table

FUNCTION
This preprocessor command allows you configure miscellaneous general options. You
have to pass a table to this command that specifies which things you want to configure.

The following tags are currently recognized by @OPTIONS:

LockSettings:

This tag has the same function as the console argument with the same name.
If you set LockSettings to True, compiled Hollywood programs will not
accept any arguments from the console or from the pseudo-console. The
only difference to the console argument is that if you use LockSettings

in the preprocessor commands, it will also forbid any user changes when
running Hollywood scripts. I.e. if you use LockSettings here, your script
will always use the style as defined in the preprocessor commands. You
cannot change the style by passing arguments like Borderless or Sizeable
to the script.

SoftTimer:

If you set this tag to True, Hollywood will use a low resolution software
timer instead of the high resolution hardware timer. This is sometimes
necessary because with certain older Windows XP hardware, the timer may
occassionally leap which can cause unexpected behaviour. This tag is only
supported on the Windows platform. (V5.3)

NoCommodity:

If you set this tag to True, Hollywood will not add itself to the system’s list
of commodities on AmigaOS. This tag is only supported on AmigaOS and
compatibles. Defaults to False. (V6.0)

RegisterApplication:

If you set this tag to True, Hollywood will register itself as an AmigaOS 4
application on startup through application.library. This is necessary if you
want to call functions that deal with AmigaOS 4 application objects like

Chapter 52: System library 1089

SendApplicationMessage() or if you want your application to appear in
AmiDock. To change the icon that is shown in AmiDock, use the @APPICON
preprocessor command. This tag is only available on AmigaOS 4. Defaults
to False. (V6.0)

DockyContextMenu:

This tag allows you to specify the identifier of a menu strip that should
be used as a context menu for your application’s docky in AmigaOS 4’s
AmiDock system. The menu strip you specify here must only contain a
single menu tree without any sub menus. Hotkeys inside the menu strip
are not supported either because they don’t make sense in a context menu
that isn’t always visible. Please note that setting this tag will automatically
make your application appear as an app docky in AmiDock. See Section 16.1
[AmiDock information], page 165, for details on the difference between app
and standard dockies. This tag is only recognized if RegisterApplication
has been set to True and it is obviously only supported on AmigaOS 4.
(V6.0)

DockyBrush:

This tag allows you to specify the identifier of a brush that should be shown
as your application’s icon in AmiDock on AmigaOS 4. Normally, you would
use the @APPICON preprocessor command to configure your application’s
AmiDock icon but the DockyBrush tag can come in handy in one of the
following situations: First, DockyBrush allows you to specify an arbitrary
brush and thus you are not restricted to the predefined sizes made avail-
able by @APPICON. Instead, your application’s docky icon can be of any size
you want. Second, if you use DockyBrush Hollywood will automatically cre-
ate an app docky for you whereas using @APPICON would create a standard
docky (as long as your docky does not have a context menu attached). See
Section 16.1 [AmiDock information], page 165, for more details on the dif-
ference between app and standard dockies. This tag is only recognized if
RegisterApplication has been set to True and it is obviously only sup-
ported on AmigaOS 4. (V6.0)

NoDocky: If this tag is set to True, Hollywood will not show your application in Ami-
Dock. This tag is useful if you would like to have an invisible application
that can use all the application functionality like the message mechanism
and Ringhio but doesn’t appear in AmiDock. This tag is only recognized
if RegisterApplication has been set to True and it is obviously only sup-
ported on AmigaOS 4. (V6.0)

Encoding:

This tag can be used to set the script’s character encoding. Note that you
have to put this statement at the very beginning of your script or there will
be problems. The following character encodings are currently supported:

#ENCODING_UTF8:

Script’s character encoding is UTF-8 (with or without BOM).
This is also the default and should be used whenever and
whereever possible.

1090 Hollywood manual

#ENCODING_ISO8859_1:

Script’s character encoding is ISO 8859-1. Note that due to
historical reasons Hollywood will not use ISO 8859-1 character
encoding on AmigaOS and compatibles but whatever is the sys-
tem’s default character encoding. #ENCODING_ISO8859_1 will
put Hollywood in legacy mode and should make your script
fully compatible with Hollywood versions older than 7.0. How-
ever, since ISO 8859-1 mode has several drawbacks, it isn’t rec-
ommended to use this legacy mode permanently. Instead, you
should adapt your scripts to work correctly in Unicode mode.

Note that it isn’t recommended to use #ENCODING_ISO8859_1 because Hol-
lywood will only run correctly on locales compatible with Western European
languages then. You should always use #ENCODING_UTF8 because this will
put Hollywood in Unicode mode and make sure that Hollywood runs cor-
rectly on all locales. Since #ENCODING_UTF8 is also the default, you normally
don’t have to use the Encoding tag at all.

The encoding you specify here is automatically set as the default encoding
for both the text and string library using SetDefaultEncoding(). This
means that all functions of the string and text libraries will default to this
encoding. (V7.0)

NoChDir: By default, Hollywood will always change the current directory to the di-
rectory of the script or applet it is currently running. Pass this argument if
you don’t want this behaviour. In that case, Hollywood won’t change the
current directory when running a script. (V7.1)

EnableDebug:

If this tag is set to False, the commands DebugPrint(), DebugPrintNR(),
Assert(), DebugOutput() and @WARNING will be ignored. This allows you
to globally disable debugging functions with just a single call. When com-
piling scripts Hollywood will set EnableDebug to False by default. This is
the recommended setting because it will prevent people from reverse engi-
neering your projects because they won’t be able to activate debug output
by specifying the -debugoutput console argument. When running scripts,
EnableDebug defaults to True to allow you to debug your scripts. (V7.1)

GlobalPlugins:

On AmigaOS and compatibles, plugins can also be globally installed in
LIBS:Hollywood. Executables compiled by Hollywood, however, will only
load the plugins that are stored next to the executable in its directory. If
you want your executable to load all plugins in LIBS:Hollywood as well,
you have to set the GlobalPlugins tag to True. Obviously, this tag is only
supported on AmigaOS and compatible platforms. (V9.0)

DPIAware:

This tag is only supported on Windows. If you set it to True, Hollywood
will start in DPI-aware mode. This means that it will not ask the OS to
automatically scale Hollywood to fit to the monitor’s DPI. If DPIAware is
set to False (which is also the default), Hollywood will automatically apply

Chapter 52: System library 1091

scaling on high-DPI monitors so that its display doesn’t appear too small
on them. For example, a display of 640x480 pixels will appear really tiny on
a high-DPI monitor. By automatically adapting displays to the monitor’s
DPI, Hollywood will try to avoid this. However, that scaling can make
displays appear blurry on high-DPI monitors. So if you don’t want that, set
DPIAware to True. Note, however, that you’ll need to take care of making
sure that your display appears correctly on high-DPI monitors then. You
can do this by setting the SystemScale tag in the @DISPLAY preprocessor
command, for example. Note that DPIAware is only supported on Windows.
On all other platforms Hollywood is always DPI-aware. (V9.0)

ConsoleMode:

If you set this tag to True, Hollywood will compile an executable that runs
in console mode on Windows. On Windows, there is a distinction between
console and Windows programs so if you want to compile a program for the
console, you will explicitly have to tell Hollywood to do so. You can do that
by setting this tag to True. Note that this tag is obviously only handled
when compiling executables for Windows with Hollywood. Otherwise it is
simply ignored. Defaults to False. (V9.0)

Quiet: If you set this tag to True, Hollywood won’t show its traditional startup
output but will start quietly. When running Hollywood applets that have
Quiet set to True using the Hollywood Player for Amiga and compatibles,
the player also won’t open its startup window. Defaults to False. (V9.0)

INPUTS

table table specifying desired options (see above)

52.26 SetDefaultAdapter

NAME
SetDefaultAdapter – set default adapter (V10.0)

SYNOPSIS
SetDefaultAdapter(type, adapter$)

FUNCTION
This function can be used to set the default adapter for the type specified by type to
the adapter specified by adapter$. All Hollywood functions that support adapters of
the specified type will then default to the adapter set using this function.

The following adapter types are currently supported by Hollywood and can be passed in
type:

#ADAPTER_FILE:

File, directory, and filesystem adapters. They are used to open files, direc-
tories and handle filesystem operation. They can be passed to all functions
that deal with files.

1092 Hollywood manual

#ADAPTER_NETWORK:

Network adapters. They can be used to replace Hollywood’s inbuilt
network handler. Functions that support network adapters include
OpenConnection() and DownloadFile().

#ADAPTER_SERIALIZE:

Serializer adapters. They are used to serialize and deserialize data.
Functions that support serializer adapters are SerializeTable() and
DeserializeTable() among others.

The default adapter for all the adapter types listed above is default which means that
plugin adapters will always be asked before Hollywood’s inbuilt handlers.

The string you pass in adapter$ can contain one or more adapters. If several adapters
are specified, they must be separated by | characters. See Section 7.9 [Loaders and
adapters], page 92, for details.

INPUTS

type adapter type to use (see above for possible values)

adapter$ new default for the specified adapter

EXAMPLE
SetDefaultAdapter(#ADAPTER_FILE, "inbuilt")

OpenFile(1, "test.txt")

The code above will set the default file adapter to inbuilt. This means that all Holly-
wood functions that deal with files will no longer support any plugin file adapters because
you’ve told Hollywood to only use the inbuilt file adapter.

52.27 SetDefaultLoader

NAME
SetDefaultLoader – set default loader (V10.0)

SYNOPSIS
SetDefaultLoader(type, loader$)

FUNCTION
This function can be used to set the default loader for the type specified by type to
the loader specified by loader$. All Hollywood functions that support loaders of the
specified type will then default to the loader set using this function.

The following loader types are currently supported by Hollywood and can be passed in
type:

#LOADER_IMAGE:

Image loaders, used for example by functions like LoadBrush().

#LOADER_ANIM:

Animation loaders, used for example by functions like OpenAnim().

#LOADER_SOUND:

Sound loaders, used for example by functions like OpenMusic().

Chapter 52: System library 1093

#LOADER_VIDEO:

Video loaders, used for example by functions like OpenVideo().

#LOADER_ICON:

Icon loaders, used for example by functions like LoadIcon().

#LOADER_FONT:

Font loaders, used for example by functions like OpenFont().

The default loader for all the loader types listed above is default which means that
Hollywood will first ask plugin loaders, then inbuilt loaders, then native loaders to open
a file. An exception is #LOADER_FONT where, due to compatibility reasons, only native
loaders will be asked to open the font.

The string you pass in loader$ can contain one or more loaders. If several loaders are
specified, they must be separated by | characters. See Section 7.9 [Loaders and adapters],
page 92, for details.

INPUTS

type loader type to use (see above for possible values)

loader$ new default for the specified loader

EXAMPLE
SetDefaultLoader(#LOADER_IMAGE, "plugin")

LoadBrush(1, "test.jpg")

The code above will set the default image loader to plugin. This means that functions
like LoadBrush() will no longer use Hollywood’s inbuilt image loader or the image loader
provided by the OS. Only plugin image loaders will be asked to load image files.

52.28 SetVarType

NAME
SetVarType – declare a variable / OBSOLETE

SYNOPSIS
SetVarType(var, type[, arraysize])

FUNCTION
As of Hollywood 2.0, this function is obsolete and only included for compatibility reasons.

This function can be used to declare a variable. You only have to declare variables that
are different from the default type (#LONG) and which do not have an identifier in their
name like the "$" for strings or the "!" for floats. Arrays always have to be declared by
specifying the optional argument arraysize.

INPUTS

var variable name to declare

type desired type (can be #LONG, #FLOAT, #STRING)

arraysize

optional: if you specify this argument, an array of the specified size will be
allocated for you instead of a single variable

1094 Hollywood manual

52.29 ShowNotification

NAME
ShowNotification – show system notification (V8.0)

SYNOPSIS
ShowNotification(title$, msg$[, table])

FUNCTION
This function can be used to pop up a system notification box that shows the message
passed in msg$ to the user. The notification box will use the title specified in title$.
If you pass an empty string ("") in the title$ parameter, the notification will use the
title specified in the @APPTITLE preprocessor command.

The optional table argument can be used to configure further parameters for the system
notification. The following tags are currently recognized by the table argument:

Icon: This tag can be used to set the icon that should be shown inside the no-
tification box if the host system supports it. The following icon types can
currently be specified here:

#REQICON_NONE:

No icon

#REQICON_INFORMATION:

An information sign

#REQICON_ERROR:

An error sign

#REQICON_WARNING:

A warning sign

#REQICON_QUESTION:

A question mark

Note that not all platforms support this tag.

Timeout: This tag can be used to specify a timeout in milliseconds for the notification.
If this tag is set, the notification will disappear after the specified time
(in milliseconds) has elapsed. Otherwise the notification will use the host
system’s default timeout value for notifications. You can also pass one of
the following special constants here:

#DURATION_SHORT:

Use this for a short notification.

#DURATION_LONG:

Use this for a long notification.

Note that on Android, you must pass one of the special constants listed
above. Passing a millisecond value directly isn’t supported on Android.
Also note that not all platforms support the Timeout tag.

Chapter 52: System library 1095

X: Desired horizontal position for the notification. This can also be one of
Hollywood’s special coordinate constants like #CENTER. This tag is only
supported on Android and iOS.

Y: Desired vertical position for the notification. This can also be one of Holly-
wood’s special coordinate constants like #CENTER. This tag is only supported
on Android and iOS.

NoSound: Set this tag to True if you don’t want any sound to accompany the notifica-
tion. This tag is currently only supported on macOS.

Note that on Windows notifications can only be shown if your application has a tray
icon. Thus, ShowNotification() will automatically add a tray icon for your application
if there is none yet. If you would like to manually install a tray icon for your application
on Windows, call SetTrayIcon() before calling ShowNotification(). See Section 31.12
[SetTrayIcon], page 636, for details.

Also note that on AmigaOS 4 ShowNotification() is implemented through applica-
tion.library’s Ringhio system and thus can only be used if your script has registered
itself as an AmigaOS 4 application using the RegisterApplication tag in @OPTIONS. If
you need fine-tuned control over Ringhio messages and you don’t need to be portable,
you can also use the ShowRinghioMessage() function on AmigaOS 4 instead because
this offers even more configuration options. See Section 16.13 [ShowRinghioMessage],
page 173, for details.

On MorphOS ShowNotification() uses MagicBeacon’s notification system. On Ami-
gaOS 3 Ranchero is used for showing notifications. Note that since apps need to reg-
ister before they can show notifications with Ranchero it’s recommended that if you
intend to use ShowNotification() on AmigaOS 3 with Ranchero you should also use
@APPIDENTIFIER to specify a unique ID for your app. Otherwise the generic app name
"Hollywood" will be used.

INPUTS

title$ desired title for the notification or empty string for default title

msg$ desired message text for the notification

table optional: table containing further configuration parameters (see above)

52.30 Sleep

NAME
Sleep – halt script execution for a certain amount of time (V10.0)

SYNOPSIS
Sleep(time)

FUNCTION
This function halts the script execution for the time interval specified in time. This time
interval must be specified in milliseconds.

Sleep() does the same as Wait() except that Sleep() always operates in milliseconds
whereas Wait() uses ticks by default.

1096 Hollywood manual

INPUTS

time time interval in milliseconds

EXAMPLE
Sleep(4000)

The code above halts the script execution for 4 seconds.

52.31 VERSION

NAME
VERSION – define which Hollywood version is required (V2.0)

SYNOPSIS
@VERSION version, revision

FUNCTION
This preprocessor command allows you to define the version of Hollywood that your
script needs to run. You should always use this preprocessor command as the first thing
in your script.

INPUTS

version required Hollywood version

revision required Hollywood revision

EXAMPLE
@VERSION 2,0

Defines that this script requires at least Hollywood 2.0.

52.32 Wait

NAME
Wait – wait for a certain amount of time

SYNOPSIS
Wait(time[, unit])

FUNCTION
This function waits for the time specified by time and then continues the script execution.
The default unit for time is ticks. A tick is 1/50 second. So if you want to wait one
second, you will have to set ticks to 50.

Starting with Hollywood 1.9 you can specify different units to make the wait more precise.
The following unit types are possible:

#MILLISECONDS:

Time is in milliseconds (1/1000 second)

#SECONDS:

Time is in seconds

1097

#TICKS: Time is in ticks (default) (1/50 second)

You can also use the Sleep() function which will do the same as Wait() but operates
in milliseconds so you save some typing.

INPUTS

time time to wait

unit optional: specify a different time unit as listed above (defaults to #TICKS)
(V1.9)

EXAMPLE
Wait(200)

Wait for 4 seconds.

1099

53 Table library

53.1 Concat

NAME
Concat – concatenate table strings into a single string (V5.0)

SYNOPSIS
s$ = Concat(table[, sep$, start, end])

FUNCTION
This function can be used to concatenate the strings from table indices start to end to
a single string that is optionally delimited by the string specified in sep$. If start and
end are not specified, they default to 0 and number of table items minus one respectively,
which means that by default all table strings are concatenated. If sep$ is not specified,
it will default to the empty string which means that no separator will be put between
the strings.

Please note that this function will only take strings at integer indices into account.
Strings at non-integer indices will not be concatenated.

INPUTS

table table that should be used as the source

sep$ optional: separator string to use (defaults to "")

start optional: table index of first string to concatenate (defaults to 0, which
means start at index 0 of the table)

end optional: table index of the last string to concatenate (defaults to number
of table items minus one, which means end at the end of the table)

EXAMPLE
t = {"Hello", "this", "is", "a", "test!"}

DebugPrint(Concat(t, " "))

The code above concatenates all strings of the table and separates them by inserting a
space character.

53.2 CopyTable

NAME
CopyTable – make independent copy of a table (V4.6)

SYNOPSIS
t = CopyTable(src[, shallow])

FUNCTION
This function can be used to make an independent copy of the specified source table. As
you have probably noticed, when assigning a table to a new variable using the equal (=)
operator, only a reference to the table will be assigned to the new variable. This is done

1100 Hollywood manual

due to efficiency reasons because making complete copies of the table is not necessary
in most cases. In some cases, however, you need to have a fully independent copy of the
table. This can be done using this function.

Starting with Hollywood 6.0 this function accepts an optional argument named shallow.
If you set this argument to True, CopyTable() will do a shallow copy of the table which
means that instead of making an independent copy, all sub-tables will only be copied by
reference. A copy by reference means that if the source table is modified, all copies by
reference will be modified as well. Shallow copies of a table have the advantage that they
save resources and they can also come in handy in case of self-referential tables which
would lead to a stack overflow during a deep copy.

See Section 8.4 [Tables], page 100, for details.

INPUTS

src table to copy

shallow optional: specifies whether or not a shallow copy of the table shall be made
(defaults to False) (V6.0)

RESULTS

t deep or shallow copy of table

EXAMPLE
t1 = {1, 2, 3, 4, 5}

t2 = t1

t2[0] = 10

DebugPrint(t1[0]) ; -> prints 10 because t2 is only a reference to t1

t3 = CopyTable(t1)

t3[0] = 20

DebugPrint(t1[0]) ; -> prints 10 now!

This code demonstrates first the copy-by-reference default behaviour of Hollywood which
only creates a reference to an existing table. Afterwards, a deep copy is made using
CopyTable().

53.3 CreateList

NAME
CreateList – create optimized list (V9.0)

SYNOPSIS
list = CreateList()

FUNCTION
This function creates an optimized list and returns it as an empty table.

The advantage when using optimized lists instead of normal Hollywood tables with
functions like InsertItem(), RemoveItem(), ListItems() and GetItem() is that all
those functions will be much faster.

The disadvantage is that adding or removing items may only be done via InsertItem()

and RemoveItem(). You must not add or remove items from optimized lists by modifying
the table directly. It’s necessary to use the functions mentioned above.

Chapter 53: Table library 1101

To convert an existing Hollywood table to an optimized list, you can use the
SetListItems() function. See Section 53.20 [SetListItems], page 1112, for details.

INPUTS
none

RESULTS

list an empty optimized list

EXAMPLE
t = CreateList()

;t = {}

StartTimer(1)

For Local k = 1 To 10000

InsertItem(t, k)

Next

NPrint(ListItems(t))

NPrint("This took", GetTimer(1), "ms")

The code above creates an empty optimized list, adds 10000 items to it and prints the
time this took. Disable the first line and uncomment the second line to see how much
faster optimized lists are in comparison to normal Hollywood tables.

53.4 ForEach

NAME
ForEach – iterate over all elements of a table (V5.0)

SYNOPSIS
[v] = ForEach(table, func[, userdata])

FUNCTION
This function can be used to iterate over all elements of the table specified in the first
argument. For each table element this command will call the user function specified in
func. The user function will receive two arguments: The first argument will contain the
index of the table element, whereas the second argument will contain the value at that
index. If the user function returns a value the loop is broken, and this value is returned
as the result from ForEach().

Please note that this function will traverse the whole table. If you would just like to
iterate over integer indices, use the ForEachI() command instead. See Section 53.5
[ForEachI], page 1102, for details.

Starting with Hollywood 6.1 this function accepts an optional userdata parameter. The
value you pass here will be forwarded to your callback as the third function parameter.
The value can be of any type.

INPUTS

table table that should be traversed

func user function to call for each table element

1102 Hollywood manual

userdata optional: user data to pass to callback function (V6.1)

RESULTS

v optional: return value if iteration is broken by user function (see above)

EXAMPLE
t = {1, 2, 3, 4, Test$="Hello", Value=9.2}

ForEach(t, DebugPrint)

The code above dumps the contents of table ’t’ using ForEach().

53.5 ForEachI

NAME
ForEachI – iterate over all integer indices of a table (V5.0)

SYNOPSIS
[v] = ForEachI(table, func[, userdata])

FUNCTION
This function can be used to iterate over all integer indices of the table specified in the
first argument. For each table element at an integer index this command will call the
user function specified in func. The user function will receive two arguments: The first
argument will contain the index of the table element, whereas the second argument will
contain the value at that index. If the user function returns a value the loop is broken,
and this value is returned as the result from ForEachI().

Please note that this function will traverse only integer indices. If you would like to
iterate over the whole table, use the ForEach() command instead. See Section 53.4
[ForEach], page 1101, for details.

Starting with Hollywood 6.1 this function accepts an optional userdata parameter. The
value you pass here will be forwarded to your callback as the third function parameter.
The value can be of any type.

INPUTS

table table that should be traversed

func user function to call for each integer index

userdata optional: user data to pass to callback function (V6.1)

RESULTS

v optional: return value if iteration is broken by user function (see above)

EXAMPLE
t = {1, 2, 3, 4, Test$="Hello", Value=9.2}

ForEachI(t, DebugPrint)

The code above dumps only the integer indices of table ’t’. This means that the indices
Test$ and Value won’t be respected.

Chapter 53: Table library 1103

53.6 GetItem

NAME
GetItem – get list item (V9.0)

SYNOPSIS
item = GetItem(list, idx)

FUNCTION
This returns the item at index idx in the list specified by list. If idx is -1, the last list
item will be returned. If idx is out of range, Nil will be returned.

Note that you normally shouldn’t use this function because you can access list elements
quicker by just using the []-operator. The only case where using this function has a real
speed advantage is when you want to get the last item of an optimized list and you don’t
know the number of items in the list. In that case, using GetItem() is faster than calling
ListItems() first.

INPUTS

list list to use

idx index of the list item to get; pass -1 to get the last item

RESULTS

item item at the specified index

53.7 GetMetaTable

NAME
GetMetaTable – retrieve a table’s metatable (V2.0)

SYNOPSIS
mt = GetMetaTable(t)

FUNCTION
This function retrieves the metatable of the specified table and returns it. If the spec-
ified table does not have a metatable, Nil is returned. See Section 9.8 [Metamethods],
page 110, for more information on metatables and metamethods.

INPUTS

t table whose metatable you want to retrieve

RESULTS

mt metatable of the specified table or Nil if table does not have a metatable

53.8 HaveItem

NAME
HaveItem – check if a table item exists (V6.0)

1104 Hollywood manual

SYNOPSIS
bool = HaveItem(t, key)

bool = HasItem(t, key)

FUNCTION
This function checks whether the specified table has an item at index key or not. If there
is an item at this index, HaveItem() will return True. This is a convenience function
for RawGet().

Note that if you pass a string in the key parameter, it will be converted to lower case
automatically. If you don’t want that, use RawGet() instead.

Starting with Hollywood 9.1, this function has a synonym called HasItem() which does
the same but is more grammatical.

INPUTS

t table to query

key key to check

RESULTS

bool True or False depending on whether the item exists

EXAMPLE
t = {x = 10, y = 20}

NPrint(HaveItem(t, "x"), HaveItem(t, "y"), HaveItem(t, "z"))

The code above will print 1 / 1 / 0 (= True, True, False).

53.9 InsertItem

NAME
InsertItem – insert item into a list (V2.0)

SYNOPSIS
InsertItem(list, item[, pos])

FUNCTION
This function inserts the specified item into the list specified by list. item can be of
any type. If you do not specify the optional argument pos, the item will be appended
to the end of the list. If you specify the pos argument, the item will be inserted at this
position and all succeeding items will be moved one position up. Position counter starts
at 0 which is the first element.

Note that this function is rather slow when used with normal Hollywood tables. To ac-
celerate InsertItem(), you have to use it with optimized lists created by CreateList().
See Section 53.3 [CreateList], page 1100, for details.

INPUTS

list table where to insert the element

item item to insert (can be of any type)

pos optional: where to insert (defaults to -1 which means at the end of the list)

Chapter 53: Table library 1105

EXAMPLE
a = {1, 2, 3, 4, 5, 7, 8, 9, 10}

InsertItem(a, 6, 5)

For k = 1 To ListItems(a) Do Print(a[k - 1] .. " ")

Prints "1 2 3 4 5 6 7 8 9 10". The item "6" is inserted at position 5 so that the row is
complete.

53.10 IPairs

NAME
IPairs – traverse over all integer keys of a table (V2.0)

SYNOPSIS
func, state, val = IPairs(table)

FUNCTION
This function can be used in conjunction with the generic For statement to traverse over
all integer keys of a table. As required by the generic For statement, IPairs() will return
three values: An iterator function, a private state information, and an initial value for
the traversal. The iterator function returned by IPairs() will stop the traversal when
it encounters a key whose value is set to Nil.

If you want to traverse over all fields of a table instead of just the integer indices, use
the Pairs() function instead.

See Section 11.4 [Generic For statement], page 127, for details.

INPUTS

table table to traverse

RESULTS

func iterator function

state private state information

val initial traversal value

EXAMPLE
a = {"one", "two", "three"}

For i, v In IPairs(a)

DebugPrint(i, v)

Next

The code above will print "0 one", "1 two" and "2 three".

53.11 IsTableEmpty

NAME
IsTableEmpty – check if table is empty (V6.1)

SYNOPSIS
b = IsTableEmpty(t)

1106 Hollywood manual

FUNCTION
This function checks whether the specified table is empty and returns True or False

respectively.

INPUTS

t table to check

RESULTS

b True or False

EXAMPLE
Print(IsTableEmpty({}))

Print(IsTableEmpty({0}))

The first call will print "1" (true), the second "0" (false).

53.12 ListItems

NAME
ListItems – count items of a list (V2.0)

SYNOPSIS
c = ListItems(list)

FUNCTION
This function iterates over all items in the list specified by list and returns how many
items it has. Counting will stop when an element of type Nil is found in the list.

Note that this function only counts items at successive integer indices. It starts at index
0 and counts all items at successive integer indices until a Nil item is encountered. To
count all items of a table, use the TableItems() function instead. See Section 53.23
[TableItems], page 1114, for details.

Note that this function is rather slow when used with normal Hollywood tables. To
accelerate ListItems(), you have to use it with optimized lists created by CreateList().
See Section 53.3 [CreateList], page 1100, for details.

INPUTS

list table whose items are to be counted

RESULTS

c counter

EXAMPLE
Print(ListItems({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}))

This returns 10.

Chapter 53: Table library 1107

53.13 NextItem

NAME
NextItem – traverse fields of a table (V2.0)

SYNOPSIS
next, item = NextItem(table[, start])

FUNCTION
NextItem() returns the item that follows after the item start in the specified table.
If start is Nil, the first table item is returned. If there is no item after start, Nil is
returned.

This function is mostly used to traverse all fields of the table in argument 1. To do this,
you pass the table in argument 1 and leave out the second argument. NextItem() then
returns an index to the next value in the table and the value at that table index. To
traverse all fields, you have to pass the next value to NextItem() as the second argument
and loop over it until the next value is Nil.

When there are no more items in the table, Nil is returned and you can terminate your
loop. Be careful when checking variables against Nil because 0=Nil is actually True in
Hollywood. Thus, GetType() is the only reliable way to find out if a variable is really
Nil. Simply checking it against Nil would also result in True if the variable was 0.

Do not expect this function to return the table fields in the order they were assigned.
Hollywood often stores them in a different order.

INPUTS

table table to traverse

start optional: where to start the traversal (defaults to Nil which means start at
the beginning)

RESULTS

next index of the next table item after start or Nil if there are no more items

item table value of the item next to start

EXAMPLE
t = {1, 2, 3, 4, 5, "Hello World", {100, 200, 300}, [-1.5] = -1.5,

b = 66, Function(s) DebugPrint(s) EndFunction}

a, b = NextItem(t)

While GetType(a) <> #NIL

DebugPrint(b)

a, b = NextItem(t, a)

Wend

The above code traverses a heterogenous table. The output will be the following:

2

3

4

5

Hello World

Table: 74cbd42c

1108 Hollywood manual

Function: 74cbd3c8

1

-1.5

66

You see that the fields are returned in a different order than they were assigned.

53.14 Pack

NAME
Pack – pack a table (V8.0)

SYNOPSIS
t = Pack(a[, b, ...])

FUNCTION
This function takes all arguments passed to it and stores them in a table, which is then
returned. The table will have as many elements as you passed arguments to this function.

To unpack all table elements, use the Unpack() function.

INPUTS

a first parameter to pack into table

b second parameter to pack into table

... unlimited number of further parameters to pack

RESULTS

t a table containing all values passed to this function

EXAMPLE
t = Pack(1, 2, 3)

Print(t[0], t[1], t[2])

This will print "1 2 3".

53.15 Pairs

NAME
Pairs – traverse over all fields of a table (V2.0)

SYNOPSIS
func, state, val = Pairs(table)

FUNCTION
This function can be used in conjunction with the generic For statement to traverse over
all fields of a table. As required by the generic For statement, Pairs() will return three
values: An iterator function, a private state information, and an initial value for the
traversal. The iterator function will then return the key/value combination of all table
fields.

Chapter 53: Table library 1109

If you want to traverse over the integer indices of a table only, use the IPairs() function
instead.

See Section 11.4 [Generic For statement], page 127, for details.

INPUTS

table table to traverse

RESULTS

func iterator function

state private state information

val initial traversal value

EXAMPLE
a = {"one", "two", "three", x = 5, y = 6}

For i, v In Pairs(a)

DebugPrint(i, v)

Next

The code above will print "0 one", "1 two", "2 three", "x 5", and "y 6".

53.16 RawEqual

NAME
RawEqual – compare two tables without metamethods (V2.0)

SYNOPSIS
eq = RawEqual(t1, t2)

FUNCTION
This function compares the two tables and returns True if they are the same, False
otherwise. This is basically the same as writing

eq = (t1 = t2)

The difference is, though, that RawEqual() will do the comparison without invoking
any metamethod that might be defined in the tables. See Section 9.8 [Metamethods],
page 110, for details.

INPUTS

t1 table 1 to compare

t2 table 2 to compare

RESULTS

eq True if tables are equal, False otherwise

1110 Hollywood manual

53.17 RawGet

NAME
RawGet – read value from table without metamethods (V2.0)

SYNOPSIS
v = RawGet(t, key)

FUNCTION
This function reads the value at index key from the specified table and returns it. Basi-
cally, this function does the same as the following expression:

v = t[key]

The difference is that RawGet() will never invoke any metamethod and it will not fail
if the specified key does not exist. Thus, it is useful for checking if a specific table
key exists, or for reading values from tables without invoking any metamethod. See
Section 9.8 [Metamethods], page 110, for details.

Please note that string indices are normally in lower case except when using brackets to
initialize the table index. Consider the following code:

t1 = {TEST = 1}

DebugPrint(RawGet(t1, "TEST"), RawGet(t1, "test")) ; prints Nil/1

t2 = {}

t2.TEST = 1

DebugPrint(RawGet(t2, "TEST"), RawGet(t2, "test")) ; prints Nil/1

t3 = {}

t3["TEST"] = 1

DebugPrint(RawGet(t3, "TEST"), RawGet(t3, "test")) ; prints 1/Nil

As you can see, when initializing the TEST element using curly braces or the dot operator,
the string index TEST is automatically converted to lower case. When using brackets
to initialize the TEST element, however, no conversion is taking place. This also has
the consequence that you can’t access non-lower case string indices initialized with the
bracket syntax using the dot operator because the dot operator always converts the index
to lower case.

Starting with Hollywood 6.0 you can also use the convenience function HaveItem() to
check if a table item exists. See Section 53.8 [HaveItem], page 1103, for details.

INPUTS

t table to query

key key to search for

RESULTS

v value of the specified key or Nil if key does not exist in the table

EXAMPLE
t = {x = 10, y = 20}

NPrint(RawGet(t, "x"))

NPrint(RawGet(t, "y"))

NPrint(RawGet(t, "z"))

The code above will print 10 / 20 / Nil.

Chapter 53: Table library 1111

53.18 RawSet

NAME
RawSet – write value to table without metamethods (V2.0)

SYNOPSIS
RawSet(t, key, val)

FUNCTION
This function writes the specified value to the specified table at index key. The specified
value can be of any type (number, string, table, function, etc.). Basically, this function
does the same as the following expression:

t[key] = v

The only difference is that RawSet() will never invoke any metamethod so that you have
full and immediate access to all table fields. See Section 9.8 [Metamethods], page 110,
for details.

INPUTS

t table to modify

key key to write

val value to set key to

53.19 RemoveItem

NAME
RemoveItem – remove item from a list (V2.0)

SYNOPSIS
e = RemoveItem(list[, pos])

FUNCTION
This function removes an item from the list specified by list and returns it. If you
omit the optional argument pos, the last item of the list will be removed. Otherwise the
specified item is removed. Position 0 specifies the first item of the list. After removing
the item, the list is reorganized to close the gap.

Note that this function is rather slow when used with normal Hollywood tables. To ac-
celerate RemoveItem(), you have to use it with optimized lists created by CreateList().
See Section 53.3 [CreateList], page 1100, for details.

INPUTS

list table from where to remove the element

pos optional: item that is to be removed (defaults to -1 which means that the
last element should be removed)

RESULTS

e the item that was just removed

1112 Hollywood manual

EXAMPLE
a = {1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10}

e = RemoveItem(a, 7)

For k = 1 To ListItems(a) Do Print(a[k - 1] .. " ")

Removes the number 8 because it is twice in the list. The variable e will receive the
value 8. After removing the item, the correct row will be printed: "1 2 3 4 5 6 7 8 9 10".

53.20 SetListItems

NAME
SetListItems – convert table to optimized list (V9.0)

SYNOPSIS
SetListItems(t, n)

FUNCTION
This function can be used to convert an existing table to an optimized list. Opti-
mized lists have the advantage that InsertItem(), RemoveItem(), ListItems() and
GetItem() are much faster than when used with normal Hollywood tables.

You have to pass the table to convert in the t argument and the number of list entries
in n. Note that the value you pass in n must match the number of list entries currently
in the table, i.e. it must match the return value of ListItems().

Note that there are some restrictions when using optimized lists. See Section 53.3 [Cre-
ateList], page 1100, for details.

INPUTS

t table to convert to optimized list

n number of entries in the list

EXAMPLE
t = {}

For Local k = 1 To 10000 Do t[k-1] = k

SetListItems(t, 10000)

Print(ListItems(t))

The code above creates a normal Hollywood table, fills it with 10000 items, and then
converts it to an optimized list.

53.21 SetMetaTable

NAME
SetMetaTable – assign a table’s metatable (V2.0)

SYNOPSIS
SetMetaTable(t, mt)

Chapter 53: Table library 1113

FUNCTION
This function assigns the metatable specified in mt to the table specified in argument 1. If
you pass Nil as mt, the table’s metatable will be removed. See Section 9.8 [Metamethods],
page 110, for more information on metatables and metamethods.

INPUTS

t table that shall be modified

mt metatable you would like to assign to t

EXAMPLE
See Section 9.8 [Metamethods], page 110.

53.22 Sort

NAME
Sort – sort an array

SYNOPSIS
Sort(array[, sortfunc])

FUNCTION
This function sorts the array specified by array. It supports arrays of type number, type
string or an arbitrary data type via a custom callback. This function stops sorting if it
finds a Nil element or an empty string ("") in string arrays. String arrays are sorted
alphabetically, number arrays are sorted in ascending order.

Starting with Hollywood 4.5, you can customize the sorting operation by using a custom
sort callback. This function has to accept two parameters and it has to return if the
first parameter should be inserted before the second one or not. This gives you great
flexibility in setting up custom sort operations because you can compare arbitrary values
and you can also customize the sorting order.

INPUTS

array array to sort

sortfunc optional: custom function telling Hollywood how to sort (V4.5)

EXAMPLE
names = {"Joey", "Dave", "Mark", "Stephen", "Al", "Jefferson"}

Sort(names)

For k = 0 To 5

NPrint(names[k])

Next

The above code defines an array, adds some names to it and then sorts it. The output
is "Al, Dave, Jefferson, Joey, Mark, Stephen".

nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Sort(nums, Function(a, b) Return(a > b) EndFunction)

For k = 0 To 9

1114 Hollywood manual

NPrint(nums[k])

Next

The code above uses a custom sorting function to sort table "nums" in descending order.
The result will be: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

53.23 TableItems

NAME
TableItems – count all table items (V6.1)

SYNOPSIS
c = TableItems(t)

FUNCTION
This function counts all items in the specified table. In contrast to ListItems() which
only counts items at successive integer indices, TableItems() really counts all table
elements, including those at string or floating point indices.

INPUTS

t table whose items are to be counted

RESULTS

c number of items in table

EXAMPLE
Print(TableItems({x=5, y=6, [6]=1, 3, 4, 5, 6}))

This returns 7.

53.24 Unpack

NAME
Unpack – unpack a table (V2.0)

SYNOPSIS
a, ... = Unpack(t)

FUNCTION
This function unpacks the table specified by t and returns all of its elements. Unpack()
returns as many values as there are elements in the table.

To pack parameters into a table, use the Pack() function.

INPUTS

t table to unpack

RESULTS

a first value

... additional return values depending on how much elements there are in the
table

1115

EXAMPLE
a, b, c = Unpack({1, 2, 3})

The above code unpacks the specified table. a will get the value 1, b will be assigned 2
and c will receive the value 3.

a = {1, 2, 3, 4, 5, 6}

Print(Unpack(a))

This will print "1 2 3 4 5 6".

1117

54 Text library

54.1 Overview

Hollywood’s text library contains functions that deal with font management, text measure-
ment, text drawing, as well as text transformation. You can open fonts using the commands
SetFont(), OpenFont(), or @FONT. One important thing to know is that Hollywood sup-
ports two different text renderers:

1. Inbuilt text renderer: This is the recommended renderer, although it isn’t the default
renderer due to historical reasons. The inbuilt renderer operates completely indepen-
dent of the host operating system’s text renderer and thus will guarantee that text looks
exactly the same on every platform. The pixels drawn by functions such as Print()
and TextOut() will be exactly the same on every platform if you use the inbuilt text
renderer. You can access the inbuilt text renderer by setting the Engine tag of the
SetFont(), OpenFont(), or @FONT commands to #FONTENGINE_INBUILT.

2. Native text renderer: This will use the host operating system’s text renderer. Due to
historical reasons, this is also the default renderer but it isn’t recommended to use it
because text drawn using this renderer will look slightly different on each platform. If
this is no problem for you, you can just go ahead and use it but if you aim to achieve
an identical look on every platform, you should use the inbuilt text renderer instead.

The inbuilt text renderer can also open *.ttf fonts directly, so you don’t even have to
install fonts in order to use them with the inbuilt text renderer. You could just use code
like this:

OpenFont(1, "c:/Windows/Fonts/Arial.ttf", 36, {Engine = #FONTENGINE_

INBUILT})

See Section 54.11 [Font specification], page 1126, for details.

See Section 54.42 [Working with fonts], page 1157, for details.

54.2 AddFontPath

NAME
AddFontPath – add additional search path for fonts (V5.0)

SYNOPSIS
AddFontPath(path$)

FUNCTION
This function adds the path specified in path$ to the search paths of Hollywood’s inbuilt
font engine. By default, the inbuilt font engine only looks for fonts inside a subdirectory
"Fonts" in the current directory. On Amiga systems, it also looks in the FONTS: assign.
If you want Hollywood to look into other paths as well, you need to add them using
AddFontPath().

Please note that the search paths specified here only affect the inbuilt font engine, i.e.
they are only used when you specify #FONTENGINE_INBUILT in OpenFont(), SetFont(),
or @FONT. The search paths specified here are not respected when using #FONTENGINE_

NATIVE.

1118 Hollywood manual

INPUTS

path$ path to add to Hollywood’s inbuilt font engine search paths

EXAMPLE
AddFontPath("Data/Fonts")

Adds the path "Data/Fonts" to the font engine’s search paths.

54.3 AddTab

NAME
AddTab – add a tabulator

SYNOPSIS
AddTab(pos, ...)

FUNCTION
This function adds the tabulator specified by pos to the tabulator list of Hollywood.
Tabulators can only be used with the Print() function. If there is a tabulator character
in a string that is passed to Print(), then it will jump to the next tabulator position.
You can clear the tabulator settings by calling ResetTabs().

New in V2.0: You can pass as many tabulator positions to this command as you like.

INPUTS

pos position of the new tabulator (in pixels)

... more tabulator positions (V2.0)

EXAMPLE
AddTab(100, 200, 300, 400)

SetFontStyle(#UNDERLINED)

NPrint("Last name\tFirst name\tAge\tGender\n")

SetFontStyle(#NORMAL)

NPrint("Doe\tJon\t34\tMale")

NPrint("Smith\tMaggie\t25\tFemale")

NPrint("...\t...\t...\t...")

The above code displays a table using tabulators.

54.4 CloseFont

NAME
CloseFont – close an existing font (V4.5)

SYNOPSIS
CloseFont(id)

FUNCTION
This function frees all memory occupied by the font specified by id. To reduce memory
consumption, you should close fonts when you do not need them any longer.

Chapter 54: Text library 1119

INPUTS

id identifier of the font to close

54.5 CopyTextObject

NAME
CopyTextObject – clone a text object (V4.0)

SYNOPSIS
[id] = CopyTextObject(source, dest)

FUNCTION
This function clones the text object specified by source and creates a copy of it as
text object dest. If you specify Nil in the dest argument, this function will choose an
identifier for the cloned text object automatically and return it to you. The new text
object is independent from the old text object so you could free up the source text object
after it has been cloned.

INPUTS

source source text object identifier

dest identifier of the text object to be created or Nil for auto ID select

RESULTS

id optional: identifier of the text object; will only be returned when you pass
Nil as argument 2 (see above)

EXAMPLE
CopyTextObject(1, 10)

FreeTextObject(1)

The above code creates a new text object 10 which contains the same graphics data as
text object 1. Then it frees text object 1 because it is no longer needed.

54.6 CreateFont

NAME
CreateFont – create font from brush (V10.0)

SYNOPSIS
[id] = CreateFont(id, brushid, charmap, width, height, cols[, t])

FUNCTION
This function can be used to create a new font from a brush source. This can be useful if
you need to work with custom fonts that are distributed as image files instead of common
font formats like it was often the case in games from the 1980s and early 1990s and in
scene demos. You have to pass the desired identifier for the new font in the id argument
and the identifier of the brush source in the brushid argument. If you pass Nil in id,
CreateFont() will automatically choose an identifier and return it. After the font has
been created successfully, you can set it as the current font using UseFont().

1120 Hollywood manual

The charmap parameter must be set to a string describing the individual characters in the
brush. The character dimensions must be passed in the width and height parameters.
All characters must share the same dimensions. The number of characters per row must
be passed in the cols argument.

For example, a font which supports the upper-case characters A-Z and whose characters
are 32x32 pixels each could be laid out in a brush that has 4 rows containing 8 characters
per row, except for the last row which contains only 2 because the English alphabet has
just 26 characters so 3 rows with 8 characters plus one last row with 2 characters are
sufficient. Thus, you could create such a font from a 256x128 sized brush and pass 32
for width and height, 8 for cols and "ABCDEFGHIJKLMNOPQRSTUVWXYZ" in
charmap.

The optional table argument can be used to set some additional options. The following
tags are currently recognized:

Name: This allows you to give your font a name. By default, the font’s name will
be set to "Font".

RowSpacing:

If there is some spacing between the different rows of characters in the brush,
you can tell CreateFont() about it using this tag. Just set this tag to the
number of spacing pixels between each row and CreateFont() will skip the
spacing when it creates font. Defaults to 0 which means no vertical spacing.

ColSpacing:

If there is some spacing between the individual characters in the brush,
you can tell CreateFont() about it using this tag. Just set this tag to the
number of spacing pixels between each character and CreateFont() will skip
the spacing when it creates font. Defaults to 0 which means no horizontal
spacing.

Ascender:

This tag allows you to set the desired ascender for the font. The ascender
of a font is the maximum character extent from the baseline to the top of
the line. Hollywood uses the ascender value to determine where to draw the
line for the underline text style, for example. This defaults to the character
height passed in height minus 1.

CreateFont() supports palette brushes as well as brushes with mask or alpha channel.
If the brush passed in brushid is a 1-bit palette brush, you will also be able to change
the color of the font using SetFontColor() and other functions just like you can do it for
normal fonts. If the brush’s depth is more than 1-bit, however, the font will be treated
as a color font that always uses the same color no matter what the current font color is
set to.

Note that CreateFont() is quite flexible and could also be used as a tilemapper. Just
map each tile to a character and then draw the whole tilemap using a single call to
TextOut(). This should be much faster than drawing the tiles individually.

INPUTS

id identifier for the font or Nil for auto id selection

Chapter 54: Text library 1121

brushid identifier of the source brush

charmap string describing all characters in the brush

width width of each font character

height height of each font character

cols number of characters per row

t optional: table containing further options (see above)

RESULTS

id optional: identifier of the font; will only be returned if you pass Nil as
argument 1 (see above)

EXAMPLE
CreateFont(1, 2, "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!-.:?",30,32,10)

UseFont(1)

NPrint("HELLO WORLD!")

The code above constructs a new font from brush 2. There are 41 characters in the
source brush and they are laid out as 10 characters per row and 30x32 pixels each. This
means that the source brush must be at least 300x160 pixels. After creating the font, it
will be selected as the current one and the text "HELLO WORLD!" will be printed.

54.7 CreateTextObject

NAME
CreateTextObject – create a text object

SYNOPSIS
[id] = CreateTextObject(id, text$[, table])

FUNCTION
This function creates a new text object containing the data specified by text$ and assigns
the specified id to it. If you pass Nil in id, CreateTextObject() will automatically
choose an identifier and return it. The text is rendered in the current color and with the
currently selected font.

The advantage of text objects compared to standard text (output via Print() for ex-
ample) is that you can easily position text objects on the screen, remove them or even
scroll them using MoveTextObject().

Starting with Hollywood 2.5, you can use format tags in the string you pass to
CreateTextObject(). Using these tags you can control the font style and color of your
text on-the-fly. Format tags always start and end with a square bracket (’[’). In case
you just want to print a square bracket, you will have to use two square brackets. If
there is only one square bracket, Hollywood will always expect a format tag. Please see
the chapter about format tags for more information on this topic.

In Hollywood 5.0 the syntax of this function changed slightly. While the old syntax is
still supported for compatibility, new scripts should use the new syntax which accepts a
table as argument 4. The table can contain the following elements:

1122 Hollywood manual

Align: Allows you to specify the text’s alignment. The following alignments are
currently supported:

#LEFT Left alignment.

#RIGHT Right alignment.

#CENTER Center lines.

#JUSTIFIED

Lay out text in justified lines. (V7.0)

The default value for Align is #LEFT.

WordWrap:

CreateTextObject() can do automatic word-wrapping for you if you specify
this additional parameter. You can use this tag to specify a maximum width
for your text. CreateTextObject() will then use word wrapping to make
sure that no text runs beyond this limit. If you do not set this argument
or set it to 0 (which is also the default), the text will be as wide as it is
required. Starting with Hollywood 9.1, you can also use soft hyphens or
zero-width space characters to customize word wrapping but since these are
Unicode characters, you need to make sure that you use UTF-8 encoding in
that case.

Encoding:

This argument can be used to specify the character encoding inside text$.
This defaults to the default character encoding for the text library as
set by SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details.

Color: This tag allows you to specify the text color. The color must be provided as
an ARGB value. If you do not specify this tag, CreateTextObject() will
use the color that was set using the SetFontColor() command instead.

Pen: When palette mode is #PALETTEMODE_PEN, this tag can be used to set the pen
that should be used for drawing the text. If palette mode is #PALETTEMODE_
PEN and Pen is not specified, the pen set using SetDrawPen() will be used
instead. (V9.0)

Linespacing:

This tag can be used to customize the spacing pixels between lines. It can
be set to a positive or a negative value. A negative value moves lines closer
together, whereas a positive value increases the spacing between the lines.
A value of 0 means no custom line spacing. Defaults to 0. (V10.0)

Charspacing:

Allows you to adjust the space between characters. You can set this to a
positive or negative value. A positive value will increase the space between
characters, a negative value will decrease it. (V10.0)

NoAdjust:

When drawing text objects using DisplayTextObject() Hollywood will po-
sition them in a way that they appear as if they had been drawn using

Chapter 54: Text library 1123

TextOut() which means that they could be offset to the left and top in case
parts of some characters are designed to appear in the area of previous char-
acters. This is often the case with characters like "j". If you don’t want
that, set NoAdjust to True. In that case, calling DisplayTextObject() will
never lead to any adjustments in positioning but the text object will strictly
be drawn at the specified position. The adjustment offsets applied to a text
object by Hollywood in case NoAdjust is False can be found out by querying
the #ATTRADJUSTX and #ATTRADJUSTY tags. Defaults to False. (V10.0)

Note that Hollywood currently only supports standard left-to-right based text aligned
on horizontal lines. Right to left and vertical text is currently not supported.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color set via SetFontColor() or the Color tag above.

INPUTS

id identifier of the new text object or Nil for auto id selection

text$ text for the text object

table optional: a table containing further options for the text object

RESULTS

id optional: identifier of the text object; will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
SetFontColor(#RED)

SetFont("times.font", 18)

CreateTextObject(1, "Hello World!")

DisplayTextObject(1, #CENTER, #CENTER)

The above code creates a text object with the font "times" (size 18) and with the color
red. The text is "Hello World". After its creation, the text object is displayed in the
center of the screen.

54.8 DisplayTextObject

NAME
DisplayTextObject – show a text object

SYNOPSIS
DisplayTextObject(id, x, y)

FUNCTION
This function displays the text object specified by id at the coordinates specified by x

and y.

If layers are enabled this command will add a new layer of the type #TEXTOBJECT to the
layer stack.

1124 Hollywood manual

INPUTS

id identifier of the text object to play

x x position

y y position

EXAMPLE
See Section 54.7 [CreateTextObject], page 1121.

54.9 DisplayTextObjectFX

NAME
DisplayTextObjectFX – display a text object with transition effects

SYNOPSIS
[handle] = DisplayTextObjectFX(id, x, y[, table])

FUNCTION
This function is an extended version of the DisplayTextObject() command. It displays
the text object specified by id at the position specified by x and y and it uses one of the
many Hollywood transition effects to display it. You need also specify the speed for the
transition.

If layers are enabled this command will add a new layer of the type #TEXTOBJECT to the
layer stack.

Starting with Hollywood 4.0 this function uses a new syntax with just a single table as
an optional argument. The old syntax is still supported for compatibility reasons. The
optional table argument can be used to configure the transition effect. The following
options are possible:

Type: Specifies the desired effect for the transition. See Section 20.11 [DisplayTran-
sitionFX], page 238, for a list of all supported transition effects. (defaults to
#RANDOMEFFECT)

Speed: Specifies the desired speed for the transition. The higher the value you spec-
ify here, the faster the effect will be displayed. (defaults to #NORMALSPEED)

Parameter:

Some transition effects accept an additional parameter. This can be specified
here. (defaults to #RANDOMPARAMETER)

Async: You can use this field to create an asynchronous draw object for this transi-
tion. If you pass True here DisplayTextObjectFX() will exit immediately,
returning a handle to an asynchronous draw object which you can then draw
using AsyncDrawFrame(). See Section 19.1 [AsyncDrawFrame], page 221, for
more information on asynchronous draw objects.

INPUTS

id identifier of the text object to display

x desired x position for the text object

Chapter 54: Text library 1125

y desired y position for the text object

table optional: transition effect configuration

RESULTS

handle optional: handle to an asynchronous draw object; will only be returned if
Async has been set to True (see above)

EXAMPLE
DisplayTextObjectFX(1, 0, 0, #VLINES, 10) ; old syntax

OR

DisplayTextObjectFX(1, 0, 0, {Type = #VLINES, Speed = 10}) ; new syntax

The above code displays text object 1 at 0:0 with a #VLINES transition at speed 10.

54.10 FONT

NAME
FONT – preload a font for later use (V4.5)

SYNOPSIS
@FONT id, fontname$, size[, table]

FUNCTION
This preprocessor command preloads the font specified by fontname$ in the desired size
(in pixels) and assigns the identifier id to it. You can then activate the font from your
script by calling UseFont().

The font specified in fontname$ must adhere to the font specification. See Section 54.11
[Font specification], page 1126, for details.

See Section 54.24 [OpenFont], page 1134, for more information on fonts in Hollywood.

Using @FONT is convenient if you want to have all fonts used by your scripts linked to
your applet/executable. By default, all fonts specified using @FONT are linked to your
applet/executable. You can change this behaviour by setting Link to False in the
optional table argument.

The fourth argument is optional. It is a table that can be used to set further options for
the loading operation. This table accepts all tags supported by the optional table of the
SetFont() command as well as the following tags:

Link: Set this field to False if you do not want to have this font linked to your
executable/applet when you compile your script. This field defaults to True

which means that the font is linked to your to your executable/applet when
Hollywood is in compile mode.

If you want to open fonts manually, please use the OpenFont() command.

Important note: Please note that most fonts are copyrighted and it is not allowed to
link them into your programs without acquiring a licence. So make sure you check the
licence of the font you are going to link into your program! If you do not want to pay

1126 Hollywood manual

for font licences, it is advised to use a free font such as DejaVu or Bitstream Vera or use
one of the TrueType fonts that are inbuilt into Hollywood (#SANS, #SERIF, #MONOSPACE,
cf. SetFont())

See Section 54.42 [Working with fonts], page 1157, for more information on using fonts
in a platform-independent manner.

INPUTS

id a value that is used to identify this font later in the code

fontname$

the font you want to open

size desired font size in pixels

table optional argument specifying further options

EXAMPLE
@FONT 1, "Arial", 36

Opens font Arial in size 36 and makes it available under id 1.

54.11 Font specification

The Hollywood font specification is the notation that needs to be used when opening new
fonts using SetFont(), OpenFont(), or @FONT. These three commands require you to pass
a string describing the font you would like to open. This string must follow these guidelines:

1. Do not specify a file, specify a font name! e.g.

SetFont("dh0:Fonts/Goudyb.font", 23) ; --> wrong!

SetFont("Goudyb", 23) ; --> right!

OpenFont(1, "c:/Windows/Fonts/Arial.ttf", 36) ; --> wrong!

OpenFont(1, "Arial", 36) ; --> right!

EXCEPTION: Starting with Hollywood 4.7, there is a new font engine called
#FONTENGINE_INBUILT. If you are using this engine, you can specify the font file
directly, but only for *.ttf fonts! So the following code is legal with Hollywood 4.7
and up:

OpenFont(1, "c:/Windows/Fonts/Arial.ttf", 36, {Engine = #FONTENGINE_

INBUILT})

2. On some systems font names are case sensitive when you use #FONTENGINE_NATIVE

(for example on macOS). Thus, you should always specify the font name in exactly the
same way as it appears in the font. This can avoid potential problems.

SetFont("arial", 36) ; --> wrong!

SetFont("Arial", 36) ; --> right!

3. For TrueType fonts, the font specification consists of two parts: 1) The face name of
the font and 2) its style parameters. There must be space between the face name and
the style. Also, if there are multiple styles, they must be separated by spaces. E.g.

SetFont("Arial", 36)

SetFont("Arial Bold", 36)

Chapter 54: Text library 1127

SetFont("Arial Bold Italic", 36)

Of course, you could also open "Arial" and then call SetFontStyle() with #BOLD or
#ITALIC set, but the advantage of using it directly with SetFont() is that this will
open the designed bold/italic variant of the TrueType font. SetFontStyle() on the
other hand, will create bold and italic using an algorithm which does not look as good
as specifically designed bold/italic font faces.

4. Special note for AmigaOS3, MorphOS, and AROS users: FTManager often uses
very awkward names for fonts. For example, if you are trying to install the font
"Adobe Caslon Pro Bold Italic" FTManager will install this font as "adobecaslon-
probolditalic" by default. You will then be able to open "adobecaslonprobolditalic" on
AmigaOS3/MorphOS/AROS with Hollywood but of course it will not work on Ami-
gaOS4 or Windows or macOS because of this awkward font name. Thus, you should
edit the font name suggestion made by FTManager in the following way:

1. Insert spaces between the different components:

"adobecaslonprobolditalic" -> "adobe caslon pro bold italic"

2. Adapt the spelling to the spelling of the face name (displayed in FTManager):

"adobe caslon pro bold italic" -> "Adobe Caslon Pro bold italic"

3. Capitalize all style settings:

"Adobe Caslon Pro bold italic" -> "Adobe Caslon Pro Bold Italic"

If you follow these guidelines, the font will also work on other systems than AmigaOS3,
MorphOS, and AROS.

54.12 FreeGlyphCache

NAME
FreeGlyphCache – clear glyph cache (V4.7)

SYNOPSIS
FreeGlyphCache(mode[, id])

FUNCTION
This command can be used to free the cached glyphs of either a specific font or of all
fonts currently in memory. If you want to free the cached glyphs of a specific font, you
have to set the mode argument to 1 and pass the identifier of the font in the optional id
argument. If you want to free the glyph cache of all loaded fonts, simply pass 0 in the
mode argument.

INPUTS

mode set this to 1 to free the glyph cache of the font specified in argument 2 or to
0 to free the glyph cache of all fonts

id optional: identifier of the font whose glyph cache shall be cleared (mode
must be set to 1 if this is used)

1128 Hollywood manual

54.13 FreeTextObject

NAME
FreeTextObject – free a text object

SYNOPSIS
FreeTextObject(id)

FUNCTION
This function frees the memory of the text object specified by id. To reduce memory
consumption, you should free text objects when you do not need them any longer.

INPUTS

id identifier of the text object

54.14 GetAvailableFonts

NAME
GetAvailableFonts – retrieve list of available fonts (V4.7)

SYNOPSIS
t = GetAvailableFonts()

FUNCTION
This function scans all fonts installed on the current computer, puts them into a table,
and returns the information to you. This is useful to check if a specific font is available
without calling SetFont() or OpenFont().

The table returned by this function will consist of several subtables. One subtable for
each font. The subtables have the following elements initialized:

Name: The complete font name (i.e. family name plus style). For example, "Arial
Bold Italic".

Family: The family name of this font, e.g. "Arial".

Weight: The weight of this font. This will be set to one of the following weight
constants:

#FONTWEIGHT_THIN

#FONTWEIGHT_EXTRALIGHT

#FONTWEIGHT_ULTRALIGHT

#FONTWEIGHT_LIGHT

#FONTWEIGHT_BOOK

#FONTWEIGHT_NORMAL

#FONTWEIGHT_REGULAR

#FONTWEIGHT_MEDIUM

#FONTWEIGHT_SEMIBOLD

#FONTWEIGHT_DEMIBOLD

#FONTWEIGHT_BOLD

#FONTWEIGHT_EXTRABOLD

#FONTWEIGHT_ULTRABOLD

Chapter 54: Text library 1129

#FONTWEIGHT_HEAVY

#FONTWEIGHT_BLACK

#FONTWEIGHT_EXTRABLACK

#FONTWEIGHT_ULTRABLACK

Slant: The slant style of this font. This will be set to one of the following slant
constants:

#FONTSLANT_ROMAN

#FONTSLANT_ITALIC

#FONTSLANT_OBLIQUE

Bitmap: True if this font is a bitmap font, False if it is a vector font. Vector fonts
can be freely transformed and antialiased.

Sizes: If the font is a bitmap font this will be a table containing a list of available
sizes for the font. If the font is a vector font, this table will be empty.

Please note that there is no guarantee that all calls to OpenFont() or SetFont() will
succeed with the fonts returned by this function. It can often happen that OpenFont()
and SetFont() will fail with a specific font although it was returned in the available
table by this function. This is because GetAvailableFonts() returns the available fonts
for all Hollywood font engines. When you call OpenFont() or SetFont(), however, only
one font engine can be specified. So if a call to OpenFont() fails although the font was
returned by GetAvailableFonts(), then this is a sign that you are using the wrong font
engine to open this font. Simply switch font engines in that case and it should work
correctly.

INPUTS
none

RESULTS

t a table containing all available fonts

EXAMPLE
t = GetAvailableFonts()

For Local k = 0 To ListItems(t) - 1

DebugPrint("Family:", t[k].Family, "Weight:", t[k].Weight,

"Slant:", t[k].Slant, "Bitmap:", t[k].Bitmap)

Next

The code above lists all fonts available on this system.

54.15 GetBulletColor

NAME
GetBulletColor – get current bullet color (V9.0)

SYNOPSIS
color = GetBulletColor()

FUNCTION
This function returns the bullet color set using SetFontColor() or SetBulletColor().

1130 Hollywood manual

INPUTS
none

RESULTS

color current bullet color

54.16 GetCharMaps

NAME
GetCharMaps – return character maps supported by font (V9.0)

SYNOPSIS
t = GetCharMaps()

FUNCTION
This function returns a table that contains all character maps supported by the font
that is currently the active one. The following character maps are currently supported
by Hollywood:

#CHARMAP_DEFAULT

#CHARMAP_MSSYMBOL

#CHARMAP_UNICODE

#CHARMAP_SJIS

#CHARMAP_BIG5

#CHARMAP_WANSUNG

#CHARMAP_JOHAB

#CHARMAP_ADOBESTANDARD

#CHARMAP_ADOBEEXPERT

#CHARMAP_ADOBECUSTOM

#CHARMAP_ADOBELATIN1

#CHARMAP_OLDLATIN2

#CHARMAP_APPLEROMAN

Note that character maps are only supported for fonts handled by Hollywood’s inbuilt
engine, i.e. the Engine tag must have been set to #FONTENGINE_INBUILT when opening
the font. See Section 54.31 [SetFont], page 1139, for details.

INPUTS
none

RESULTS

t table containing all character maps supported by the current font

54.17 GetDefaultEncoding

NAME
GetDefaultEncoding – get default character encoding (V7.0)

SYNOPSIS
tencoding, sencoding = GetDefaultEncoding()

Chapter 54: Text library 1131

FUNCTION
This function returns the default character encodings for the text library in tencoding

and for the string library in sencoding. See Section 54.30 [SetDefaultEncoding],
page 1138, for details.

INPUTS
none

RESULTS

tencoding

default character encoding for the text library

sencoding

default character encoding for the string library

54.18 GetFontColor

NAME
GetFontColor – get current font color (V7.1)

SYNOPSIS
color = GetFontColor()

FUNCTION
This function returns the font color set using SetFontColor(). See Section 54.32 [Set-
FontColor], page 1142, for details.

INPUTS
none

RESULTS

color current font color

54.19 GetFontStyle

NAME
GetFontStyle – get current font style (V7.1)

SYNOPSIS
style[, t] = GetFontStyle()

FUNCTION
This function returns the current font style set using SetFontStyle(). The return value
style is set to a combination of the flags #BOLD, #ITALIC, #UNDERLINED, #ANTIALIAS,
#SHADOW, and #BORDER. See Section 54.33 [SetFontStyle], page 1143, for details.

If #SHADOW is set, GetFontStyle() also returns a table as the second return value which
contains the following fields:

ShadowColor:

The shadow color.

1132 Hollywood manual

ShadowSize:

The distance of the shadow from the main text in pixels.

ShadowDir:

The direction of the shadow. This will be one of the directional constants.

If #BORDER is set, the return table will contain the following fields:

BorderColor:

The color of the border.

BorderSize:

The thickness of the border in pixels

See Section 54.33 [SetFontStyle], page 1143, for more information on font styles.

INPUTS
none

RESULTS

style a combination of font style flags

t optional: table containing additional style information (see above)

54.20 GetKerningPair

NAME
GetKerningPair – return kerning setting for two adjacent characters (V5.0)

SYNOPSIS
kern = GetKerningPair(a$, b$[, encoding])

FUNCTION
This function computes the kerning value that would be applied to the space between
the two characters a$ and b$ if they were drawn next to each other. Kerning is often
used to reduce spaces between two characters. For example, if a "j" character is drawn
next to an "i" character, the "j" is usually moved some pixels to the left so that its
underhang appears below the "i" which makes the text look more smooth. The kerning
value returned by this function is specified in pixels. A negative kerning value means a
move to the left, while a positive kerning value moves to the right.

The optional argument encoding can be used to specify the character encoding in-
side a$ and b$. This defaults to the default text library character encoding as set by
SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding], page 1138, for details.

Note there must be only one character in a$ and b$ for GetKerningPair() to work
correctly.

INPUTS

a$ character one

b$ character two

encoding optional: character encoding used by the strings (defaults to the text library
encoding specified in the last call to SetDefaultEncoding())

Chapter 54: Text library 1133

RESULTS

kern kerning value for a$ and b$

EXAMPLE
SetFont(#SANS, 72)

SetFontStyle(#ANTIALIAS)

kern = GetKerningPair("W", "a")

The code above computes the kerning value for characters "W" and "a" using the inbuilt
sans-serif font in size 72. It will return -3 which means that the "a" character is moved
3 pixels towards the "W" character.

54.21 Locate

NAME
Locate – set the cursor position

SYNOPSIS
Locate(x, y)

FUNCTION
This function sets the cursor to x,y. The cursor position is used by the Print function
as the position where the output starts.

Please note: You cannot specify any of Hollywood’s special constants for x or y because
there is no reference width or height, therefore things like #CENTER, #BOTTOM, #RIGHT
etc. cannot work. If you want to use these special constants, you will have to use the
function TextOut() to print your text.

INPUTS

x desired new position

y desired new position

54.22 MoveTextObject

NAME
MoveTextObject – move text object from a to b

SYNOPSIS
MoveTextObject(id, xa, ya, xb, yb[, table])

FUNCTION
This function moves (scrolls) the text object specified by id softly from the location
specified by xa,ya to the location specified by xb,yb.

Further configuration options are possible using the optional argument table. You can
specify the move speed, special effect, and whether or not the move shall be asynchronous.
See Section 21.46 [MoveBrush], page 287, for more information on the optional table
argument.

1134 Hollywood manual

INPUTS

id identifier of the text object to use as source

xa source x position

ya source y position

xb destination x position

yb destination y position

table optional: further configuration for the move

EXAMPLE
MoveTextObject(1,100,50,0,50,{Speed = 5})

Moves the text object 1 from 100:50 to 0:50 with speed 5.

54.23 NPrint

NAME
NPrint – print data and append a linefeed

SYNOPSIS
NPrint(var, ...)

FUNCTION
Does the same as Print but adds a linefeed at the end.

INPUTS

var data to print

... other arguments (V2.0)

54.24 OpenFont

NAME
OpenFont – open a new font (V4.5)

SYNOPSIS
[id] = OpenFont(id, fontname$, size[, table])

FUNCTION
This function loads the font specified in fontname$ and makes it available to your script
under the specified id. If you pass Nil in id, OpenFont() will automatically choose an
identifier and return it. After the font has been opened successfully, you can set it as
the current font using UseFont().

The font specified in fontname$ must adhere to the font specification. See Section 54.11
[Font specification], page 1126, for details.

The optional table argument can be used to set further options. This is especially useful if
you want to use Hollywood’s inbuilt font engine which guarantees a pixel-perfect identical

Chapter 54: Text library 1135

look across different platforms. See Section 54.31 [SetFont], page 1139, for information
on what tags can be used in the optional table argument.

Normally, it is more convenient to open fonts using SetFont() directly because it saves
you the hassle of having to deal with font handles. But in certain circumstances - for
instance, if you need to switch between different fonts a lot - it is handy to preload these
fonts using OpenFont(). They are then available quicker to your script.

This command is also available from the preprocessor: Use @FONT to preload fonts! The
advantage of using @FONT is that fonts specified in there are automatically linked to
your applet/executable when compiling.

See Section 54.42 [Working with fonts], page 1157, for more information on using fonts
in a platform-independent manner.

INPUTS

id identifier for the font or Nil for auto id selection

fontname$

font to open

size desired font size in pixels

table optional: table with further options (V4.7)

RESULTS

id optional: identifier of the font; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
OpenFont(1, "Arial", 36)

UseFont(1)

Opens Arial in size 36 and makes it the current font.

54.25 Print

NAME
Print – print data to the screen

SYNOPSIS
Print(var, ...)

FUNCTION
Prints the data specified by var to the screen. This function can handle all different
data types: You can print strings, numbers, tables, functions. The data is printed at the
current cursor position which you can modify by calling Locate().

This function uses word-wrapping, e.g. when the margin is reached and a word cannot
be printed in the same line, it will insert a line break automatically. You can manually
set the margins by using the SetMargins() function. Starting with Hollywood 9.1, you
can also use soft hyphens or zero-width space characters to customize word wrapping but
since these are Unicode characters, you need to make sure that you use UTF-8 encoding
in that case.

1136 Hollywood manual

This function also respects your tabulator settings. If you print a string which contains
a tabulator char ("\t"), print will jump to the next tabulator position. You can define
the tabulator settings with the AddTab() and ResetTabs() commands.

You can also specify escape codes here. See Section 8.3 [String data type], page 98, for
details.

If layers are enabled this command will add a new layer of the type #PRINT to the layer
stack.

Starting with Hollywood 2.0 you can pass as many arguments as you want to this func-
tion. If you pass multiple arguments to this function, they will be printed with a space
to separate them.

Starting with Hollywood 2.5 you can use format tags in the string you pass to Print().
Using these tags you can control the font style and color of your text on-the-fly. Format
tags always start and end with a square bracket (’[’). In case you just want to print
a square bracket, you will have to use two square brackets. If there is only one square
bracket Hollywood will always expect a format tag. See Section 54.36 [Format tags],
page 1146, for details.

Besides Print(), you can also use the functions NPrint() and TextOut() to draw text
to the screen.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the font color set using SetFontColor().

INPUTS

var data to print

... other arguments (V2.0)

EXAMPLE
Print("Hello World!")

Prints "Hello World!" to the screen at the current cursor position.

54.26 ResetTabs

NAME
ResetTabs – clear tabulator settings

SYNOPSIS
ResetTabs()

FUNCTION
This function clears all previous tabulator settings and sets the default (a tabulator is
converted to 8 spaces). There is no function to remove a single tabulator, so if you want
to do this, you will have to call this function and then add all tabulators with AddTab()

except the one you want to have removed.

INPUTS
none

Chapter 54: Text library 1137

54.27 RotateTextObject

NAME
RotateTextObject – rotate a text object (V4.0)

SYNOPSIS
RotateTextObject(id, angle[, smooth])

FUNCTION
This function rotates the text object specified by id by the specified angle (in degrees). A
positive angle rotates anti-clockwise, a negative angle rotates clockwise. Optionally, you
can choose to enable anti-aliased interpolation by passing True in the smooth argument.

Note that for vector text objects, RotateTextObject() will always operate on
the untransformed text object. This means that any previous transformations
applied to the text object using RotateTextObject(), TransformTextObject(), or
ScaleTextObject() will be undone when calling RotateTextObject().

INPUTS

id identifier of the text object to rotate

angle desired rotation angle in degrees

smooth optional: whether or not anti-aliased interpolation shall be used (V9.1)

54.28 ScaleTextObject

NAME
ScaleTextObject – scale a text object (V4.0)

SYNOPSIS
ScaleTextObject(id, width, height[, smooth])

FUNCTION
This command scales the text object specified by id to the specified dimensions. If the
text object uses a vector font it will be scaled without a loss of quality. Optionally, you
can choose to enable anti-aliased interpolation by passing True in the smooth argument.

You can pass #KEEPASPRAT as either width or height. Hollywood will calculate the
size then automatically by taking the aspect-ratio of the text object into account. The
width and height arguments can also be a string containing a percent specification, e.g.
"50%".

Note that for vector text objects, ScaleTextObject() will always operate on the untrans-
formed text object. This means that any previous transformations applied to the text
object using ScaleTextObject(), TransformTextObject(), or RotateTextObject()

will be undone when calling ScaleTextObject().

INPUTS

id identifier of the text object to scale

width desired new width for the text object

height desired new height for the text object

1138 Hollywood manual

smooth optional: whether or not anti-aliased interpolation shall be used (V9.1)

EXAMPLE
ScaleTextObject(1, 600, 200)

Scales text object 1 to a resolution of 600x200.

54.29 SetBulletColor

NAME
SetBulletColor – set bullet color (V9.0)

SYNOPSIS
SetBulletColor(color)

FUNCTION
This function sets the color to be used by bullets when using TextOut() in list mode. By
default, bullets appear in the current font color set using SetFontColor(). If you want
them to be drawn in a different color, you can use this function to do so. The color

argument must be either an RGB value or an ARGB value for alpha-blended text.

See Section 54.39 [TextOut], page 1149, for more information on bullet lists.

INPUTS

color RGB or ARGB color specification

EXAMPLE
SetBulletColor(#GRAY)

This code sets the bullet color to some kind of grey.

SetBulletColor(ARGB(128, #RED))

The above code sets the bullet color to half-red. The background will then shine through
the text at a ratio of 50% (128=50% of 255).

54.30 SetDefaultEncoding

NAME
SetDefaultEncoding – set default character encoding (V4.7)

SYNOPSIS
SetDefaultEncoding(tencoding[, sencoding])

FUNCTION
This function can be used to change the default character encoding for the text and
string libraries. Note that for reasons of compatibility Hollywood maintains two different
default character encodings: one for the text library and one for the string library.
Under normal conditions, however, both default encodings should be set the to the same
character encoding.

The default character encoding for the text library is specified in tencoding and affects
functions such as Print(), NPrint(), TextOut(), and CreateTextObject().

Chapter 54: Text library 1139

The default character encoding for the string library needs to be specified in the
sencoding parameter and affects most functions of the string library, i.e. functions
such as ReplaceStr() and StrLen().

The following character encodings are currently supported by Hollywood:

#ENCODING_UTF8:

Use UTF-8 encoding. This is the default since Hollywood 7.0.

#ENCODING_ISO8859_1:

Use ISO 8859-1 encoding. This was the default prior to Hollywood 7.0. Note
that for historical reasons specifying #ENCODING_ISO8859_1 on AmigaOS
and compatibles doesn’t really mean ISO 8859-1 but whatever is the system’s
default character encoding. On most Amiga systems, this is ISO 8859-1
anyway, but Eastern European systems use a different encoding for example.

Starting with Hollywood 7.0, #ENCODING_ISO8859_1 shouldn’t be used any longer. It is
still supported for compatibility reasons but it can lead to problems on non-ISO-8859-1
systems. You should always use #ENCODING_UTF8 starting with Hollywood 7.0.

INPUTS

tencoding

default character encoding for the text library

sencoding

default character encoding for the string library (V7.0)

54.31 SetFont

NAME
SetFont – change the current font

SYNOPSIS
SetFont(font$, size[, table])

FUNCTION
This function changes the current font to the one specified by font$ and size. The
size argument specifies the desired font’s height in pixels. The current font is used
by commands like the Print() command but also by CreateTextObject(). The font
specified in font$ must adhere to the Hollywood font specification. See Section 54.11
[Font specification], page 1126, for details.

The font style will be reset when calling this command.

Starting with Hollywood 4.7, there is an optional table argument which allows you to
configure the following advanced options:

Engine: This tag specifies which font engine Hollywood should use for this font. This
can be either #FONTENGINE_NATIVE (uses the native font engine of the host
OS) or #FONTENGINE_INBUILT (uses the font engine built into Hollywood).
If you are using TrueType fonts in your project and want your texts to
look exactly the same on every platform, you must make sure that you use

1140 Hollywood manual

the #FONTENGINE_INBUILT engine because otherwise the text look will be
different from platform to platform. Another advantage of the #FONTENGINE_
INBUILT engine is that you can directly specify a *.ttf file as font$ without
the need of installing the font first on the local system. See Section 54.11
[Font specification], page 1126, for details. For compatibility reasons, this tag
defaults to #FONTENGINE_NATIVE. Note that the Engine tag is deprecated
since Hollywood 10.0. You should use the Loader tag instead now (see
below). Passing native in the Loader tag does the same as setting Engine

to #FONTENGINE_NATIVE and passing inbuilt in the Loader tag corresponds
to the #FONTENGINE_INBUILT engine. (V4.7)

Cache: Specifies whether or not glyph caching should be employed. Glyph caching
can radically increase performance, especially on slower systems like OS3,
but of course it needs more memory. Glyph caching is currently only sup-
ported by the inbuilt font engine (i.e. #FONTENGINE_INBUILT). To disable
glyph caching, set this tag to False. Defaults to True. (V4.7)

UsePoints:

Set this tag to True if you wish to pass a point size instead of a pixel size in
the size argument. If you set this tag to True, SetFont() will interpret the
value passed in size as a value in points (pt) instead of pixels. Generally,
it is not recommended to use this tag because point sizes always depend
on the host display’s dots-per-inch (DPI), but all your other graphics are
typically pixel graphics which are independent of the host system’s DPI
settings. Thus, when integrating fonts opened using a point height with
pixel graphics, those fonts can appear larger or smaller, depending on the
host display’s DPI settings, and mess up your design. That is why it is
generally not recommended to specify the font height in points instead of
pixels. Defaults to False. (V7.0)

CharMap: When Engine has been set to #FONTENGINE_INBUILT, the CharMap tag al-
lows you to specify the char map that the font should use. Normally, it’s
not necessary to set this but some fonts (e.g. Wingdings, Webdings) use
custom char maps that can’t be consistently mapped to Unicode. In that
case, explicitly telling the font engine which char map to use can be useful.
CharMap can be set to the following char maps:

#CHARMAP_DEFAULT

#CHARMAP_MSSYMBOL

#CHARMAP_UNICODE

#CHARMAP_SJIS

#CHARMAP_BIG5

#CHARMAP_WANSUNG

#CHARMAP_JOHAB

#CHARMAP_ADOBESTANDARD

#CHARMAP_ADOBEEXPERT

#CHARMAP_ADOBECUSTOM

#CHARMAP_ADOBELATIN1

#CHARMAP_OLDLATIN2

Chapter 54: Text library 1141

#CHARMAP_APPLEROMAN

The default is #CHARMAP_DEFAULT. To find out the char maps supported by
a font, use the GetCharMaps() command. (V9.0)

Loader: This tag allows you to specify one or more format loaders that should be
asked to load this font. This must be set to a string containing the name(s)
of one or more loader(s). Set this to native if you want Hollywood to use
the native font engine of the host OS for the font. You can also set Loader
to inbuilt to use the font engine built into Hollywood. If you are using
TrueType fonts in your project and want your texts to look exactly the
same on every platform, you must make sure that you pass inbuilt here
because otherwise the text look will be different from platform to platform.
Another advantage of the inbuilt font loader is that you can directly specify
a *.ttf file as font$ without the need of installing the font first on the
local system. See Section 54.11 [Font specification], page 1126, for details.
Defaults to the loader set using SetDefaultLoader(). Keep in mind that
if no other default loader has been set using SetDefaultLoader(), this will
default to native for compatibility reasons. See Section 7.9 [Loaders and
adapters], page 92, for details. (V10.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V10.0)

UserTags:

This tag can be used to specify additional data that should be passed to
font loaders. If you use this tag, you must set it to a table of key-value
pairs that contain the additional data that should be passed to plugins. See
Section 7.10 [User tags], page 95, for details. (V10.0)

Hollywood also comes with several inbuilt fonts which you can use. You can open these
using the following special constants:

#SANS: Opens an inbuilt TrueType font without serifs.

#SERIF: Opens an inbuilt TrueType font with serifs.

#MONOSPACE:

Opens an inbuilt TrueType monospace font (all characters share the same
width).

#BITMAP_DEFAULT:

Opens the default inbuilt bitmap font. This font is currently only available
in size 8, i.e. like the Amiga’s default topaz font.

#TRUETYPE_DEFAULT:

Opens the default inbuilt TrueType font. This is currently the same as
#SANS.

Using inbuilt fonts is helpful if you want to make sure your script works on other systems
without having to install some fonts first. If you use inbuilt Hollywood fonts only your

1142 Hollywood manual

script will work immediately out of the box. Note that when you use one of the inbuilt
fonts, Hollywood will automatically choose the inbuilt font engine to ensure that the font
look is exactly the same on every system.

See Section 54.42 [Working with fonts], page 1157, for more information on using fonts
in a platform-independent manner.

INPUTS

font$ name of the font to load (or one of the special default constants)

size desired y size of the font in pixels

table optional: table with further options (see above) (V4.7)

EXAMPLE
SetFont("times",18)

Print("Hello World")

This code sets the font to "times" with size 18 and prints "Hello World".

54.32 SetFontColor

NAME
SetFontColor – change the color of the current font

SYNOPSIS
SetFontColor(color)

FUNCTION
This function changes the color of the current font to the one specified by color which
must be an RGB value.

New in Hollywood 2.5: Color can also be an ARGB value for alpha-blended text.

Note that starting with Hollywood 9.0, the color you pass to this function will also
be set as the current bullet color. If you would like to use a different color, call the
SetBulletColor() function.

INPUTS

color RGB or ARGB color specification

EXAMPLE
SetFontColor(#GRAY)

This code sets the font color to some kind of grey.

SetFontColor(ARGB(128, #RED))

The above code sets the font color to half-red. The background will then shine through
the text at a ratio of 50% (128=50% of 255).

Chapter 54: Text library 1143

54.33 SetFontStyle

NAME
SetFontStyle – change the style of the current font

SYNOPSIS
SetFontStyle(style[, t])

DEPRECATED SYNTAX
SetFontStyle(#SHADOW, color, distance, direction) (V2.5)

SetFontStyle(#BORDER, color, size) (V2.5)

FUNCTION
This function changes the current font’s style to the one specified by style which must
be any combination of the following text styles:

#NORMAL: Reset the font style to normal. This cannot be combined with any other
style flags.

#BOLD: Set the font style to bold.

#ITALIC: Set the font style to italic.

#UNDERLINED:

Set the font style to underlined.

#ANTIALIAS:

Set the font style to anti-alias; please note that anti-aliasing is only available
for true type fonts (V2.0)

#SHADOW: Add a shadow effect to the text. If you set this style, you can pass additional
arguments in the optional table argument to control the appearance of the
shadow effect. See below for details. (V2.5)

#BORDER: Add a border effect to the text. If you set this style, you can pass additional
arguments in the optional table argument to control the appearance of the
border effect. See below for details. (V2.5)

To combine multiple font styles in a single call simply bit-or them with another, e.g. a call
to SetFontStyle(#BOLD|#ITALIC) will set the font style to bold and italic. Obviously,
the style #NORMAL is mutually exclusive and cannot be combined with any other style.

Starting with Hollywood 9.0, SetFontStyle() uses a new syntax that accepts an optional
table argument that supports the following tags:

ShadowDir:

Specifies the direction of the shadow. This must be set to one of Hollywood’s
directional constants. This tag is only handled when the #SHADOW style has
been set (see above). (V9.0)

ShadowColor:

Specifies the color of the shadow. This must be an ARGB value that can
contain a transparency setting. This tag is only handled when the #SHADOW
style has been set (see above). (V9.0)

1144 Hollywood manual

ShadowSize:

Specifies the length of the shadow. This tag is only handled when the
#SHADOW style has been set (see above). (V9.0)

BorderColor:

Specifies the color of the border. This must be an ARGB value that can
contain a transparency setting. This tag is only handled when the #BORDER
style has been set (see above). (V9.0)

BorderSize:

Specifies the size of the border. This tag is only handled when the #BORDER
style has been set (see above). (V9.0)

Please note that TrueType fonts often have separate font faces for their respective
styles. In that case, you should always use these specifically designed font faces be-
cause SetFontStyle() will create bold and italic styles using a custom algorithm that
often does not look as good as hand-crafted bold or italic font faces do. Thus, if you
are planning to use Arial in bold style, you should better use "Arial Bold" when calling
SetFont() (or OpenFont() / @FONT) than using "Arial" and calling SetFontStyle()

with #BOLD set afterwards.

INPUTS

style special style constant (see list above)

t optional: table containing additional arguments (see above) (V9.0)

EXAMPLE
SetFontStyle(#BOLD|#ITALIC)

The above code sets the font style to bold and italic.

SetFontStyle(#SHADOW, {ShadowColor = ARGB(128, $939393),

ShadowSize = 16, ShadowDir = #SHDWSOUTHEAST})

The above code enables a half-transparent grey shadow which will be positioned 16 pixels
to the south-east of the main text.

54.34 SetMargins

NAME
SetMargins – define the margins for printed text

SYNOPSIS
SetMargins(left, right[, noclip])

FUNCTION
This function allows you to define the margins that shall be used for printing text using
the Print() function. This is very useful if you only want to print text in a specific
area of your display. The left argument specifies the left end of the margin and the
right argument is the right end of the margin. Words exceeding those margins will
automatically be wrapped to the next line.

Chapter 54: Text library 1145

The default setting for left is 0 and for right the default setting is your display width
minus 1.

By default, the margins you specify in left and right will be clipped against the
display’s boundaries. If you don’t want that, you can set the optional noclip argument
to True. If noclip is True, left can also be less than 0 and right can be greater than
the display width.

INPUTS

left left edge of the margin (in pixels)

right right edge of the margin (in pixels)

noclip optional: set this to True if left and right edges of the margin shouldn’t be
clipped to the display’s boundaries (V9.0)

EXAMPLE
SetMargins(200, 300)

Print("Hello World. This is my first program using margins.")

The above code defines the margins 200 and 300, which means that text output will only
be made between pixels 200 and 300. Then it prints some text.

54.35 TransformTextObject

NAME
TransformTextObject – apply affine transformation to text object (V10.0)

SYNOPSIS
TransformTextObject(id, sx, rx, ry, sy[, smooth])

FUNCTION
This function can be used to apply affine transformation to a text object. You have to
pass a 2x2 transformation matrix to this function that will define how each pixel in the
text object will be transformed. This function is useful if you want to apply rotation and
scaling at the same time. Of course, you could do this with calls to ScaleTextObject()

and then RotateTextObject(), but this would lead to quality losses. If you do the
transformation using TransformTextObject() instead, everything will be done in a sin-
gle run.

The 2x2 transformation matrix consists of four floating point factors:

sx: Specifies the amount of scaling on the x axis. This must not be zero. If it is
negative, the text object is flipped on the y axis.

rx: Specifies the amount of rotation on the x axis. This can be 0.

ry: Specifies the amount of rotation on the y axis. This can be 0.

sy: Specifies the amount of scaling on the y axis. This must not be zero. If it is
negative, the text object is flipped on the x axis.

The identity matrix is defined as

(1 0)

1146 Hollywood manual

(0 1)

If you pass this matrix, then no transformation will be applied because there is no
rotation and no scaling defined. I.e. if Hollywood applied this matrix to every pixel
in your text object, the result would be just a copy of the text object. But of course,
if TransformTextObject() detects that you passed an identity matrix, it will return
immediately and do nothing.

The optional argument smooth can be set to True if Hollywood shall use interpolation
during the transformation. This yields results that look better but interpolation is quite
slow.

Please note: You should always do transformation operations using the original text
object. For instance, if you transform text object 1 to 12x8 pixels and then transform it
back to 640x480, you will get a messed text object. Therefore you should always keep
the original text object and transform only copies of it.

Note that for vector text objects, TransformTextObject() will always operate
on the untransformed text object. This means that any previous transformations
applied to the text object using TransformTextObject(), ScaleTextObject(), or
RotateTextObject() will be undone when calling TransformTextObject().

INPUTS

id identifier of the text object to be transformed

sx scale x factor; must never be 0

rx rotate x factor

ry rotate y factor

sy scale y factor; must never be 0

smooth optional: whether or not affine transformation should use interpolation

EXAMPLE
angle = Rad(45) ; convert degrees to radians

TransformTextObject(1, Cos(angle), Sin(angle), -Sin(angle), Cos(angle))

The code above rotates text object number 1 by 45 degrees using a 2x2 transformation
matrix.

54.36 Text format tags

Since version 2.5 Hollywood is able to do text formatting on-the-fly. The Print(),
CreateTextObject(), and TextOut() commands support special format tags that allow
you to change the text color and style without calling SetFontStyle() or SetFontColor().

The following format tags are currently available:

[b]: Change font style to ’bold’. Use [/b] to cancel ’bold’ style.

[i]: Change font style to ’italic’. Use [/i] to cancel ’italic’ style.

[u]: Change font style to ’underlined’. Use [/u] to cancel ’underlined’ style.

Chapter 54: Text library 1147

[shadow=color,size,direction]:

Adds a shadow effect to the text. The new shadow will then use the color
specified in color. It will run for the pixel distance specified in the argument
size and it will be oriented according to the direction specified in direction.
Please use any of the 8 directional constants as the direction argument. The
color can be in RGB or ARGB notation. Shadow transparency is fully sup-
ported. Use [/shadow] to cancel ’shadow’ style. Note that when palette mode
is set to #PALETTEMODE_PEN and the text is drawn to a palette target, the color
argument must not be an RGB color but a palette pen.

[border=color,size]:

Adds a border effect to the text. This border will use the color specified in
color and the size specified in size. The color can be a RGB or ARGB color
specification. Border transparency is fully supported. Use [/border] to cancel
border style. Note that when palette mode is set to #PALETTEMODE_PEN and
the text is drawn to a palette target, the color argument must not be an RGB
color but a palette pen. Before Hollywood 9.0, this tag was known as ’edge’.

[color=color]:

Change font color to color. This color can be in RGB or ARGB notation. If
you pass an ARGB value, the text will be rendered with blending. Use [/color]
to abort rendering in the current color and return to the previously active color.

[pen=pen]:

When palette mode is set to #PALETTEMODE_PEN and the text is drawn to a
palette target, this tag can be used to change the drawing pen. Use [/pen] to
restore the pen that was previously active. (V9.0)

[bulletcolor=color]:

Change bullet color to color. Bullets are only used when TextOut() is used
in list mode. See Section 54.39 [TextOut], page 1149, for details. The color
you pass to this tag can be in RGB or ARGB notation. If you pass an ARGB
value, the bullet will be rendered with blending. Note that in contrast to all
other tags above, this tag must not be closed. It just acts as a directive for the
format processor to modify the current bullet color. So you must never close it
using [/bulletcolor]. (V9.0)

[bulletpen=pen]:

Change bullet pen to pen. Bullets are only used when TextOut() is used in
list mode. See Section 54.39 [TextOut], page 1149, for details. Note that in
contrast to all other tags above, this tag must not be closed. It just acts as
a directive for the format processor to modify the current bullet pen. So you
must never close it using [/bulletpen]. (V9.0)

Please note that because of these format tags you have to use two square brackets if you
want to have a square bracket in your text. If there is only one square bracket Hollywood
will always expect a format tag.

Here is an example how you can use these format tags with the commands of the text
library:

Print("Normal [b]Bold[/b] [i]Italic[/i] [u]Underlined[/u]")

1148 Hollywood manual

As you can see, using format tags is really easy and makes the Hollywood text processor
very powerful for advanced text formatting.

54.37 TextExtent

NAME
TextExtent – retrieve detailed information about a text extent (V2.5)

SYNOPSIS
extent = TextExtent(string$[, t])

DEPRECATED SYNTAX
extent = TextExtent(string$[, encoding])

FUNCTION
This function returns detailed information about the extent of the specified string with
the current font and style settings. Contrary to TextWidth() which only returns the
cursor advancement TextExtent() calculates the exact bounding box for the specified
string.

This function returns a table with information in the following fields:

MinX: The offset to the left side of the rectangle. This is often negative.

MinY: The offset from the baseline to the top of the rectangle. This is always
negative.

MaxX: The offset to the right side of the rectangle.

MaxY: The offset from the baseline to the bottom of the rectangle.

Width: This is the same value as returned by TextWidth().

Height: The same value as returned by TextHeight().

The values in MinX, MinY, MaxX, and MaxY are always relative to the current cursor
position. For instance, if MinX is -10, this means that Print() would start rendering
this string -10 pixels from the current cursor position on the x-axis. The value in Width

specifies where the cursor would end up after the rendering operation. This is often less
than MaxX-1. For instance in the case of italic text, the last character will usually be
much behind the final cursor position.

To calculate the full width of the specified string, simply subtract MinX from MaxX and
add 1, i.e. full_width=MaxX-MinX+1.

Starting with Hollywood 10.0, this function accepts an optional table argument that
allows you to specify the following additional options:

Encoding:

This tag can be used to specify the character encoding used by string$.
This defaults to the character encoding set as the text library default encod-
ing using SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

Charspacing:

Allows you to adjust the space between characters. You can set this to a
positive or negative value. A positive value will increase the space between
characters, a negative value will decrease it. (V10.0)

Chapter 54: Text library 1149

INPUTS

string$ source text

t optional: table argument containing further options (see above) (V10.0)

RESULTS

extent detailed information about the text’s dimensions

54.38 TextHeight

NAME
TextHeight – return the height of a string (V1.5)

SYNOPSIS
height = TextHeight(string$)

FUNCTION
This function returns the height of the text specified by string$ if it was rendered on
the display. So it takes care of the currently selected font as well as the font style.

INPUTS

string$ source text

RESULTS

height height of the text

EXAMPLE
height = TextHeight("Hello World")

pos = (480 - height) / 2

Locate(0, pos)

Print("Hello World")

The above code centers the text "Hello World" vertically on a 480 pixel-high display.

54.39 TextOut

NAME
TextOut – draw text to screen

SYNOPSIS
TextOut(x, y, text$[, table])

FUNCTION
This function outputs the text specified by text$ at the position specified by coordinates
x and y. This function has the advantage that you can use Hollywood’s special constants
as the coordinates (e.g. #CENTER, #BOTTOM...) which is not possible with Print() because
the Locate() function does not handle them.

If layers are enabled, this command will add a new layer of the type #TEXTOUT to the
layer stack.

1150 Hollywood manual

Starting with Hollywood 2.5, you can use format tags in the string you pass to TextOut().
Using these tags you can control the font style and color of your text on-the-fly. Format
tags always start and end with a square bracket (’[’). In case you just want to print
a square bracket, you will have to use two square brackets. If there is only one square
bracket Hollywood will always expect a format tag. See Section 54.36 [Format tags],
page 1146, for details.

In Hollywood 4.0 the syntax of this function changed slightly. While the old syntax is
still supported for compatibility, new scripts should use the new syntax which accepts a
table as argument 4. The table can contain the following elements:

Align: Allows you to specify the text’s alignment. The following alignments are
currently supported:

#LEFT Left alignment.

#RIGHT Right alignment.

#CENTER Center lines.

#JUSTIFIED

Lay out text in justified lines. (V7.0)

The default value for Align is #LEFT.

WordWrap:

TextOut() can do automatic word-wrapping for you if you specify this addi-
tional parameter. You can use this parameter to specify a maximum width
for your text. TextOut() will then use word wrapping to make sure that
no text runs beyond this limit. If you do not set this argument or set it
to 0 (which is also the default), the text will be as wide as it is required.
Starting with Hollywood 9.1, you can also use soft hyphens or zero-width
space characters to customize word wrapping but since these are Unicode
characters, you need to make sure that you use UTF-8 encoding in that case.

Encoding:

This argument can be used to specify the character encoding inside
text$. This defaults to the text library default encoding as set by
SetDefaultEncoding()). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V4.7)

Color: This tag allows you to specify the text color. The color must be provided as
an ARGB value. If you do not specify this tag, TextOut() will use the color
value that was set using the SetFontColor() command instead. (V5.0)

Pen: When palette mode is #PALETTEMODE_PEN, this tag can be used to set the pen
that should be used for drawing the text. If palette mode is #PALETTEMODE_
PEN and Pen is not specified, the pen set using SetDrawPen() will be used
instead. (V9.0)

Linespacing:

This tag allows you to adjust the space between lines. You can set this to a
positive or negative value. A positive value will increase the space between
lines, a negative value will decrease it. (V9.0)

Chapter 54: Text library 1151

Charspacing:

Allows you to adjust the space between characters. You can set this to a
positive or negative value. A positive value will increase the space between
characters, a negative value will decrease it. (V10.0)

Tabs: If you want to use tabs, you need to set this tag to a table containing the
desired tab stops. Tab stops must be passed as pixel values relative to the x-
position passed to TextOut(). If the string you pass to TextOut() contains
tabs and you don’t set this tag, all tabs will be converted to spaces. (V9.0)

ListMode:

Set this tag to True to put TextOut() into list mode. List mode allows
you to create ordered and unordered lists with TextOut(). When in list
mode, you need to use tabs in the string you pass to TextOut() to signal
the desired level of indentation. By default, all list items will use the bullet
specified in DefListBullet. It is also possible to tell TextOut() to use
custom bullets by setting the ListBullet tag. The same is true for the list’s
indentation, offset and spacing where the default values can be set using
DefListIndent, DefListOffset and DefListSpacing and custom values
can be set using ListIndent, ListOffset and ListSpacing. Please see
below for more details on all these options. Also note that ListMode and
Tabs are mutually exclusive. You cannot use both at the same time. (V9.0)

DefListBullet:

Use this tag to set the default bullet to use when TextOut() is in list mode.
This can be set to a Unicode character (passed as its numeric codepoint, not
as a string!) or one of the following constants:

#BULLET_DASH:

Dash bullet. This is the default.

#BULLET_CROSS:

Cross bullet.

#BULLET_CIRCLE:

Circle bullet.

#BULLET_HOLLOWCIRCLE:

Hollow circle bullet. (V9.1)

#BULLET_BOX:

Box bullet.

#BULLET_CHECKMARK:

Checkmark bullet.

#BULLET_ARROW:

Arrow bullet.

#BULLET_DIAMOND:

Diamond bullet.

#BULLET_NUMERIC:

Numbered list: 1. 2. 3...

1152 Hollywood manual

#BULLET_NUMERICSINGLE:

Numbered list: 1) 2) 3)...

#BULLET_NUMERICDOUBLE:

Numbered list: (1) (2) (3)...

#BULLET_LALPHA:

Numbered list: a. b. c...

#BULLET_LALPHASINGLE:

Numbered list: a) b) c)...

#BULLET_LALPHADOUBLE:

Numbered list: (a) (b) (c)...

#BULLET_UALPHA:

Numbered list: A. B. C...

#BULLET_UALPHASINGLE:

Numbered list: A) B) C)...

#BULLET_UALPHADOUBLE:

Numbered list: (A) (B) (C)...

#BULLET_LROMAN:

Numbered list: i. ii. iii...

#BULLET_LROMANSINGLE:

Numbered list: i) ii) iii)...

#BULLET_LROMANDOUBLE:

Numbered list: (i) (ii) (iii)...

#BULLET_UROMAN:

Numbered list: I. II. III...

#BULLET_UROMANSINGLE:

Numbered list: I) II) III)...

#BULLET_UROMANDOUBLE:

Numbered list: (I) (II) (III)...

#BULLET_NONE:

No bullet.

If you need to use different types of bullets in your list, you need to use the
ListBullet tag instead. See below for more information.

Also note that the starting offset of numbered bullet types like #BULLET_

NUMERIC, #BULLET_LALPHA, etc. can be set using the DefListOffset and
ListOffset tags. See below for more information.

By default, bullets will use the color set using SetFontColor(). To set
a different color, use the SetBulletColor() function. See Section 54.29
[SetBulletColor], page 1138, for details. (V9.0)

Chapter 54: Text library 1153

ListBullet:

If you want to use different types of bullets in your list, you have to set
this tag to a table that contains the individual bullets your list should use.
TextOut() will then extract a new bullet type from your table for each new
list it starts. Like DefListBullet, the individual items in the table you
pass to ListItems can be either numeric Unicode codepoints or predefined
#BULLET_XXX constants as described above. If there are more lists than table
elements in ListBullet, the bullet specified in DefListBullet will be used.
(V9.0)

DefListIndent:

This tag can be used to specify the number of spaces to use for indenting list
items. The default indent is 4 which means that by default, list items will be
indented using 4 spaces. You can also specify custom levels of indentation
for specific lists. This can be done by using the ListIndent tag, see below
for more details. (V9.0)

ListIndent:

If you want to use different levels of indentation in your list, you have to
set this tag to a table that contains the individual indentations your list
should use. TextOut() will then extract a new indentation value from your
table for each new list it starts. If there are more lists than table elements
in ListIndent, the default indentation specified in DefListIndent will be
used. (V9.0)

DefListOffset:

When using a numbered bullet type like #BULLET_NUMERIC or #BULLET_

LALPHA, you can use this tag to specify a starting offset for the numbering.
Note that offsets are counted from 0. Thus, specifying an offset of 0 here, will
start numbering from 1 for #BULLET_NUMERIC and from "a" for #BULLET_

ALPHA. This tag defaults to 0. You can also specify custom offset levels for
specific lists. This can be done by using the ListOffset tag, see below for
more details. (V9.0)

ListOffset:

If you want to use different offset levels in your list, you have to set this tag to
a table that contains the individual offsets your list should use. TextOut()
will then extract a new list offset value from your table for each new list it
starts. If there are more lists than table elements in ListOffset, the default
list offset specified in DefListOffset will be used. (V9.0)

DefListSpacing:

This tag can be used to specify the default spacing to be used between the
items in the individual lists. This defaults to 0. You can also specify custom
spacing values for specific lists. This can be done by using the ListSpacing
tag, see below for more details. (V9.1)

ListSpacing:

If you want to use different levels of line spacings for your lists, you have
to set this tag to a table that contains the individual spacing values your

1154 Hollywood manual

lists should use. TextOut() will then extract a new spacing value from your
table for each new list it starts. If there are more lists than table elements
in ListSpacing, the default spacing value specified in DefListSpacing will
be used. (V9.1)

FrameMode:

When using TextOut() in list mode and layers are enabled, the resulting
layer of type #TEXTOUT will have multiple frames that you can cycle through
using NextFrame() or all other layer functions that support anim layers.
This makes it possible to cycle through the list items one by one or show
one item after the other. The first frame will always contain all list items.
The content of the other frames will depend on what was specified in the
FrameMode tag. This tag can be set to the following constants:

#FRAMEMODE_SINGLE:

When using this frame mode, only a single list item will be visible
per frame, i.e. frame 2 will just contain the first list item, frame
3 will just contain the second list item and so on.

#FRAMEMODE_FULL:

When using this frame mode, all previous list items will always
be visible as well. This means that frame 3 will contain the first
and the second list item, frame 4 will contain the first three list
items and so on.

If not specified, FrameMode defaults to #FRAMEMODE_FULL. Note that you
can use the Frame tag (see below) to specify which frame should be initially
visible. (V9.0)

Frame: When using TextOut() in list mode and layers are enabled, the resulting
layer of type #TEXTOUT will have multiple frames that you can cycle through
using NextFrame() or all other layer functions that support anim layers.
This makes it possible to cycle through the list items one by one or show
one item after the other. The first frame will always contain all list items.
The content of the other frames will depend on what was specified in the
FrameMode tag (see above). The Frame tag can be used to specify the frame
that should be initially visible. Frames are counted from 1. (V9.0)

SimpleList:

If this is set to True, TextOut() won’t successively extract the list bullet
configuration from the ListBullet et al. tables but just statically use the
item at the specified tab index, i.e. tab position 1 will always use the bullet
specified at index 1 in the ListBullet table, tab position 2 will use the bullet
specified at index 2 in the ListBullet table and so on. This will restrict
your flexibility but can make things easier if you always want to have the
same configuration for each tab position. (V9.1)

Furthermore, the optional table argument can also contain one or more of the standard
tags for all drawing commands. See Section 27.17 [Standard draw tags], page 501, for
details.

Chapter 54: Text library 1155

Note that Hollywood currently only supports standard left-to-right based text aligned
on horizontal lines. Right to left and vertical text is currently not supported.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color set via SetFontColor() or the Color tag above.

INPUTS

x x position for the text

y y position for the text

text$ string to output

table optional: table containing additional configuration parameters (see above)
(V4.0)

EXAMPLE
TextOut(#CENTER, #CENTER, "Hello World!")

The above code prints "Hello World!" in the center of your display.

For Local k = 100 To 600 Step 100 Do

Line(k, 0, k, 480, #RED)

TextOut(0, 0, "One\tTwo\tThree\tFour\tFive\tSix",

{Tabs = {100, 200, 300, 400, 500}})

This code shows how to use tabs with TextOut().

SetFont(#SANS, 18)

TextOut(0, 0, "Pizzas\n"..

"\tProsciutto\n"..

"\tFunghi\n"..

"\tMargarita\n"..

"Drinks\n"..

"\tAlcoholic\n"..

"\t\tBeer\n"..

"\t\tWine\n"..

"\tNon-alcoholic\n"..

"\t\tCoke\n"..

"\t\tWater",

{ListMode = True,

DefListBullet = #BULLET_CIRCLE,

ListBullet = {#BULLET_DASH}})

The code above shows how to create a list with TextOut().

54.40 TextWidth

NAME
TextWidth – return the width of a string

1156 Hollywood manual

SYNOPSIS
width = TextWidth(string$[, t])

DEPRECATED SYNTAX
width = TextWidth(string$[, encoding])

FUNCTION
This function returns the width of the text specified by string$ if it was rendered on
the display. So it takes care of the currently selected font as well as the font style.

Please note: This function returns the cursor advancement of the text. This is often
less than the text actually occupies when rendered to the display. If you need detailed
information about the real extent of a text, please use the function TextExtent() instead.

Starting with Hollywood 10.0, this function accepts an optional table argument that
allows you to specify the following additional options:

Encoding:

This tag can be used to specify the character encoding used by string$.
This defaults to the character encoding set as the text library default encod-
ing using SetDefaultEncoding(). See Section 54.30 [SetDefaultEncoding],
page 1138, for details. (V10.0)

Charspacing:

Allows you to adjust the space between characters. You can set this to a
positive or negative value. A positive value will increase the space between
characters, a negative value will decrease it. (V10.0)

INPUTS

string$ source text

t optional: table argument containing further options (see above) (V10.0)

RESULTS

width width of the text

EXAMPLE
width = TextWidth("Hello World")

pos = (640 - width) / 2

Locate(pos, 0)

Print("Hello World")

The above code centers the text "Hello World" horizontally on a 640 pixel-wide display.

54.41 UseFont

NAME
UseFont – change the current font (V4.5)

SYNOPSIS
UseFont(id)

Chapter 54: Text library 1157

FUNCTION
This function changes the current font to the font specified by id. The font id specified
here must have been preloaded by either OpenFont() or @FONT.

The font style will be reset when calling this command.

INPUTS

id identifier of the font to use

EXAMPLE
See Section 54.24 [OpenFont], page 1134.

54.42 Working with fonts

When using Hollywood to compile executables for several platforms, the most common
problem is usually the question of what to do with the fonts required by your script. The
easiest solution to this problem is to simply link all fonts required by your script into
your executable. You can do this by using either the @FONT preprocessor command or the
-linkfonts console argument. However, many fonts are copyrighted and it is not allowed to
link them into your executable, so you might want to load fonts manually instead of linking
them. How this works depends on the type of the font your script is using. Hollywood
supports two font types: Bitmap fonts in AmigaOS format and TrueType fonts. Please
read below for information on how to deal with these two font types.

1) Dealing with Amiga bitmap fonts:

Amiga bitmap fonts are natively supported by Hollywood on all platforms. The advantage
of Amiga bitmap fonts is that they do not have to be installed first. They can be used
immediately. Simply create a Fonts subdirectory in the directory of your executable and
copy all the Amiga bitmap fonts that your executable needs to this directory. Note that an
Amiga bitmap font is not a single file but requires three components:

a. *.font descriptor containing information about the font

b. Directory named after the font

c. One or multiple bitmaps containing the raster graphics for the different font sizes

Thus, if you want to use goudyb in size 23 under Windows for example you will require the
following files:

C:/Program Files/MyProg/MyCoolProgram.exe ; exe generated by Hollywood

C:/Program Files/MyProg/Fonts/goudyb.font ; font descriptor

C:/Program Files/MyProg/Fonts/goudyb/23 ; bitmap for size 23

On AmigaOS it would look like the following:

dh0:Programs/MyProg/MyCoolProgram ; exe generated by Hollywood

dh0:Programs/MyProg/Fonts/goudyb.font ; font descriptor

dh0:Programs/MyProg/Fonts/goudyb/23 ; bitmap for size 23

On macOS you need to pay attention to the fact that all data files accompanying your
program must be put into the Resources folder inside the application bundle. So it would
look like the following:

/Programs/MyProg.app ; exe generated by Hollywood

1158 Hollywood manual

/Programs/MyProg.app/Contents/Resources/Fonts/goudyb.font

/Programs/MyProg.app/Contents/Resources/Fonts/goudyb/23

Important note (AmigaOS): Fonts that have an additional *.otag file are not bitmap fonts!
Fonts that have an accompanying *.otag file are usually vector fonts in the TrueType
format. TrueType fonts cannot be used by simply copying them to a subdirectory relative
to your program. TrueType fonts always have to be installed first! Please see below for
more information.

2) Dealing with TrueType fonts:

Working with TrueType fonts is different from working with bitmap fonts in the way that
TrueType fonts always have to be installed before you can use them. The only way to use
TrueType fonts without installing them is to link them into your executable. However, this
is often not possible because of font copyrights. TrueType fonts come as a single file that
usually bears the extension *.ttf. To install such a *.ttf file on your system, you need to
do the following:

AmigaOS3/MorphOS/AROS:
Use the program FTManager. Note that FTManager by default uses a pretty
awkward font name which you should change if you plan to compile your script
for multiple platforms. See Section 54.11 [Font specification], page 1126, for
details.

AmigaOS4:
Use TypeManager in SYS:System.

Windows and macOS:
Simply double-click the *.ttf file and click on Install.

Once you have installed the new font, it is ready for use by Hollywood.

1159

55 Time library

55.1 CompareDates

NAME
CompareDates – compare two date strings (V4.5)

SYNOPSIS
result = CompareDates(date1$, date2$[, notime])

FUNCTION
This function can be used to compare the time of two date strings and return their
relation. Both date strings must be in the default time notation used by Hollywood:

dd-mmm-yyyy hh:mm:ss

The mmm constituent is a string with three characters identifying the month. This can be
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec.

If you set the optional argument notime to True, only dates are compared. In that case,
the two strings you pass to CompareDates() must not contain any time specifications.

The return value of CompareDates() indicates how the two dates are related. The
following return values are possible:

0: date1$ and date$ have exactly the same time

1: date1$ is later in time than date2$

2: date1$ is earlier in time than date2$

INPUTS

date1$ date string in the Hollywood date notation

date2$ date string in the Hollywood date notation

notime optional: True to compare dates only (defaults to False)

RESULTS

result result of comparison

EXAMPLE
NPrint(CompareDates("10-Dec-2009 13:34:12", "09-Dec-2009 15:36:21"))

NPrint(CompareDates("12-Dec-2009 23:59:59", "13-Dec-2009 00:00:00"))

NPrint(CompareDates("24-Dec-2009 20:00:00", "24-Dec-2009 20:00:00"))

The code above will do three date comparisons. The results will be: 1,2,0

55.2 DateToTimestamp

NAME
DateToTimestamp – convert local date to timestamp (V7.1)

SYNOPSIS
s = DateToTimestamp(d$[, isdst])

1160 Hollywood manual

FUNCTION
This function can be used to get the timestamp for the date passed in d$. This string must
be in Hollywood’s standard date format, i.e. dd-mmm-yyyy hh:mm:ss. See Section 55.1
[CompareDates], page 1159, for details.

Note that the date that you pass to this function is interpreted as local time whereas
the timestamp returned starts from UTC time, i.e. from the Unix epoch which starts
on January 1st, 1970, 00:00:00 UTC. This means that passing 01-Jan-1970 00:00:00

will only return 0 if the local timezone is identical to the UTC timezone. On systems
east of UTC, passing the 01-Jan-1970 00:00:00 will lead to an error because January
1st, 1970, 00:00:00, east of UTC means December 31st, 1969 UTC which cannot be
represented in the Unix epoch.

The optional argument isdst specifies whether or not daylight saving time is active at the
specified date. Normally, you don’t have to specify this argument because Hollywood will
automatically query this information from the timezone database. It is only necessary to
pass this information in case the specified time is ambiguous, i.e. when switching from
daylight saving time back to standard time, a certain period of time (typically an hour)
is repeated in the night. In Germany, for example, clocks are set back from 3am to 2am
when switching from daylight saving time to standard time. This means that the hour
between 2am and 3am happens twice: Once in daylight saving time, once in standard
time. The isdst argument allows you to specify which hour you are referring to.

To convert a timestamp back into a date, use the TimestampToDate() function. See
Section 55.20 [TimestampToDate], page 1170, for details.

INPUTS

d$ Hollywood date to convert to the timestamp format

isdst optional: whether or not daylight saving time is active at the specified date
(defaults to -1 which means that this information should be retrieved from
the local timezone database)

RESULTS

s time in seconds that has elapsed since the Unix epoch or -1 if the specified
date cannot be represented in Unix time

55.3 DateToUTC

NAME
DateToUTC – convert local date to UTC (V7.1)

SYNOPSIS
u$ = DateToUTC(d$[, isdst])

FUNCTION
This function can be used to convert the local date passed in d$ to a UTC date. The d$
parameter must be in Hollywood’s standard date format, i.e. dd-mmm-yyyy hh:mm:ss.
See Section 55.1 [CompareDates], page 1159, for details.

The optional argument isdst specifies whether or not daylight saving time is active at the
specified date. Normally, you don’t have to specify this argument because Hollywood will

Chapter 55: Time library 1161

automatically query this information from the timezone database. It is only necessary to
pass this information in case the specified time is ambiguous, i.e. when switching from
daylight saving time back to standard time, a certain period of time (typically an hour)
is repeated in the night. In Germany, for example, clocks are set back from 3am to 2am
when switching from daylight saving time to standard time. This means that the hour
between 2am and 3am happens twice: Once in daylight saving time, once in standard
time. The isdst argument allows you to specify which hour you are referring to.

To convert a UTC date back into a local date, use the UTCToDate() function. See
Section 55.21 [UTCToDate], page 1171, for details.

INPUTS

d$ local date to convert to UTC date

isdst optional: whether or not daylight saving time is active at the specified date
(defaults to -1 which means that this information should be retrieved from
the local timezone database)

RESULTS

u$ UTC equivalent of the local date argument

55.4 GetDate

NAME
GetDate – get current date

SYNOPSIS
date$ = GetDate([type])

FUNCTION
This function can be used to query the current system date and time. Date and time
can be returned in various formats depending on the value passed in type.

The following formats are currently recognized by type:

#DATELOCALNATIVE:

This is the default format. If type is omitted, GetDate() will fall back to
this type. #DATELOCALNATIVE will return the date in the system’s language.
For example, on a German system September 4th 2002 will be returned as
"04.09.02" but on a system in the USA it would be "09.04.02". Note that
the time isn’t returned at all for this type.

#DATELOCAL:

This will return the date in Hollywood’s standard date and time format. It
looks like the following:

dd-mmm-yyyy hh:mm:ss

September 4th 2002 at 3.16pm and 23 seconds would look like this in the
default Hollywood notation:

04-Sep-2002 15:16:23

1162 Hollywood manual

This notation is also used by other Hollywood commands, for example by
the following commands: GetFileAttributes(), SetFileAttributes(),
FileAttributes(), and CompareDates().

Note that even though #DATELOCAL is the most common type for this func-
tion, it is not the default due to historic purposes. #DATELOCALNATIVE is the
default type. (V4.5)

#DATEUTC:

If you pass #DATEUTC for type, GetDate() will return the current UTC date
and time. The UTC date and time will be passed in Hollywood’s default
date and time notation (see above). (V7.1)

INPUTS

type date and time format that should be used (V4.5)

RESULTS

date$ current date and time in the desired format

55.5 GetDateNum

NAME
GetDateNum – get date information as a value

SYNOPSIS
info = GetDateNum(type)

FUNCTION
This function allows you to retrieve date information as a value from Hollywood. The
following constants can be specified as type:

#DATEDAY:

Returns the day of the month (1-31)

#DATEMONTH:

Returns the month (1-12)

#DATETIME:

Returns the time (00hhmmss)

#DATEYEAR:

Returns the year (yyyy)

INPUTS

type one of the constants as listed above

RESULTS

info day, month, time or year information

Chapter 55: Time library 1163

55.6 GetTime

NAME
GetTime – get the current time

SYNOPSIS
time$ = GetTime([secs])

FUNCTION
This function gets the current time at returns it to time$. If the optional argument secs
is True, Hollywood will also add the seconds to the time string.

INPUTS

secs optional: set this to True if you want to retrieve the seconds also

RESULTS

time$ current time as a string

55.7 GetTimer

NAME
GetTimer – get a timer’s state

SYNOPSIS
time = GetTimer(id)

FUNCTION
This function returns the timer’s state, which is the time that has passed since the timer
was started with StartTimer(). The time is returned in milliseconds.

INPUTS

id identifier of the timer to query for its state

RESULTS

time number of milliseconds that have passed since the timer was started (with
respect to PauseTimer() and ResumeTimer())

EXAMPLE
See Section 55.17 [StartTimer], page 1168.

55.8 GetTimestamp

NAME
GetTimestamp – get timestamp (V7.0)

SYNOPSIS
s = GetTimestamp([type])

1164 Hollywood manual

FUNCTION
This function returns a timestamp. The time is returned in seconds as a fractional
number, allowing for sufficient precision. The type parameter allows you to specify
what kind of timestamp you’d like to get. This can be one of the following:

#TIMESTAMP_START:

Return the time in seconds since Hollywood was started. This is the default.

#TIMESTAMP_UNIX:

Return the time that has elapsed since the Unix epoch which started on
January 1st, 1970, 00:00:00 UTC. Note that this depends on the system
clock so there could be problems if the system clock is changed while your
script is running. If you want to be independent of the system clock, use
#TIMESTAMP_RAW instead (see below).

#TIMESTAMP_RAW:

Return a raw clock value that is independent of the system clock and is
monotonically increasing. This can be useful because #TIMESTAMP_UNIX de-
pends on the system clock because it returns the number of seconds since
January 1st, 1970 so you could be in trouble in case the system clock is
changed between two GetTimestamp() calls. (V9.1)

GetTimestamp() is especially useful in connection with Hollywood’s event handler. All
event messages will contain a field named Timestamp which contains the timestamp
the event was generated. If you compare this time stamp against the return value of
GetTimestamp(), you can filter out very old events, for example. See Section 29.13
[InstallEventHandler], page 553, for details.

To convert a timestamp into a date, you can use the TimestampToDate() function. To
convert a date into a timestamp, use the DateToTimestamp() function.

INPUTS

type optional: the kind of timestamp to get; see above for possible types (defaults
to #TIMESTAMP_START)

RESULTS

s timestamp in seconds as a fractional number

55.9 GetTimeZone

NAME
GetTimeZone – get time zone information (V7.1)

SYNOPSIS
off, dst = GetTimeZone()

FUNCTION
This function can be used to obtain information about the time zone the host system is
in. It will return two values: off will be set to the number of minutes of this computer’s
time from UTC and dst will be a boolean value that specifies whether or not daylight
saving time is currently active in the host system’s time zone.

Chapter 55: Time library 1165

Note that off will be negative if the host system is east of UTC and positive if it is west
of UTC.

INPUTS
none

RESULTS

off offset in minutes from UTC

dst True if daylight saving time is currently active, False otherwise

EXAMPLE
Print(GetTimeZone())

When run in January on a computer in Germany, this will print "-60" and "0" because
there is no daylight saving time in Germany in January and CET is 60 minutes ahead
of UTC in winter.

55.10 GetWeekday

NAME
GetWeekday – get the weekday

SYNOPSIS
day$ = GetWeekday()

FUNCTION
This function returns the weekday to the string day$. Note that the weekday will be
returned in the user’s native language (depending on his locale settings).

INPUTS
none

RESULTS

day$ current weekday

55.11 MakeDate

NAME
MakeDate – make Hollywood date from components (V7.1)

SYNOPSIS
d$ = MakeDate(t)

FUNCTION
This function composes a Hollywood date from a set of individual date components
which have to be passed in the table t. The date that is returned by this function will
be in Hollywood’s standard date format, i.e. dd-mmm-yyyy hh:mm:ss. See Section 51.15
[CompareStr], page 1032, for details.

You have to pass a table to MakeDate() that has the following fields initialized:

MDay: Day of the month (1-31).

1166 Hollywood manual

Mon: Month of the year (1-12).

Year: Number of the year (e.g. 2018).

Hour: Hours since midnight (0-23).

Min: Minutes after the hour (0-59).

Sec: Seconds after the minute (0-59).

To break down a Hollywood date into its individual components, use the ParseDate()

function. See Section 55.12 [ParseDate], page 1166, for details.

INPUTS

t table describing the date to compose (see above)

RESULTS

d$ date string in Hollywood’s standard date format

55.12 ParseDate

NAME
ParseDate – break down Hollywood date into components (V7.1)

SYNOPSIS
t = ParseDate(d$)

FUNCTION
This function parses the Hollywood date passed in d$ and breaks it down into its in-
dividual components. Those components are then returned in a table. The date string
passed to this function must be in Hollywood’s standard date format, i.e. dd-mmm-yyyy
hh:mm:ss. See Section 51.15 [CompareStr], page 1032, for details.

ParseDate() will return a table with the following fields initialized:

MDay: Day of the month (1-31).

Mon: Month of the year (1-12).

Year: Number of the year (e.g. 2018).

Hour: Hours since midnight (0-23).

Min: Minutes after the hour (0-59).

Sec: Seconds after the minute (0-59).

WDay: Days since Sunday (0-6).

YDay: Days since January 1 (0-365).

To compose a Hollywood date from its individual components, use the MakeDate()

function. See Section 55.11 [MakeDate], page 1165, for details.

INPUTS

d$ Hollywood date to decompose

RESULTS

t table containing individual date components (see above)

Chapter 55: Time library 1167

55.13 PauseTimer

NAME
PauseTimer – pause a timer

SYNOPSIS
PauseTimer(id)

FUNCTION
This function pauses the timer specified by id. When a timer is paused, it does not
count the time but you can still retrieve the timer’s state through GetTimer(). The
timer can be resumed by calling ResumeTimer().

INPUTS

id identifier of the timer to pause

EXAMPLE
none

55.14 ResetTimer

NAME
ResetTimer – reset a timer (V4.5)

SYNOPSIS
ResetTimer(id[, time])

FUNCTION
You can use this function to reset an existing timer to zero or to a specified time. If you
want to reset the timer to zero, simply leave out the second argument. Otherwise use
the second argument to specify a time in milliseconds for the timer.

Using ResetTimer() to clear a timer is generally faster than starting a new using
StartTimer(), so you should use ResetTimer() if you can.

INPUTS

id identifier of the timer that shall be reset

time optional: desired time value for the timer in milliseconds (defaults to 0 which
means no time)

EXAMPLE
StartTimer(1)

Wait(1000, #MILLISECONDS)

Print(GetTimer(1))

ResetTimer(1, 2000)

Print(GetTimer(1))

The code above will start a new timer 1, wait a second and then print the state of the
timer which should be 1000 or a few milliseconds more. Then the timer state is set to
2000 milliseconds and printed again. This time it should be 2000 or a few milliseconds
more.

1168 Hollywood manual

55.15 ResumeTimer

NAME
ResumeTimer – resume a paused timer

SYNOPSIS
ResumeTimer(id)

FUNCTION
This function resumes the timer specified by id. The timer must be in pause mode (set
by PauseTimer()). If ResumeTimer() was successful, the timer resumes counting the
time.

INPUTS

id identifier of the timer to resume

EXAMPLE
none

55.16 SetTimerElapse

NAME
SetTimerElapse – set timer elapse threshold (V9.0)

SYNOPSIS
SetTimerElapse(id, elapse[, reset])

FUNCTION
This function sets the elapse threshold of the timer specified by id to the time specified in
elapse. This time must be specified in milliseconds. You can then call TimerElapsed()
to find out when the timer has elapsed or use WaitTimer() to wait for the timer to
elapse.

By default, SetTimerElapse() will also reset the timer. If you don’t want that, pass
False in the reset argument.

Note that if you pass 0 in the elapse argument, elapsing will be disabled for this timer,
i.e. TimerElapsed() will never return True for timers which have an elapse threshold
of 0.

INPUTS

id identifier of the timer to modify

elapse elapse threshold in milliseconds or 0 to disable elapsing

reset optional: whether or not the timer should be reset (defaults to True)

55.17 StartTimer

NAME
StartTimer – start a new timer

Chapter 55: Time library 1169

SYNOPSIS
[id] = StartTimer(id[, elapse])

FUNCTION
This function creates a new timer and assigns the identifier id to it. If you pass Nil in
id, StartTimer() will automatically choose an identifier and return it. This timer will
run until you call PauseTimer() or StopTimer(). You can retrieve the current state of
the timer by calling GetTimer().

Starting with Hollywood 9.0, there is a new optional elapse argument. If you set this to
a time in milliseconds, TimerElapsed() will return True as soon as the timer has been
running for the specified amount of time. Alternatively, you can also use WaitTimer()

to wait for a timer to elapse. Finally, the timer’s elapse value can also be set or modified
using SetTimerElapse(). See Section 55.16 [SetTimerElapse], page 1168, for details.

INPUTS

id id for your timer or Nil for auto id selection

elapse optional: number of milliseconds until the timer should elapse (defaults to
0 which means that it will never elapse) (V9.0)

RESULTS

id optional: identifier of the timer; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
StartTimer(1)

Wait(200)

t = GetTimer(1)

Print(t)

The above code starts a new timer, waits 4 seconds and retrieves the timer state. The
timer state is copied to the variable t and should have the value of about 4000 millisec-
onds.

55.18 StopTimer

NAME
StopTimer – stop a timer

SYNOPSIS
StopTimer(id)

FUNCTION
This function stops the timer specified by id. If you stop a timer it will be completely
removed from the system, therefore you cannot resume it. If you want to pause a timer,
please use PauseTimer() instead.

INPUTS

id identifier of the timer that shall be stopped

1170 Hollywood manual

EXAMPLE
See Section 55.17 [StartTimer], page 1168.

55.19 TimerElapsed

NAME
TimerElapsed – check if timer has elapsed (V9.0)

SYNOPSIS
elapsed = TimerElapsed(id[, reset])

FUNCTION
This function checks if the timer specified by id has elapsed and returns True if it has,
False otherwise. By default, the timer will be reset to 0 when it has elapsed. If you
don’t want that, pass False in the reset argument.

The threshold when a timer elapses can be set either when creating a timer using
StartTimer() or later using SetTimerElapse().

INPUTS

id identifier of the timer to examine

reset optional: True if the elapsed timers should be reset to 0, False otherwise
(defaults to True)

RESULTS

elapse True if the timer has elapsed, False otherwise

EXAMPLE
StartTimer(1, 10000)

Repeat

VWait

Until TimerElapsed(1) = True

55.20 TimestampToDate

NAME
TimestampToDate – convert timestamp to date (V7.1)

SYNOPSIS
d$ = TimestampToDate(s[, unixtime])

FUNCTION
This function can be used to convert a timestamp into a date string in Hollywood’s
standard date format, i.e. dd-mmm-yyyy hh:mm:ss. See Section 51.15 [CompareStr],
page 1032, for details. The optional argument unixtime specifies whether or not the
timestamp is measured from the beginning of the Unix epoch (i.e. January 1st, 1970,
00:00:00 UTC) or from the time when Hollywood was started. By default, timestamps
are measured from the time when Hollywood was started.

Chapter 55: Time library 1171

To convert a date back into a timestamp, use the DateToTimestamp() function. See
Section 55.2 [DateToTimestamp], page 1159, for details.

INPUTS

s timestamp to convert into a date

unixtime optional: if set to True the timestamp is interpreted as relative to the begin-
ning of the Unix epoch; otherwise it is relative to the time when Hollywood
was started (defaults to False)

RESULTS

d$ date in Hollywood’s standard date format

55.21 UTCToDate

NAME
UTCToDate – convert UTC date to local date (V7.1)

SYNOPSIS
d$ = UTCToDate(u$)

FUNCTION
This function can be used to convert the UTC date passed in u$ to a local date. The u$
parameter must be in Hollywood’s standard date format, i.e. dd-mmm-yyyy hh:mm:ss.
See Section 51.15 [CompareStr], page 1032, for details.

To convert a local date back into a UTC date, use the DateToUTC() function. See
Section 55.3 [DateToUTC], page 1160, for details.

INPUTS

u$ UTC date to convert to local date

RESULTS

d$ local date equivalent of the UTC date

55.22 ValidateDate

NAME
ValidateDate – check if date is valid (V7.1)

SYNOPSIS
b = ValidateDate(d$)

FUNCTION
This function can be used to check if the date given in d$ is valid. ValidateDate()

makes sure that all individual date and time components are within their valid ranges, e.g.
February 29th is only a valid date in leap years. The d$ parameter must be in Hollywood’s
standard date format, i.e. dd-mmm-yyyy hh:mm:ss. See Section 51.15 [CompareStr],
page 1032, for details.

1172 Hollywood manual

INPUTS

d$ date to validate

RESULTS

b True if date is valid, False otherwise

55.23 WaitTimer

NAME
WaitTimer – wait until a timer has reached a certain time (V2.0)

SYNOPSIS
WaitTimer(id[, time, reset])

t = WaitTimer(table[, reset]) (V9.0)

FUNCTION
This function waits until the timer specified by id has been running for the time specified
in the time argument. This time must be specified in milliseconds. If you omit the time
argument or set it to -1, WaitTimer() will wait until the timer has reached its elapse
threshold set using SetTimerElapse() or using StartTimer().

Before this function returns it will also reset the specified timer so that you can easily use
this function in a loop. You can change this behaviour by setting the optional argument
reset to False. In that case, the timer will not be reset.

Starting with Hollywood 9.0, there is an alternative way of using WaitTimer(). Instead
of the identifier of a single timer, you can also pass a table containing multiple timer
identifiers. In that case, WaitTimer() will wait until at least one of the timers from the
list specified in the table argument has elapsed. Once that happens, WaitTimer() will
return a table to you. That table will be a list containing the identifiers of all timers
that have elapsed. If the reset argument is True, which is also the default, all elapsed
timers will be reset by WaitTimer(). Note that the table you pass to WaitTimer() can
also be empty. In that case, WaitTimer() will simply wait for a timer to elapse from all
timers that are currently running.

WaitTimer() can be very useful to throttle the execution of loops so that they don’t
consume all of the CPU. For instance, if you have a loop that moves a sprite from the
left to the right boundary of the display, you should add some kind of throttle because
it doesn’t make sense to update the screen more often than the monitor refreshes. This
is very important. Even if the script runs at perfect speed without WaitTimer() you
should not forget that there are faster machines than yours. Using WaitTimer() in your
loops will make sure that your application runs at the same speed on every platform.

See Section 15.3 [Script timing], page 161, for details.

INPUTS

id syntax 1: identifier of the timer to query

time syntax 1, optional: time in milliseconds that the timer must have (defaults
to timer’s elapse threshold)

1173

table syntax 2: pass a table containing a list of timers here and WaitTimer() will
return as soon as a timer from the list has elapsed (see above); if you pass
an empty table, all running timers will be taken into account

reset optional: specifies whether or not the timer shall be reset after WaitTimer()
returns (defaults to True which means that the timer will be reset)

RESULTS

t syntax 2: a list of the timers that have elapsed; this will only be returned if
you pass a table instead of a timer identifier to WaitTimer() (see above for
details)

EXAMPLE
StartTimer(1)

For k = 0 To 640

DisplaySprite(1, k, 0)

WaitTimer(1, 40)

Next

The above code scrolls sprite 1 from left to right. After each call to DisplaySprite(),
WaitTimer() is used to ensure that we wait at least 40 milliseconds until the next
DisplaySprite(). Thus, this loop will not be executed more than 25 times a second
because 40 * 25 = 1000.

1175

56 Vectorgraphics library

56.1 AddArcToPath

NAME
AddArcToPath – add elliptical arc to path (V5.0)

SYNOPSIS
AddArcToPath(id, xc, yc, ra, rb, start, end[, clockwise])

FUNCTION
This function adds an elliptical arc to the path specified in the first argument. You have
to provide the center point of the arc in the xc and yc arguments. The arc’s radii have
to be passed in ra and rb, and the start and end angles have to be specified in the start
and end arguments respectively. All angles must be specified in degrees. If you want to
have a closed ellipse, the start argument needs to be 0 and the end argument needs to
be 360. Using the AddEllipseToPath() command is of course easier in this case. The
optional argument clockwise can be used to specify whether or not the elliptical arc
shall be drawn in clockwise direction. This tag defaults to True which means clockwise
drawing. If you set it to False, AddArcToPath() will connect the angles in anti- clockwise
direction.

Note that AddArcToPath() doesn’t add a center point vertex. If you want the start and
end angles of the arc to be connected with the center point, you need to do this manually
by calling MoveTo() before AddArcToPath() and LineTo() afterwards.

Also note that AddArcToPath() only starts a new subpath in case there is no active sub-
path. Otherwise it will simply connect its vertices to the currently active subpath.
If you don’t want this, you’ll have to manually open a new subpath before calling
AddArcToPath(). Furthermore, AddArcToPath() also won’t close the active subpath
when it is finished.

INPUTS

id identifier of path to which the elliptical arc should be added

xc x center point of arc

yc y center point of arc

ra arc radius on the x axis

rb arc radius on the y axis

start start angle in degrees (must be positive)

end end angle in degrees (must be positive)

clockwise

optional: whether or not the angles should be connected in clockwise direc-
tion (defaults to True which means clockwise)

1176 Hollywood manual

56.2 AddBoxToPath

NAME
AddBoxToPath – add rectangle to path (V5.0)

SYNOPSIS
AddBoxToPath(id, x, y, width, height[, table])

FUNCTION
This function adds a rectangle to the path specified in id. You have to provide the
position and size of the rectangle in the other arguments. AddBoxToPath() will start a
new subpath for the rectangle and close it.

The optional argument table allows you to configure the rectangle’s style. The following
tags are currently recognized:

RoundLevel:

You can specify this tag to create a rectangle with rounded corners. You need
to pass a round level in percentage which specifies how round the corners
will be (possible values are 0 to 100). Defaults to 0 which means no round
corners.

CornerA, CornerB, CornerC, CornerD:

These four tags allow you to fine-tune the corner rounding of the rectangle.
You can specify a rounding level (0 to 100) for every corner of the rectangle
thus allowing you to create a rectangle where not all corners are rounded,
or where the different corners use different rounding levels. These tags will
override any setting specified in the RoundLevel tag.

INPUTS

id identifier of path to which the rectangle should be added

x x position of the rectangle

y y position of the rectangle

width rectangle width

height rectangle height

table optional: table containing further options (see above)

56.3 AddCircleToPath

NAME
AddCircleToPath – add circle to path (V5.0)

SYNOPSIS
AddCircleToPath(id, xc, yc, radius)

FUNCTION
This function adds a circle to the path specified in the first argument. You have to
provide the center point of the circle in the xc and yc arguments. The circle’s radius
has to be passed in the fourth argument.

Chapter 56: Vectorgraphics library 1177

Note that AddCircleToPath() only starts a new subpath in case there is no active sub-
path. Otherwise it will simply connect its vertices to the currently active subpath.
If you don’t want this, you’ll have to manually open a new subpath before calling
AddCircleToPath(). Furthermore, AddCircleToPath() also won’t close the active sub-
path when it is finished.

INPUTS

id identifier of path to which the circle should be added

xc x center point of circle

yc y center point of circle

radius circle’s radius

56.4 AddEllipseToPath

NAME
AddEllipseToPath – add ellipse to path (V5.0)

SYNOPSIS
AddEllipseToPath(id, xc, yc, ra, rb)

FUNCTION
This function adds an ellipse to the path specified in the first argument. You have to
provide the center point of the ellipse in the xc and yc arguments. The ellipse’s radii
have to be passed in ra and rb.

Note that AddEllipseToPath() only starts a new subpath in case there is no active sub-
path. Otherwise it will simply connect its vertices to the currently active subpath.
If you don’t want this, you’ll have to manually open a new subpath before calling
AddEllipseToPath(). Furthermore, AddEllipseToPath() also won’t close the active
subpath when it is finished.

INPUTS

id identifier of path to which the ellipse should be added

xc x center point of ellipse

yc y center point of ellipse

ra ellipse radius on the x axis

rb ellipse radius on the y axis

56.5 AddTextToPath

NAME
AddTextToPath – add vector text to path (V5.0)

SYNOPSIS
AddTextToPath(id, t$[, table])

1178 Hollywood manual

FUNCTION
This function adds the text specified in t$ to the current path. The text will be added
to the path as vector graphics. Because of that, this command will only work when a
vector font (e.g. a TrueType font) is currently active. It will not work with bitmap fonts.
AddTextToPath() will use the active font that was set by the last call to SetFont() or
UseFont().

Please note that AddTextToPath() will add the text above the current y-point. Thus, if
the path’s current y-point is 240 and you add text to it that is 36 pixels high, the text
will be placed at an y-position of 204 (240-36=204) instead of 240 as the current y-point
might suggest.

Please note that there are currently some restrictions:

− The font to be used with AddTextToPath() must have been opened using
#FONTENGINE_INBUILT. Fonts that have been opened using #FONTENGINE_NATIVE

will currently not work. The default inbuilt fonts #SANS, #SERIF, and #MONOSPACE

will work just fine with AddTextToPath().

− Any styles set by SetFontStyle() will be ignored by AddTextToPath(). If you
want italic or bold text, you need to open a separate font that has the bold and/or
italicized vector graphics already in its face data. Simply calling SetFontStyle()

does not work with vector text.

− Similarly, all formatting tags that are recognized by Print(), TextOut(), and
CreateTextObject() are ignored by AddTextToPath(). It is currently not pos-
sible to use formatting tags with this command.

− Newline characters (’\n’) are also ignored by this function.

The optional argument table allows you to specify further options. The following tags
are currently recognized:

Encoding:

This argument can be used to specify the character encoding inside t$. This
defaults to the text library default encoding set by SetDefaultEncoding()).
See Section 54.30 [SetDefaultEncoding], page 1138, for details.

INPUTS

id identifier of path to which the text should be added

t$ text to add to path

table optional: table containing further arguments (see above)

EXAMPLE
EnableLayers

SetFillStyle(#FILLCOLOR)

SetFormStyle(#ANTIALIAS)

SetFont("Arial", 100, {Engine = #FONTENGINE_INBUILT})

StartPath(1)

MoveTo(1, 0, 0)

AddTextToPath(1, "Hello World")

DrawPath(1, #CENTER, #CENTER + 100, #BLUE, {AnchorX = 0.5,

AnchorY = 0.5, Rotate = 45})

Chapter 56: Vectorgraphics library 1179

The code above creates a vector path containing the text "Hello World". The path is
then drawn using rotation by 45 degrees.

56.6 AppendPath

NAME
AppendPath – append path to another path (V5.0)

SYNOPSIS
AppendPath(id, src)

FUNCTION
This function appends the path specified in src to the end of the path specified in id.
All path data is copied so that you can free the src path after the append operation.

INPUTS

id identifier of path that shall be modified

src identifier of path that shall be appended

56.7 ClearPath

NAME
ClearPath – remove all vertices from a path (V5.0)

SYNOPSIS
ClearPath(id)

FUNCTION
This command will clear the specified path completely. All path vertices and all sub-
paths will be removed. However, the path itself will not be freed. Thus, you can start
adding vertices to it again after this call. If you want to free a path completely, use
FreePath() instead.

INPUTS

id identifier of path to clear

56.8 ClosePath

NAME
ClosePath – close current sub-path (V5.0)

SYNOPSIS
ClosePath(id)

FUNCTION
This command will close the current sub-path in the path specified by id. The sub-path
is closed by adding a line to the starting point of the current sub-path. If you want
to add new vertices after calling ClosePath(), you have to call StartSubPath() and
MoveTo() to create a new sub-path.

1180 Hollywood manual

INPUTS

id identifier of path to close

56.9 CopyPath

NAME
CopyPath – clone a path (V5.0)

SYNOPSIS
[id] = CopyPath(src, dst)

FUNCTION
This command clones the path specified in src and creates a new path under the identifier
dst that is an exact copy of the path specified in argument 1. The dst argument can
either be an identifier that should be used for the new path or it can be Nil, in which
case CopyPath() will automatically select an identifier and return it to you.

INPUTS

src identifier of path to clone

dst identifier for the new path or Nil for auto id selection

RESULTS

id optional: identifier of the new path; this will only be returned when you pass
Nil as argument 2 (see above)

56.10 CurveTo

NAME
CurveTo – add curve to path (V5.0)

SYNOPSIS
CurveTo(id, x1, y1, x2, y2, x3, y3)

FUNCTION
This command will add a cubic Bézier spline curve to the path. The curve will run from
the current point to the position specified in x3,y3. The control points of the spline curve
have to specified in arguments x1,y1 and x2,y2. When CurveTo() returns, the path’s
current point will be at x3,y3.

INPUTS

id identifier of path to add curve to

x1 x coordinate of control point #1

y1 y coordinate of control point #1

x2 x coordinate of control point #2

y2 y coordinate of control point #2

Chapter 56: Vectorgraphics library 1181

x3 x coordinate of curve destination point

y3 y coordinate of curve destination point

56.11 DrawPath

NAME
DrawPath – draw vector path (V5.0)

SYNOPSIS
DrawPath(id, x, y[[, color], table])

FUNCTION
This draws the vector path specified in id to the position specified in x and y using
the color that is passed in argument 4. The vector path will be drawn using the form
style specified using SetFormStyle() and it will be filled according to the configuration
selected using SetFillStyle() and SetFillRule(). If you are drawing the vector path
in outline mode (i.e. fill style is set to #FILLNONE), then DrawPath() will also take
the settings of SetLineJoin(), SetLineCap(), and SetDash() into account. Color can
either be an RGB value or an ARGB value for alpha-blended drawing.

The optional table argument can be used to specify one or more of the standard tags
for all drawing commands. See Section 27.17 [Standard drawing tags], page 501, for
more information about the standard tags that nearly all Hollywood drawing commands
support.

If layers are enabled, this command will add a new layer of the type #VECTORPATH to the
layer stack.

Note that DrawPath() only allows you to use a single color for per path. If you want to
use multi-colored paths, you can use the PathToBrush() function to combine multiple
paths inside a single vector brush object. See Section 56.26 [PathToBrush], page 1191,
for details.

Note that when drawing to a palette-based target and the palette mode is set to
#PALETTEMODE_PEN, this function will draw using the pen set via SetDrawPen() instead
of the color passed to the function.

INPUTS

id identifier of path object to draw

x destination x offset

y destination y offset

color optional: RGB or ARGB color (defaults to #BLACK) color is optional because
it is not required when you draw to a mask or alpha channel

table optional: table containing further arguments; can be any from the ones listed
above and from the standard tags

EXAMPLE
SetFillStyle(#FILLNONE)

SetFormStyle(#ANTIALIAS)

1182 Hollywood manual

x=25.6 y=128.0

x1=102.4 y1=230.4

x2=153.6 y2=25.6

x3=230.4 y3=128.0

StartPath(1)

MoveTo(1, x, y)

CurveTo(1, x1, y1, x2, y2, x3, y3)

SetLineWidth(10)

DrawPath(1, 0, 0, #BLACK)

ClearPath(1)

MoveTo(1, x, y)

LineTo(1, x1, y1)

MoveTo(1, x2, y2)

LineTo(1, x3, y3)

SetLineWidth(6)

DrawPath(1, 0, 0, ARGB(128, #RED))

The code above draws a curve and two lines that illustrate the control points of the
curve.

EnableLayers

SetFillStyle(#FILLCOLOR)

SetFormStyle(#ANTIALIAS)

StartPath(1)

AddBoxToPath(1, 0, 0, 100, 100)

AddBoxToPath(1, 150, 0, 100, 100)

AddBoxToPath(1, 0, 150, 100, 100)

AddBoxToPath(1, 150, 150, 100, 100)

DrawPath(1, #CENTER, #CENTER, #RED, {Border = True, bordersize = 5})

The code above draws a vector path that looks a little bit like the flag of Switzerland.

56.12 ForcePathUse

NAME
ForcePathUse – always use path-based drawing (V5.0)

SYNOPSIS
ForcePathUse(enable)

FUNCTION
This command can be used to redirect all drawing commands of Hollywood’s standard
graphics primitives library to the new vector-path based draw library. This is especially
useful for round shapes like circles, arcs, and ellipses, because the standard drawing
library is line-based, which means that round shapes will never look perfectly round
because their round shape must be approximated through lines. The vector-path based

Chapter 56: Vectorgraphics library 1183

drawing library on the other hand can draw perfectly round shapes which will look better
than the line-based approach of the standard drawing library.

To enable the path-based drawing for the standard functions, pass True to
ForcePathUse(). Then, the following standard functions will be patched to make
use of the new vector-path based drawing: Arc(), Box(), Circle(), Ellipse(), and
Polygon().

Keep in mind, though, that if you enable path-based drawing for the standard library,
you will always get layers of type #VECTORPATH if layers are enabled. The standard draw
library on the other hand would add layers of type #ARC, #BOX, #CIRCLE, #ELLIPSE,
and #POLYGON respectively. Normally, this does not make much of a difference, but it
can be an issue if you try to change the attributes of a layer using SetLayerStyle(),
because layers of type #VECTORPATH do not have the same functionality than the other
layer types. See Section 34.48 [SetLayerStyle], page 689, for more information about the
supported attributes for the different layer types.

Please also note that in Hollywood versions earlier than 6.0 your script will require a
vectorgraphics plugin if you pass True here. Starting with Hollywood 6.0 there is an
inbuilt vectorgraphics engine as well.

Finally, it should be mentioned that vector-path based drawing is of course slower than
the polygon based drawing of the standard drawing library. On modern systems, how-
ever, it does not make a great difference.

INPUTS

enable flag that specifies whether or not to enable the path-based drawing for stan-
dard functions (True means enable, False means disable)

56.13 FreePath

NAME
FreePath – free path object (V5.0)

SYNOPSIS
FreePath(id)

FUNCTION
This command will free the path specified in id. After calling this command the specified
path will not be available any more. If you only want to remove all vertices and sub-paths
from a path, you should use ClearPath() instead.

INPUTS

id identifier of path to free

56.14 GetCurrentPoint

NAME
GetCurrentPoint – get current point of path (V5.0)

1184 Hollywood manual

SYNOPSIS
x, y = GetCurrentPoint(id)

FUNCTION
This command returns the current point of the path specified in id.

INPUTS

id identifier of path to query

RESULTS

x x position of current point

y y position of current point

56.15 GetDash

NAME
GetDash – get current line dashing style (V7.1)

SYNOPSIS
offset[, t] = GetDash()

FUNCTION
This function returns the current line dashing style set using SetDash(). The first return
value will be set to the offset at which the dash pattern starts and the second return
value is a table containing the lengths of the individual on/off sections. See Section 56.30
[SetDash], page 1193, for details.

If no dash pattern is currently active, -1 is returned in offset and there is no second
return value.

INPUTS
none

RESULTS

offset offset at which to start the dash pattern or -1 for no dash pattern

t optional: table containing on/off sections (only if offset is not -1)

56.16 GetFillRule

NAME
GetFillRule – get current fill rule for overlapping paths (V7.1)

SYNOPSIS
rule = GetFillRule()

FUNCTION
This function returns the current fill rule set using SetFillRule(). This will be either
#FILLRULEWINDING or #FILLRULEEVENODD. See Section 56.31 [SetFillRule], page 1194,
for details.

Chapter 56: Vectorgraphics library 1185

INPUTS
none

RESULTS

rule current fill rule

56.17 GetLineCap

NAME
GetLineCap – get current line cap style (V7.1)

SYNOPSIS
style = GetLineCap()

FUNCTION
This function returns the current line cap style set using SetLineCap(). This will be
either #CAPBUTT, #CAPROUND, or #CAPSQUARE. See Section 56.32 [SetLineCap], page 1195,
for details.

INPUTS
none

RESULTS

style current line cap style

56.18 GetLineJoin

NAME
GetLineJoin – get current line join style (V7.1)

SYNOPSIS
style = GetLineJoin()

FUNCTION
This function returns the current line join style set using SetLineJoin(). This will
be either #JOINMITER, #JOINROUND, or #JOINBEVEL. See Section 56.33 [SetLineJoin],
page 1195, for details.

INPUTS
none

RESULTS

style current line join style

1186 Hollywood manual

56.19 GetMiterLimit

NAME
GetMiterLimit – get current miter limit (V7.1)

SYNOPSIS
limit = GetMiterLimit()

FUNCTION
This function returns the current miter limit set using SetMiterLimit(). See
Section 56.34 [SetMiterLimit], page 1196, for details.

INPUTS
none

RESULTS

limit current miter limit

56.20 GetPathExtents

NAME
GetPathExtents – calculate extents of path (V5.0)

SYNOPSIS
x1, y1, x2, y2 = GetPathExtents(id)

FUNCTION
This command calculates the extents of the path specified in id. The current fill style
and form style is taken into account by this function. The extents are returned as a
bounding rectangle. Note that all return values specify absolute point positions. To get
the width and height of the path from these positions you have to subtract x1 from x2

and y1 from y2.

INPUTS

id identifier of path to query

RESULTS

x1 start x position

y1 start y position

x2 end x position

y2 end y position

56.21 IsPathEmpty

NAME
IsPathEmpty – check if path is empty (V5.0)

SYNOPSIS
ret = IsPathEmpty(id)

Chapter 56: Vectorgraphics library 1187

FUNCTION
This function can be used to check whether or not the specified path object is empty or
not. If it is empty, this function returns True, otherwise False.

INPUTS

id identifier of path to query

RESULTS

ret True if path is empty, else False

56.22 LineTo

NAME
LineTo – add line to path (V5.0)

SYNOPSIS
LineTo(id, x, y)

FUNCTION
This command will add a line from the path’s current point to the point specified by
x,y. When LineTo() returns, the path’s current point will be at x,y.

INPUTS

id identifier of path to add line to

x x coordinate of destination point

y y coordinate of destination point

56.23 MoveTo

NAME
MoveTo – set current point and begin sub-path (V5.0)

SYNOPSIS
MoveTo(id, x, y)

FUNCTION
This command can be used to begin a new sub-path at the specified point. When
MoveTo() returns, the path’s current point will be at x,y. For most cases this is the
preferable way to start a new sub-path. The command StartSubPath() is only recom-
mended for the rare case when you want a sub-path without a current point.

INPUTS

id identifier of path

x x coordinate of destination point

y y coordinate of destination point

1188 Hollywood manual

56.24 NormalizePath

NAME
NormalizePath – move path to origin (V5.0)

SYNOPSIS
NormalizePath(id)

FUNCTION
This function can be used to normalize a path. Normalizing means that all blank spaces
at the left and top sides of the path are cut off, so that the path is moved to the origin
position at the top left corner.

INPUTS

id identifier of path to normalize

56.25 PathItems

NAME
PathItems – traverse individual path items (V7.0)

SYNOPSIS
f = PathItems(id)

FUNCTION
This function can be used together with the generic For statement to traverse all items in
a path. It returns an iterator function which will return a table that contains information
about the next item in the path. Once all path items have been returned, the iterator
function will return Nil to break the generic For statement.

See Section 11.4 [Generic For statement], page 127, for details.

The table returned by PathItems() will contain a Type field which contains a string that
describes the item type. All further table fields depend on the item type as returned in
Type. The following types are currently supported:

NewSubPath:

This item starts a new sub-path. The current point will be undefined at this
time. There are no additional arguments.

ClosePath:

Closes the current path by drawing a line from the current point to the first
point in the sub-path. There are no additional arguments.

MoveTo: This command begins a new sub-path. The sub-path’s current point will be
set to the specified position. The MoveTo table contains the following three
additional arguments:

Rel: This is a boolean value that indicates whether the coordinates
are relative or absolute values. If this is True, the coordinates
have to be interpreted as relative to the current point.

X: The x coordinate of the new position.

Chapter 56: Vectorgraphics library 1189

Y: The y coordinate of the new position.

LineTo: This draws a line from the current point to the specified position. Addition-
ally, it will change the current point to the line’s end point when it is done.
The LineTo table contains the following three additional arguments:

Rel: This is a boolean value that indicates whether the coordinates
are relative or absolute values. If this is True, the coordinates
have to be interpreted as relative to the current point.

X: The x coordinate of the new position.

Y: The y coordinate of the new position.

If there is no current point, LineTo will behave as if it was MoveTo, i.e. it
will simply set the current point to the specified vertex.

CurveTo: This command draws a Bézier curve that runs from the current point to
the position passed in the final two coordinates. The other four coordinates
are the control points for the curve. Additionally, it will change the current
point to the curve’s end point when it is done. The CurveTo table contains
the following seven additional arguments:

Rel: This is a boolean value that indicates whether the coordinates
are relative or absolute values. If this is True, the coordinates
have to be interpreted as relative to the current point.

X1: The x coordinate of the first control point.

Y1: The y coordinate of the first control point.

X2: The x coordinate of the second control point.

Y2: The y coordinate of the second control point.

X3: The x coordinate of the end point.

Y3: The y coordinate of the end point.

If there is no current point, CurveTo will use the point passed in (x1,y1) as
the current point.

Arc: This command will draw an elliptical arc. Arc will open a new subpath
for the new arc only in case there is no currently active subpath. If there
is already a subpath, Arc will connect its starting vertex with the current
vertex of the subpath. Arc will not close the subpath when it has finished
adding its vertices. Arc will not connect the start and end angles of the arc
with its center point automatically. This has to be requested explicitly by
issuing separate MoveTo and LineTo commands before and after Arc. The
Arc table contains the following additional arguments:

XC: The x center point of the arc.

YC: The y center point of the arc.

RA: Arc’s radius on the x axis.

RB: Arc’s radius on the y axis.

1190 Hollywood manual

Start: Start angle in degrees.

End: End angle in degrees.

Clockwise:

Whether or not the angles should be connected in clockwise
direction.

When Arc is done, it will set the current point to the position of the end
angle.

Box: This command will draw a rectangle. Box will first open a new subpath, then
add the rectangle’s vertices to it and close the subpath when it is finished.
Optionally, the rectangle can have rounded corners. The Box table contains
the following additional arguments:

X: X position of the rectangle.

Y: Y position of the rectangle.

Width: Rectangle width.

Height: Rectangle height.

Round: This is a table which contains four integer values in the range
from 0 to 100 specifying the degree of rounding for the four
corners of the rectangle. A value of 0 means no rounding, 100
means full rounding.

Text: This command will draw vector text relative to the current point. The
individual characters are added as closed subpaths. The Text table contains
the following additional arguments:

Size: Desired font size.

Text: The string to draw.

When Text is done, it will set the current point to where the next character
would be displayed.

INPUTS

id identifier of path to traverse

RESULTS

f iterator function for generic for loop

EXAMPLE
For t In PathItems(1) Do DebugPrint(t.type)

The code above iterates over all items in path 1 and prints the type of each item to the
debug device.

Chapter 56: Vectorgraphics library 1191

56.26 PathToBrush

NAME
PathToBrush – convert path(s) to vector brush (V7.0)

SYNOPSIS
[id] = PathToBrush(id, table)

FUNCTION
This function can be used to convert one or more path(s) into a vector brush.
PathToBrush() will create a new brush with the identifier specified in id or if you pass
Nil in the id argument, PathToBrush() will automatically choose an identifier for the
new brush and return it to you.

Converting paths into vector brushes has the advantage that you can assign different
colors to the individual paths combined inside a single vector brush, allowing you to
easily manage multi-colored paths inside just a single brush object. Furthermore, the
paths combined inside the vector brush can also use different drawing styles.

You have to pass a table in the table argument that contains a number of subtables
specifying information about the individual paths to be embedded inside the vector
brush. The paths are drawn into the vector brush in exactly the same order as they
appear in that table.

Note that each path to be embedded inside the vector brush will be normalized first.
Thus, by default all paths will be drawn in the top-left corner of the vector brush. You
can change this behaviour by specifying the X and Y arguments in the individual subtables
for each path to be added to the vector brush (see below).

The following subtable fields can be specified:

ID: This must be set to the identifier of the path object to be embedded inside the
vector brush that shall be created. This must always be provided. Note that
PathToBrush() will make a copy of this path so subsequent modifications
of the path won’t affect the new vector brush in any way. You may also free
this path after adding it to the vector brush.

X: The x position where this path should be drawn inside the vector brush.
This position must be relative to the left corner of the vector brush. Note
that PathToBrush() will internally normalize the path before adding it to
the vector brush so you will usually have to use this field to position the
path correctly inside the vector brush. Defaults to 0.

Y: The y position where this path should be drawn inside the vector brush.
This position must be relative to the top corner of the vector brush. Note
that PathToBrush() will internally normalize the path before adding it to
the vector brush so you will usually have to use this field to position the
path correctly inside the vector brush. Defaults to 0.

Color: The path will be drawn in this ARGB color. This color can also contain a
transparency setting. Defaults to #BLACK.

Note that the form and fill styles to be used by the individual paths are the ones that were
active at the time the path was created using StartPath(). This is different to the way

1192 Hollywood manual

form and fill styles work when drawing paths using DrawPath(). DrawPath() will use the
form and fill styles that are active when DrawPath() is called whereas PathToBrush()
will use the form and fill styles that were active when StartPath() was called on the
individual paths. This allows you to use different form and fill styles for the individual
paths to be embedded inside the vector brush.

INPUTS

id id for the new brush or Nil for auto id selection

table table containing paths to combine into the vector brush (see above)

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
PathToBrush(1, {{ID=1, Color=#RED}, {ID=2, Color=#BLUE, X=100}})

The code above combines paths 1 and 2 inside a new vector brush which will use the
identifier 1. Path 1 is drawn in red and path 2 is drawn in blue. Additionally, path 2 is
drawn at x position 100 whereas path 1 is drawn at 0,0.

56.27 RelCurveTo

NAME
RelCurveTo – add curve to path (V5.0)

SYNOPSIS
RelCurveTo(id, dx1, dy1, dx2, dy2, dx3, dy3)

FUNCTION
This command does the same as CurveTo() except that the coordinates are delta values
instead of absolute positions. The delta coordinates are all interpreted as relative offsets
to the path’s current point.

INPUTS

id identifier of path to add curve to

dx1 delta x coordinate of control point #1

dy1 delta y coordinate of control point #1

dx2 delta x coordinate of control point #2

dy2 delta y coordinate of control point #2

dx3 delta x coordinate of curve destination point

dy3 delta y coordinate of curve destination point

Chapter 56: Vectorgraphics library 1193

56.28 RelLineTo

NAME
RelLineTo – add relative line to path (V5.0)

SYNOPSIS
RelLineTo(id, dx, dy)

FUNCTION
This command does the same as LineTo() except that the coordinates are delta values
instead of absolute positions. The delta coordinates are all interpreted as relative offsets
to the path’s current point.

INPUTS

id identifier of path to add line to

dx delta x coordinate of destination point

dy delta y coordinate of destination point

56.29 RelMoveTo

NAME
RelMoveTo – set relative current point and begin sub-path (V5.0)

SYNOPSIS
RelMoveTo(id, dx, dy)

FUNCTION
This command does the same as MoveTo() except that the coordinates are delta values
instead of absolute positions. The delta coordinates are all interpreted as relative offsets
to the path’s current point.

INPUTS

id identifier of path

dx delta x coordinate of destination point

dy delta y coordinate of destination point

56.30 SetDash

NAME
SetDash – set line dashing style (V5.0)

SYNOPSIS
SetDash(offset, on1, off1, ...)

FUNCTION
This function can be used to define a dash pattern for paths drawn by DrawPath(). A
dash pattern consists of an unlimited number of on and off line sections that start at the

1194 Hollywood manual

offset specified in argument 1. Starting with argument 2, you have to pass the length
of the line section that shall be visible ("on-section") followed by the length of the line
section that shall be invisible ("off-section"), and repeat this pattern as many times as
you like. When drawing an outline path, DrawPath() will then apply this dash pattern
to all lines it is drawing. When the dash pattern does not cover the whole line length, it
will be repeated over and over again.

To remove the dash pattern, call this function with the second argument set to -1.

Please note that the line dash style is only used when drawing vector outlines. It is
obviously not used when filling vector paths.

Also note that the inbuilt vectorgraphics renderer introduced in Hollywood 6.0 currently
does not support line dashing. Use a fully featured vectorgraphics plugin instead if you
need line dashing. See Section 56.39 [Vectorgraphics plugin note], page 1198, for details.

INPUTS

offset offset at which to start the dash pattern

on1 length of on-section 1

off1 length of off-section 1

... optional: define as many on-/off-sections as you like

EXAMPLE
SetFillStyle(#FILLNONE)

SetFormStyle(#ANTIALIAS)

SetLineWidth(10)

SetDash(0, 10, 10, 20, 20, 30, 30, 40, 40)

StartPath(1)

MoveTo(1, 0, 0)

LineTo(1, 640, 480)

DrawPath(1, 0, 0, #RED)

The code above draws a line using a dash pattern that first has four different on/off
sections: The first on/off section is 10 units, the second 20 units, the third 30 units, and
the fourth 40 units.

56.31 SetFillRule

NAME
SetFillRule – set fill rule for overlapping paths (V5.0)

SYNOPSIS
SetFillRule(rule)

FUNCTION
This function can be used to define how DrawPath() should fill paths that overlap each
other. Currently, the following fill rules are supported:

#FILLRULEWINDING:

Fill all overlapping paths only if they are not winding. This is the default
setting.

Chapter 56: Vectorgraphics library 1195

#FILLRULEEVENODD:

Fill overlapping paths if the total number of intersections is odd.

INPUTS

rule desired fill rule (see above for possible settings)

56.32 SetLineCap

NAME
SetLineCap – define current line cap style (V5.0)

SYNOPSIS
SetLineCap(style)

FUNCTION
This function can be used to define how DrawPath() should draw the endings of lines that
are not connected to another vertices. Currently, the following cap styles are supported:

#CAPBUTT:

Do not draw any special line ending. Just stop drawing where the line ends.
This is the default mode.

#CAPROUND:

Draw round line endings.

#CAPSQUARE:

Draw squared line endings.

Please note that the line cap style is only used when drawing vector outlines. It is
obviously not used when filling vector paths.

INPUTS

style desired line cap style (see above for possible settings)

56.33 SetLineJoin

NAME
SetLineJoin – define current line join style (V5.0)

SYNOPSIS
SetLineJoin(style)

FUNCTION
This function can be used to define how DrawPath() should connect the lines when
drawing a vector path. Currently, the following join styles are supported:

#JOINMITER:

Use miter join (a sharp angled corner). This is the default join mode.
The miter limit can be set using the SetMiterLimit() function. See
Section 56.34 [SetMiterLimit], page 1196, for details.

1196 Hollywood manual

#JOINROUND:

Join lines by drawing their ends as circles. This gives a thick pen impression.

#JOINBEVEL:

Join lines by cutting off the line ends at the half of the line width.

Please note that the line join style is only used when drawing vector outlines. It is
obviously not used when filling vector paths.

INPUTS

style desired line join style (see above for possible settings)

56.34 SetMiterLimit

NAME
SetMiterLimit – set miter limit (V7.1)

SYNOPSIS
SetMiterLimit(limit)

FUNCTION
This function sets the miter limit to the value specified by limit. This can be a fractional
value. The miter limit is used when the join style is set to #JOINMITER to determine when
to join lines with a bevel and when to join them using a miter. Note that #JOINMITER
is also the default line join style.

When drawing line ends, the length of the miter is divided by the line width and if the
result of this division is greater than the miter limit set using this function, lines are
joined using a bevel.

Hollywood’s default miter limit is 10.

INPUTS

limit desired miter limit

56.35 SetVectorEngine

NAME
SetVectorEngine – choose vectorgraphics renderer (V6.0)

SYNOPSIS
SetVectorEngine(engine$)

FUNCTION
This command can be used to select the plugin that should be used to draw vector-based
shapes. You simply have to pass the name of the plugin to this function. To use the
inbuilt vectorgraphics renderer, pass default.

Note that it is perfectly allowed to use several vectorgraphics renderers inside a single
script. It is even possible to use several vectorgraphics renderers inside a single BGPic.
For example, the first layer could use the default vectorgraphics renderer while the second

Chapter 56: Vectorgraphics library 1197

layer uses a plugin-based vectorgraphics renderer. This is all supported. You can even
change the renderer used by single layers by calling SetLayerStyle() and setting the
VectorEngine tag.

INPUTS

engine$ name of the plugin that should be used to draw vectorgraphics

56.36 StartPath

NAME
StartPath – begin a new path (V5.0)

SYNOPSIS
[id] = StartPath(id)

FUNCTION
This command can be used to create a new path object that will be made available under
the identifier id. Alternatively, you can pass Nil as id. In that case, StartPath() will
automatically select an identifier and return it to you.

Once the new path is created, you should first define a current point for the path by
calling the MoveTo() command. After that, you can start adding vertices to the path.

A vector path is a root object for an infinite number of sub-paths. You can think of a
vector path as a collection of an infinite number of separate polygons. Each sub-path
within a vector path can be regarded as a separate polygon. Keep in mind, though,
that when you draw a vector path using DrawPath() you can only specify a global color
that will be used by all sub-paths within the vector path. Thus, it is not possible to use
different colors within a single path object. If you need to use another color, you need
to create a new path object first.

INPUTS

id identifier for the new path or Nil for auto id selection

RESULTS

id optional: identifier of the new path; this will only be returned when you pass
Nil as argument 1 (see above)

EXAMPLE
See Section 56.11 [DrawPath], page 1181.

56.37 StartSubPath

NAME
StartSubPath – begin a new sub-path (V5.0)

SYNOPSIS
StartSubPath(id)

1198 Hollywood manual

FUNCTION
This command can be used to begin a new sub-path within the path object specified
in id. The new sub-path will not get a current point so that most of the time you
should better call MoveTo() to start a new sub-path. StartSubPath() is only preferable
for rare cases in which a current point is not desired; for example, when adding a cir-
cle/ellipse/arc to a path a current point can be annoying because it would be connected
to the circle/ellipse/arc then. For most cases, however, you should use MoveTo() instead
of StartSubPath().

INPUTS

id identifier of the path to use

56.38 TranslatePath

NAME
TranslatePath – offset a path (V5.0)

SYNOPSIS
TranslatePath(id, dx, dy)

FUNCTION
This function can be used to translate a path. Translating means that each vertex in
the path is shifted by the specified delta offset. A positive delta offset shifts to the right
(or bottom) and a negative delta offset shifts to the left (or top). An offset of 0 does not
do anything.

INPUTS

id identifier of path to normalize

dx amount of delta shift on the x axis

dy amount of delta shift on the y axis

EXAMPLE
TranslatePath(1, -100, 150)

The code above shifts path number one 100 pixels to the left and 150 pixels to the
bottom.

56.39 Vectorgraphics plugin

Before Hollywood 6.0 all functions of Hollywood’s vectorgraphics library could only be
used if a separate plugin that implements vector-based drawing was present. Starting with
Hollywood 6.0 there is basic support for vector-based drawing even without an external
vectorgraphics plugin. However, inbuilt support for vector-based drawing does not support
all features offered by the vectorgraphics library and might not look as good as vector-based
shapes drawn by a specialized plugin. Still, it should be enough for most purposes.

For the best results and compatibility you should install an external vectorgraphics plugin
that uses a dedicated vector render. For example, vectorgraphics plugins could implement

Chapter 56: Vectorgraphics library 1199

vector-based drawing by using either platform-independent engines like cairo, or OS tech-
nologies like Apple’s Quartz 2D or Microsoft’s GDI+.

The plugin needs to be present in the same directory as the Hollywood executable.
In case you want to distribute an executable compiled by Hollywood, you need to
put the plugin into the same directory as your compiled executable. On AmigaOS
and compatibles, you can also put the plugin inside the directory LIBS:Hollywood. If
the "Hollywood" directory in LIBS: does not already exist, please create it yourself.
On macOS, you need to put the plugin inside the application bundle, i.e. inside
the HollywoodInterpreter.app/Contents/Resources/Plugins directory. Note that
HollywoodInterpreter.app is stored inside the Hollywood.app application bundle,
namely in Hollywood.app/Contents/Resources.

Once the plugin has been installed, use the SetVectorEngine() command to activate it.
See Section 56.35 [SetVectorEngine], page 1196, for details.

1201

57 Video library

57.1 Overview

Hollywood’s video library provides functions for loading and playing video objects. Video
objects are Hollywood objects which contain a video stream that may be bundled with an
audio stream. When playing a video object, Hollywood will make sure that video and audio
streams are perfectly synchronized with each other.

You can open a video file from disk using the @VIDEO preprocessor command or the
OpenVideo() command. To play a video, use the PlayVideo() command.

Hollywood’s video library supports two different renderers:

1. Inbuilt video renderer: This is a platform-independent video renderer supported on
all platforms. It is the most flexible video renderer and supports advanced features
like video layers and plugins. The disadvantage is that decoding is done completely
in software which is why large videos (or videos that use 50fps or more) might be
stuttering. In that case, you can use the native video renderer instead (see below).
The native video renderer is often hardware-accelerated which is why video playback
will still be smooth even in very high resolutions or with lots of frames per second.
Note that the only video format supported by the inbuilt video renderer is the CDXL
video format developed by Commodore in the early 90s. CDXL isn’t very useful for
today’s video requirements, but the big advantage of the inbuilt video renderer is that
it can load videos via Hollywood plugins. Installing video plugins can greatly enhance
the functionality of the inbuilt video renderer and can enable Hollywood to play lots
of different video formats.

2. Native video renderer: This is only supported on Windows, macOS, and iOS. This
renderer loads and plays videos through the operating system’s video interface. On
Windows video playback is done via Media Foundation and DirectShow whereas macOS
and iOS use AV Foundation or QuickTime (on older systems). This renderer is not as
flexible as the inbuilt video renderer. It doesn’t support video layers and it also doesn’t
support video format loaders made available by Hollywood plugins. But it can be much
faster because native video renderers are often hardware-accelerated. The number of
video formats that can be played by the native video renderer is also limited. The best
format to use with the native video renderer is MPEG4 because this is supported on
all platforms except on very old macOS or Windows versions.

By default, Hollywood will first ask the inbuilt video renderer to open the video file. You
can change this behaviour by using the Loader tag in your call to @VIDEO or OpenVideo().
See Section 57.17 [VIDEO], page 1212, for details.

57.2 CloseVideo

NAME
CloseVideo – close a video (V5.0)

SYNOPSIS
CloseVideo(id)

1202 Hollywood manual

FUNCTION
This function frees any memory occupied by the video specified by id and closes the
video. If the video is still playing, it will be stopped first. Although Hollywood will
automatically free all resources when it exits, you should still call CloseVideo() when
you are done with a video file because it reduces memory consumption.

INPUTS

id identifier of the video to close

57.3 DisplayVideoFrame

NAME
DisplayVideoFrame – display a single frame of a video (V6.0)

SYNOPSIS
DisplayVideoFrame(id, x, y, pos[, table])

FUNCTION
This function displays a single frame of a video at the specified coordinates and adds a
new layer of type #VIDEO to the layer stack. The frame is specified not as an absolute
index position but as a timestamp in milliseconds. Thus, to display the very first frame
you would have to pass 0 in the pos argument.

Please note that this function currently does not work with layers disabled. Layers need
to be enabled for this function to work.

DisplayVideoFrame() also recognizes an optional table argument which allows you to
specify one or more of the standard tags for all drawing commands. See Section 27.17
[Standard drawing tags], page 501, for more information about the standard tags that
nearly all Hollywood drawing commands support.

INPUTS

id identifier of the video to use

x destination x coordinate

y destination y coordinate

pos timestamp of the frame to display in milliseconds

table optional: table specifying further options

EXAMPLE
DisplayVideoFrame(1, #CENTER, #CENTER, 0)

The code above displays the first frame of video 1 in the center of the screen.

57.4 ForceVideoDriver

NAME
ForceVideoDriver – enforce use of specified video driver (V5.1)

Chapter 57: Video library 1203

SYNOPSIS
ForceVideoDriver(driver)

FUNCTION
This function can be used to specify the video driver all subsequent calls to OpenVideo()
should use. Hollywood currently supports the following two video drivers:

#VIDDRV_HOLLYWOOD:

Hollywood’s platform independent video renderer. This is the default driver.
It supports playback of the CDXL format plus all formats you have a plugin
for.

#VIDDRV_OS:

This driver uses the native video system of the OS. This is currently only
supported on Windows, macOS, and iOS. On Windows this driver uses the
Media Foundation or DirectShow technology while on macOS and iOS it
uses AV Foundation or QuickTime (on older systems).

By default, #VIDDRV_HOLLYWOOD is given priority over #VIDDRV_OS which means that
Hollywood will first try to play the video using its inbuilt video renderer. Only if that
does not work, will Hollywood switch to the OS native renderer. If you want to change
this behaviour, use this function.

Note that this function is obsolete since Hollywood 6.0 because you can now simply use
the new Loader tag with OpenVideo() and @VIDEO. The Loader equivalent for #VIDDRV_
OS is native and the Loader equivalent for #VIDDRV_HOLLYWOOD is inbuilt|plugin.

INPUTS

driver desired video driver to use

57.5 GetVideoFrame

NAME
GetVideoFrame – convert video frame to a brush (V5.0)

SYNOPSIS
[id] = GetVideoFrame(brushid, frame, videoid[, unit])

FUNCTION
This function can be used to convert a single frame of a video to a brush. The video
must have been opened using OpenVideo() or the @VIDEO preprocessor command. In
the first argument, you have to pass an id for the brush you want this function to create
(alternatively, you can pass Nil for automatic id selection). In the second argument you
have to specify which frame of the video should be grabbed, and the third argument
specifies the identifier of the video to use as the source.

The optional argument unit is used to specify how the value passed in frame should
be interpreted. If unit is set to 0, then the value passed in frame is interpreted as an
absolute frame index. This is also the default setting. If unit is set to 1, then the value
passed in frame is interpreted as a time stamp in milliseconds and GetVideoFrame() will
grab the frame at this very timestamp. It is recommended to use unit 1 access to single

1204 Hollywood manual

frames because this is usually much faster. If you really need to access single frames by
their absolute index, please read the word of warning below.

Please note that frame access by absolute index is usually a very expensive operation
because, for most video formats, Hollywood needs to traverse all the way through the
stream until it reaches the requested frame. Such a traversal requires a lot of time and is
thus of limited practical use. However, there is one special case where GetVideoFrame()
can be used very efficiently and that is the sequential grabbing of frames from a video
stream. "Sequential grabbing" means that you read one frame after the other from the
video stream, i.e. first frame 1, then frame 2, then frame 3, etc. This can be done very
quickly. The only thing that will take lots of time is reading frames in backward direction
(i.e. frame 10, frame 9, frame 8, etc.), or making huge leaps between frame reads (i.e.
frame 1, then frame 1000, then frame 5000, etc.). This will take a lot of time. Sequential
reading will be efficient, however.

To find out the exact number of frames inside a video stream, you can use the
GetAttribute() command and query the #ATTRNUMFRAMES attribute using the #VIDEO

object type.

INPUTS

id identifier for the brush to create or Nil for auto id selection

frame frame to load; format of this argument depends on the value passed to the
unit argument below

videoid identifier of the video to use as source

unit optional: base to use for the frame argument; this can be either 0 which
means that the frame argument specifies an absolute frame index or 1 which
means that the frame argument specifies a timestamp in milliseconds (de-
faults to 0)

RESULTS

id optional: identifier of the brush; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
my_frame = GetVideoFrame(Nil, 1, 2)

DisplayBrush(my_frame, #CENTER, #CENTER)

The code above extracts frame 1 from video stream 2 and stores it in a new brush. The
brush is then displayed at the center of the display.

57.6 IsVideo

NAME
IsVideo – determine if a file is in a supported video format (V5.0)

SYNOPSIS
ret = IsVideo(file$[, table])

Chapter 57: Video library 1205

FUNCTION
This function will check if the file specified in file$ is in a supported video format. If
it is, this function will return True, otherwise False. If this function returns True, you
can open the video using OpenVideo().

Starting with Hollywood 6.0 this function accepts an optional table argument which
allows you to configure further options:

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this video. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

See Section 57.8 [OpenVideo], page 1206, for a list of supported video formats.

INPUTS

file$ file to examine

table optional: table configuring further options (V6.0)

RESULTS

ret True if the video is in a supported format, False otherwise

57.7 IsVideoPlaying

NAME
IsVideoPlaying – check if video is currently playing (V5.0)

SYNOPSIS
playing = IsVideoPlaying(id)

FUNCTION
This function checks if the video specified by id is currently playing. If it is, True is
returned, False otherwise.

INPUTS

id identifier of video to check

RESULTS

playing True if video is currently playing; False otherwise

1206 Hollywood manual

57.8 OpenVideo

NAME
OpenVideo – open a video file (V5.0)

SYNOPSIS
[id] = OpenVideo(id, filename$[, table])

FUNCTION
This function opens the video file specified by filename$ and assigns the specified id to
it. If you pass Nil in id, OpenVideo() will automatically choose an identifier and return
it. The video file specified in filename$ will be opened and prepared for playback.
Video playback is always done directly from disk which means that OpenVideo() will
not prebuffer any data at all. It will just initialize all parameters necessary for video
playback.

Video formats that are supported on all platforms are CDXL and formats you have a
plugin for. Depending on the platform Hollywood is running on, more video formats
might be supported. On Windows Hollywood is able to open all video formats for which
you have a Media Foundation or DirectShow codec installed. On macOS Hollywood can
open all video formats that are supported by AV Foundation (or QuickTime on older
Macs).

Starting with Hollywood 6.0 this command accepts an optional table argument which
recognizes the following options:

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this video. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). The default loader lets Hollywood first ask all
plugins whether they would like to handle the video file, then it will check
its inbuilt loaders (currently only CDXL), and finally it will ask the video
interface of the host OS to play this video. If you want to customize this
order, use this tag. See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

This command is also available from the preprocessor: Use @VIDEO to preload video files!

Chapter 57: Video library 1207

INPUTS

id identifier for the video or Nil for auto id selection

filename$

file to load

table optional: table that contains further parameters (V6.0)

RESULTS

id optional: identifier of the video; will only be returned when you pass Nil as
argument 1 (see above)

EXAMPLE
OpenVideo(1, "intro.avi")

PlayVideo(1)

The code above loads & plays "intro.avi".

57.9 PauseVideo

NAME
PauseVideo – pause a playing video (V5.0)

SYNOPSIS
PauseVideo(id)

FUNCTION
This function pauses the video associated with the identifier id. This video must be
playing when you call this command. You can resume playback later by using the
ResumeVideo() command.

Please note that pausing a video will not remove the video from the display. Instead, the
currently displayed frame will be frozen until you call ResumeVideo(). If you want to
remove a video completely from the display, you will always have to call StopVideo().

INPUTS

id identifier of the video to pause

57.10 PlayVideo

NAME
PlayVideo – start playback of a video (V5.0)

SYNOPSIS
PlayVideo(id[, x, y, table])

FUNCTION
This command starts the playback of the video specified by id. This video must have
been opened using either the @VIDEO preprocessor command or the OpenVideo() com-
mand. The optional arguments x and y can be used to specify where on the display
the video should appear. If you do not specify these arguments, PlayVideo() will use

1208 Hollywood manual

the coordinates specified in the latest call to SetVideoPosition(). If you did not call
SetVideoPosition() on this video at all, the position will default to 0/0 which is the
upper left corner of the display.

PlayVideo() works in an asynchronous manner. It will return immediately once it
has started video playback. After you have started a video, you can control playback
by calling functions like StopVideo() or StopLayer() depending on whether you use
normal or layered playback mode.

Hollywood supports two different video playback modes: Normal playback and layered
playback. Normal playback is the fastest and most optimized mode as it can utilize
hardware acceleration by using video overlays for example. The disadvantage of normal
mode is that it has some restrictions (see below for more information). Layered playback
mode, on the other hand, is very flexible as your video will be rendered into a Hollywood
layer and so you can use all layer functionality on your video object, e.g. you can rotate
it, apply transparency and transition effects or special image filters. The disadvantage
of layered mode is that it is quite slow because it cannot use hardware acceleration so
you will need lots of raw CPU horsepower to get decent framerates here. For most cases,
normal playback mode should be sufficient. Layered playback mode is only necessary if
you need to do advanced things during video playback.

It is important to note that PlayVideo() will always use normal playback mode by
default, even if layers are enabled for the current BGPic. To make PlayVideo() use
layered mode, you will have to request this explicitly by setting the UseLayer tag in the
optional table argument to True.

Normal playback mode comes with the restriction that videos will always appear above
everything else. This means that it is impossible for you to draw on top of a video.
Instead, all graphics commands will always draw beneath the video area. Even sprites
will never appear above the video graphics. Also, the video will stay visible until you call
StopVideo(). Pausing a video will not remove that video from the display. Instead, the
currently displayed frame will be frozen until you call ResumeVideo(). If you want to
remove a video completely from the display, you will always have to call StopVideo().
If you would like to move a video or change its size during normal playback mode, you
need to use the commands SetVideoPosition() and SetVideoSize() for this task.

In layered playback mode you can use all the functions from Hollywood’s layers library
to control video playback, i.e. you can change the video’s size and orientation using
ScaleLayer() and RotateLayer() or redefine the z-order by using SetLayerZPos().
You can also show and hide videos using ShowLayer() and HideLayer() or apply trans-
parency or filters to them using SetLayerTransparency() and SetLayerFilter(). All
functions of Hollywood’s layers library can be used with video layers. To stop or pause
a video layer, use the StopLayer() and PauseLayer() functions respectively. To seek
to a new position inside the video, use SeekLayer(). To change the audio volume of a
video layer use SetLayerVolume().

Please note that layered playback is only possible if the video has been opened using
Hollywood’s inbuilt or plugin-based video handler. Layered playback is not supported
when using the video renderer provided by the host OS. You can change the video driver
by using the Loader tag in OpenVideo() or @VIDEO.

Chapter 57: Video library 1209

There are no limits as to how many videos can be played concurrently. Hardware acceler-
ation, however, can often be only used when just a single video is played at a time. When
multiple videos are playing at the same time, Hollywood often has to switch back to soft-
ware rendering, which is slower. Please also note that video playback generally requires
a strong CPU. 68k processors are much too slow for this task (except on WinUAE).

Note that when switching BGPics using DisplayBGPic(), Hollywood will automatically
stop all videos playing in normal mode. Videos playing in layered mode, however, will
continue playing even if the BGPic has been changed. Thus, you need to explicitly stop
video layers by calling StopLayer() before switching BGPics if you want them to stop
on this occasion.

Starting with Hollywood 6.0, PlayVideo() accepts an optional table argument which
can be used to configure the following options:

UseLayer:

If you set this tag to True, PlayVideo() will use layered playback mode. You
need to enable layers before you can use this tag. See Section 34.1 [Layers
introduction], page 647, for details. If layered playback mode is used, this
command will add a new layer of the type #VIDEO to the layer stack. See
above for more information on the difference between normal and layered
playback mode. Defaults to False. (V6.0)

Channel: Channel to use for playback of this video’s audio stream. By default,
PlayVideo() will automatically choose a vacant channel and will fail if
there is no vacant channel. To override this behaviour, you can use this
field. When specified, it will always enforce audio playback on the very
channel specified here. If the channel is already playing, it will be stopped
first. (V6.1)

If layered playback mode is used you can also specify one or more of the standard tags
for all drawing commands in the optional table argument. See Section 27.17 [Standard
drawing tags], page 501, for more information about the standard tags that nearly all
Hollywood drawing commands support.

INPUTS

id identifier of the video to play

x optional: desired x position for the video (defaults to the position defined
using SetVideoPosition() or 0)

y optional: desired y position for the video (defaults to the position defined
using SetVideoPosition() or 0)

table optional: table configuring further options (V6.0)

EXAMPLE
See Section 57.8 [OpenVideo], page 1206.

57.11 ResumeVideo

NAME
ResumeVideo – resume a paused video (V5.0)

1210 Hollywood manual

SYNOPSIS
ResumeVideo(id)

FUNCTION
This function resumes the playback of a paused video that is associated with the identifier
id. You can pause the playback of a video using the PauseVideo() command.

INPUTS

id identifier of the video to be resumed

57.12 SeekVideo

NAME
SeekVideo – seek to a certain position in a video (V5.0)

SYNOPSIS
SeekVideo(id, pos)

FUNCTION
You can use this function to seek to the specified position in the video specified by id.
The video does not have to be playing. If the video is playing and you call SeekVideo(),
it will immediately skip to the specified position. The position is specified in milliseconds.
Thus, if you want to skip to the position 3:24, you would have to pass the value 204000
because 3 * 60 * 1000 + 24 * 1000 = 204000.

Please note that video seeking is a complex operation. There are video formats which
do not have any position lookup tables so that Hollywood first has to approximate the
seeking position and then do some fine- tuning and keyframe seeking so that the final
position can always be a bit off from the position you specified in SeekVideo(). It
can also happen that Hollywood will not seek directly to a keyframe so there might be
artefacts from previous frames left on the screen.

INPUTS

id identifier of the video to seek

pos new position for the video (in milliseconds)

57.13 SetVideoPosition

NAME
SetVideoPosition – change output position of a video (V5.0)

SYNOPSIS
SetVideoPosition(id, x, y)

FUNCTION
This function can be used to change the position of a video. If the video is currently
playing, it will be instantly moved to the new position. If it is not playing, the specified
position will be memorized until you call PlayVideo() the next time.

Chapter 57: Video library 1211

Please note that this function must not be used for videos that are played back in layered
mode. You can change the position of video layers using functions from layers library,
e.g. ShowLayer().

INPUTS

id identifier of the video whose position you want to change

x desired x position for the video

y desired y position for the video

EXAMPLE
SetVideoPosition(1, #RIGHT, #BOTTOM)

The code above moves video to the bottom-right edge of the current display.

57.14 SetVideoSize

NAME
SetVideoSize – change output size of a video (V5.0)

SYNOPSIS
SetVideoSize(id, width, height[, smooth])

FUNCTION
This function can be used to change the dimensions of a video. If the video is currently
playing, it will be instantly scaled to fit the new dimensions. If it is not playing, the
specified dimensions will be memorized until you call PlayVideo() the next time.

You can pass the special constant #KEEPASPRAT as either width or height. Hollywood
will then calculate the size automatically by taking the aspect- ratio of the video into
account. Alternatively, width and height can also be a string containing a percent
specification, e.g. "50%".

Starting with Hollywood 5.1 you can pass the optional argument smooth which speci-
fies whether or not anti-aliased interpolated scaling should be used. Please note that
interpolated scaling is only available for videos played through Hollywood’s platform
independent video player without any hardware overlay.

Please note that this function must not be used for videos that are played back in layered
mode. You can change the size of video layers using functions from layers library, e.g.
ScaleLayer().

INPUTS

id identifier of the video whose size you want to change

width desired new width for the video

height desired new height for the video

smooth optional: whether or not to use interpolated scaling; defaults to False (V5.1)

EXAMPLE
SetVideoSize(1, 640, 480)

1212 Hollywood manual

The code above scales video 1 to a resolution of 640x480 pixels.

SetVideoSize(2, "50%", "50%")

The code above shrinks video number 2 to half its size.

57.15 SetVideoVolume

NAME
SetVideoVolume – modify volume of a video (V5.0)

SYNOPSIS
SetVideoVolume(id, volume)

FUNCTION
This function modifies the volume of the video specified by id. If the video is currently
playing, the volume will be modified on-the-fly which can be used for sound fades etc.
The volume argument can also be a string containing a percent specification, e.g. "50%".

INPUTS

id identifier of the video

volume new volume for the video (range: 0=mute until 64=full volume or percent
specification)

57.16 StopVideo

NAME
StopVideo – stop a currently playing video (V5.0)

SYNOPSIS
StopVideo(id)

FUNCTION
This function stops the video specified by id and removes it from the display. The video
must be either in playing or paused state.

INPUTS

id identifier of the video to be stopped

57.17 VIDEO

NAME
VIDEO – preload a video for later use (V5.0)

SYNOPSIS
@VIDEO id, filename$[, table]

Chapter 57: Video library 1213

FUNCTION
Use this preprocessor command to preload a video which you want to play later using
PlayVideo().

Video formats that are supported on all platforms are CDXL and formats you have a
plugin for. Depending on the platform Hollywood is running on, more video formats
might be supported. On Windows Hollywood is able to open all video formats for which
you have a Media Foundation or DirectShow codec installed. On macOS Hollywood can
open all video formats that are supported by AV Foundation (or QuickTime on older
Macs).

The third argument is optional. It is a table that can be used to set further options for
the opening operation. The following fields of the table can be used:

Link: Set this field to False if you do not want to have this video linked to your
executable/applet when you compile your script. This field defaults to True

which means that the video is linked to your to your executable/applet when
Hollywood is in compile mode.

Loader: This tag allows you to specify one or more format loaders that should
be asked to load this video. This must be set to a string containing
the name(s) of one or more loader(s). Defaults to the loader set using
SetDefaultLoader(). The default loaders lets Hollywood first ask all
plugins whether they would like to handle the video file, then it will check
its inbuilt loaders (currently only CDXL), and finally it will ask the video
interface of the host OS to play this video. If you want to customize this
order, use this tag. See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

Adapter: This tag allows you to specify one or more file adapters that should be
asked to open the specified file. This must be set to a string containing
the name(s) of one or more adapter(s). Defaults to the adapter set using
SetDefaultAdapter(). See Section 7.9 [Loaders and adapters], page 92, for
details. (V6.0)

UserTags:

This tag can be used to specify additional data that should be passed to
loaders and adapters. If you use this tag, you must set it to a table of key-
value pairs that contain the additional data that should be passed to plugins.
See Section 7.10 [User tags], page 95, for details. (V10.0)

If you want to open the video manually, please use the OpenVideo() command.

INPUTS

id a value that is used to identify this video later in the code

filename$

the file you want to have loaded

table optional: a table containing further options

EXAMPLE
@VIDEO 1, "intro.avi"

1214 Hollywood manual

The code above opens "intro.avi" so that it can be played later using PlayVideo().

1215

58 Windows support library

58.1 CreateShortcut

NAME
CreateShortcut – create a shortcut to a file (V4.7)

SYNOPSIS
CreateShortcut(src$, dest$, desc$)

PLATFORMS
Microsoft Windows only

FUNCTION
This function can be used to create a *.lnk shortcut to file src$ in file dest$. The
shortcut will use the description passed in desc$. The source file passed in src$ can be
either an executable or a document file.

INPUTS

src$ source file to which the shortcut shall point

dest$ shortcut file that shall be created

desc$ description string of shortcut

EXAMPLE
CreateShortcut("test.exe", "test.lnk", "Test shortcut")

The code above creates a link to file "test.exe" as "test.lnk" using the description "Test
shortcut".

58.2 GetShortcutPath

NAME
GetShortcutPath – get path from shortcut (V5.2)

SYNOPSIS
p$, desc$ = GetShortcutPath(f$)

PLATFORMS
Microsoft Windows only

FUNCTION
This function can be used to get the full path from the *.lnk shortcut file specified in
f$. The path that this shortcut is pointing to will then be returned in the first return
value. If the shortcut file contains a description, it will be returned in the second value.

INPUTS

f$ shortcut file

RESULTS

p$ full path that shortcut points to

1216 Hollywood manual

desc$ description of shortcut (if available)

EXAMPLE
p$ = GetShortcutPath("test.lnk")

The code above returns the full path of the shortcut "test.lnk".

58.3 ReadRegistryKey

NAME
ReadRegistryKey – read a key from the registry (V4.5)

SYNOPSIS
value = ReadRegistryKey(base, key$)

PLATFORMS
Microsoft Windows only

FUNCTION
This function can be used to read a key from the Windows registry. You have to specify
the base tree as well as the key to read. The base tree can be one of the following
constants:

#HKEY_CLASSES_ROOT

#HKEY_CURRENT_CONFIG

#HKEY_LOCAL_MACHINE

#HKEY_USERS

#HKEY_CURRENT_USER

The return value will be a number in case the registry key contains a number. If the
registry key contains a string or binary data, you will get a string as a return value.
Hollywood strings are capable of holding binary data because they allow NULL characters
in them.

INPUTS

base one of the base tree constants from above

key$ the registry key to query

RESULTS

value value of specified registry key; will be either a number or a string

EXAMPLE
program_files$ = ReadRegistryKey(#HKEY_LOCAL_MACHINE,

"Software/Microsoft/Windows/CurrentVersion/ProgramFilesDir")

The code above reads the default location of programs under Windows from the registry.
On a German Windows system, this will usually return "C:/Programme".

Chapter 58: Windows support library 1217

58.4 WriteRegistryKey

NAME
WriteRegistryKey – write a key to the registry (V4.5)

SYNOPSIS
WriteRegistryKey(base, key$, value)

PLATFORMS
Microsoft Windows only

FUNCTION
This function can be used to write a key to the Windows registry. You have to specify
the base tree, the key, and the value which shall be written in the specified key. If the
specified key does not exist, it will be created by this function. The base tree can be one
of the following constants:

#HKEY_CLASSES_ROOT

#HKEY_CURRENT_CONFIG

#HKEY_LOCAL_MACHINE

#HKEY_USERS

#HKEY_CURRENT_USER

The value for the key can be a either number or a string. You can also write binary data
to the registry by passing a string. Hollywood strings are capable of holding arbitrary
binary data because they allow NULL characters in them. Under normal circumstances,
however, writing numbers or normal strings to the registry should be sufficient.

INPUTS

base one of the base tree constants from above

key$ the registry key to create/modify

value value to set the key to; can be either a number or a string

1219

Appendix A Licenses

A.1 Lua license

Lua 5.0 license

Copyright c© 1994-2004 Tecgraf, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

A.2 OpenCV license

Copyright c© 2000, Intel Corporation, all rights reserved. Third party copyrights are prop-
erty of their respective owners.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

− Redistribution’s of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

− Redistribution’s in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

− The name of Intel Corporation may not be used to endorse or promote products derived
from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express
or implied warranties, including, but not limited to, the implied warranties of merchantabil-
ity and fitness for a particular purpose are disclaimed. In no event shall Intel or contributors
be liable for any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services; loss of use, data,
or profits; or business interruption) however caused and on any theory of liability, whether
in contract, strict liability, or tort (including negligence or otherwise) arising in any way
out of the use of this software, even if advised of the possibility of such damage.

A.3 ImageMagick license

The authoratitive ImageMagick license can be found at http://www.imagemagick.org/
script / license . php and ImageMagick notices at http: / / www . imagemagick . org /

script/notice.php.

Before we get to the text of the license lets just review what the license says in simple terms:

It allows you to:

• freely download and use ImageMagick software, in whole or in part, for personal, com-
pany internal, or commercial purposes;

http://www.imagemagick.org/script/license.php
http://www.imagemagick.org/script/license.php
http://www.imagemagick.org/script/notice.php
http://www.imagemagick.org/script/notice.php

1220 Hollywood manual

• use ImageMagick software in packages or distributions that you create.

It forbids you to:

• redistribute any piece of ImageMagick-originated software without proper attribution;

• use any marks owned by ImageMagick Studio LLC in any way that might state or
imply that ImageMagick Studio LLC endorses your distribution;

• use any marks owned by ImageMagick Studio LLC in any way that might state or
imply that you created the ImageMagick software in question.

It requires you to:

• include a copy of the license in any redistribution you may make that includes Im-
ageMagick software;

• provide clear attribution to ImageMagick Studio LLC for any distributions that include
ImageMagick software.

It does not require you to:

• include the source of the ImageMagick software itself, or of any modifications you may
have made to it, in any redistribution you may assemble that includes it;

• submit changes that you make to the software back to the ImageMagick Studio LLC
(though such feedback is encouraged).

A few other clarifications include:

• ImageMagick is freely available without charge;

• you may include ImageMagick on a CD-ROM as long as you comply with the terms of
the license;

• you can give modified code away for free or sell it under the terms of the ImageMagick
license or distribute the result under a different license, but you need to acknowledge
the use of the ImageMagick software;

• the license is compatible with the GPL.

The legally binding and authoritative terms and conditions for use, reproduction, and dis-
tribution of ImageMagick follow:

Copyright 1999-2009 ImageMagick Studio LLC, a non-profit organization dedicated to mak-
ing software imaging solutions freely available.

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 10 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of
this definition, "control" means (i) the power, direct or indirect, to cause the direction
or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted
by this License.

Appendix A: Licenses 1221

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated documenta-
tion, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made avail-
able under the License, as indicated by a copyright notice that is included in or attached
to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations, elabora-
tions, or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by
an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written
communication intentionally sent to the Licensor by its copyright holder or its representa-
tives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Li-
censor for the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright owner as
"Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non- exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly dis-
play, publicly perform, sublicense, and distribute the Work and such Derivative Works in
Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non- exclusive, no-charge, royalty-
free, irrevocable patent license to make, have made, use, offer to sell, sell, import, and
otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s) was
submitted.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this
License; and

1222 Hollywood manual

b. You must cause any modified files to carry prominent notices stating that You changed
the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Deriva-
tive Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to any part
of the Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Deriva-
tive Works, if and wherever such third-party notices normally appear. You may add Your
own attribution notices within Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work.

You may add Your own copyright statement to Your modifications and may provide ad-
ditional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use, repro-
duction, and distribution of the Work otherwise complies with the conditions stated in this
License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions. Notwith-
standing the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-
censor provides the Work (and each Contributor provides its Contributions) on an "AS IS"
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PUR-
POSE. You are solely responsible for determining the appropriateness of using or redis-
tributing the Work and assume any risks associated with Your exercise of permissions under
this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

Appendix A: Licenses 1223

9. Accepting Warranty or Additional Liability. While redistributing the Work or Deriva-
tive Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.

A.4 GD Graphics Library license

Portions copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Cold Spring
Harbor Laboratory. Funded under Grant P41-RR02188 by the National Institutes of Health.

Portions copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 by Boutell.Com, Inc.

Portions relating to GD2 format copyright 1999, 2000, 2001, 2002 Philip Warner.

Portions relating to PNG copyright 1999, 2000, 2001, 2002 Greg Roelofs.

Portions relating to gdttf.c copyright 1999, 2000, 2001, 2002 John Ellson (ellson@lucent.
com).

Portions relating to gdft.c copyright 2001, 2002 John Ellson (ellson@lucent.com).

Portions copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Pierre-Alain Joye
(pierre@libgd.org).

Portions relating to JPEG and to color quantization copyright 2000, 2001, 2002, Doug
Becker and copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, Thomas G.
Lane. This software is based in part on the work of the Independent JPEG Group. See the
file README-JPEG.TXT for more information.

Portions relating to WBMP copyright 2000, 2001, 2002 Maurice Szmurlo and Johan Van
den Brande.

Permission has been granted to copy, distribute and modify gd in any context without fee,
including a commercial application, provided that this notice is present in user-accessible
supporting documentation.

This does not affect your ownership of the derived work itself, and the intent is to assure
proper credit for the authors of gd, not to interfere with your productive use of gd. If you
have questions, ask. "Derived works" includes all programs that utilize the library. Credit
must be given in user-accessible documentation.

This software is provided "AS IS." The copyright holders disclaim all warranties, either
express or implied, including but not limited to implied warranties of merchantability and
fitness for a particular purpose, with respect to this code and accompanying documentation.

Although their code does not appear in gd, the authors wish to thank David Koblas, David
Rowley, and Hutchison Avenue Software Corporation for their prior contributions.

A.5 Bitstream Vera fonts license

The fonts have a generous copyright, allowing derivative works (as long as "Bitstream" or
"Vera" are not in the names), and full redistribution (so long as they are not *sold* by
themselves). They can be be bundled, redistributed and sold with any software.

The fonts are distributed under the following copyright:

Copyright c© 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark
of Bitstream, Inc.

ellson@lucent.com
ellson@lucent.com
ellson@lucent.com
pierre@libgd.org

1224 Hollywood manual

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts
accompanying this license ("Fonts") and associated documentation files (the "Font Soft-
ware"), to reproduce and distribute the Font Software, including without limitation the
rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and
to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in
all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of
glyphs or characters in the Fonts may be modified and additional glyphs or characters may
be added to the Fonts, only if the fonts are renamed to names not containing either the
words "Bitstream" or the word "Vera".

This License becomes NULL and void to the extent applicable to Fonts or Font Software that
has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or
more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER
RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR
FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and
Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Font Software without prior written authorization from the Gnome
Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome
dot org.

A.6 Pixman license

The following is the MIT license, agreed upon by most contributors. Copyright holders of
new code should use this license statement where possible. They may also add themselves
to the list below.

Copyright 1987, 1988, 1989, 1998 The Open Group
Copyright 1987, 1988, 1989 Digital Equipment Corporation
Copyright 1999, 2004, 2008 Keith Packard
Copyright 2000 SuSE, Inc.
Copyright 2000 Keith Packard, member of The XFree86 Project, Inc.
Copyright 2004, 2005, 2007, 2008, 2009, 2010 Red Hat, Inc.
Copyright 2004 Nicholas Miell
Copyright 2005 Lars Knoll & Zack Rusin, Trolltech
Copyright 2005 Trolltech AS

Appendix A: Licenses 1225

Copyright 2007 Luca Barbato
Copyright 2008 Aaron Plattner, NVIDIA Corporation
Copyright 2008 Rodrigo Kumpera
Copyright 2008 Andrea Tupinambai
Copyright 2008 Mozilla Corporation
Copyright 2008 Frederic Plourde
Copyright 2009, Oracle and/or its affiliates. All rights reserved.
Copyright 2009, 2010 Nokia Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice (including the next paragraph) shall
be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

A.7 LuaSocket license

LuaSocket 3.0. Copyright c© 2004-2013 Diego Nehab

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

A.8 librs232 license

Copyright (c) 2011 Petr Stetiar <ynezz@true.cz>, Gaben Ltd.

1226 Hollywood manual

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

A.9 UsbSerial license

Copyright (c) 2014 Felipe Herranz

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

A.10 SDL license

Simple DirectMedia Layer
Copyright (C) 1997-2019 Sam Lantinga <slouken@libsdl.org>

This software is provided ’as-is’, without any express or implied warranty. In no event will
the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

Appendix A: Licenses 1227

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

A.11 LGPL license

GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is
permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and con-
ditions of version 3 of the GNU General Public License, supplemented by the additional
permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser General Public License,
and the "GNU GPL" refers to version 3 of the GNU General Public License.

"The Library" refers to a covered work governed by this License, other than an Application
or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided by the Library, but
which is not otherwise based on the Library. Defining a subclass of a class defined by the
Library is deemed a mode of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the
Library. The particular version of the Library with which the Combined Work was made
is also called the "Linked Version".

The "Minimal Corresponding Source" for a Combined Work means the Corresponding
Source for the Combined Work, excluding any source code for portions of the Combined
Work that, considered in isolation, are based on the Application, and not on the Linked
Version.

The "Corresponding Application Code" for a Combined Work means the object code and/or
source code for the Application, including any data and utility programs needed for repro-
ducing the Combined Work from the Application, but excluding the System Libraries of
the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound
by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function
or data to be supplied by an Application that uses the facility (other than as an argument
passed when the facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the
event an Application does not supply the function or data, the facility still operates, and
performs whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable
to that copy.

http://fsf.org/

1228 Hollywood manual

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is
part of the Library. You may convey such object code under terms of your choice, provided
that, if the incorporated material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in
length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it
and that the Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effec-
tively do not restrict modification of the portions of the Library contained in the Combined
Work and reverse engineering for debugging such modifications, if you also do each of the
following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in
it and that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the
copyright notice for the Library among these notices, as well as a reference directing the
user to the copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the
Corresponding Application Code in a form suitable for, and under terms that permit, the
user to recombine or relink the Application with a modified version of the Linked Version
to produce a modified Combined Work, in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (a) uses at run time a copy of the Library already present on the user’s
computer system, and (b) will operate properly with a modified version of the Library that
is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to pro-
vide such information under section 6 of the GNU GPL, and only to the extent that such
information is necessary to install and execute a modified version of the Combined Work
produced by recombining or relinking the Application with a modified version of the Linked
Version. (If you use option 4d0, the Installation Information must accompany the Minimal
Corresponding Source and Corresponding Application Code. If you use option 4d1, you
must provide the Installation Information in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single
library together with other library facilities that are not Applications and are not covered
by this License, and convey such a combined library under terms of your choice, if you do
both of the following:

1229

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it
specifies that a certain numbered version of the GNU Lesser General Public License "or
any later version" applies to it, you have the option of following the terms and conditions
either of that published version or of any later version published by the Free Software
Foundation. If the Library as you received it does not specify a version number of the GNU
Lesser General Public License, you may choose any version of the GNU Lesser General
Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions
of the GNU Lesser General Public License shall apply, that proxy’s public statement of
acceptance of any version is permanent authorization for you to choose that version for the
Library.

1231

Index

A
Abs . 759
ACos . 759
ActivateDisplay . 369
ACTIVEWINDOW . 713
Add . 759
AddArcToPath . 1175
AddBoxToPath . 1175
AddCircleToPath . 1176
AddEllipseToPath . 1177
AddFontPath . 1117
AddIconImage . 617
AddMove . 649
AddStr . 1023
AddTab . 1118
AddTextToPath . 1177
AllocConsoleColor . 323
AllocMem . 787
AllocMemFromPointer . 787
AllocMemFromVirtualFile . 788
ANIM . 177
APPAUTHOR . 207
APPCOPYRIGHT . 207
APPDESCRIPTION . 207
AppendPath . 1179
APPENTRY . 208
APPICON . 208
APPIDENTIFIER . 211
APPTITLE . 212
APPVERSION . 212
Arc . 487
ArcDistortBrush . 249
ARGB . 589
ArrayToStr . 1023
Asc . 1024
ASin . 760
Assert . 363
AsyncDrawFrame . 221
ATan . 760
ATan2 . 760

B
BACKFILL . 370
BarrelDistortBrush . 250
Base64Str . 1024
Beep . 1071
BeepConsole . 323
BeginAnimStream . 180
BeginDoubleBuffer . 589
BeginRefresh . 591
BGPIC . 227
BGPicToBrush . 250
BinStr . 1025

BitClear . 761
BitComplement . 761
BitSet . 762
BitTest . 762
BitXor . 763
Blue . 593
BlurBrush . 251
Box . 488
BreakEventHandler . 547
BreakWhileMouseOn . 713
BRUSH . 251
BrushToBGPic . 230
BrushToGray . 254
BrushToMonochrome . 255
BrushToPenArray . 255
BrushToRGBArray . 256
ByteAsc . 1025
ByteChr . 1026
ByteLen . 1026
ByteOffset . 1027
ByteStrStr . 1028
ByteVal . 1029

C
CallJavaMethod . 809
CancelAsyncDraw . 222
CancelAsyncOperation . 223
CanonizePath . 411
Cast . 763
CATALOG . 739
Ceil . 764
ChangeApplicationIcon . 618
ChangeBrushTransparency . 257
ChangeDirectory . 411
ChangeDisplayMode . 372
ChangeDisplaySize . 374
ChangeInterval . 547
CharcoalBrush . 257
CharOffset . 1029
CharWidth . 1030
CheckEvent . 547
CheckEvents . 548
Chr . 1031
Circle . 489
ClearClipboard . 319
ClearConsole . 324
ClearConsoleStyle . 324
ClearEvents . 714
ClearInterval . 549
ClearMove . 651
ClearObjectData . 857
ClearPath . 1179
ClearScreen . 593
ClearSerialQueue . 947

1232 Hollywood manual

ClearTimeout . 549
CloseAmigaGuide . 165
CloseAnim . 183
CloseAudio . 973
CloseCatalog . 741
CloseConnection . 821
CloseConsole . 325
CloseDirectory . 412
CloseDisplay . 375
CloseFile . 412
CloseFont . 1118
CloseMusic . 974
ClosePath . 1179
CloseResourceMonitor . 363
CloseSerialPort . 947
CloseServer . 821
CloseUDPObject . 821
CloseVideo . 1201
CLOSEWINDOW . 715
Cls . 490
CollectGarbage . 1071
Collision . 594
ColorRequest . 933
CompareDates . 1159
CompareStr . 1032
CompressFile . 413
Concat . 1099
ConfigureJoystick . 641
ConsolePrint . 325
ConsolePrintNR . 325
ConsolePrompt . 326
ContinueAsyncOperation . 223
ContrastBrush . 258
ContrastPalette . 890
ConvertStr . 1032
ConvertToBrush . 258
CopyAnim . 183
CopyBGPic . 230
CopyBrush . 260
CopyConsoleWindow . 326
CopyFile . 413
CopyLayer . 651
CopyMem . 788
CopyObjectData . 857
CopyPalette . 890
CopyPath . 1180
CopyPens . 891
CopySample . 974
CopySprite . 1012
CopyTable . 1099
CopyTextObject . 1119
Cos . 764
CountDirectoryEntries . 418
CountJoysticks . 641
CountStr . 1033
CRC32 . 420
CRC32Str . 1034
CreateAnim . 183

CreateBGPic . 231
CreateBorderBrush . 262
CreateBrush . 263
CreateButton . 715
CreateClipRegion . 595
CreateConsoleWindow . 327
CreateDisplay . 375
CreateFont . 1119
CreateGradientBGPic . 232
CreateGradientBrush . 266
CreateIcon . 619
CreateKeyDown . 717
CreateLayer . 652
CreateList . 1100
CreateMenu . 799
CreateMusic . 975
CreatePalette . 891
CreatePointer . 817
CreatePort . 639
CreateRexxPort . 166
CreateSample . 976
CreateServer . 821
CreateShadowBrush . 268
CreateShortcut . 1215
CreateSprite . 1012
CreateTextObject . 1121
CreateTexturedBGPic . 234
CreateTexturedBrush . 269
CreateUDPObject . 823
CropBrush . 269
CtrlCQuit . 550
CurveTo . 1180
CyclePalette . 894

D
DateToTimestamp . 1159
DateToUTC . 1160
DebugOutput . 363
DebugPrint . 364
DebugPrintNR . 365
DebugPrompt . 365
DecomposeConsoleChr . 329
DecompressFile . 420
DecreasePointer . 789
DefineVirtualFile . 420
DefineVirtualFileFromString 421
Deg . 765
DeleteAlphaChannel . 270
DeleteButton . 550
DeleteConsoleChr . 329
DeleteConsoleLine . 330
DeleteFile . 423
DeleteMask . 270
DeletePrefs . 213
DeselectMenuItem . 800
DeserializeTable . 961
DIRECTORY . 427

Index 1233

DirectoryItems . 429
DisableAdvancedConsole . 330
DisableButton . 550
DisableEvent . 718
DisableEventHandler . 719
DisableLayers . 653
DisableLineHook . 1072
DisableMenuItem . 801
DisablePlugin . 925
DisablePrecalculation . 596
DisableVWait . 597
DISPLAY . 380
DisplayAnimFrame . 184
DisplayBGPic . 234
DisplayBGPicPart . 235
DisplayBGPicPartFX . 236
DisplayBrush . 270
DisplayBrushFX . 271
DisplayBrushPart . 272
DisplaySprite . 1014
DisplayTextObject . 1123
DisplayTextObjectFX . 1124
DisplayTransitionFX . 238
DisplayVideoFrame . 1202
Div . 765
DoMove . 654
DownloadFile . 825
DrawConsoleBorder . 330
DrawConsoleBox . 331
DrawConsoleHLine . 332
DrawConsoleVLine . 333
DrawPath . 1181
DumpLayers . 655
DumpMem . 789

E
EdgeBrush . 273
Ellipse . 491
ELSE . 1072
ELSEIF . 1073
EmbossBrush . 273
EmptyStr . 1034
EnableAdvancedConsole . 333
EnableButton . 551
EnableEvent . 720
EnableEventHandler . 719
EnableLayers . 656
EnableLineHook . 1073
EnableMenuItem . 801
EnablePlugin . 925
EnablePrecalculation . 597
EnableVWait . 597
End . 1074
EndDoubleBuffer . 598
EndianSwap . 766
ENDIF . 1074
EndRefresh . 598

EndSelect . 274
EndsWith . 1035
Eof . 430
EraseConsole . 334
Error . 507
ERROR . 507
EscapeQuit . 551
Eval . 1035
Execute . 430
Exists . 433
ExitOnError . 543
Exp . 766
ExtendBrush . 275
ExtractPalette . 895

F
FILE . 433
FileAttributes . 434
FileLength . 435
FileLines . 436
FilePart . 437
FilePos . 437
FileRequest . 934
FileSize . 438
FileToString . 438
FillMem . 790
FillMusicBuffer . 978
FindStr . 1037
FinishAnimStream . 185
FinishAsyncDraw . 224
FlashConsole . 335
Flip . 598
FlipBrush . 275
FlipSprite . 1014
FloodFill . 276
Floor . 766
FlushFile . 439
FlushMusicBuffer . 980
FlushSerialPort . 947
FONT . 1125
FontRequest . 936
ForcePathUse . 1182
ForceSound . 980
ForceVideoDriver . 1202
ForEach . 1101
ForEachI . 1102
FormatConsoleLine . 335
FormatDate . 741
FormatNumber . 1038
FormatStr . 1038
Frac . 767
FreeAnim . 185
FreeBGPic . 241
FreeBrush . 277
FreeClipRegion . 599
FreeConsoleColor . 336
FreeConsoleWindow . 336

1234 Hollywood manual

FreeDisplay . 394
FreeGlyphCache . 1127
FreeIcon . 621
FreeLayers . 656
FreeMem . 791
FreeMenu . 802
FreeModule . 981
FreePalette . 896
FreePath . 1183
FreePointer . 818
FreeSample . 981
FreeSprite . 1014
FreeTextObject . 1127
FrExp . 767
FullPath . 439

G
GammaBrush . 277
GammaPalette . 896
GCInfo . 1074
GetAllocConsoleColor . 337
GetAnimFrame . 186
GetApplicationInfo . 213
GetApplicationList . 167
GetAsset . 811
GetAttribute . 858
GetAvailableFonts . 1128
GetBaudRate . 948
GetBestPen . 897
GetBrushLink . 278
GetBrushPen . 279
GetBulletColor . 1129
GetCatalogString . 743
GetChannels . 982
GetCharMaps . 1130
GetClipboard . 319
GetCommandLine . 214
GetConnectionIP . 830
GetConnectionPort . 831
GetConnectionProtocol . 832
GetConsoleBackground . 337
GetConsoleChr . 338
GetConsoleColor . 338
GetConsoleControlChr . 339
GetConsoleCursor . 339
GetConsoleOrigin . 340
GetConsoleSize . 340
GetConsoleStr . 341
GetConsoleStyle . 341
GetConsoleWindow . 342
GetConstant . 1075
GetCountryInfo . 743
GetCurrentDirectory . 440
GetCurrentPoint . 1183
GetDash . 1184
GetDataBits . 948
GetDate . 1161

GetDateNum . 1162
GetDefaultAdapter . 1075
GetDefaultEncoding . 1130
GetDefaultLoader . 1076
GetDirectoryEntry . 441
GetDisplayModes . 395
GetDTR . 949
GetEnv . 441
GetErrorName . 544
GetEventCode . 721
GetFileArgument . 215
GetFileAttributes . 442
GetFillRule . 1184
GetFillStyle . 492
GetFlowControl . 949
GetFontColor . 1131
GetFontStyle . 1131
GetFormStyle . 493
GetFPSLimit . 600
GetFreePen . 897
GetFrontScreen . 168
GetHostName . 833
GetIconProperties . 622
GetItem . 1102
GetKerningPair . 1132
GetLanguageInfo . 744
GetLastError . 545
GetLayerAtPos . 657
GetLayerGroupMembers . 657
GetLayerGroups . 658
GetLayerPen . 658
GetLayerStyle . 659
GetLineCap . 1185
GetLineJoin . 1185
GetLineWidth . 494
GetLocaleInfo . 744
GetLocalInterfaces . 833
GetLocalIP . 834
GetLocalPort . 835
GetLocalProtocol . 835
GetMACAddress . 836
GetMemoryInfo . 1076
GetMemPointer . 791
GetMemString . 792
GetMetaTable . 1103
GetMiterLimit . 1185
GetMonitors . 395
GetObjectData . 884
GetObjects . 884
GetObjectType . 885
GetPalettePen . 898
GetParity . 950
GetPathExtents . 1186
GetPatternPosition . 982
GetPen . 898
GetPlugins . 925
GetProgramDirectory . 443
GetProgramInfo . 216

Index 1235

GetPubScreens . 168
GetRandomColor . 600
GetRandomFX . 600
GetRawArguments . 216
GetRealColor . 601
GetRTS . 951
GetSampleData . 983
GetSerializeMode . 962
GetShortcutPath . 1215
GetSongPosition . 983
GetStartDirectory . 444
GetStopBits . 951
GetSystemCountry . 746
GetSystemInfo . 1077
GetSystemLanguage . 751
GetTempFileName . 444
GetTime . 1162
GetTimer . 1163
GetTimestamp . 1163
GetTimeZone . 1164
GetType . 1078
GetVersion . 1079
GetVideoFrame . 1203
GetVolumeInfo . 445
GetVolumeName . 446
GetWeekday . 1165
Gosub . 721
Goto . 722
GrabDesktop . 602
Green . 603
GroupLayer . 660

H
HaveConsole . 342
HaveFreeChannel . 984
HaveItem . 1103
HaveObject . 885
HaveObjectData . 886
HavePlugin . 928
HaveVolume . 446
HexStr . 1040
HideConsoleCursor . 343
HideDisplay . 396
HideKeyboard . 811
HideLayer . 661
HideLayerFX . 661
HidePointer . 818
HideScreen . 169
Hypot . 768

I
ICON . 625
IF . 1080
IgnoreCase . 1040
IIf . 1083
ImageRequest . 938
INACTIVEWINDOW . 722
INCLUDE . 1084
IncreasePointer . 792
InitConsoleColor . 343
InKeyStr . 551
InsertConsoleChr . 344
InsertConsoleLine . 345
InsertConsoleStr . 345
InsertItem . 1104
InsertLayer . 663
InsertSample . 984
InsertStr . 1041
InstallEventHandler . 553
Int . 768
Intersection . 603
InvertAlphaChannel . 281
InvertBrush . 281
InvertMask . 282
InvertPalette . 899
IPairs . 1105
IsAbsolutePath . 447
IsAlNum . 1041
IsAlpha . 1042
IsAnim . 186
IsAnimPlaying . 187
IsBrushEmpty . 282
IsChannelPlaying . 985
IsCntrl . 1042
IsDigit . 1043
IsDirectory . 447
IsFinite . 768
IsGraph . 1043
IsInf . 769
IsKeyDown . 570
IsLeftMouse . 572
IsLower . 1044
IsMenuItemDisabled . 802
IsMenuItemSelected . 803
IsMidMouse . 573
IsModule . 986
IsMusic . 987
IsMusicPlaying . 986
IsNan . 770
IsNil . 1084
IsOnline . 837
IsPathEmpty . 1186
IsPicture . 604
IsPrint . 1044
IsPunct . 1045
IsRightMouse . 573
IsSample . 988
IsSamplePlaying . 988

1236 Hollywood manual

IsSound . 989
IsSpace . 1046
IsTableEmpty . 1105
IsUnicode . 1085
IsUpper . 1046
IsVideo . 1204
IsVideoPlaying . 1205
IsXDigit . 1047

J
JoyAxisX . 641
JoyAxisY . 642
JoyAxisZ . 643
JoyButton . 643
JoyDir . 644
JoyHat . 645

L
Label . 723
LayerExists . 664
LayerGroupExists . 664
LayerToBack . 665
LayerToFront . 665
Ld . 770
LdExp . 771
LeftMouseQuit . 574
LeftStr . 1047
LegacyControl . 1085
Limit . 771
Line . 494
LineTo . 1187
LINKER . 1086
ListItems . 1106
ListRequest . 939
Ln . 772
LoadAnim . 188
LoadAnimFrame . 191
LoadBGPic . 241
LoadBrush . 282
LoadIcon . 629
LoadModule . 990
LoadPalette . 900
LoadPlugin . 929
LoadPrefs . 217
LoadSample . 990
LoadSprite . 1015
Locate . 1133
Log . 772
LowerStr . 1048

M
MakeButton . 574
MakeConsoleChr . 346
MakeDate . 1165
MakeDirectory . 448
MakeHostPath . 448
MatchPattern . 449
Matrix2D . 606
Max . 772
MD5 . 450
MD5Str . 1048
MemToTable . 793
MENU . 804
MergeLayers . 666
MidStr . 1049
Min . 773
MixBrush . 285
MixRGB . 607
MixSample . 992
Mod . 773
ModifyAnimFrames . 192
ModifyButton . 723
ModifyKeyDown . 724
ModifyLayerFrames . 668
ModulateBrush . 286
ModulatePalette . 901
MonitorDirectory . 451
MouseX . 578
MouseY . 578
MoveAnim . 193
MoveBrush . 287
MoveConsoleWindow . 349
MoveDisplay . 396
MoveFile . 452
MoveLayer . 668
MovePointer . 818
MoveSprite . 1017
MoveTextObject . 1133
MoveTo . 1187
MOVEWINDOW . 724
Mul . 774
MUSIC . 993

N
NearlyEqual . 774
NextDirectoryEntry . 456
NextFrame . 669
NextItem . 1106
NormalizePath . 1187
NPrint . 1134

Index 1237

O
OilPaintBrush . 288
ONBUTTONCLICK . 724
ONBUTTONCLICKALL . 725
ONBUTTONOVER . 726
ONBUTTONOVERALL . 727
ONBUTTONRIGHTCLICK . 727
ONBUTTONRIGHTCLICKALL . 728
ONJOYDOWN . 728
ONJOYDOWNLEFT . 729
ONJOYDOWNRIGHT . 729
ONJOYFIRE . 730
ONJOYLEFT . 730
ONJOYRIGHT . 730
ONJOYUP . 731
ONJOYUPLEFT . 732
ONJOYUPRIGHT . 732
ONKEYDOWN . 733
ONKEYDOWNALL . 733
OpenAmigaGuide . 170
OpenAnim . 194
OpenAudio . 995
OpenCatalog . 755
OpenConnection . 837
OpenConsole . 349
OpenDirectory . 457
OpenDisplay . 397
OpenFile . 459
OpenFont . 1134
OpenMusic . 995
OpenResourceMonitor . 366
OpenSerialPort . 952
OpenURL . 1087
OpenVideo . 1206
OPTIONS . 1088

P
Pack . 1108
PadNum . 1049
Pairs . 1108
PALETTE . 901
PaletteToGray . 903
ParseDate . 1166
PathItems . 1188
PathPart . 460
PathRequest . 941
PathToBrush . 1190
PatternFindStr . 1050
PatternFindStrDirect . 1051
PatternFindStrShort . 1052
PatternReplaceStr . 1053
PauseLayer . 670
PauseModule . 996
PauseMusic . 997
PauseTimer . 1166
PauseVideo . 1207
Peek . 794

PeekClipboard . 320
PenArrayToBrush . 288
PerformSelector . 812
PermissionRequest . 942
PerspectiveDistortBrush . 290
Pi . 775
PixelateBrush . 290
PlayAnim . 196
PlayAnimDisk . 197
PlayLayer . 670
PlayModule . 997
PlayMusic . 998
PlaySample . 999
PlaySubsong . 1000
PlayVideo . 1207
Plot . 495
Poke . 795
PolarDistortBrush . 291
PollSerialQueue . 954
Polygon . 496
PopupMenu . 807
Pow . 775
Print . 1135

Q
QuantizeBrush . 291

R
Rad . 776
RaiseOnError . 545
RasterizeBrush . 293
RawDiv . 776
RawEqual . 1109
RawGet . 1109
RawSet . 1110
ReadBrushPixel . 293
ReadByte . 462
ReadBytes . 462
ReadChr . 463
ReadConsoleKey . 350
ReadConsoleStr . 351
ReadDirectory . 464
ReadFloat . 464
ReadFunction . 465
ReadInt . 466
ReadLine . 466
ReadMem . 796
ReadPen . 904
ReadPixel . 497
ReadRegistryKey . 1216
ReadSerialData . 955
ReadShort . 467
ReadString . 468
ReadTable . 962
ReceiveData . 839
ReceiveUDPData . 841

1238 Hollywood manual

Red . 607
ReduceAlphaChannel . 294
RefreshConsole . 352
RefreshDisplay . 401
RefreshLayer . 671
RelCurveTo . 1192
RelLineTo . 1192
RelMoveTo . 1193
RemapBrush . 294
RemoveBrushPalette . 295
RemoveButton . 734
RemoveIconImage . 630
RemoveItem . 1111
RemoveKeyDown . 734
RemoveLayer . 671
RemoveLayerFX . 672
RemoveLayers . 673
RemoveSprite . 1018
RemoveSprites . 1018
Rename . 468
RenderLayer . 673
RepeatStr . 1056
ReplaceColors . 295
ReplaceStr . 1056
REQUIRE . 930
ResetKeyStates . 580
ResetTabs . 1136
ResetTimer . 1167
ResolveHostName . 842
ResumeLayer . 674
ResumeModule . 1001
ResumeMusic . 1001
ResumeTimer . 1167
ResumeVideo . 1209
Return . 734
ReverseFindStr . 1057
ReverseStr . 1058
RewindDirectory . 469
RGB . 608
RGBArrayToBrush . 296
RightStr . 1058
Rnd . 777
RndF . 777
RndStrong . 778
Rol . 779
Ror . 779
RotateBrush . 297
RotateLayer . 674
RotateTextObject . 1136
Round . 780
Rt . 780
Run . 470
RunCallback . 580
RunRexxScript . 170

S
SAMPLE . 1001
Sar . 781
SaveAnim . 198
SaveBrush . 298
SaveIcon . 631
SavePalette . 905
SavePrefs . 218
SaveSample . 1002
SaveSnapshot . 609
ScaleAnim . 200
ScaleBGPic . 245
ScaleBrush . 300
ScaleLayer . 675
ScaleSprite . 1018
ScaleTextObject . 1137
SCREEN . 403
ScrollConsole . 352
Seek . 473
SeekLayer . 676
SeekMusic . 1003
SeekVideo . 1210
SelectAlphaChannel . 301
SelectAnim . 201
SelectBGPic . 246
SelectBrush . 303
SelectConsoleWindow . 353
SelectDisplay . 405
SelectLayer . 676
SelectMask . 305
SelectMenuItem . 808
SelectPalette . 906
SendApplicationMessage . 171
SendData . 843
SendMessage . 640
SendRexxCommand . 172
SendUDPData . 844
SepiaToneBrush . 306
SerializeTable . 964
SetAllocConsoleColor . 354
SetAlphaIntensity . 307
SetAnimFrameDelay . 203
SetBaudRate . 956
SetBorderPen . 907
SetBrushDepth . 307
SetBrushPalette . 308
SetBrushPen . 309
SetBrushTransparency . 309
SetBrushTransparentPen . 310
SetBulletColor . 1138
SetBulletPen . 907
SetChannelVolume . 1004
SetClipboard . 321
SetClipRegion . 611
SetConsoleBackground . 354
SetConsoleColor . 355
SetConsoleCursor . 356
SetConsoleOptions . 356

Index 1239

SetConsoleStyle . 358
SetConsoleTitle . 359
SetCycleTable . 907
SetDash . 1193
SetDataBits . 957
SetDefaultAdapter . 1091
SetDefaultEncoding . 1138
SetDefaultLoader . 1092
SetDepth . 908
SetDisplayAttributes . 406
SetDitherMode . 910
SetDrawPen . 910
SetDrawTagsDefault . 612
SetDTR . 957
SetEnv . 474
SetEventTimeout . 581
SetFileAttributes . 474
SetFileEncoding . 475
SetFillRule . 1194
SetFillStyle . 498
SetFlowControl . 958
SetFont . 1139
SetFontColor . 1142
SetFontStyle . 1142
SetFormStyle . 499
SetFPSLimit . 613
SetGradientPalette . 911
SetIconProperties . 632
SetInterval . 582
SetIOMode . 476
SetLayerAnchor . 678
SetLayerBorder . 679
SetLayerDepth . 680
SetLayerFilter . 681
SetLayerName . 685
SetLayerPalette . 686
SetLayerPen . 687
SetLayerShadow . 687
SetLayerStyle . 688
SetLayerTint . 701
SetLayerTransparency . 702
SetLayerTransparentPen . 702
SetLayerVolume . 703
SetLayerZPos . 703
SetLineCap . 1195
SetLineJoin . 1195
SetLineWidth . 501
SetListItems . 1112
SetMargins . 1144
SetMaskMode . 311
SetMasterVolume . 1004
SetMetaTable . 1112
SetMiterLimit . 1196
SetMusicVolume . 1005
SetNetworkProtocol . 844
SetNetworkTimeout . 845
SetObjectData . 886
SetPalette . 912

SetPaletteDepth . 914
SetPaletteMode . 914
SetPalettePen . 916
SetPaletteTransparentPen 916
SetPanning . 1005
SetParity . 958
SetPen . 916
SetPitch . 1006
SetPointer . 819
SetRTS . 959
SetScreenTitle . 173
SetSerializeMode . 965
SetSerializeOptions . 968
SetShadowPen . 918
SetSpriteZPos . 1019
SetStandardIconImage . 635
SetStandardPalette . 918
SetStopBits . 959
SetSubtitle . 409
SetTimeout . 583
SetTimerElapse . 1168
SetTitle . 409
SetTransparentPen . 920
SetTransparentThreshold . 921
SetTrayIcon . 636
SetVarType . 1093
SetVectorEngine . 1196
SetVideoPosition . 1210
SetVideoSize . 1211
SetVideoVolume . 1212
SetVolume . 1006
SetWBIcon . 637
Sgn . 782
SharpenBrush . 312
Shl . 782
ShowConsoleCursor . 359
ShowDisplay . 410
ShowKeyboard . 813
ShowLayer . 704
ShowLayerFX . 705
ShowNotification . 1094
ShowPointer . 819
ShowRinghioMessage . 173
ShowScreen . 174
ShowToast . 814
Shr . 783
Sin . 783
SIZEWINDOW . 735
Sleep . 1095
SolarizeBrush . 312
SolarizePalette . 921
Sort . 1113
SplitStr . 1059
SPRITE . 1019
Sqrt . 784
StartConsoleColorMode . 360
StartPath . 1197
StartSubPath . 1197

1240 Hollywood manual

StartsWith . 1060
StartTimer . 1168
StopAnim . 203
StopChannel . 1007
StopLayer . 706
StopModule . 1007
StopMusic . 1007
StopSample . 1008
StopTimer . 1169
StopVideo . 1212
StringRequest . 943
StringToFile . 476
StripStr . 1061
StrLen . 1061
StrStr . 1062
StrToArray . 1062
Sub . 784
SwapLayers . 706
SwirlBrush . 313
SystemRequest . 945

T
TableItems . 1114
TableToMem . 796
Tan . 784
TextExtent . 1148
TextHeight . 1149
TextOut . 1149
TextWidth . 1155
TimerElapsed . 1170
TimestampToDate . 1170
TintBrush . 313
TintPalette . 922
ToHostName . 846
ToIP . 846
ToNumber . 1063
ToString . 1063
TouchConsoleWindow . 360
ToUserData . 1064
TransformBox . 614
TransformBrush . 314
TransformLayer . 707
TransformPoint . 615
TransformTextObject . 1145
TranslateLayer . 708
TranslatePath . 1198
TrimBrush . 315
TrimStr . 1065

U
UndefineVirtualStringFile 477
Undo . 708
UndoFX . 710
UngroupLayer . 711
UnleftStr . 1065
UnmidStr . 1066
Unpack . 1114
UnrightStr . 1067
UnsetEnv . 477
UploadFile . 847
UpperStr . 1067
UseCarriageReturn . 478
UseFont . 1156
UTCToDate . 1171

V
Val . 1068
ValidateDate . 1171
ValidateStr . 1068
VERSION . 1096
Vibrate . 814
VIDEO . 1212
VWait . 615

W
Wait . 1096
WaitAnimEnd . 204
WaitEvent . 585
WaitKeyDown . 586
WaitLeftMouse . 587
WaitMidMouse . 587
WaitMusicEnd . 1008
WaitPatternPosition . 1008
WaitRightMouse . 588
WaitSampleEnd . 1009
WaitSongPosition . 1009
WaitTimer . 1172
WARNING . 367
WaterRippleBrush . 316
WhileKeyDown . 735
WhileMouseDown . 736
WhileMouseOn . 736
WhileRightMouseDown . 737
Wrap . 785
WriteAnimFrame . 204
WriteBrushPixel . 317
WriteByte . 478
WriteBytes . 479
WriteChr . 479
WriteFloat . 480
WriteFunction . 481
WriteInt . 482
WriteLine . 483
WriteMem . 797
WritePen . 922

Index 1241

WriteRegistryKey . 1216
WriteSerialData . 960
WriteShort . 483

WriteString . 484

WriteTable . 968

	General information
	Introduction
	Philosophy
	Terms and conditions
	Requirements
	Credits
	Forum
	Contact

	Getting started
	Overview
	The GUI
	Windows IDE
	Mobile platforms

	Console usage
	Console mode
	Console arguments
	Console emulation

	Compiler and linker
	Compiling executables
	Compiling applets
	Linking data files
	Linking fonts
	Linking plugins
	Saving scripts as videos

	Plugins
	Plugins
	Installation
	Usage
	Obtaining plugins
	Writing your own plugins

	History and compatibility
	History
	Compatibility notes
	Future

	Language overview
	Your first Hollywood program
	Reserved identifiers
	Preprocessor commands
	String and number conversion
	Comments
	Includes
	Error handling
	Automatic ID selection
	Loaders and adapters
	User tags
	Styleguide suggestions

	Data types
	Overview
	Numbers
	Strings
	Tables
	Functions
	Nil

	Expressions and operators
	Overview
	Arithmetic operators
	Relational operators
	Logical operators
	Bitwise operators
	String concatenation
	Operator priorities
	Metamethods
	Differing metatables with binary operators
	Limitations of the relational metamethods
	Advanced metamethods

	Variables and constants
	Variables and constants
	Global variables
	Global statement
	Local variables
	Local statement
	Garbage Collector
	Constants
	Const statement
	Inbuilt constants
	Character constants

	Program flow
	Statements controlling the program flow
	If-EndIf statement
	While-Wend statement
	For-Next statement
	Repeat-Until statement
	Switch-Case statement
	Break statement
	Continue statement
	Return statement
	Block-EndBlock statement
	Dim and DimStr statements

	Functions
	Overview
	Functions are variables
	Callback functions
	Return values
	Recursive functions
	Variable number of arguments
	Functions as table members
	Local functions
	Methods

	Unicode support
	Overview
	Character encodings

	Troubleshooting
	Troubleshooting
	Frequently asked questions

	Tutorials
	Tutorial
	Animation techniques
	Script timing

	Amiga support library
	AmiDock information
	CloseAmigaGuide
	CreateRexxPort
	GetApplicationList
	GetFrontScreen
	GetPubScreens
	HideScreen
	OpenAmigaGuide
	RunRexxScript
	SendApplicationMessage
	SendRexxCommand
	SetScreenTitle
	ShowRinghioMessage
	ShowScreen

	Anim library
	Overview
	ANIM
	BeginAnimStream
	CloseAnim
	CopyAnim
	CreateAnim
	DisplayAnimFrame
	FinishAnimStream
	FreeAnim
	GetAnimFrame
	IsAnim
	IsAnimPlaying
	LoadAnim
	LoadAnimFrame
	ModifyAnimFrames
	MoveAnim
	OpenAnim
	PlayAnim
	PlayAnimDisk
	SaveAnim
	ScaleAnim
	SelectAnim
	SetAnimFrameDelay
	StopAnim
	Vector animations
	WaitAnimEnd
	WriteAnimFrame

	Application library
	APPAUTHOR
	APPCOPYRIGHT
	APPDESCRIPTION
	APPENTRY
	APPICON
	APPIDENTIFIER
	APPTITLE
	APPVERSION
	DeletePrefs
	GetApplicationInfo
	GetCommandLine
	GetFileArgument
	GetProgramInfo
	GetRawArguments
	LoadPrefs
	SavePrefs

	Asynchronous operation library
	AsyncDrawFrame
	CancelAsyncDraw
	CancelAsyncOperation
	ContinueAsyncOperation
	FinishAsyncDraw

	BGPic library
	Overview
	BGPIC
	BrushToBGPic
	CopyBGPic
	CreateBGPic
	CreateGradientBGPic
	CreateTexturedBGPic
	DisplayBGPic
	DisplayBGPicPart
	DisplayBGPicPartFX
	DisplayTransitionFX
	FreeBGPic
	LoadBGPic
	ScaleBGPic
	SelectBGPic
	Vector BGPics

	Brush library
	Overview
	ArcDistortBrush
	BarrelDistortBrush
	BGPicToBrush
	BlurBrush
	BRUSH
	BrushToGray
	BrushToMonochrome
	BrushToPenArray
	BrushToRGBArray
	ChangeBrushTransparency
	CharcoalBrush
	ContrastBrush
	ConvertToBrush
	CopyBrush
	CreateBorderBrush
	CreateBrush
	CreateGradientBrush
	CreateShadowBrush
	CreateTexturedBrush
	CropBrush
	DeleteAlphaChannel
	DeleteMask
	DisplayBrush
	DisplayBrushFX
	DisplayBrushPart
	EdgeBrush
	EmbossBrush
	EndSelect
	ExtendBrush
	FlipBrush
	FloodFill
	FreeBrush
	GammaBrush
	GetBrushLink
	GetBrushPen
	Hardware brushes
	InvertAlphaChannel
	InvertBrush
	InvertMask
	IsBrushEmpty
	LoadBrush
	Mask and alpha channel
	MixBrush
	ModulateBrush
	MoveBrush
	OilPaintBrush
	PenArrayToBrush
	PerspectiveDistortBrush
	PixelateBrush
	PolarDistortBrush
	QuantizeBrush
	RasterizeBrush
	ReadBrushPixel
	ReduceAlphaChannel
	RemapBrush
	RemoveBrushPalette
	ReplaceColors
	RGBArrayToBrush
	RotateBrush
	SaveBrush
	ScaleBrush
	SelectAlphaChannel
	SelectBrush
	SelectMask
	SepiaToneBrush
	SetAlphaIntensity
	SetBrushDepth
	SetBrushPalette
	SetBrushPen
	SetBrushTransparency
	SetBrushTransparentPen
	SetMaskMode
	SharpenBrush
	SolarizeBrush
	SwirlBrush
	TintBrush
	TransformBrush
	TrimBrush
	Vector brushes
	WaterRippleBrush
	WriteBrushPixel

	Clipboard library
	ClearClipboard
	GetClipboard
	PeekClipboard
	SetClipboard

	Console library
	AllocConsoleColor
	BeepConsole
	ClearConsole
	ClearConsoleStyle
	CloseConsole
	ConsolePrint
	ConsolePrintNR
	ConsolePrompt
	CopyConsoleWindow
	CreateConsoleWindow
	DecomposeConsoleChr
	DeleteConsoleChr
	DeleteConsoleLine
	DisableAdvancedConsole
	DrawConsoleBorder
	DrawConsoleBox
	DrawConsoleHLine
	DrawConsoleVLine
	EnableAdvancedConsole
	EraseConsole
	FlashConsole
	FormatConsoleLine
	FreeConsoleColor
	FreeConsoleWindow
	GetAllocConsoleColor
	GetConsoleBackground
	GetConsoleChr
	GetConsoleColor
	GetConsoleControlChr
	GetConsoleCursor
	GetConsoleOrigin
	GetConsoleSize
	GetConsoleStr
	GetConsoleStyle
	GetConsoleWindow
	HaveConsole
	HideConsoleCursor
	InitConsoleColor
	InsertConsoleChr
	InsertConsoleLine
	InsertConsoleStr
	MakeConsoleChr
	MoveConsoleWindow
	OpenConsole
	ReadConsoleKey
	ReadConsoleStr
	RefreshConsole
	ScrollConsole
	SelectConsoleWindow
	SetAllocConsoleColor
	SetConsoleBackground
	SetConsoleColor
	SetConsoleCursor
	SetConsoleOptions
	SetConsoleStyle
	SetConsoleTitle
	ShowConsoleCursor
	StartConsoleColorMode
	TouchConsoleWindow

	Debug library
	Assert
	CloseResourceMonitor
	DebugOutput
	DebugPrint
	DebugPrintNR
	DebugPrompt
	OpenResourceMonitor
	WARNING

	Display library
	Overview
	ActivateDisplay
	BACKFILL
	ChangeDisplayMode
	ChangeDisplaySize
	CloseDisplay
	CreateDisplay
	DISPLAY
	FreeDisplay
	GetDisplayModes
	GetMonitors
	HideDisplay
	MoveDisplay
	Multi-monitor support
	OpenDisplay
	Palette displays
	RefreshDisplay
	Scaling engines
	SCREEN
	SelectDisplay
	SetDisplayAttributes
	SetSubtitle
	SetTitle
	ShowDisplay

	DOS library
	CanonizePath
	ChangeDirectory
	CloseDirectory
	CloseFile
	CompressFile
	CopyFile
	CountDirectoryEntries
	CRC32
	DecompressFile
	DefineVirtualFile
	DefineVirtualFileFromString
	DeleteFile
	DIRECTORY
	DirectoryItems
	Eof
	Execute
	Exists
	FILE
	FileAttributes
	FileLength
	FileLines
	FilePart
	FilePos
	FileSize
	FileToString
	FlushFile
	FullPath
	GetCurrentDirectory
	GetDirectoryEntry
	GetEnv
	GetFileAttributes
	GetProgramDirectory
	GetStartDirectory
	GetTempFileName
	GetVolumeInfo
	GetVolumeName
	HaveVolume
	IsAbsolutePath
	IsDirectory
	MakeDirectory
	MakeHostPath
	MatchPattern
	MD5
	MonitorDirectory
	MoveFile
	NextDirectoryEntry
	OpenDirectory
	OpenFile
	PathPart
	Protection flags
	ReadByte
	ReadBytes
	ReadChr
	ReadDirectory
	ReadFloat
	ReadFunction
	ReadInt
	ReadLine
	ReadShort
	ReadString
	Rename
	RewindDirectory
	Run
	Seek
	SetEnv
	SetFileAttributes
	SetFileEncoding
	SetIOMode
	StringToFile
	UndefineVirtualStringFile
	UnsetEnv
	UseCarriageReturn
	WriteByte
	WriteBytes
	WriteChr
	WriteFloat
	WriteFunction
	WriteInt
	WriteLine
	WriteShort
	WriteString

	Draw library
	Arc
	Box
	Circle
	Cls
	Directional constants
	Ellipse
	GetFillStyle
	GetFormStyle
	GetLineWidth
	Line
	Plot
	Polygon
	ReadPixel
	SetFillStyle
	SetFormStyle
	SetLineWidth
	Standard draw tags

	Error management library
	ERROR
	Error
	Error codes
	ExitOnError
	GetErrorName
	GetLastError
	RaiseOnError

	Event library
	BreakEventHandler
	ChangeInterval
	CheckEvent
	CheckEvents
	ClearInterval
	ClearTimeout
	CtrlCQuit
	DeleteButton
	DisableButton
	EnableButton
	EscapeQuit
	InKeyStr
	InstallEventHandler
	IsKeyDown
	IsLeftMouse
	IsMidMouse
	IsRightMouse
	LeftMouseQuit
	MakeButton
	MouseX
	MouseY
	Raw keys
	ResetKeyStates
	RunCallback
	SetEventTimeout
	SetInterval
	SetTimeout
	WaitEvent
	WaitKeyDown
	WaitLeftMouse
	WaitMidMouse
	WaitRightMouse

	Graphics library
	ARGB
	ARGB colors
	BeginDoubleBuffer
	BeginRefresh
	Blue
	ClearScreen
	Collision
	CreateClipRegion
	DisablePrecalculation
	DisableVWait
	EnablePrecalculation
	EnableVWait
	EndDoubleBuffer
	EndRefresh
	Flip
	FreeClipRegion
	GetFPSLimit
	GetRandomColor
	GetRandomFX
	GetRealColor
	GrabDesktop
	Green
	Intersection
	IsPicture
	Matrix2D
	MixRGB
	Red
	RGB
	RGB colors
	SaveSnapshot
	SetClipRegion
	SetDrawTagsDefault
	SetFPSLimit
	TransformBox
	TransformPoint
	VWait

	Icon library
	AddIconImage
	ChangeApplicationIcon
	CreateIcon
	FreeIcon
	GetIconProperties
	ICON
	LoadIcon
	RemoveIconImage
	SaveIcon
	SetIconProperties
	SetStandardIconImage
	SetTrayIcon
	SetWBIcon

	IPC library
	CreatePort
	SendMessage

	Joystick library
	ConfigureJoystick
	CountJoysticks
	JoyAxisX
	JoyAxisY
	JoyAxisZ
	JoyButton
	JoyDir
	JoyHat

	Layers library
	Overview
	AddMove
	ClearMove
	CopyLayer
	CreateLayer
	DisableLayers
	DoMove
	DumpLayers
	EnableLayers
	FreeLayers
	GetLayerAtPos
	GetLayerGroupMembers
	GetLayerGroups
	GetLayerPen
	GetLayerStyle
	GroupLayer
	HideLayer
	HideLayerFX
	InsertLayer
	LayerExists
	LayerGroupExists
	LayerToBack
	LayerToFront
	MergeLayers
	ModifyLayerFrames
	MoveLayer
	NextFrame
	PauseLayer
	PlayLayer
	RefreshLayer
	RemoveLayer
	RemoveLayerFX
	RemoveLayers
	RenderLayer
	ResumeLayer
	RotateLayer
	ScaleLayer
	SeekLayer
	SelectLayer
	SetLayerAnchor
	SetLayerBorder
	SetLayerDepth
	SetLayerFilter
	SetLayerName
	SetLayerPalette
	SetLayerPen
	SetLayerShadow
	SetLayerStyle
	SetLayerTint
	SetLayerTransparency
	SetLayerTransparentPen
	SetLayerVolume
	SetLayerZPos
	ShowLayer
	ShowLayerFX
	StopLayer
	SwapLayers
	TransformLayer
	TranslateLayer
	Undo
	UndoFX
	UngroupLayer

	Legacy library
	ACTIVEWINDOW
	BreakWhileMouseOn
	ClearEvents
	CLOSEWINDOW
	CreateButton
	CreateKeyDown
	DisableEvent
	DisableEventHandler
	EnableEventHandler
	EnableEvent
	GetEventCode
	Gosub
	Goto
	INACTIVEWINDOW
	Label
	ModifyButton
	ModifyKeyDown
	MOVEWINDOW
	ONBUTTONCLICK
	ONBUTTONCLICKALL
	ONBUTTONOVER
	ONBUTTONOVERALL
	ONBUTTONRIGHTCLICK
	ONBUTTONRIGHTCLICKALL
	ONJOYDOWN
	ONJOYDOWNLEFT
	ONJOYDOWNRIGHT
	ONJOYFIRE
	ONJOYLEFT
	ONJOYRIGHT
	ONJOYUP
	ONJOYUPLEFT
	ONJOYUPRIGHT
	ONKEYDOWN
	ONKEYDOWNALL
	RemoveButton
	RemoveKeyDown
	Return
	SIZEWINDOW
	WhileKeyDown
	WhileMouseDown
	WhileMouseOn
	WhileRightMouseDown

	Locale library
	Overview
	CATALOG
	CloseCatalog
	FormatDate
	GetCatalogString
	GetCountryInfo
	GetLanguageInfo
	GetLocaleInfo
	GetSystemCountry
	GetSystemLanguage
	OpenCatalog

	Math library
	Abs
	ACos
	Add
	ASin
	ATan
	ATan2
	BitClear
	BitComplement
	BitSet
	BitTest
	BitXor
	Cast
	Ceil
	Cos
	Deg
	Div
	EndianSwap
	Exp
	Floor
	Frac
	FrExp
	Hypot
	Int
	IsFinite
	IsInf
	IsNan
	Ld
	LdExp
	Limit
	Ln
	Log
	Max
	Min
	Mod
	Mul
	NearlyEqual
	Pi
	Pow
	Rad
	RawDiv
	Rnd
	RndF
	RndStrong
	Rol
	Ror
	Round
	Rt
	Sar
	Sgn
	Shl
	Shr
	Sin
	Sqrt
	Sub
	Tan
	Wrap

	Memory block library
	AllocMem
	AllocMemFromPointer
	AllocMemFromVirtualFile
	CopyMem
	DecreasePointer
	DumpMem
	FillMem
	FreeMem
	GetMemPointer
	GetMemString
	IncreasePointer
	MemToTable
	Peek
	Poke
	ReadMem
	TableToMem
	WriteMem

	Menu library
	CreateMenu
	DeselectMenuItem
	DisableMenuItem
	EnableMenuItem
	FreeMenu
	IsMenuItemDisabled
	IsMenuItemSelected
	MENU
	PopupMenu
	SelectMenuItem

	Mobile support library
	CallJavaMethod
	GetAsset
	HideKeyboard
	PerformSelector
	ShowKeyboard
	ShowToast
	Vibrate

	Mouse pointer library
	CreatePointer
	FreePointer
	HidePointer
	MovePointer
	SetPointer
	ShowPointer

	Network library
	CloseConnection
	CloseServer
	CloseUDPObject
	CreateServer
	CreateUDPObject
	DownloadFile
	GetConnectionIP
	GetConnectionPort
	GetConnectionProtocol
	GetHostName
	GetLocalInterfaces
	GetLocalIP
	GetLocalPort
	GetLocalProtocol
	GetMACAddress
	IsOnline
	OpenConnection
	ReceiveData
	ReceiveUDPData
	ResolveHostName
	SendData
	SendUDPData
	SetNetworkProtocol
	SetNetworkTimeout
	ToHostName
	ToIP
	UploadFile

	Object library
	Overview
	ClearObjectData
	CopyObjectData
	GetAttribute
	GetObjectData
	GetObjects
	GetObjectType
	HaveObject
	HaveObjectData
	SetObjectData

	Palette library
	Overview
	ContrastPalette
	CopyPalette
	CopyPens
	CreatePalette
	CyclePalette
	ExtractPalette
	FreePalette
	GammaPalette
	GetBestPen
	GetFreePen
	GetPalettePen
	GetPen
	InvertPalette
	LoadPalette
	ModulatePalette
	PALETTE
	PaletteToGray
	ReadPen
	SavePalette
	SelectPalette
	SetBorderPen
	SetBulletPen
	SetCycleTable
	SetDepth
	SetDitherMode
	SetDrawPen
	SetGradientPalette
	SetPalette
	SetPaletteDepth
	SetPaletteMode
	SetPalettePen
	SetPaletteTransparentPen
	SetPen
	SetShadowPen
	SetStandardPalette
	SetTransparentPen
	SetTransparentThreshold
	SolarizePalette
	TintPalette
	WritePen

	Plugin library
	DisablePlugin
	EnablePlugin
	GetPlugins
	HavePlugin
	LoadPlugin
	REQUIRE

	Requester library
	ColorRequest
	FileRequest
	FontRequest
	ImageRequest
	ListRequest
	PathRequest
	PermissionRequest
	StringRequest
	SystemRequest

	Serial port library
	ClearSerialQueue
	CloseSerialPort
	FlushSerialPort
	GetBaudRate
	GetDataBits
	GetDTR
	GetFlowControl
	GetParity
	GetRTS
	GetStopBits
	OpenSerialPort
	PollSerialQueue
	ReadSerialData
	SetBaudRate
	SetDataBits
	SetDTR
	SetFlowControl
	SetParity
	SetRTS
	SetStopBits
	WriteSerialData

	Serializer library
	DeserializeTable
	GetSerializeMode
	ReadTable
	SerializeTable
	SetSerializeMode
	SetSerializeOptions
	WriteTable

	Sound library
	Overview
	CloseAudio
	CloseMusic
	CopySample
	CreateMusic
	CreateSample
	FillMusicBuffer
	FlushMusicBuffer
	ForceSound
	FreeModule
	FreeSample
	GetChannels
	GetPatternPosition
	GetSampleData
	GetSongPosition
	HaveFreeChannel
	InsertSample
	IsChannelPlaying
	IsModule
	IsMusicPlaying
	IsMusic
	IsSamplePlaying
	IsSample
	IsSound
	LoadModule
	LoadSample
	MixSample
	MUSIC
	OpenAudio
	OpenMusic
	PauseModule
	PauseMusic
	PlayModule
	PlayMusic
	PlaySample
	PlaySubsong
	ResumeModule
	ResumeMusic
	SAMPLE
	SaveSample
	SeekMusic
	SetChannelVolume
	SetMasterVolume
	SetMusicVolume
	SetPanning
	SetPitch
	SetVolume
	StopChannel
	StopModule
	StopMusic
	StopSample
	WaitMusicEnd
	WaitPatternPosition
	WaitSampleEnd
	WaitSongPosition

	Sprite library
	Overview
	CopySprite
	CreateSprite
	DisplaySprite
	FlipSprite
	FreeSprite
	LoadSprite
	MoveSprite
	RemoveSprite
	RemoveSprites
	ScaleSprite
	SetSpriteZPos
	SPRITE

	String library
	AddStr
	ArrayToStr
	Asc
	Base64Str
	BinStr
	ByteAsc
	ByteChr
	ByteLen
	ByteOffset
	ByteStrStr
	ByteVal
	CharOffset
	CharWidth
	Chr
	CompareStr
	ConvertStr
	CountStr
	CRC32Str
	EmptyStr
	EndsWith
	Eval
	FindStr
	FormatNumber
	FormatStr
	HexStr
	IgnoreCase
	InsertStr
	IsAlNum
	IsAlpha
	IsCntrl
	IsDigit
	IsGraph
	IsLower
	IsPrint
	IsPunct
	IsSpace
	IsUpper
	IsXDigit
	LeftStr
	LowerStr
	MD5Str
	MidStr
	PadNum
	PatternFindStr
	PatternFindStrDirect
	PatternFindStrShort
	PatternReplaceStr
	RepeatStr
	ReplaceStr
	ReverseFindStr
	ReverseStr
	RightStr
	SplitStr
	StartsWith
	StripStr
	StrLen
	StrStr
	StrToArray
	ToNumber
	ToString
	ToUserData
	TrimStr
	UnleftStr
	UnmidStr
	UnrightStr
	UpperStr
	Val
	ValidateStr

	System library
	Beep
	CollectGarbage
	DisableLineHook
	ELSE
	ELSEIF
	EnableLineHook
	End
	ENDIF
	GCInfo
	GetConstant
	GetDefaultAdapter
	GetDefaultLoader
	GetMemoryInfo
	GetSystemInfo
	GetType
	GetVersion
	IF
	IIf
	INCLUDE
	IsNil
	IsUnicode
	LegacyControl
	LINKER
	OpenURL
	OPTIONS
	SetDefaultAdapter
	SetDefaultLoader
	SetVarType
	ShowNotification
	Sleep
	VERSION
	Wait

	Table library
	Concat
	CopyTable
	CreateList
	ForEach
	ForEachI
	GetItem
	GetMetaTable
	HaveItem
	InsertItem
	IPairs
	IsTableEmpty
	ListItems
	NextItem
	Pack
	Pairs
	RawEqual
	RawGet
	RawSet
	RemoveItem
	SetListItems
	SetMetaTable
	Sort
	TableItems
	Unpack

	Text library
	Overview
	AddFontPath
	AddTab
	CloseFont
	CopyTextObject
	CreateFont
	CreateTextObject
	DisplayTextObject
	DisplayTextObjectFX
	FONT
	Font specification
	FreeGlyphCache
	FreeTextObject
	GetAvailableFonts
	GetBulletColor
	GetCharMaps
	GetDefaultEncoding
	GetFontColor
	GetFontStyle
	GetKerningPair
	Locate
	MoveTextObject
	NPrint
	OpenFont
	Print
	ResetTabs
	RotateTextObject
	ScaleTextObject
	SetBulletColor
	SetDefaultEncoding
	SetFont
	SetFontColor
	SetFontStyle
	SetMargins
	TransformTextObject
	Text format tags
	TextExtent
	TextHeight
	TextOut
	TextWidth
	UseFont
	Working with fonts

	Time library
	CompareDates
	DateToTimestamp
	DateToUTC
	GetDate
	GetDateNum
	GetTime
	GetTimer
	GetTimestamp
	GetTimeZone
	GetWeekday
	MakeDate
	ParseDate
	PauseTimer
	ResetTimer
	ResumeTimer
	SetTimerElapse
	StartTimer
	StopTimer
	TimerElapsed
	TimestampToDate
	UTCToDate
	ValidateDate
	WaitTimer

	Vectorgraphics library
	AddArcToPath
	AddBoxToPath
	AddCircleToPath
	AddEllipseToPath
	AddTextToPath
	AppendPath
	ClearPath
	ClosePath
	CopyPath
	CurveTo
	DrawPath
	ForcePathUse
	FreePath
	GetCurrentPoint
	GetDash
	GetFillRule
	GetLineCap
	GetLineJoin
	GetMiterLimit
	GetPathExtents
	IsPathEmpty
	LineTo
	MoveTo
	NormalizePath
	PathItems
	PathToBrush
	RelCurveTo
	RelLineTo
	RelMoveTo
	SetDash
	SetFillRule
	SetLineCap
	SetLineJoin
	SetMiterLimit
	SetVectorEngine
	StartPath
	StartSubPath
	TranslatePath
	Vectorgraphics plugin

	Video library
	Overview
	CloseVideo
	DisplayVideoFrame
	ForceVideoDriver
	GetVideoFrame
	IsVideo
	IsVideoPlaying
	OpenVideo
	PauseVideo
	PlayVideo
	ResumeVideo
	SeekVideo
	SetVideoPosition
	SetVideoSize
	SetVideoVolume
	StopVideo
	VIDEO

	Windows support library
	CreateShortcut
	GetShortcutPath
	ReadRegistryKey
	WriteRegistryKey

	Licenses
	Lua license
	OpenCV license
	ImageMagick license
	GD Graphics Library license
	Bitstream Vera fonts license
	Pixman license
	LuaSocket license
	librs232 license
	UsbSerial license
	SDL license
	LGPL license

	Index

